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[Note: This is the pdf version of the 2 x 45 minutes Nils Talk II I
gave at the Geilo Winter School, January 2017. In my actual
presentation I of course did both of (a) saying quite a bit more
than is on the page and (b) skidding semi-quickly over chunks of
the material, including parts of the mathematics, complete with
the usual mixture of hand-waving, glossing over technicalities, and
swiping of details under imaginary carpetry. The pdf notes
themselves are meant to be decently coherent, though, and may be
suitable for study.]
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Themes (and background): Confidence distributions; likelihood
analysis (with correction tricks); Holy Grail (says Efron): posteriors
without priors; optimal inference; GLM (and GLLM); meta-analysis
(fusion); empirical likelihood; ..., and applications.

Greater cohesion for statistical inference (making the distance from
‘Bayes’ to ‘Frequentist’ a smaller one).

Three revolutions in (parametric) statistical inference: Laplace
(1774); Gauss and Laplace (1809–1812); Fisher (1922). There’s an
ongoing fourth revolution:

I who and how;

I new data, new needs, new methods, new perspectives.
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I see CDs (and related tools) as fruitful, promising,
not-yet-in-full-bloom methods to play important roles in Revolution
Four:

conception, computation, communication of statistical evidence.

Some literature:

I Fisher, Bartlett, Neyman, many others (1930 to c. 1956);

I Cox, Fraser, Hacking, some others (c. 1958 to c. 1990);

I recent upsurge, many papers, review paper 2013 Xie and
Singh (discussants Cox, Efron, Fraser, Parzen, Robert,
Schweder and NLH);

I Schweder and NLH (various papers since 1996, plus CUP
2016 book: Confidence, Likelihood, Probability);

I JSPI special issue on Confidence Distributions and Related
Themes (2017); ...

Some conferences: BFF 1 2014, BFF 2 2015, BFF 3 Rutgers 2016,
CDs Oslo 2015, BFF 4 Harvard 2017, BFF 5 Ann Arbor 2018, ...
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Plan & outline

1 Holy Grail: distribution for ψ given data, without a prior

2 Confidence distributions, confidence curves, confidence
densities

3 Recipes for construction of CDs

4 Partly nonstandard cases (Neyman–Scott, Fieller, boundary
parameters, disagreeing with Sims, Nobel Prize 2012)

5 Optimality

6 Better approximative CDs (via various modification tricks)

7 GLMs (and GLLMs)

8 Fusion and meta-analysis: II-CC-FF

9 CDs for prediction

10 Extensions, related themes, questions
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CLP, 2016 – see also course website for STK 4180, UiO.
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1: The Holy Grail

The Holy Grail of statistics
(says Brad Efron): reaching
π(ψ |data) without a prior.

It can also be an ordinary &
well-working IKEA cup:
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Classical framework:

data y ;

model f (y , θ) with θ = (θ1, . . . , θp);

focus parameter ψ = ψ(θ).

Aim: probability distribution for ψ given data.

What does Bayes say (in the modern interpretation)?

π(θ | data) ∝ π0(θ)L(θ),

then integrating out:

π(ψ | data) =

∫
θ : ψ(θ)=ψ

π(θ | data) dθ.

This is wondrous – but (at least) two problems: (i) We need π0(θ)
from ‘somewhere’; (ii) there are perhaps two types of probabilities
at work (so some claim Bayes’ theorem can’t be applied).
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Aim of confidence distributions (CDs): turn data information y ,
via the model f (y , θ), into a good, clear (and sometimes optimal)
distribution for focus parameter ψ = ψ(θ1, . . . , θp) given data –
with no prior and no Bayes theorem.

There are several ideas (related, sometimes equivalent, depending
on the framework and conditions) leading to such CDs – from
Fisher’s fiducial (1930) to pivot transformations to inversions of
confidence intervals.

Simplest version (perfect when it works): if we have beautiful
confidence intervals of all levels (0 to 1), convert them to a
distribution, and derive its confidence density. This is the Holy
Grail (or Ikea Cup).
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2: Confidence distributions, confidence densities,
confidence curves

Example: y1, . . . , yn i.i.d. from exponential θ. With n = 10 and
ȳobs = 0.345, what can we say about θ?

The log-likelihood is

`(θ) = n(log θ − θȳ),

with ML θ̂ = 1/ȳ . Also, θ̂/θ is a pivot – distribution G not
depending on parameters. We have CD

C (θ) = Prθ{θ̂ ≥ θ̂obs} = Prθ{θ̂/θ ≥ θ̂obs/θ}
= 1− G (θ̂obs/θ) = Γ2n(2nθ/θ̂obs).

It’s also a post-data p-value function. The confidence density is

c(θ) = γ2n(2nθ/θ̂obs)2n/θ̂obs.

Interpretation: [θα, θβ] = [C−1(α),C−1(β)] has confidence β − α:
[C−1(0.33),C−1(0.34)] has confidence 0.01, etc.
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CD for θ, with ten data points from Expo(θ), with ȳ = 0.345. I’ve
tagged median confidence estimate 2.803 and the 0.05 and 0.95
CD quantiles [1.573, 4.552]. Also: p(θ0) = Prθ0{θ̂ ≥ θ̂obs} is the
confidence in [0, θ0]. 11/91



Suppose ψ = ψ(θ) is a focus parameter in some model indexed by
θ. Three canonical graphical summaries for inference about ψ:

I cumulative confidence function Cn(ψ):

I confidence density cn(ψ) = C ′n(ψ);

I confidence curve

ccn(ψ) = |1− 2Cn(ψ)| =

{
1− 2Cn(ψ) for ψ ≤ ψ̂.50,
2Cn(ψ)− 1 for ψ ≥ ψ̂.50.

