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[Note: This is the pdf version of the 2 x 45 minutes Nils Talk I I
gave at the Geilo Winter School, January 2017. In my actual
presentation I of course did both of (a) saying quite a bit more
than is on the page and (b) skidding semi-quickly over chunks of
the material, including parts of the mathematics, complete with
the usual mixture of hand-waving, glossing over technicalities, and
swiping of details under imaginary carpetry. The pdf notes
themselves are meant to be decently coherent, though, and may be
suitable for study.]
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Statistical selection of statistical lectures

Scenario A: I talk for 6 hours on Single Topic X.

Then 33% might be decently happy, perhaps even with Cumulative
Satisfaction Coefficient monotone over [0, 6]. But 67% might be
lost at sea after 1 hour.

Scenario B: I talk for 2 hours on Topic X, 2 hours on Topic Y, 2
hours on Topic Z.

Then 33% might have wished for more depth & more developed
applications. But 67% will at least be given 3 chances to re-focus
and get something out of it (being exposed to cute contemporary
statistical ideas, even without getting the details).

[Footnote: ‘1 hour’ is in Academic Units, i.e. 45 minutes.]

I go for B – maximising E (utility | information, data).

I Model selection and model averaging
I Confidence distributions and data fusion
I Bayesian nonparametrics
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Model fitting; inference; but which method,
and which model?

Typical problem setup: data y (i.i.d. data, or regression data, or
something more complex); wish to reach inference statements for
one or more focus parameters µ.

Typical method: fit a model, say f (y , θ), via estimate θ̂; this leads
to µ̂ = µ(θ̂), along with standard error (estimated standard
deviation). If things go well, one concludes with µ̂± 1.96 se. (But
which estimation method; which methods for reaching se; which
fine-tuning tools?)

But which model? With candidate models fj(y , θj), fitting these

leads to µ̂j = µj(θ̂j). Which model is best, which focus parameter
estimate is best?

All models are wrong, but some are useful. We need to understand
not merely variation, but biases.
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Example: When to stop, which polynomial order? High order:
less bias, more variance. Small order: more bias, less variance.
More data: more sophistication.
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Plan

Model selection, model averaging, post-selection and
post-averaging inference, bagging ...

A Maximum likelihood: basic theory

B AIC, the Akaike Information Criterion

C BIC, the Bayesian Information Criterion

D The Biggest Plagiarism Scandal in the history of literature
(well, I’ll check it out)

E FIC, the Focused Information Criteria

... then short & quick excursions:

F The Quiet Scandal of Statistics

G Model averaging

H Models with increasing or very big dimension

I Concluding remarks
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Check also course website for STK 4160, UiO (starting next week):
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A: Maximum likelihood: theory, and how to apply it

Fitting data y to a parametric model fjoint(y , θ): we keep data
fixed and maximise over the parameter,

θ̂ = argmax{`(θ)}, `(θ) = log fjoint(y , θ).

(Some) Q:

(i) Is θ̂ close to the best [as opposed to ‘the true’] parameter
value θ0?

(ii) What is its distribution?

(iii) What about µ̂ = µ(θ̂), the estimated focus parameter?

(Some) A:

(i) Yes [modulo a sorting-out of what ‘best value’ should mean];

(ii) close to a multinormal distribution; and

(iii) close to a normal

– provided data information content is at least moderately good
compared to the parameter dimension.
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The i.i.d. situation first

To understand basic issues, methods, results, implications, we start
in the i.i.d. situation. Suppose y1, . . . , yn are i.i.d. from density g ,
and that we try to fit the model f (y , θ), with θ of dimension p.
The ML θ̂ maximises log-likelihood function

`n(θ) =
n∑

i=1

log f (yi , θ).

We have

Hn(θ) = n−1`n(θ)→pr H(θ) =

∫
g log fθ dy .

(a) Under weak conditions,

θ̂ = argmax(Hn)→pr θ0 = argmax(H).

So the ML is aiming at θ0 = argmin KL(g , fθ), the least false
parameter, minimising the Kullback–Leibler distance

KL(g , fθ) =

∫
g log

g

fθ
dy .
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If model is perfect, then least false = true parameter, and θ̂ tends
to true value. But ML does a sensible job, even outside model
conditions. How close is θ̂ to θ0?

Let

u(y , θ) = ∂ log f (y , θ)/∂θ, i(y , θ) = ∂2 log f (y , θ)/∂θ∂θt.

