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Main themes & two-page summary

(a) I work with a class of stochastic processes, with steadily rarer
but steadily bigger shocks:

Zn(t) =
∑
i≤[nt]

Jic(i/n)αUi ,

where the Ui are i.i.d., the Ji are Bernoullis with
pi = min(1, 1/(ci)). There is a clear limit process,

Zn(t)→d Z (t),

with independent increments. There are nice special cases;
favourite case has the Ui i.i.d. exponential.

(b) The Z (t) can be useful by itself – but here I focus on
time-to-reach-threshold:

T = min{t > 0: Z (t) ≥ k}.

I study density f (t, c , α, k), survival function S(t, c, α, k), etc.;
these have power-law tails: F (t)

.
= 1− d/t1/c for growing t.
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(c) With survival (or other) data T1, . . . ,Tn, how can we estimate
parameters c , α, k? Various non-trivial technicalities; I develop
estimating techniques different from maximum likelihood.

(d) The model gives a good fit to CoW data, battle deaths in
major wars 1823-to-present. Better than the three-parameter
model of Cunen, Hjort, Nyg̊ard (JPR, 2020)? Don’t know (yet).

(e) How useful are such analyses? Don’t know (yet) – but
parameters are interpretable; we may test for constancy over time
vs. change points; covariates may be introduced in the model; etc.

(f) Monitoring processes for assessing goodness-of-fit (quite a bit
of work).

(g) I’ve only tried with the CoW data, so far – would be of interest
to try survival data where time to event might be l-o-o-o-n-g,
and to violence data sets, to see how the power-laws can be
assessed (and ‘explained’).
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A: Let’s begin: the Zn processes

With Zn(t) =
∑

i≤[nt] Jic(i/n)αUi , let EUi = ξ, VarUi = σ2.

Note: infinitely many Ji = 1, with pi = min(1, 1/(ci)), from
Borel–Cantelli.

Also:

EZn(t) =
∑
i≤[nt]

pic(i/n)αξ
.

=
[nt]α

nα
(1/α)ξ→ (1/α)ξtα,

VarZn(t) =
∑
i≤[nt]

c2(i/n)2α{pi (ξ2 + σ2)− (piξ)2}

→ c/(2α)(ξ2 + σ2)t2α.

Note that VarZ (t)/{EZ (t)}2 → constant.
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unit exponentials for the Ui , and n = 105. The mean curve
(1/α)tα is the dashed curve in the middle.
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B: There are clear limits, Zn(t)→d Z (t)

Recall Zn(t) =
∑

i≤[nt] Jic(i/n)αUi . Behaviour depends on the
distribution of the core shocks, the i.i.d. Ui . Let

h(s) = E exp(−sUi ), the Laplace transform.

Theorem: We have Zn(t)→d Z (t), with independent increments,
and

E exp{−θZ (t)} = exp
{
− 1

cα

∫ cθtα

0

1− h(s)

s
ds
}
.

Favourite Special Case (so far): the Ui are i.i.d. unit expo. Then

h(s) =
1

1 + s
implying

1− h(s)

s
=

1

1 + s
.

This leads to

E exp{−θZ (t)} =
1

(1 + cθtα)1/(cα)
,

which means

Zn(t)→d Z (t) ∼ Gamma(1/(cα), 1/(ctα)).
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C: A new type of Gamma process

Gamma processes are seen in lots o’ models and applications.
They are nearly always of the type

Z (t) ∼ Gamma(H1(t),H2(t)),

for increasing H1(t), and typically constant H2(t).

The present type is rather different:

Z (t) ∼ Gamma(1/(cα), 1/(ctα)).

Footnote: Somewhat peculiarly:

Z (t2) = Z (t1) + E , with Z (t1) and Z (t2) Gamma, but E not Gamma.
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D: Time to reach threshold: power laws

Consider T = min{t > 0: Z (t) ≥ k}. Then

S(t) = Pr(T ≥ t) = Pr{Gamma(1/(cα), 1/(ctα)) < k}

= Pr
{Gamma(1/(cα), 1/(ctα))

ctα
<

k

ctα

}
= G0

( k

ctα
,

1

cα

)
,

with G0(t, a) the c.d.f. for a Gamma(a, 1).

Density:

f (t) =
α

Γ(1/(cα))

(k
c

)1/(cα)
exp
(
− k

ctα

) 1

t1/c+1
.

It peaks at t0 = {kα/(c + 1)}1/α, which is typically a low value,
then goes slowly to zero in power-law fashion.
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Theorem: Distribution of T , given T ≥ t0, becomes uniformly
close to power-law, proportional to 1/t1/c+1, as t0 grows:

sup
t≥t0

∣∣∣ f (t |T ≥ t0)

(1/c)t
1/c
0 /t1/c+1

− 1
∣∣∣→ 0.

So for large data values, only tail index γ = 1/c matters:

Pr(T ≥ t |T ≥ t0)
.

= (t0/t)1/c for t ≥ t0.

With data above threshold t0,

yi = log(ti/t0) i.i.d. Expo(1/c).