Here ψ̂.50 = C−1n (12) is the median confidence estimate. The point
is that

ccn(ψ) = α

has two roots giving the level α interval:

confidence of [ψlow(α), ψup(α)] = α.

The median confidence estimator is often large-sample equivalent
to the ML estimator (but not always).
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Graphical inference summaries for normal sd parameter σ, with ten
data points having σ̂ = 2.345: (i) cumulative confidence C (σ); (ii)
confidence density c(σ); (iii) confidence curve cc(σ); (iv) deviance.
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3: Recipes for constructing CDs and confidence curves

With data y , from model f (y , θ1, . . . , θp), and focus parameter
ψ = ψ(θ1, . . . , θp): C (ψ, y) is a CD for ψ if

I C (ψ, y) is a cdf in ψ, for each dataset y ;
I at the true θ0, with ψ0 = ψ(θ0), we have

Prθ0{C (ψ0,Y ) ≤ α} = α for each α, i.e. C (ψ0,Y ) ∼ unif.

This secures that

Prθ{ψ ∈ [C−1(0.05),C−1(0.95)]} = 0.90,

&c.

3A: Pivots. Suppose
Z = piv(ψ,Y )

is a pivot, with distribution K not depending on θ. If piv(ψ, y) is
increasing in ψ:

C (ψ, yobs) = K (piv(ψ, yobs))

is a CD.
14/91



Classic Student (1908): t =
√

n(µ− ȳ)/σ̂ is a pivot:

C (µ) = Fν(
√

n(µ− ȳobs)/σ̂obs).

Similarly: σ̂/σ is a pivot (with distribution (χ2
ν/ν)1/2), yielding a

CD:
C (σ) = 1− Γν(νσ̂2obs/σ

2).

If Z = piv(ψ, y) is not monotone in ψ: may still construct

cc(ψ, yobs) = K (piv(ψ, yobs)),

a confidence curve.
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We do not need to have the distribution of a pivot explicitly, as we
may simulate.

Normal quantile: ψ = F−1(0.90) = µ+ 1.282σ. Then

Z = Z (ψ,data)

=
ψ̂ − ψ

c σ̂

=
µ̂− µ+ 1.282 (σ̂ − σ)

c σ̂

=
σN/
√

n + 1.282σ((χ2
ν/ν)1/2 − 1)

c σ(χ2
ν/ν)1/2

has a distribution free of parameters, say K . The CD is

C (ψ) = 1− K
( ψ̂ − ψ

c σ̂

)
.

May simulate. Result is fully independent of the c constant.
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Example: Pairs (xi , yi ) from binormal distribution, observed
correlation coefficient ρ̂. Then

Z = piv(ρ,data) =
ρ− ρ̂
κ̂

is an approximate pivot, with e.g. κ̂ = 1− ρ̂2.

C (ρ) = K ((ρ− ρ̂obs)/κ̂obs)

is an approximate CD (may take K from simulations).

An alternative (and better) pivot:

Z ′ = piv′(ρ, data) = c{h(ρ)− h(ρ̂)},

with

h(ρ) = 1
2 log

1 + ρ

1− ρ
and with any c . This leads to

C ′(ρ)
.

= Φ((n − 3)1/2{h(ρ)− h(ρ̂obs)}).
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3B: Via ML and delta method (first order asymptotics).

Under mild regularity conditions:

√
n(θ̂ − θ)→d Np(0,Σ).

Delta method for interest parameter ψ = a(θ):

√
n(ψ̂ − ψ)→d N(0, κ2) with κ2 = w tΣw ,

where w = ∂a(θ)/∂θ. Result:

C (ψ) = Φ(
√

n(ψ − ψ̂)/κ̂)

is an approximate (1st order large-sample correct) CD.
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3C: Via deviance and Wilks theorem:

The profiled log-likelihood function:

`prof(ψ) = max{`(θ) : a(θ1, . . . , θp) = ψ}.

The deviance:

Dn(ψ, y) = 2{`prof(ψ̂)− `prof(ψ)}.

The Wilks Theorem: At the true value, and with increasing sample
size:

Dn(ψ,Y )→d χ
2
1.

So
cc(ψ) = Γ1(Dn(ψ, yobs))

is a confidence curve.

Often, the deviance with Wilks provides better approximations
than the delta method.
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How to prove 1st order asymptotics theorems (including the Wilks
theorem)? What are the crucial things going on for likelihood
behaviour?

This is the crux:

An(s) = `n(θ0 + s/
√

n)− `n(θ0)

= st`′n(θ0)
√

n − 1
2stJns + small

→d stU − 1
2stJs = A(s),

where Jn = −n−1`′′n(θ0)→pr J and
Un = n−1/2`′n(θ0)→d U ∼ Np(0, J).

Consequence 1: argmax(An)→d argmax(A):

√
n(θ̂ − θ0)→d J−1U ∼ Np(0, J−1).

Consequence 2: max An →d max A:

`n(θ̂)− `(θ0)→d
1
2UtJ−1U.
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Nonparametric confidence distributions may also be constructed.
The empirical likelihood may be used, via the −2 log L∗n(θ0)→d χ

2
p

property, which implies

D∗n(ψ0) = −2 log L∗n,prof(ψ0)→d χ
2
1

for the empirical deviance.