Consider the random function

An(s) = `n(θ0 + s/
√
n)− `n(θ0) = Ut

ns − 1
2s

tJns + opr(1),

with

Un = `′n(θ0)/
√
n = n−1/2

n∑
i=1

u(yi , θ0)→d U ∼ Np(0,K ),

where K = Varg u(Y , θ0), and

Jn = −n−1
n∑

i=1

i(yi , θ0)→pr J = −Eg i(Y , θ0).

So `n(θ) is close to a quadratic, close to θ0.
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(b) Now we understand the behaviour of `n(θ) close to θ0; it’s
quadratic in the limit, with

An(s)→d A(s) = Uts − 1
2s

tJs.

Corollary 1: Approximate distribution of ML estimator:
argmax(An)→d argmax(A),

√
n(θ̂ − θ0)→d J−1U ∼ Np(0, J−1KJ−1).

This leads to confidence regions and tests, etc.

Corollary 2: Approximate distribution of deviance:
2 maxAn →d 2 maxA,

Dn(θ0) = 2{`n,max−`n(θ0)} →d W = UtJ−1U, with U ∼ Np(0,K ).

Here W ∼ χ2
p, if model is correct. May e.g. form

{θ0 : Dn(θ0) ≤ z0.95}.
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With µ a focus parameter, expressible as µ = µ(θ) under the given
model: may read off approximate distribution of µ̂ = µ(θ̂).

Corollary 3: Delta method:

√
n(µ̂− µ0)→d ctJ−1U ∼ N(0, κ2),

where
κ2 = ctJ−1KJ−1c and c = ∂µ(θ0)/∂θ.

Good News: These results are very general (valid for all smooth
models, even for those you might invent yourself), and increasingly
easy to use. Data y , model f (y , θ): you programme the
log-likelihood function `(θ) and ask an R-routine to give you

(i) the ML θ̂;

(ii) the information matrix Ĵ = −∂2`(θ̂)/∂θ∂θt;

(iii) an estimate K̂ of K ;

(iv) the derivative ĉ = µ(θ̂)/∂θ;

and you’re in business.
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Illustration: n = 141 lifetimes from Roman era Egypt, c. 100 years
BC (with ȳ = 30.7, max = 96, and life more dangerous for women
than for men). I fit the model

F (y , a, b) = 1− exp{−(y/a)b} for y > 0.

logL = function(ab)
{
a = ab[1]
b = ab[2]
well = -(yy/a)ˆb + log(b)+(b-1)*log(yy)-b*log(a)
sum(well)
}
I then use nlm to minimise minuslogL (or anything similar):
nils = nlm(minuslogL,c(25,1),hessian=T)

ML = nils$estimate

Jhat = nils$hessian

se = sqrt(diag(solve(Jhat)))

13/61



Histogram and fitted f (y , â, b̂) for 141 ancient Egypt life-lengths:
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Parameter estimates, with standard errors, read off from the simple
R programme:

ML se

a 33.563 2.113

b 1.404 0.096

With focus parameter µ = F−1(0.80) = a(− log 0.2)1/b: Estimate
is µ̂ = µ(â, b̂) = 47.104, and standard error 2.832 is read off from
a simple programme, using numerical derivatives for
ĉ = ∂µ(θ̂)/∂θ, and θ = (a, b). A 90% confidence interval for the
0.80 quantile is [42.445, 51.762].

Similar steps can be carried out for other models – see discussion
of model selection issues below.
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From i.i.d. to regression models

Data are often of the form (xi , yi ), for i = 1, . . . , n objects, with
outcome y to be explained and interpreted as a consequence of x .

Regression model for y given x : f (y | x , θ). Chief examples:

(i) linear regression, yi = x ti β + εi , where εi ∼ N(0, σ2);

(ii) logistic regression, for 0-1 data,

Pr(yi = 1 | xi ) =
exp(x ti β)

1 + exp(x ti β)
;

(iii) Poisson regression, with yi ∼ Pois(µi ), and µi = exp(x ti β).

For each of these (and of lots of others), may start from
log-likelihood function:

`n(θ) =
n∑

i=1

log f (yi | xi , θ).

16/61



Good News: concepts, methods, results, algorithms generalise to
the regression context – with some efforts, experience, patience;
and without too many or overly hard mathematical obstacles.

So ML estimators θ̂ can be found, via numerical optimisation.
Under model conditions:

θ̂ ≈d Np(θ0, Ĵ
−1),

with Ĵ = −∂2`n(θ̂)/∂θ∂θt, the observed information matrix.

