Focused Regularised Likelihood

focusstat fk

FOCUS DRIVEN STATISTICAL
INFERENCE WITH COMPLEX DATA

Gudmund Horn Hermansen with Nils Lid Hjort

Norske Statistikermtet (i Fredrikstad)

June 15, 2017

1/11



Introduction, motivation and summary

Suppose that Fy is our favourite (parametric) model, but that Y7, Y3,...Y, are
iid. from a model with (true) distribution function G.

We do not necessarily assume that Fy span the true G (model misspecification).

Furthermore, suppose that we are particularly concerned with some parameters
Y1, ..., that are functionals of the (underlying) distribution, i.e.

¥ = ¥;(G),
forj=1,...,r.
Some exampels are quantiles ¢; = G~!(p;) and ¥; = Pr{Y € 4;} = fAj dG(z).
Let £,(0) be the log-likelihood associated with Fy and let

Our, = arg mé?,x{én (6)}

be the maximum likelihood estimator (MLE).

).

Under the model we estimate 1; by the plug-in principle, i.e. @ML,]‘ =)y (FgML

If our model Fy is ‘far’ from the true G, then
YuL,j = V5 (Fg, ) =i (Foo) # 5 (G),

where 6 is the so-called least false parameter value.
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Introduction, motivation and summary
To avoid problems related to misspecification, we may try a nonparametric
construction, or considering a complex (bigger) parametric model.
However, suppose we want to keep the original parametric model.

If {f’\np, j are nonparametric alternatives (e.g. empirical quantiles or probabilities)
such that

Unp,j =15 (G)

we propose a strategy that ‘solves’ the issues with Fp with respect to the ;.

The idea is to penalise the MLE (under Fy) if it (the model) is not able to match
a nonparametric ¥np ; (i.e. if np ; are far from ¥y, 5).

The focused regularised likelihood estimator (FRLE) is defined as

log-FRL

0, = arg max {én (6) — %)\n Z wj{{b\j,np — (9)}2},
Jj=1

where 1;(0) are regularisation/control parameters (under the model) and
e ) is a tuning parameter (where A = 0 will reproduce the MLE)
e n makes sure that the regularisation will not be washed out
e w; are weights

® 1; np are alternative nonparametric estimators for the same );
3/11



Tlustration: Focused estimation of survival

How long is a life? Here we consider a classical data set of life-lengths in Roman
Egypt, collected by W. Spiegelberg in 1901 and analysed by Karl Pearson (1902).
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Figure: The age at death for 141 Egyptian mummies (82 men and 59 women) in the
Roman period (around year 100 B.C.); see e.g. Claeskens & Hjort (2008) for details.
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Assuming a Weibull is a reasonable model, suppose we are particularly interested
in the estimates for

Y1 =Pr{0<Y <15}, oo =Pr{15<Y <30} and 3 =Pr{30<Y < 100}.
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Tlustration: Focused estimation of survival

The FRLE is given by
0, = arg max{@ 0) — )\n Z wz{d’np i~ (9)}2}

where w; = 1/3 and {ﬂ\np,j are the proportions with the corresponding life-lengths.
From data and the Weibull model (with A = 0) we find

Pup1 =0.22, Pnp2 =037 and Pnp3 = 0.41, and

Upa1 =028, Upa2 =030 and a3 =043,
and with the FRLE we obtain (goodness-of-fit test)
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Figure: The effect of increasing A on the control parameters. /11



The basic theory for i.i.d. data (part 1)

If we only consider one ¢ and let Y1,Y3,...Y) be ii.d. with distribution G (and
density g), then

0y = arg max {Zn(e) - %)\n{'l:/)\np - 7#(9)}2}7

in order to ‘understand’ the FRLE we will:
(1) find what 5)\ aims at and
(2) derive the limit behaviour of \/ﬁ(é} —0y).
The limit (1) is obtained by similar arguments as the MLE outside the model and
Ox —pr Ox = argmin{KL(g, fo) + 3 M{urue — ()},
In order to derive the limt distribution in (2) we ‘only’ need to work with the
scaled first and second derivative of log-FRL, i.e.

