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Introduction, motivation and summary

Suppose that Fθ is our favourite (parametric) model, but that Y1, Y2, . . . Yn are
i.i.d. from a model with (true) distribution function G.

We do not necessarily assume that Fθ span the true G (model misspecification).

Furthermore, suppose that we are particularly concerned with some parameters
ψ1, . . . , ψr that are functionals of the (underlying) distribution, i.e.

ψj = ψj(G),

for j = 1, . . . , r.

Some exampels are quantiles ψj = G−1(pj) and ψj = Pr{Y ∈ Aj} =
∫
Aj

dG(x).

Let `n(θ) be the log-likelihood associated with Fθ and let

θ̂ML = arg max
θ
{`n(θ)}

be the maximum likelihood estimator (MLE).

Under the model we estimate ψj by the plug-in principle, i.e. ψ̂ML,j = ψj(Fθ̂ML
).

If our model Fθ is ‘far’ from the true G, then

ψ̂ML,j = ψj(Fθ̂ML
) =̇ψj(Fθ0 ) 6= ψj(G),

where θ0 is the so-called least false parameter value.
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Introduction, motivation and summary

To avoid problems related to misspecification, we may try a nonparametric
construction, or considering a complex (bigger) parametric model.

However, suppose we want to keep the original parametric model.

If ψ̂np,j are nonparametric alternatives (e.g. empirical quantiles or probabilities)
such that

ψ̂np,j =̇ψj(G)

we propose a strategy that ‘solves’ the issues with Fθ with respect to the ψj .

The idea is to penalise the MLE (under Fθ) if it (the model) is not able to match

a nonparametric ψ̂np,j (i.e. if ψ̂np,j are far from ψ̂pa,j).

The focused regularised likelihood estimator (FRLE) is defined as

θ̂λ = arg max
θ

{ log-FRL︷ ︸︸ ︷
`n(θ)− 1

2
λn

r∑
j=1

wj{ψ̂j,np − ψj(θ)}2
}
,

where ψj(θ) are regularisation/control parameters (under the model) and

• λ is a tuning parameter (where λ = 0 will reproduce the MLE)

• n makes sure that the regularisation will not be washed out

• wj are weights

• ψ̂j,np are alternative nonparametric estimators for the same ψj
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Illustration: Focused estimation of survival

How long is a life? Here we consider a classical data set of life-lengths in Roman
Egypt, collected by W. Spiegelberg in 1901 and analysed by Karl Pearson (1902).

Figure: The age at death for 141 Egyptian mummies (82 men and 59 women) in the
Roman period (around year 100 B.C.); see e.g. Claeskens & Hjort (2008) for details.

Assuming a Weibull is a reasonable model, suppose we are particularly interested
in the estimates for

ψ1 = Pr{0 ≤ Y < 15}, ψ2 = Pr{15 ≤ Y < 30} and ψ3 = Pr{30 ≤ Y < 100}.
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Illustration: Focused estimation of survival

The FRLE is given by

θ̂λ = arg max
θ
{`n(θ)− 1

2
λn

3∑
j=1

wi{ψ̂np,j − ψj(θ)}2}

where wj = 1/3 and ψ̂np,j are the proportions with the corresponding life-lengths.

From data and the Weibull model (with λ = 0) we find

ψ̂np,1 = 0.22, ψ̂np,2 = 0.37 and ψ̂np,3 = 0.41, and

ψ̂pa,1 = 0.28, ψ̂pa,2 = 0.30 and ψ̂pa,3 = 0.43,

and with the FRLE we obtain (goodness-of-fit test)

Figure: The effect of increasing λ on the control parameters.
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The basic theory for i.i.d. data (part 1)

If we only consider one ψ and let Y1, Y2, . . . Yn be i.i.d. with distribution G (and
density g), then

θ̂λ = arg max
θ

{
`n(θ)− 1

2
λn{ψ̂np − ψ(θ)}2

}
,

in order to ‘understand’ the FRLE we will:

(1) find what θ̂λ aims at and

(2) derive the limit behaviour of
√
n(θ̂λ − θλ).

The limit (1) is obtained by similar arguments as the MLE outside the model and

θ̂λ →pr θλ = arg min
θ
{KL(g, fθ) + 1

2
λ{ψtrue − ψ(θ)}2},

In order to derive the limt distribution in (2) we ‘only’ need to work with the
scaled first and second derivative of log-FRL, i.e.

(i)
√
nUn,λ(θ) =

∂

∂θ
`n,λ(θ)/

√
n and (ii) Jn,λ(θ) = −

∂2

∂θ∂θt
`n,λ(θ)/n.