So may use maximum likelihood for these:

c∗ = (1/m)
m∑
i=1

log(ti/t0).
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E: Setting the threshold

Start from full dataset t1, . . . , tn. For each candidate threshold t0,
throw the ti ≥ t0 to a goodness-of-fit machine to see if
F (t) = 1− (t0/t)γ is ok for t ≥ t0. With a suitable such test
statistic W (t0), compute

p(t0) = Pr{W ∗(t0) ≥Wobs(t0)},

where W ∗(t0) is from the null distribution. Result: a p-value plot.

I’ve transformed to goodness-of-fit to Expo(γ) for yi = log(ti/t0),
and used

Wm =
√
m

∫
|Fm(y)− F (y , γ̂)|dFm(y) =

1√
m

m∑
i=1

|i/m − F (y(i), γ̂)|,

with Fm the empirical c.d.f. for y(1) < · · · < y(m). Also,
F (y , γ̂) = 1− exp(−γ̂y), with γ̂ = 1/ȳ , for ti above threshold.
Accept as threshold (first) t0 where power-law is ok.
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F: Estimating the three parameters (using all data)

I now wish to use all data t1, . . . , tn, e.g. the CoW battle deaths,
not merely those above (an estimated) threshold.

(i) Can use ML (a bit troublesome numerically, but it works), using

f (t) =
α

Γ(1/(cα))

(k
c

)1/(cα)
exp
(
− k

ctα

) 1

t1/c+1
.

(ii) ML gives each datum equal importance. Here might wish
to give more emphasis on higher values. The quantile function is

F−1(q, c , α, k) =
{ k

cG−1
0 (1− qj , 1/(cα))

}1/α
.

For a set of quantiles, can minimise

Qn(c , α, k) =
r∑

j=1

w(qj){F−1
n (qj)− F−1(qj , c, α, k)}2,

and this delivers ĉ , α̂, k̂ .
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G: Assessing goodness of fit

Suppose a parametric model with c.d.f. F (t, θ) is correct at θ0.
Then the ordered F(i) = F (t(i), θ0) are an ordered sample from the
uniform, with expected values 1/(n + 1), . . . , n/(n + 1). The
Diagonal Diagnostic Plot is

(i/(n + 1), F̂(i)) for i = 1, . . . , n,

with the ordered version of F̂i = F (ti , ĉ , α̂, k̂). If model is good,
this should produce a plot close to the diagonal.

There are various other goodness-of-fit monitoring processes to
pursue, also based on the parameter estimation methods used (see
my paper-to-be). In particular, comparing Nelson–Aalen to
estimated parametric model, versions of

√
n{Â(t)− A(t, ĉ , α̂, k̂)},

suitable for survival type data.
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H: Battle deaths from the CoW database

The log of battle death counts for all n = 95 major interstate wars, from

1823 to the present; Korea 1950 tentative change point.
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p-value plots for testing the power-law tail models F (t) = 1− (t0/t)γ ,

for data above threshold t0. Left of Korea: red; right of Korea: black,

Blue marks on the log-thresholds scale are threshold values 5368 (sensible

here), and 7061 (Clauset, 2018).
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Plots of estimated tail power index c∗(t0), computed for data above

threshold t0. All wars (green, dashed line), for wars before 1950 (red),

and after 1950 (black). Blue marks are for thresholds 5368 and 7061,

where estimates (c∗L , c
∗
R) are (2.379, 1.552) and (2.178, 1.499).

That c is smaller now than in the past is Good News.
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Empirical and fitted 1 minus cumulatives, using the three-parameter

F (t, c , α, k) model, for battle deaths before (red) and after (black) 1950,

counted in thousands.
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Diagonal Diagnostic Plots, for the three-parameter F (t, c , α, k) model,

for data left and right of Korea 1950.
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I: Discussion

] My favourite model, so far, from time-to-threshold, says

F (t) = G0(k/(c(t − 1000)α), 1/(cα)) for t ≥ 1000

for the CoW battle deaths data. Can make covariates part of
the game, e.g.

ki = k exp(−β demi ),

with demi average democracy index for the two warring parties
just prior to war.

] For the CoW series, Céline and Nils (JPR, 2020) invented the model

F (t) =
[ {(t − 1000)/µ}θ

1 + {(t − 1000)/µ}θ
]α

for t ≥ 1000.

It has tails coming close to power-law; it works well; we used it to
spot Korea 1950 as changepoint; we could incorporate covariates.
However, it’s a bit ad hoc, whereas this talk’s model is derived for

a plausible interpretable background model. – More comparisons

needed.
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] Changes, discontinuities, trends take many forms: Based on similar
ideas in Cunen, Hjort, Nyg̊ard (JPR 2020), wish to look for things
like

ki = k exp(−β demi ),

with perhaps β ≈ 0 in the past, but β > 0 now.

] Might attempt to apply these new Gamma processes to ‘time to
certain events is sometimes very-very long’ phenomena in medical
statistics or biology.

] Might adjust models to take on board a cure fraction, individuals

never experiencing the event.
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