Outside model conditions: there’s a more elaborate definition of
least false parameter value θ0,n, but things pan out as for the

i.i.d. case, with sandwich matrix Ĵ−1K̂ Ĵ−1 replacing Ĵ−1.
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B: Model selection: AIC (and relatives)

For simplicity now: working in the i.i.d. setup, but all concepts,
arguments, techniques, results generalise to regressions and more
general frameworks.

For the same data y1, . . . , yn, consider competing parametric
models fj(y , θj). Which of the fitted models fj(y , θ̂j) should we
choose? We wish

KL(g , fj(·, θ̂j)) =

∫
g log g dy −

∫
g(y) log fj(y , θ̂j) dy

to be small. We shall see that

n−1`n,max,j = n−1`n,j(θ̂j) overestimates

∫
g log f (·, θ̂j) dy .

Hence we need something like

ICj = `n,max ,j − penj ,

with penj a measure of complexity for model j .
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For a given model, need to understand how much n−1`n,max

overshoots
∫
g log f (·, θ̂) dy . We work with

Hn(θ) = n−1`n(θ) and its limit H(θ) =

∫
g log fθ dy .

Two 2nd order Taylor approximations, using
Vn =

√
n(θ̂ − θ0)→d V = J−1U:

H(θ̂) = H(θ0)− 1
2n
−1V t

nJVn + opr(1/n),

Hn(θ0) = Hn(θ̂)− 1
2n
−1V t

nJ
−1Vn + opr(1/n).

Subtraction & book-keeping yields

∆n = Hn(θ̂)− H(θ̂) = Hn(θ0)− H(θ0) + n−1Wn + opr(1/n),

with Wn = V t
nJVn →d W = UtJ−1U. So

E ∆n = n−1p∗ + o(1/n), with p∗ = EW = Tr(J−1K ).

Conclusion:
AIC∗ = 2`n,max − 2p̂∗

is doing the minimise expected KL distance job, with
p̂∗ = Tr(Ĵ−1K̂ ). If model is trusted, then p∗ = p, length of θ.
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The simplified version

AIC = 2`n,max − 2p

is most typically used – it indirectly takes p as an estimate of or
approximation to p∗ = Tr(J−1K ).

AIC∗ = 2`n,max − 2p̂∗

is the model-robust version.

For candidate models M1, . . . ,Mk , compute
AIC∗j = 2`n,j ,max − 2p̂∗j for each, and use the model with the
biggest score.

Cross validation methods abound; some of these are related to AIC.
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Example: With (xi , yi ) data, and xi = (xi ,1, . . . , xi ,q) of length q:
can try different subsets of the q covariates. AIC says: for each
subset of the covariates (there are 2q such), compute the score

A = n log σ̂ + p,

where p is the length of the covariate and
σ̂2 = n−1

∑n
i=1(yi − x ti β̂)2, and select model with smallest A.

Example: It’s easy to try out different models for the n = 141
life-lengths of Roman era Egypt (c. 2100 years ago). A partial list
is:
model dim logLmax aic

1 1 -623.7764 -1249.553 4 Expo

2 2 -615.3861 -1234.772 3 Gamma

3 2 -611.3530 -1226.706 1 Gompertz

4 2 -613.1144 -1230.229 2 Weibull

Better models may be found. If a three-parameter model should
beat the Gompertz, it needs to have a logLmax of −610.353 or
higher.
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C: BIC: Pr(Mj | data)

With candidate models M1, . . . ,Mk for the data y , why not select
the most likely model, given the data? This needs a Bayesian
machinery: prior p(Mj) for the models, and a prior πj(θj) for the
parameters of model Mj . Bayes’ theorem says

Pr(Mj |data) =
p(Mj)λj

p(M1)λ1 + · · ·+ p(Mk)λk
,

where

λj = Lj ,marg(y) =

∫
Ln,j(θj)πj(θj) dθj

are the marginal likelihoods.

Trouble: Rather hard to set up all priors, conceptually and
practically – both for models, and for the parameter vector in each
model; also, rather hard to do the integrations.
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Good News: There’s an easy to use approximation, which also
bypasses the need to be explicit about the priors.

The approximation is of the Laplace type. For a given model, with
n increasing, and using θ = θ̂ + s/

√
n:

λn =

∫
L(θ)π(θ) dθ

=

∫
exp{`n,max + `n(θ)− `n(θ̂)}π(θ) dθ

= exp(`n,max)n−p/2
∫

exp{`n(θ̂ + s/
√
n)− `n(θ̂)}π(θ̂ + s/

√
n) ds

.
= exp(`n,max)n−p/2

∫
exp(−1

2s
tJns) ds π̂(θ̂).