One particular use of this is via

E uj(Y , θ0) = 0 for j = 1, . . . , p

with score functions from a given parametric family. Taking these
in the EL yields model robust confidence distributions for each
focus parameter: cc∗n(ψ) = Γ1(D∗n(ψ)).
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May also construct CDs for the cdf F (y) and quantile function
µp = F−1(p). Since Y(i) = F−1(U(i)),

sn(a, b) = Pr{Y(a) ≤ µp ≤ Y(b)} = Pr{U(a) ≤ p ≤ U(b)}

=

∫ p

0

{
1−Be

(p − u

1− u
, b − a, n − b + 1

)}
be(u, a, n − a + 1) du

is the exact coverage probability for [Y(a),Y(b)], e.g. with
a = [np]− j and b = [np] + j . We may display them all in a CD
plot for quantiles.
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Confidence curves cc(q) for deciles 0.1, 0.3, 0.5, 0.7, 0.9 of
birthweight distributions, for boys (n = 548) and girls (n = 480)
born in Oslo 2001–2008.
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Confidence curves cc(q) for deciles 0.1, 0.3, 0.5, 0.7, 0.9 for the
BMI of all Olympic speedskaters, 1952 to 2010 (1080 men and 741
ladies). 17% of the male Olympians are overweight (says WHO)!
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4: Variations and nonstandard cases

There are cases where maximum likelihood (and Bayes) are in
trouble, but where CDs work without problem.

Neyman–Scott situation:

Yi ,1 ∼ N(µi , σ
2) and Yi ,2 ∼ N(µi , σ

2)

for i = 1, . . . , n. With n = 100 pairs, there are 2n = 200
observations and n + 1 = 101 parameters. Likelihood is hopeless
for σ, hence both ML and Bayes are in trouble: σ̂ML →pr σ/

√
2.

But easy to put up a perfectly good CD.

Length problem: Suppose Yi ∼ N(µi , 1) for i = 1, . . . , p, with
interest in ψ = ‖µ‖. The Bayes with flat prior on each component
is bad (and becomes worse with increasing p). Easy to construct
perfect CD: ψ̂2 ∼ χ2

p(ψ2), yielding

C (ψ) = 1− Γp(ψ̂2, ψ2).
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4A: Fieller problem: ratio of normal means

Assume â ∼ N(a, 1) and b̂ ∼ N(b, 1), interest lies with ψ = a/b.
Our solution: under a fixed ψ,

D(ψ,data) =
(â− ψb̂)2

1 + ψ2
∼ χ2

1,

so

cc(ψ) = Γ1

((â− ψb̂)2

1 + ψ2

)
is a perfect and exact confidence curve – even if its shape confuses
us (when |b̂| is small). “If common sense doesn’t agree with what
comes out of a theory, then there is something wrong either with
the theory or with the common sense” (says David Cox, April
2016).
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Example: (â, b̂) = (1.333, 0.333), with ψ̂ = 4.003. Confidence
regions may be intervals; union of two half-infinite intervals; or the
full line.
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Inverse regression: yi = a + bxi + εi , with the εi i.i.d. N(0, σ2).
When does a + bx cross a given y0? Example: CET, temperatures
per month in England since 1659. Mean April temperatures since
1946: when will it cross 9.5 degrees? Point estimate x̂0 = 2105,
but 90% interval is [2028,∞).
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4B: Boundary parameters

Some methods and strategies have difficulties with ‘boundary
parameters’, as with variance components.

Prototype situation: y ∼ N(θ, 1) with θ ≥ 0 a priori. My choice:
the canonical CD

C (θ, yobs) = Φ(θ − yobs) for θ ≥ 0.

Confidence pointmass p0 = Φ(−yobs) at zero. Confidence density
is

c(θ, yobs) = p0δ0 + (1− p0)
φ(θ − yobs)

1− Φ(−yobs)
.

This CD is the canonical distribution for θ given data (the ‘Holy
Grail’) – but is not equal to the Bayesian posterior distribution, for
any fixed prior.
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y ∼ N(θ, 1) with θ ≥ 0 a priori: Canonical CD vs. Bayes with flat
prior, for cases yobs = 1.00 and yobs = −1.00. Same syndrome as
with Schweder & Hjort vs. Sims (Nobel Prize Economics 2012).
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4C: C. Sims (2012, Nobel Prize acceptance lecture)

I G C

1929 101.4 146.5 736.3

1930 67.6 161.4 696.8

1931 42.5 168.2 674.9

1932 12.8 162.6 614.4

1933 18.9 157.2 600.8

1934 34.1 177.3 643.7

1935 63.1 182.2 683.0

1936 80.9 212.6 752.5

1937 101.1 203.6 780.4

1938 66.8 219.3 767.8

1939 85.9 238.6 810.7

1940 119.7 245.3 852.7

Ct = consumption = β0 + β1Yt + σCZ1,t ,

It = investment = θ0 + θ1(Ct − Ct−1) + σIZ2,t ,

Yt = total income = Ct + It + Gt ,

Gt = government spending = γ0 + γ1Gt−1 + σGZ3,t .
31/91



Sims’ macroeconomic model for (Ct , It ,Gt) has six regression
coefficients plus three standard deviation parameters σC , σI , σG .
The focus parameter is θ1 of

It = investment = θ0 + θ1(Ct − Ct−1) + σIZ2,t .

Sims argues that θ1 ≥ 0 a priori, and finds the posterior
distribution (via MCMC) using flat priors for all six coefficients
plus flat priors for the three 1/σ2.