The weak limt (i) only depends on the joint limit of the original (scaled) score
function and the non-parametric estimator.
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The basic theory for i.i.d. data (part 2)

If(√
n[Un(θλ) + λ{ψtrue − ψ(θλ)}ψ∗(θλ)]√

n{ψ̂np − ψtrue}

)
→d

(
Uλ
V

)
∼ Np+1

((
0
0

)
,

(
K(θλ) ct

c τ2

))
,

with Varg(Un(θλ))→ K(θλ), then

√
nUn,λ(θλ)→d Uλ = U(θλ) + λV ψ∗(θλ),

which is zero-mean normal with covariance matrix

Kλ = K(θλ) + λ2τ2ψ∗(θλ)ψ∗(θλ)t + 2λcψ∗(θλ)t.

In order to establish the limit of (ii) we need

Jn,λ(θλ) = −n−1`∗∗n (θλ) + λ[ψ∗(θλ)ψ∗(θλ)t + {ψ̂np − ψ(θλ)}ψ∗∗(θλ)]

→pr J(θλ) + λ[ψ∗(θλ)ψ∗(θλ)t + {ψtrue − ψ(θλ)}ψ∗∗(θλ)]

= J(θλ) + λL = Jλ,

where J(·) is the classical Fisher information matrix.

Now, by combining (i) and (ii) we obtain the weak limit (2) as

√
n(θ̂λ − θλ)→d J

−1
λ Uλ = (J(θλ) + λL)−1{U(θλ) + λV ψ∗(θλ)},
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Focused Regularised Regression

Suppose
Yi = βtxi + γtzi + σεi

with covariates xi and zi, and where εi are i.i.d. standard normal errors and σ > 0.

Let the wide model be the model with mean βtx+ γtz and the narrow model be
βtx+ γt0z = βtx with γ0 = 0.

Suppose we care about ψ(x∗, z∗) = E[Y ∗ |x∗, z∗] for a set of r important (x∗j , z
∗
j ).

If the wide model play the part as the nonparametric component, then

β̂λ = arg max
β

{
`n(β, σ̂(β))− 1

2
λn

r∑
j=1

wj(β̂widex
∗
j + γ̂widez

∗
j − βx∗j )2

}

with β̂wide and γ̂wide fitted under the wide model.

This also motivates a Focused Regularised Least Squares Regression by

β̂λ = arg min
β
{(Y −Xβ)t(Y −Xβ) + λn(Ŷ ∗

wide −X
∗β)t(Ŷ ∗

wide −X
∗β)/r},

resulting in a explicit formulas and properties for β̂λ (not based on asymptotics).
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Focused Regularised Regression

Simulated data from Yi = β0 + β1xi + γ1zi + εi, with zi = (0.5− xi)2 for n = 50,
β0 = 0.5, β1 = 2.0, γ1 = 2.5 and σ = 1.2.

Let ψ = E[Y ∗ |x∗ = 0.1].

For optimal λ we compare root mean squared error (rmse) for E[Y ∗ |x∗] all x∗.

Figure: The difference in rmse for one x0 = 0.1.
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Focused Regularised Regression

Simulated data from Yi = β0 + β1xi + γ1zi + εi, with zi = (0.5− xi)2 for n = 50,
β0 = 0.5, β1 = 2.0, γ1 = 2.5 and σ = 1.2.

For each x let ψ = E[Y ∗ |x∗ = x].

For optimal λ we compare root mean squared error (rmse) for E[Y ∗ |x∗] all x∗.

Figure: The difference in rmse for optimal and fixed λ for each possible x.
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Concluding remarks

The FRLE push the MLE to match the nonparametric procedure with respect to
the selected ψj .

Easy to implement and not too sensitive to fine tuning of λ.

There is a connection to a empirical Bayesian procedure.

We have also general and explicit formulas and asymptotic theory for a family of
stationary Gaussian time series models.

Clear results under a so-called locally misspecified modelling framework, i.e. where

ftrue(y) = f(y, θ, γ0 + δ/
√
n),

with corresponding methodology for finding a good tuning parameter λ.

The FRL procedure may also be seen as:

• focused robust estimation, where we use e.g. empirical quantiles to
correct for potential model misspecifications (borrowing strengths)

• robust focused inference, if µ(g) is especially important we may use
r + 1 control parameters ψ0 = µ(g) and ψ1, . . . , ψr for r ≥ 0

• model selection, checking or testing via e.g. asymptotic confidence
intervals for

√
n(θ̂λ − θ̂ML), for a given λ, under the parametric model

• robust double focused inference, applying the above strategy within the
traditional FIC framework (i.e. focused model selection)
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