Hence
log λn = `n,max − 1

2p log n + Opr(1)

and

Pr(Mj | data)
.

=
exp(12BICj)∑

exp(12BICj ′)
with BICj = 2`n,j ,max − pj log n.
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To explain or to predict: the Two Cultures

Different uses of statistics (modelling, fitting, fine-tuning, model
selection, inference) in different schools and applications.

I to explain – to understand, to get close to the truth, to
interpret the mechanisms;

I to predict – to classify, to get the black box to work, to win
prediction contests.

Both are solid, long-standing, valuable statistical pursuits (and
sometimes correlated). We wish to predict the average
temperature and the polar bear population in a.D. 2067 and to
understand underlying causes.

(Die Statistiker haben die Welt nur verschieden interpretiert; es
kömmt aber darauf an, sie zu verändern.)

AIC (and cousins): prediction, estimation.

BIC (and cousins): aiming at best explanation.
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D: Quiet Does Not Flow the Don:
Statistical analysis of a quarrel between Nobel prize winners

Sholokhov. 25/61



Solzhenitsyn.
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The Nobel Prize of Literature 1965: Mikhail Sholokhov
(1905–1984), for Tihiĭ Don. He was called ‘the greatest of our
writers’, his works have been published in more than a thousand
editions, printed in more than sixty million copies ...

But in 1974 the article Strem� ‘Tihogo Dona’ (Zagadki romana),
was published in Paris, by the author and critic D∗. He claimed
that Tihiĭ Don was instead written by Fiodor Kriukov (who
fought against the Bolsheviks and died in 1920). D∗ was backed
by a.o. Aleksandr Solzhenitsyn (1918–2008, Nobel prize 1970).
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Xolohov (Nobel 1965) vs. Sol�enicyn (Nobel 1970) mystery:

An inter-Nordic research team formed in 1975, led by Geir Kjetsaa
(Department of Literature, Regional Studies and European
Languages at the University of Oslo):

Linguistic analyses, detective work, quantitative data, ...

And Sholokhov and Solzhenitsyn had quarrelled before.
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Sholokhov, to the Secretariat of the Union of Soviet Writers, 1967:

“I have read Solzhenitsyn’s Feast of the Conquerors and In the
First Circle. What is striking [...] is the sickly shamelessness of the
author. Solzhenitsyn not only makes no attempt to hide or
somehow veil his anti-Soviet views [...].

As regards the form of the play, it is feeble and foolish [...]. Why
are Vlasovites – traitors to the Motherland on whose conscience lie
thousands of our dead and tormented soldiers – praised as those
who express the hopes of the Russian people? The novel In the
First Circle stands on this same political and artistic plane.

At one time I formed an impression of Solzhenitsyn [...] that he is
an insane person, suffering from megalomania. [...] If Solzhenitsyn
is psychologically normal, then he is, in essence, an open and
malicious anti-Soviet person. In either case, Solzhenitsyn has no
place in the ranks of the Union of Soviet Writers. I am
unconditionally in favour of the exclusion of Solzhenitsyn from the
SP SSSR.”
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Doris Lessing (in Walking in the Shade, 1997), about Sholokhov:

“The only word for this man is macho, positively a comic-opera
he-man. Vibrations of dislike instantly flowed between us.”

She says all Sholokhov’s later work is of lesser quality than Quiet
Don – precisely one of Solzhenitsyn’s arguments.

This is the potentially biggest plagiarism scandal in the history of
literature. How should one approach the problem?

I Literary style and themes ...

I Pure detective work ...

I Statistical analysis ...
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Data have been extracted from three corpora:

I X, or Sh, from published work guaranteed to be by
Sholokhov, 4183 sentences;

I Kr, or Kr, from the hand of the alternative hypothesis
Kriukov, 3736 sentences; and

I TD, or TD, the Nobel winning text, 3760 sentences.