We have re-analysed the data. The profile deviance

D(θ1) = 2{`prof(θ̂1)− `prof(θ1)}

is close to being a pivot (verified by simulation), and bootstrapping
yields a confidence distribution markedly different from Sims’
Bayesian result.
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Posterior cdf for θ1 reached by Sims (red); our confidence
distribution (black), with a high point mass at zero. Pre-war
investment was insensitive to government spending!
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Example: Three-parameter model for age of mothers
I’m fitting ages for 189 mothers (range 14 to 44) to the model
f (y) = gν((y − µ)/σ)/σ, with gν the t-density with ν degrees of
freedom. CD for ν has positive pointmass 0.245 at ∞
(i.e. normality).
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4D: Are bad-tempered men better at finding good-tempered
women than the good-tempered men are?

wife :
good bad

husband : good 24 27
bad 34 26

Galton, 1887: “We can hardly, too, help speculating uneasily upon
the terms that our own relatives would select as most appropriate
to our particular selves.”

Confidence inference for

γ =
∑
i ,j

(pi ,j − aibj)
2

aibj

with ai and bj the marginals; Zn = nγ̂ is the Pearson statistic.
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Confidence curve cc(γ) for γ =
∑

i ,j(pi ,j − aibj)
2/(aibj) parameter

with Galton’s data on good- and bad-tempered husbands and
wives. This is more informative than saying “I’ve checked the
Pearson test, and do not reject H0 of independence”.
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Can similarly provide a CD for each focus parameter. Here:
Confidence curve cc(ρ) for
ρ = Pr(bad man | good woman)/Pr(bad man | bad woman).
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4E: Other types of models

Above: I’ve essentially discussed i.i.d. and regression type models.
But the confidence concepts are quite general, and likelihood tools
generalise to various other models – Markov chains; time series
(unless the memory is too strong); survival analysis models.

As long as

n−1/2`′n(θ0)→d Np(0, J) and −n−1`′′n(θ0)→pr J,

we’re (very much) in business. For different model setups, these
‘things are going to turn out as hoped for’ criteria may be checked.

Survival analysis models: data take the form of triples

I ti : time to event (censored or not);

I xi : vector of covariates;

I δi : 1 of observed, 0 if censored

for patients or objects i = 1, . . . , n.
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Survival analysis models

Model for hazard rates:

hi (s) = hi (s, θ) for i = 1, . . . , n,

with cumulative hazard rates Hi (t, θ) =
∫ t
0 hi (s, θ) ds. The

log-likelihood becomes

`n(θ) =
n∑

i=1

∫ τ

0
{log hi (s, θ) dNi (s)− Yi (s)hi (s, θ) ds}

=
n∑

i=1

{hi (ti , θ)δi − Hi (ti , δ)}.

Here

Yi (s) = I{no. i is still at risk at time s},
dNi (s) = I{no. i dies in [s, s + ds]}.

The ‘things are running well’ conditions are met: ML asymptotics
and Wilks work, so we can construct CDs and confidence curves.
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Example: Median remaining survival time after operation (here:
for three types of patients). Carcinoma of the oropharynx, data
(ti , xi , δi ) for 193 patients,

hi (s) = γsγ−1 exp(β0 + β1xi ,1 + · · ·+ β4xi ,4),

m(t0, x) =
(

tγ0 +
log 2

exp(x tβ)

)1/γ
.
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5: Risks and optimality

Inference for σ in a normal sample yi ∼ N(µ, σ2): may use

Un = n−1
n∑

i=1

|yi − ȳ | and Vn = n−1
n∑

i=1

(yi − ȳ)2.

Here Un/σ and Vn/σ
2 are pivots, with distributions Gn and Hn, so

may use

Cn,u(σ) = 1− Gn(Un,obs/σ) and Cn,v (σ) = 1− Hn(Vn,obs/σ
2).

But which is best?

Sir Arthur Eddington (1914) preferred Un; Sir Ronald Fisher
(1922) felt the need to disagree (and introduced sufficiency to
prove he was right).
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‘some CDs are better than others’, and we need reduction
principles (invariance, sufficiency, other).
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5A: Invariance

When meeting the same type of data, and with the same focus
parameter, we should use the same CD each time. – Suppose
model says y ∼ f (y , θ), and that for various g ,

g(y) ∼ f (y , ḡ(θ)).

Consequence:

C (ψ(θ), y) = C (ψ(ḡ(θ)), g(y)) for all g ∈ G.

Example A: X ∼ Expo(γa) and Y ∼ Expo(a), focus on γ. Then
need

C (γ, cX , cY ) = C (γ,X ,Y ) for all c > 0,

which means an invariant CD must depend on Z = Y /X alone.
Rest is then easy:

C ∗(γ) = 1− F2,2(z/γ) =
γ

γ + z
and c∗(γ) =

z

(γ + z)2
.

43/91



Example B: Y = (Y1, . . . ,Yn) with means zero and Var Y = σ2In.
Then Y ′ = PY has same type of structure, for each orthogonal P.
Hence an invariant CD must depend on Y via ‖Y ‖ only. – If in
addition Y is normal, then there is only one remaining invariant
CD:

C (σ) = 1− Γn

( n∑
i=1

y2
i /σ

2
)
.

Example C: Regression model

yi = a + bxi + σεi for i = 1, . . . , n,

with the εi ∼ N(0, 1): The classical

C (b) = Fν
(

M1/2 b − b̂

σ̂

)
is best invariant CD (among those based on sufficiency), where
M =

∑n
i=1(xi − x̄)2.
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5B: Risk functions for CDs

Risk functions for competing CDs: at position θ0 in parameter
space, with ψ0 = ψ(θ0):

risk(C , θ0) = Eθ0

∫
Γ(ψ − ψ0) dC (ψ,Y ).

Here Γ(z) is any convex function with Γ(0) = 0, like Γ(z) = |z |.

Can be computed and interpreted as

risk(C , θ0) =
1

B

B∑
j=1

Γ(ψCD,j − ψ0),

with two levels of variability: (i) Yj is drawn from f (y , θ0), leading
to C (ψ,Yj); (ii) ψCD,j is drawn from this CD.
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With Γ(z) = z2:

risk(C , θ0) = E∗(ψCD − ψ0)2

= E (VarψCD |Y ) + E {(EψCD |Y )− ψ0}2.