82

*an)\(e)/”h

() VAU A) = -l n(@)/Vi and (i) Jua(0) =

The weak limt (i) only depends on the joint limit of the original (scaled) score
function and the non-parametric estimator.
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The basic theory for i.i.d. data (part 2)

If

(PR ) o () (-2 )

with Varg(Un(0x)) = K(0), then
Uy, 2 (0)) —q Uy = U(0x) + AVY™(0)),
which is zero-mean normal with covariance matrix
Kx = K(0x) + A27207 (00)97 (02)" + 22cy™(03)"-

In order to establish the limit of (ii) we need

Tua(0x) = =071 (00) + Al (02)%* (02)° + {Pnp — $(02)}1** (6]
—pr J(0x) + AT (02)%"(0x)" + {Yorue — V(1) 1™ (02)]
= '](0)\) + AL = J)u

where J(-) is the classical Fisher information matrix.
Now, by combining (i) and (ii) we obtain the weak limit (2) as
Vi@ = 0x) —a JYTUx = (J(03) + L) THUO2) + AV (02)},
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Focused Regularised Regression

Suppose
Y; = Bz + 'z + oe

with covariates x; and z;, and where €; are i.i.d. standard normal errors and o > 0.

Let the wide model be the model with mean 8%z + «*z and the narrow model be
Btz + 8z = Btz with vo = 0.

Suppose we care about 1(z*, 2*) = E[Y™* |2*, 2*] for a set of r important (2}, 2}).
If the wide model play the part as the nonparametric component, then

T

By = argmax {en(ﬁ, 5(8)) — 320 Y w; (Bwide] + Awide?] — Bx;f)z}
j=1

with Bwide and Jwide fitted under the wide model.

This also motivates a Focused Regularised Least Squares Regression by
B = argmin{(¥' = XB)'(Y = XB) + (Ve = X8)! (Ve = X"B)/7},
resulting in a explicit formulas and properties for B}\ (not based on asymptotics).
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Focused Regularised Regression
Simulated data from Y; = Bo + B1x; + Y12 + €, with z; = (0.5 — x;)? for n = 50,
Bo =0.5, 81 =2.0,v1 =2.5and o = 1.2.
Let ¢ = E[Y* | z* = 0.1].

For optimal A we compare root mean squared error (rmse) for E[Y™* | 2*] all *.
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Figure: The difference in rmse for one zo = 0.1.
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Focused Regularised Regression
Simulated data from Y; = Bo + B1x; + Y12 + €, with z; = (0.5 — x;)? for n = 50,
Bo =0.5, 81 =2.0,v1 =2.5and o = 1.2.
For each z let p = E[Y™* |z* = z].

For optimal A we compare root mean squared error (rmse) for E[Y™* | 2*] all *.
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Figure: The difference in rmse for optimal and fixed A for each possible x.
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Concluding remarks

The FRLE push the MLE to match the nonparametric procedure with respect to
the selected ;.

Easy to implement and not too sensitive to fine tuning of .
There is a connection to a empirical Bayesian procedure.

We have also general and explicit formulas and asymptotic theory for a family of
stationary Gaussian time series models.

Clear results under a so-called locally misspecified modelling framework, i.e. where

ftrue(y) = f(y7 0,70 + (5/\/5),

with corresponding methodology for finding a good tuning parameter .

The FRL procedure may also be seen as:
o focused robust estimation, where we use e.g. empirical quantiles to
correct for potential model misspecifications (borrowing strengths)
e robust focused inference, if u(g) is especially important we may use
r + 1 control parameters ¥ = u(g) and 91, ...,y for r >0
e model selection, checking or testing via e.g. asymptotic confidence
intervals for f (0 N — GML) for a given A, under the parametric model
e robust double focused inference, applying the above strategy within the
traditional FIC framework (i.e. focused model selection)
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