Each of the corpora has about 50,000 words.
Here: focus on sentence lengths.
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Table of sentence lengths, observed and fitted from model:

from to Sh Kr TD Sh Kr TD
1 5 799 714 684 803.4 717.6 690.1
6 10 1408 1046 1212 1397.0 1038.9 1188.5

11 15 875 787 826 884.8 793.3 854.4
16 20 492 528 480 461.3 504.5 418.7
21 25 285 317 244 275.9 305.2 248.1
26 30 144 165 121 161.5 174.8 151.1
31 35 78 78 75 91.3 96.1 89.7
36 40 37 44 48 50.3 51.3 52.1
41 45 32 28 31 27.2 26.8 29.8
46 50 13 11 16 14.5 13.7 16.8
51 55 8 8 12 7.6 6.9 9.4
56 60 8 5 3 4.0 3.5 5.2
61 65 4 5 8 2.1 1.7 2.9
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This is not a statistical walk in the park (and not Solstad
vs. Hemingway):
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If Y |λ is Poisson(λ), but λ ∼ Gamma(a, b), then Y has
distribution

f ∗(y , a, b) =
ba

Γ(a)

1

y !

Γ(a + y)

(b + 1)a+y
for y = 0, 1, 2, . . . ,

which is the negative binomial, with variance > mean.
Fitting this two-parameter model to the data is also found to be
too simplistic; clearly the muses had inspired the novelists to
transform their passions into patterns more variegated than those
dictated by a mere negative binomial, their artistic outpourings
also appearing to display the presence of two types of sentences,
the rather long ones and the rather short ones, spurring in turn the
present author on to the following mixture of one Poisson, that is
to say, a degenerate negative binomial, and another negative
binomial, with a modification stemming from the fact that
sentences containing zero words do not really count among Nobel
literature laureates (with the notable exception of a 1958 story by
Heinrich Böll):

f (y , p, ξ, a, b) = p
exp(−ξ)ξy/y !

1− exp(−ξ)
+ (1− p)

f ∗(y , a, b)

1− f ∗(0, a, b)

for y = 1, 2, 3, . . ..
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I fit the parametric model

f (y , p, ξ, a, b) = p
exp(−ξ)ξy/y !

1− exp(−ξ)
+ (1− p)

f ∗(y , a, b)

1− f ∗(0, a, b)

to each of the three corpora, via maximum likelihood:

Sh se Kr se TD se
p 0.184 0.021 0.057 0.023 0.173 0.023
ξ 9.099 0.299 9.844 0.918 9.454 0.387
a 2.093 0.085 2.338 0.092 2.114 0.095
b 0.163 0.007 0.178 0.008 0.161 0.008

Goodness of fit analysis: model is fine. Standard errors by

Var θ̂ = Var


p̂

ξ̂
â

b̂

 .
= n−1J(θ̂).

Is TD closer to Sh or to Kr? Can we see the difference[s]?
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Can conduct an hypothesis test. Note: Crucial difference between

H0 : Sholokhov is the author vs. H1 : he is not the author

and

H0 : Sholokhov is the author vs. H1 : Kriukov is the author.

I choose instead: Model selection problem:

I M1: Sholokhov is the author: Sh and TD come from the same
distribution, while Kr represents another;

I M2: D∗ and Solzhenitsyn were correct: Kr and TD come from
the same distribution, while Sh is different;

I M0: Sh, Kr, TD represent three statistically disparate corpora.

Tell me what you think, by giving me p(M1), p(M2), p(M0) – and
I’ll tell you what you ought to think, giving you

p(M1 | data), p(M2 | data), p(M0 | data).
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Write θ1, θ2, θ3 for the three parameter vectors (p, ξ, a, b), for
respectively Sh, Kr, TD.

I M1 says θ1 = θ3 while θ2 is different;

I M2 says θ2 = θ3 while θ1 is different;

I M0 makes no assumption re the three parameter vectors.

Let p(M1), p(M2), p(M0) be prior probabilities for the three
possibilities and let L1(θ1), L2(θ2), L3(θ3) be the three likelihoods.
Then by Bayes’ theorem:

p(M1 |data) = p(M1)λ1/{p(M1)λ1 + p(M2)λ2 + p(M0)λ0},
p(M2 | data) = p(M2)λ2/{p(M1)λ1 + p(M2)λ2 + p(M0)λ0},
p(M0 | data) = p(M0)λ0/{p(M1)λ1 + p(M2)λ2 + p(M0)λ0},

in terms of marginal observed likelihoods λ0, λ1, λ2.
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These marginal likelihoods are

λ1 =

∫
{L1(θ)L3(θ)}L2(θ2)π1,3(θ)π2(θ2) dθ dθ2,

λ2 =

∫
{L2(θ)L3(θ)}L1(θ1)π2,3(θ)π1(θ1) dθ dθ1,

λ0 =

∫
L1(θ1)L2(θ2)L3(θ3)π1(θ1)π2(θ2)π3(θ3) dθ1 dθ2 dθ3.