1st order large-sample approximation: Suppose ψ̂ ≈d N(ψ, κ2/n).
Then

risk(C , θ0)
.

= κ2/n + κ2/n.

May also work with more complex (and context-driven) loss and
risk functions, i.e. with specially designed Γ(z).
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Neyman–Pearson for confidence power in the mean: With S a
sufficient statistic, suppose

L(ψ2,S)/L(ψ1,S) is increasing in S for ψ2 > ψ1.

May then prove that the CD based on S is uniformly most
powerful in terms of confidence risk.

Optimal confidence for exponential families: Suppose

f (y , ψ, λ) = exp{ψA(y)+λ1B1(y)+· · ·+λpBp(y)−k(ψ, λ1, . . . , λp)}.

Then the uniformly most powerful confidence distribution for ψ is

C ∗(ψ) = Prψ{A ≥ Aobs |B1 = B1,obs, . . . ,Bp = Bp,obs}.

This theorem covers a long list of cases inside e.g. generalised
linear models.
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Example: Poisson pairs. Suppose Xj ∼ Pois(λj),Yj ∼ Pois(λjγ)
for j = 1, . . . , k. The log-likelihood is

` =
k∑

j=1

yj log γ +
k∑

j=1

(xj + yj) log λj −
k∑

j=1

λj(1 + γ).

With S =
∑k

j=1 yj and zj = xj + yj : the optimal CD for γ is

C ∗(γ) = Prγ{S > Sobs |Z1 = z1,obs, . . . ,Zk = zk,obs}
+1

2 Prγ{S > Sobs |Z1 = z1,obs, . . . ,Zk = zk,obs}

which we compute using

yj | zj ∼ Bin(zj , γ/(1 + γ)) for j = 1, . . . , k,

so

S | (z1,obs, . . . , zk,obs) ∼ Bin
( k∑
j=1

zj ,
γ

1 + γ

)
.
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Example: Odds ratio. Suppose

Y0 ∼ Bin(m0, p0) and Y1 ∼ Bin(m1, p1),

with

p0 =
exp(θ)

1 + exp(θ)
and p1 =

exp(θ + ψ)

1 + exp(θ + ψ)
.

The odds ratio is

ρ =
p1/(1− p1)

p0/(1− p0)
= exp(ψ).

From the joint likelihood L = f (y0, θ)f (y1, θ + ψ) comes

` = y1 log ρ+ zθ−m0 log{1 + exp(1 + θ)}−m1 log{1 + exp(θ+ψ)}

with z = y0 + y1. The optimal CD for the odds ratio:

C ∗(ρ) = Prρ{Y1 > y1,obs |Z = zobs}+1
2 Prρ{Y1 = y1,obs |Z = zobs}.
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We find

g(y1 | z) =

(
m0

z − y1

)(
m1

y1

)
ρy1
/ z∑

y ′
1=0

(
m0

z − y ′1

)(
m1

y1

)
ρy

′
1

for y1 = 0, 1, . . . ,min(z ,m1). Illustration: Optimal and ‘standard’
for (m0,m1) = (15, 15), (y0, y1) = (1, 2).
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Example: Strauss model. A basic model for a random point
pattern x on [0, 1]2 is

f (x , ρ) = c(ρ)ρM(x) where M(x) =
∑
i<j

I{‖xj − xi‖ ≤ r}.

Suppose n = 25 with M = 4 pairs of points having distance less
than r = 0.15. Moyeed and Baddeley (1991) wrote a full paper to
compute ρ̂ML = 0.099.

The optimal confidence distribution is

C ∗(ρ) = Prρ{M(X ) > 4}+ 1
2Prρ{M(X ) = 4}.

I’ve used a primitive MCMC to simulate 105 Strauss realisations
for each ρ in a grid (see figure).

The same works for bigger point process models of the exponential
type, for the Ising model, the Potts and Gibbs type models, etc.
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For n = 25 points from the Strauss model with M = 4 pairs inside
radius r = 0.15: optimal confidence distribution (left) and optimal
confidence curve (right).
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6: Better approximative CDs (via modifications and tricks)

1st order large-sample approximations: with√
n(ψ̂ − ψ)→d N(0, κ2),

C1(ψ) = Φ(
√

n(ψ − ψ̂)/κ̂)

is asymptotically correct. Also, via Wilks theorem:

C2(ψ) = Γ1(D(ψ)).

Modifications & tricks: Bartletting often helps. Suppose
Eθ D(ψ,Y ) = 1 + ε (typically, ε

.
= ε0/n). Then D(ψ,Y )/(1 + ε̂)

is closer to χ2
1:

C3(ψ) = Γ1

(Dn(ψ, yobs)

1 + ε̂

)
.
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6A: Bolt from Heaven

On 31 May 2008, Usain Bolt did 9.72. How surprised were we?

I spent the following night tracking down (and then analysing) the
195 sub-10.00-races recorded from seasons 2000, 2001, ..., 2007.
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6B: The extreme value distribution

With ri 100 m running times, I work with

yi = 10.005− ri

and care only about sub-Armin-Hary races, i.e. yi > 0.

Theorems of Fisher, Tippet, Gnedenko imply (under some
conditions) that these very fast races follow the c.d.f.

G (y , a, σ) = 1− (1− ay/σ)1/a

for some (a, σ). For the n = 195 (bona fide) races of 2000–2007,
can hence form the log-likelihood function

`n(a, σ) =
n∑

i=1

{− log σ + (1/a− 1) log(1− ayi/σ)}.