Here π1, π2, π3 are the prior distributions for θ1, θ2, θ3. Under M1:
one prior π1,3 for θ1 = θ3; under M2: one prior π2,3 for θ2 = θ3.

The integrals are 8-, 8-, 12-dimensional.
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Working with the marginal likelihoods:

λ1 = L1,3(θ̂1,3)(2π)4/2(n1 + n3)−4/2|J1,3|−1/2π1,3(θ̂1,3)C1,3

L2(θ̂2)(2π)4/2n
−4/2
2 |J2|−1/2π2(θ̂2)C2,

λ2 = L2,3(θ̂2,3)(2π)4/2(n2 + n3)−4/2|J2,3|−1/2π2,3(θ̂2,3)C2,3

L1(θ̂1)(2π)4/2n
−4/2
1 |J1|−1/2π1(θ̂1)C1,

λ0 =
∏

j=1,2,3

Lj(θ̂j)(2π)4/2n
−4/2
j |Jj |−1/2πj(θ̂j)Cj .

These involve likelihoods, ML estimates, Fisher information
matrices and certain correction factors. (The above uses
mathematics similar to ‘Laplace approximations’ often used to
derive the BIC.)

Two steps to reach a conclusion:
(i) Cj

.
= 1, Ci ,j

.
= 1. Can be justified by looking at expansions

(sample sizes are big here).
(ii) No real differences between the priors involved: we let the data
(and Sholokhov and Kriukov) speak for themselves.

40/61



With BIC∗j = 2 log λj ,

BIC∗1 = 2(`1,3,max + `2,max)− 4 log(n1 + n3)− 4 log n2

− log |J1,3| − log |J2|,
BIC∗2 = 2(`2,3,max + `1,max)− 4 log(n2 + n3)− 4 log n1

− log |J2,3| − log |J1|,
BIC∗0 = 2(`1,max + `2,max + `3,max)− 4 log(n1 + n2 + n3)

− log |J1| − log |J2| − log |J3|.
Further calculations, involving ML for the common θ of Sh and TD
under M1, and for the common θ of Kr and TD under M2:

M1 M2 M0

∆AIC 0.0 −13.7 −11.9
∆BIC∗ 0.0 −15.1 −28.0

Conclusion:

Pr{M1 | data} .= 0.998, Pr{M2 |data} .= 0.002.

This agrees with Kjetsaa et al. (1975): No reason to doubt that
Sholokhov is the rightful author of Tihiĭ Don (and the rightful
winner of the Stalin Prize 1941).
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J.S. Bach - Church Cantatas  BWV 189

2
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Maxims & Quotations

‘All models are wrong, but some are useful’ (G.E.P. Box).

‘Entia non sunt multiplicanda praeter necessitatem’ (more or less:
entities should not be multiplied beyond necessity, called Ockham’s
razor, 1323, after the 14th century English logician and Franciscan
friar William of Ockham). Slightly vulgarised version: The simplest
explanation is the best.

‘How odd it is that anyone should not see that all observation
must be for or against some view if it is to be of any service’
(C. Darwin).

‘The purpose of models is not to fit the data, but to sharpen the
questions’ (S. Karlin).
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‘It can scarcely be denied that the supreme goal of all theory is to
make the irreducible basic elements as simple and as few as
possible without having to surrender the adequate representation
of a single datum of experience’ (A. Einstein, 1934 – the somewhat
vulgarised version of this is ‘everything should be made as simple
as possible, but not simpler’).

A famous exchange, after the 1782 premiere of KV 384 in Wien:
Emperor Joseph II: “Gewaltig viel Noten, lieber Mozart.” Mozart:
“Gerade soviel Noten, Euer Majästät, als nötig sind.”
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E: Ranking models by FIC scores

Traditional methods like AIC (with variations), BIC (with
variations), DIC (with variations) all work in overall modus – not
concerned with the final use of the selected model.

FIC idea: for focus parameter µ, (i) compute all µ̂j for candidate
models Mj ; (ii) use various tricks to find good approximation
formula for

msej = (Etrue µ̂j − µtrue)2 + Vartrue µ̂j = b2j + vj ;

(iii) use other tricks to estimate these from data,

ficj = (̂b2j ) + v̂j ;

(iv) plot all (
√

ficj , µ̂j) in a FIC plot.

– wider models yield bigger variances and smaller biases;

– narrower models yield smaller variances but perhaps modelling
bias.
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PBC data set: FIC plots for the 50 best estimates of five-year
survival probability, for two strata: (a) women of age 50, without
oedema; (b) men of age 50, with oedema.
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This FIC idea, assessing and estimating mse = b2 + v , pans out
differently from situation to situation, and depends on how we
model ‘true’:

vj = Vartrue µ̂j simpler than bj = Etrue µ̂j − µtrue.

* Parametric models, inside well-defined range from narrow to
wide, and comparing ML estimates: various papers and book
by Claeskens and Hjort (2008). Ok for regression models,
choosing among 2q models.

* Nonparametric Aalen model: Hjort (2009).

* Semiparametric Aalen model: Gandy and Hjort (2015),
choosing among 3q models.

* Parametric vs. nonparametric: Jullum and Hjort (2016).

* ‘What price Cox regression?’ Jullum and Hjort (2016).

* FIC for time series: Hermansen and Hjort (2014).

* Many others, for different sets of models.

* FRIC, with robust M-estimators: Hjort and Walker (2017).
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A master theorem for competing estimators: Suppose narrow
model has f (y | x , θ) with dim(θ) = p and wide model has
f (y | x , θ, γ) with dim(γ) = q. For a focus parameter µ = µ(θ, γ),
look at

µ̂S = µ(θ̂S , γ̂S , γ0,Sc ),

the ML of µ in submodel S (which has γj on board if j ∈ S).

With local neighbourhood model ftrue(y) = f (y , θ, γ0 + δ/
√
n):

For each of these 2q competitors,

√
n(µ̂S − µtrue)→d Λ0 + ωt(δ − GSD),

with Λ0 ∼ N(0, τ20 ) and D ∼ Nq(δ,Q) independent, ω depending
on µ, and GS a certain q × q matrix.

This provides a clear large-sample picture of everything going on,
also with model average estimators µ̂∗ =

∑
S ĉ(S)µ̂S :

√
n(µ̂∗ − µtrue)→d Λ0 + ωt{δ − δ̂(D)},

with δ̂(D) =
∑

S c(S |D)GSD.
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From the Master Theorem above: limiting mean squared error for
the S based estimator µ̂S is

mse = E {Λ0 + ωt(δ − GSD)}2

= τ20 + ωtGSQG
t
Sω + {ωt(I − GS)δ}2.

Most of the quantities are the same, across all questions – but

ω = J10J
−1
00

∂µ
∂θ −

∂µ
∂γ

depends on the focus parameter µ. Four different focus questions
lead to four different optimal models (and to four different
leaderboard lists).
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X1: FIC for Aalen’s linear hazard regression model

Primary biliary cirrhosis dataset (a rare autoimmune liver disease),
312 randomised patients. Eight covariates: intercept, the
treatment indicator, edema, sex, age, bilirubin, albumin and
prothrombin time:

hi (s) = α1(s)xi ,1 + · · ·+ α8(s)xi ,8,

with survival curves

Si (t) = Pr{Ti ≥ t | xi} = exp{−A1(t)xi ,1 − · · · − A8(s)xi ,8}.

Each αj : taken as time-varying, or as constant, or set to zero.

Hence (up to) 38 = 6561 models. Have developed fic(I , J), with
I ∪ J ⊂ {1, . . . , 8}: I , those with time-varying effects, J, those
with time-constant effects, K , those set to zero. Here: no
asymptotics, but hard-core mean and variance calculations (via lots
o’ martingales).
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PBC data set: Estimates of cumulative regression functions Aj(t)
based on the full additive model with pointwise 95% asymptotic
confidence intervals. Time is in years.
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PBC data set: Estimating the integrated hazard rate for a 70 year
old male at time t = 1 with higher-risk values of bilirubin, albumin
and prothrombin time.
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A GAMIC for extended GAM?

GAM, generalised additive models, work for regression data
(x1, . . . , xp, y), where the ground model is

m(x1, . . . , xp) = E(y | x1, . . . , xp) = β0 + m1(x1) + · · ·+ mp(xp).

The method provides nonparametric smoothing based estimates
m̂j(xj), along with confidence bands etc. – and is widely successful.

Someone ought to invent a suitable GAMIC, the GAM Information
Criterion, which should go through 3p possibilities – for each xj ,
the mj(xj) could be nonparametric, or a straight line (or more
generally, something parametric), or zero. The FIC and AFIC
methods pointed to above, for Aalen’s linear hazard regression
model, will have parallels of this type.
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X2: the jump information criterion JIC

Regression .. with how many discontinuities?