This leads to maximum likelihood estimates (and estimates of their
precision).
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The two-parameter extreme value model fits data very well:

â = 0.1821 (sd = 0.0701), σ̂ = 0.0745 (sd = 0.0074).
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6C: Distribution of best race in a season: a formula

For a season with N top races (below Hary threshold), consider

p = p(a, σ) = Pr{max(Y ′1, . . . ,Y
′
N) ≥ w}.

With N ∼ Pois(λ), we find

p = p(a, σ) = 1− exp{−λ(1− aw/σ)1/a}.

I use λ = 195/8 = 24.375, rate of top races per year. For each
threshold w we may estimate p and its approximate standard error.

With w = 10.005− 9.72 = 0.285, for 31 May 2008, I find
p̂ = 0.035:

3.5% probability of seeing a 9.72 or better in the course of 2008,
as judged from 1 January 2008.
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6D: Full confidence distribution for p = p(a, σ)

Traditional approach: ML is approximately normal, so with delta
method 0.035± 1.96 ŝd would be a 0.95 interval, etc. This doesn’t
work well here, in spite of n = 195, and in spite of (â, σ̂) being
approximately binormal: p = p(a, σ) is not close to linear in this
part of the parameter space.

Better (both for approximation quality and for representing
uncertainty): the confidence distributions of Schweder and Hjort
(Confidence, Likelihood, Probability, 2015). I compute the
confidence curve

cc(p) = Γ1(Dn(p))

via the profiled deviance:

Dn(p) = 2{`n(â, σ̂)− `n,prof(p)}.

The cc(p) curve gives both the estimate (3.5%) and each
confidence interval. These are highly skewed; the 90% interval is
[0%, 18.9%], etc.
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Even better with a mean correction to make distribution of
Dn(p)/(1 + εn) closer to χ2

1. For the case of

p = Pr{seeing a 9.72 or better in 2008}
(as happened on May 31),

cc∗(p) = Γ1(Dn(p)/1.07).
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Shock barometer (set up and calibrated as of January 2008):
Gay 9.77 (June 2008): shock = 79.7
Bolt 9.72 (May 2008): shock = 96.5
Bolt 9.69 (August 2008): shock = 99.3
Bolt 9.58 (August 2009): shock = beamonesque 100.0
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6E: t-bootstrapping

We wish a CD for ψ. We work with

t =
h(ψ)− h(ψ̂)

κ̂
∼ G (·, θ).

At the estimated position θ̂ in parameter space:

t∗ =
h(ψ̂)− h(ψ̂∗)

κ̂∗
∼ K = G (·, θ̂).

We estimate K via bootstrapping, and produce

C (ψ) = K
(h(ψ)− h(ψ̂obs)

κ̂obs

)
= G

(h(ψ)− h(ψ̂obs)

κ̂obs
, θ̂
)
.

This often works very well. In case t is an exact pivot, the method
is exact.
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6F: abc bootstrapping

Suppose that on some transformed scale ψ → γ = h(ψ),
ψ̂ → γ̂ = h(ψ̂),

γ − γ̂
1 + aγ

− b ∼ N(0, 1),

for certain (typically small) a (acceleration) and b (bias).

With Ĝ (x) = Pr∗{ψ̂∗ ≤ x} the bootstrap distribution,

Cabc(ψ) = Φ
( Φ−1(Ĝ (ψ))− b

1 + aΦ−1(Ĝ (ψ))− b
− b
)

works as an acceleration and bias corrected version.

It works very well in various test cases (where one knows the h
transformation; the abc method does not use this knowledge).
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7: Exponential model, GLMs (and GLLMs)

Exponential model class:

f (y) = exp{h1(θ)T1(y) + · · ·+ hp(θ)Tp(y) + m(y)− k(θ)}.

Long list of standard models are of this type (normal, binomial,
Poisson, gamma, beta, geometric, multinormal, ...).

Canonical parametrisation: η1 = h1(θ), . . . , ηp = hp(θ). Then,
with data y1, . . . , yn:

`n(η) = n{η1T̄1 + · · ·+ ηpT̄p − k0(η)}.

So (T̄1, . . . , T̄p) is sufficient, and theory is strong and clean.

There are optimal CDs for each ηj (and for linear combination of
these).
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Example: Optimal CD for a and b in Beta distribution
With

f =
Γ(a + b)

Γ(a)Γ(b)
ya−1(1− y)b−1 for y ∈ (0, 1),

`n = (a− 1)
n∑

i=1

log yi + (b − 1)
n∑

i=1

log(1− yi )

+n{log Γ(a + b)− log Γ(a)− log Γ(b)}.

For a certain dataset, I observe

Un =
n∑

i=1

log yi = −1336.002 and Vn =
n∑

i=1

log(1−yi ) = −255.978.

The power optimal CDs can be computed with (clever) simulation:

C ∗(a) = Pra{Un ≥ −1336.002 |Vn = −255.978},
C ∗(b) = Prb{Vn ≥ −255.978 |Un = −1336.002}.
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7B: GLMs

Regression data (xi , yi ), with

f (yi , θi , φ) = exp
{yiθi − b(θi )

a(φ)
+ c(yi , φ)

}
,

and a link function

g(E(Yi | xi )) = x t
i β for i = 1, . . . , n.

Long list of well-known special cases – linear (and non-linear)
normal regression; Poisson regression; logistic and probit
regression; gamma regression models; etc.

Theory works particularly well when the natural parameter is linear
in covariates – then optimal CDs for each regression coefficient,
etc.
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Example: Gamma regression
Classic dataset (from 1965): yi is survival time (in years) after
leukaemia diagnosis, xi is white blood count at time of diagnosis.
Good model (better than in Cox and Snell etc.):

Yi ∼ Gamma(β0 + β1(xi − x̄), ν).

Sufficient statistics:

U = n−1
n∑

i=1

Yi , V0 = n−1
n∑

i=1

log Yi , V1 = n−1
n∑

i=1

log(xi−x̄)Yi ,

with values 1.201,−0.589,−0.693. May then compute optimal CD
for β1 via (clever) simulation (I’ve used methods of Lindqvist and
Taraldsen, 2006, 2007):

C ∗(β1) = Prβ1{V1 ≥ −0.693 |U = 1.201,V0 = −0.589}.

(Context, figure, discussion: CLP Example 8.6.)
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7C: Extending models by exponential tilting

Consider a ‘start model’ f0(y , θ) with (θ1, . . . , θp). May then
extend this to

f (y , θ, γ) = f0(y , θ) exp{γtT (y)− k(θ, γ)},

with

k(θ, γ) = log
[∫

f0(y , θ) exp{γtT (y)} dy
]
.

May carry out ML analysis etc. for the full (θ, γ), and in particular
provide optimal CDs for the extension parameter γ1, . . . , γq. This
may be used for goodness-of-fit purposes etc.

Example: extended and tilted Beta distribution f (y , a, b, γ1, γ2), of
the type

Γ(a + b)

Γ(a)Γ(b)
ya−1(1− y)b−1 exp{γ1y + γ2y2 − k(a, b, γ1, γ2)}.
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7D: Generalised linear-linear models (GLLM)

GLMs: express covariance influence on one of the model
parameters, like

yi ∼ N(exp(x t
i β), σ2).

But we may easily extend this to covariance influence on two
parameters:

yi ∼ N(x t
i β, exp(x t

i γ)).

Similarly:

yi ∼ Gamma(ai , bi ) with ai = exp(x t
i β), bi = exp(x t

i γ).

This might be supplemented with AIC or FIC analyses; also, CD
checks on all ‘extra parameters’.

Discussion and applications: CLP Section 8.8.
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8: Fusion and meta-analysis (and II-CC-FF)

Suppose there are information sources 1, . . . , k , each of (direct or
indirect) relevance to focus parameter ψ. Often: information
source j relates to ψj , and ψ is a function of ψ1, . . . , ψk .

The II-CC-FF paradigm:

I Independent Inspection of different available information
sources, leading to C1(ψ1), . . . ,Ck(ψk);

I Confidence Conversion from CDs to (profiled) log-likelihoods,
translating to `1(ψ1), . . . , `k(ψk);

I Focused Fusion based on
∑k

j=1 `j(ψj), with further profiling
etc.
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Classic meta-analysis with a common mean: yj ∼ N(θ, σ2j ) with
common θ. Then the above gives

` = −1
2

k∑
j=1

(θ − yj)
2

σ2j

and

C ∗(ψ) = Φ
(θ − θ∗

σ∗

)
,

where

θ∗ =

∑k
j=1 yj/σ

2
j∑k

j=1 1/σ2j
and

1

(σ∗)2
=

k∑
j=1

1

σ2j
.
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Fusion with non-common means:

yj | θj ∼ N(θj , σ
2
j ) and θj ∼ N(θ0, τ

2).

Then yj ∼ N(θ0, σ
2
j + τ2). Interest in both grand mean θ0 and in

spread parameter τ .

For given τ ,

θ̂(τ) =
k∑

j=1

yj
σ2j + τ2

/ k∑
j=1

1

σ2j + τ2

is best. Also,

Q(τ) =
k∑

j=1

{yj − θ̂(τ)}2

σ2j + τ2
∼ χ2

k−1.

Exact CD for τ :
C (τ) = 1− Γk−1(Q(τ)),

with pointmass C (0) = 1− Γk−1(Q(0)) at zero.
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Fusion 1: Effective population size ratio for cod

A certain population of cod is studied. Of interest is both actual
population size N and effective population size Ne (the size of a
hypothetical stable population, with the same genetic variability as
the full population, and where each individual has a binomially
distributed number of reproducing offspring). The biological focus
parameter in this study is φ = Ne/N.

Steps II-CC for N: A CD for N, with confidence log-likelihood: A
certain analysis leads to confidence log-likelihood

`c(N) = −1
2(N − 1847)2/5342.

Steps II-CC for Ne : A CD for Ne , with confidence log-likelihood:
This is harder, via genetic analyses, etc., but yields confidence
log-likelihood

`c,e(Ne) = −1
2(Nb

e − 198b)/s2

for certain estimated transformation parameters (b, s).
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Step FF for the ratio: A CD for φ = Ne/N. This is achieved via
log-likelihood profiling and median-Bartletting,

`prof(φ) = max{`c(N) + `c,e(Ne) : Ne/N = φ}.
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Fusion 2: The Olympic unfairness of the 1000 m

Olympic speedskaters run the 1000 m in less than 70 seconds
(speed more than 50 km/h). They skate two and a half laps, in
pairs, with a draw determining inner/outer. Acceleration matters
(mv2/r1 > mv2/r2 with r1 = 25 m and r2 = 29 m), and so does
fatigue at end of race.

Start in inner lane: three inners, two outers.
Start in outer lane: two inners, three outers.

I shall estimate the Olympic unfairness parameter d , the difference
between outer and inner, for top skaters.

 

 

start outer

start inner

200m, 600m, finish
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In the Olympics: only one race. In the annual World Sprint
Championships: they race 500 m and 1000 m both Saturday and
Sunday, and they switch start lanes.