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

x

y

54/61



Regression (or time series) with discontinuities:

yi = m(xi ) + εi for i = 1, . . . , n,

where m(x) = aj on window [γj−1, γj), for d windows. With d
windows on [0, 1], and

0 < γ1 < · · · < γd−1 < 1,

there are d − 1 + d = 2d − 1 unknown parameters (plus d itself!).
Need JIC.

Usual BIC: 2`n,max − (2d − 1) log n. Grønneberg, Hermansen, Hjort
(2014): rather better with

BJIC = 2`n,max − (3d − 1) log n.

Usual AIC: 2`n,max − 2(2d − 1). Rather better with

AJIC = 2`n,max − 2
(

1 + d
σ̂2

σ20
+

1

σ̂20

d−1∑
j=1

κ̂j

)
.
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X3: the copula information criterion CIC

With data (xi , yi ) fitted to several copulae (Gauß, Clayton,
Gumbel, Ali-Mikhail-Haq, Frank, Joe): which is best?

Usual AIC: 2`n,max − 2p, involving the pseudo-log-likelihood.
Grønneberg and Hjort (2014): Rather better with

CIC = 2`n,max − 2(p̂∗ + r̂∗),

for certain (somewhat complex) p̂∗ and r̂∗.

More generally valid alternative, via influence functions to
approximate cross-validation:

CICxv = 2`n,max − 2{p + Tr(Ĵ−1Ŵ )},

for certain (somewhat complex) Ĵ and Ŵ .
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F: The Quiet Scandal of Statistics

Your 95% confidence intervals (after model selection) have (much)
lower confidence!
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G: Model Averaging

With candidate models M1, . . . ,Mk leading to model-based
estimates µ̂1, . . . , µ̂k , for the same focus quantity µ, I can combine
them:

µ̂∗ =
∑
j

ŵj µ̂j .

This often reduces variance and/or bias (depending on the
weights). Special case:

ŵj = exp(−λFICj)
/∑

j ′

exp(−λFICj ′),

perhaps with λ fine-tuned via cross validation.

∃ Master Theorem: Can characterise the limit distribution for all
such µ̂∗, including bagging, and then study properties and
performance (Hjort and Claeskens, JASA 2003; Hjort, JASA 2014).

58/61



H: Bigger models, bigger data, machine learning

Traditional methods (including basic theory for likelihood, AIC,
BIC, FIC): partly rely on

(data information content) / (model complexity) > small,

more or less ‘n/p is moderate or large’.

But in lots of modern applications p is large, or even p � n. So
traditional methods need to be extended – modelling; estimation;
inference; approximate distributions; model selection; ...

New Guys on the Block (1990ies and expanding): the lasso; ridge
estimation; regularisation; (more) Bayes and empirical Bayes;
sparsity, ‘clever fixes’; partial least squares, ... However, the model
selection parts lags a bit behind the other components (so far).

AIC and BIC are in trouble – but

FIC = (b̂2 −Var b̂)+ + v̂

can be set to use (with some work, application by application),
along with cross validation.
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Example: y1, . . . , yn, big model for the density:

f (y) = f0(y , θ) exp
{ 100∑

j=1

ajψj(F0(y , θ̂))
}
/c100(a1, . . . , a100),

with ψ1, ψ2, . . . orthogonal functions on [0, 1]. ML: fat chance
(difficult operationally and estimates will be bad). Good solution:
Maximise

`n(θ, a)− λ
100∑
j=1

a2j j
2.

This is regularisation, and/or empirical Bayes. Cf. Hellton and
Hjort (2016), the Fridge.

Similar regularisation in lots o’ other and bigger models. So far:
Various ad hoc fixes, both for modelling and estimation – inference
and model selection attempting to catch up.
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I: Concluding remarks

I Durable & dependable war-horses: AIC and BIC (with cousins)

I Becoming mainstream: FIC (with variations, AFIC, but
demands new efforts for new situations)

I FIC etc. towards personalised solutions

I Special models and special needs =⇒ special tools

I Other estimators, other loss functions =⇒ other variations

I Explain vs. predict

I µ̂∗ =
∑

j ŵj µ̂j , e.g. ŵj ∝ exp(−λFICj)

I Bigger models: regularisation, sparsity; new tools (and
additional tools)
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