The six best men, from Calgary, January 2012, Saturday and
Sunday, with ‘i’ and ‘o’ start lanes, and passing times:

200 m 600 m 1000 m 200 m 600 m 1000 m
1 S. Groothuis i 16.61 41.48 1:07.50 o 16.50 41.10 1:06.96
2 Kyou-Hyuk Lee i 16.19 41.12 1:08.01 o 16.31 40.94 1:07.99
3 T.-B. Mo o 16.57 41.67 1:07.99 i 16.27 41.54 1:07.99
4 M. Poutala i 16.48 41.50 1:08.20 o 16.47 41.55 1:08.34
5 S. Davis o 16.80 41.52 1:07.25 i 17.02 41.72 1:07.11
6 D. Lobkov i 16.31 41.29 1:08.10 o 16.35 41.26 1:08.40

I need a model for (Sat, Sun) results (Y1,Y2), utilising passing
times ui ,1, vi ,1 for Sat race and ui ,2, vi ,2 for Sun race, along with

zi ,1 =

{
−1 if no. i starts in inner on Saturday,

1 if no. i starts in outer on Saturday,

zi ,2 =

{
−1 if no. i starts in inner on Sunday,

1 if no. i starts in outer on Sunday.

to get hold of d . 75/91



My model for (Sat, Sun) results, for skater i :

Yi ,1 = a1 + bui ,1 + cvi ,1 + 1
2dzi ,1 + δi + εi ,1,

Yi ,2 = a2 + bui ,2 + cvi ,2 + 1
2dzi ,2 + δi + εi ,2.

Here ui ,1, ui ,2 are 200 m passing time, vi ,1, vi ,2 are 600 m passing
time; δi follows the skater, with δi ∼ N(0, κ2) across skaters; and
εi ,1, εi ,2 are independent N(0, σ2). The inter-skater correlation is
ρ = κ2/(σ2 + κ2).

Crucially, outer lane start means adding 1
2d , inner lane start means

adding −1
2d , so d is overall difference due to start lane. Fairness

means d should be very close to zero.

The model has seven parameters, and I need full analysis of
dataset from each World Sprint Championships event to get hold
of a CD for the focus parameter d .
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From full analysis of World Sprint events 2014, ..., 2001 (seven
parameters in each model), I get hold of

d̂j ∼ N(dj , σ
2
j ),

and I then use dj ∼ N(d0, τ
2). Full CD analyses are then available

for d0 and for τ .
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Confidence curves cc(dj) for the fourteen unfairness parameters,
over 2014 to 2001. The overall estimate 0.14 seconds (advantage
inner-starter) is very significant, and big enough to make medals
change necks.
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Conclusion: The skaters need to run twice. (I’ve told the ISU.)
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Fusion 3: Rosiglitazone drug and paired binomials

The drug is for type 2 diabetes mellitus and is controversial –
annual sales exceed two billion dollars, but it is the subject of
13,000 lawsuits, due to alleged association with heart attacks.
Meta-analyses have been carried out based on 48 two-by-two
tables,

Yi ,0 ∼ Bin(mi ,0, pi ,0) and Yi ,1 ∼ Bin(mi ,1, pi ,1).

The model used in several papers takes

θi = log
pi ,0

1− pi ,0
and θi + ψ = log

pi ,1

1− pi ,1

with ψ the main focus parameter. Analysis is troubled by ‘null
cells’ and ‘null tables’ – should these be included?, what
information do these provide?
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The log-likelihood for table i is

`i (θi , ψ) = yi ,1ψ+ziθi−mi ,0 log{1+exp(θi )}−mi ,1 log{1+exp(θi+ψ)},

where zi = yi ,0 + yi ,1. The power theorem yields optimal CD for
each table, needing

f (yi ,1 | zi ) =

( mi,0
zi−yi,1

)(mi,1
yi,1

)
exp(ψyi ,1)∑zi

y ′
1=0

( mi,0

zi−y ′
1

)(mi,1

y ′
1

)
exp(ψy ′1)

.

It also yields the optimal overall CD for ψ utilising all 48 tables, via

`(θ1, . . . , θ48, ψ) =
( 48∑
i=1

yi ,1

)
ψ +

48∑
i=1

ziθi − k(θ1, . . . , θ48, ψ).

The conditional distribution of
∑48

i=1 yi ,1 given z1, . . . , z48 may be
simulated. Bayes is in trouble here.
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Optimal CDs for log-odds difference ψ for each of the 48 separate
studies, along with the optimal overall CD (fat curve).
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Alternative Poisson model:

Yi ,0 ∼ Pois(ei ,0λi ,0) and Yi ,1 ∼ Pois(ei ,1λi ,1)

with λi ,1 = λi ,0γ.

May use the power theorem to provide optimal overall CD for the
focus parameter γ, as

`(γ, λ1,0, . . . , λ48,0) =
48∑
i=1

yi ,1 log γ+
48∑
i=1

zi log λ0,i−k(γ, λ1,0, . . . , λ48,0).

The conditional distribution is a sum over 48 binomials with
different parameters, and is evaluated via simulation, for each γ.

The figure displays optimal confidence curves cc(γ) for (i)
m.i. deaths, (ii) c.v.d. deaths, (iii) m.i. + c.v.d. deaths.
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Optimal confidence curves cc(γ) for the risk proportionality
parameter γ for m.i. only (ML = 1.421), for c.v.d. only (ML =
1.659), and for m.i. + c.v.d. (ML = 1.482).
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Fusion 4: Whale abundance

These are published results of a humpack whale population size
(via complicated data collections, models, analyses):

2.5% 50% 97.5%
1995 3439 9810 21457
2001 6651 11319 21214

Suppose that this is all available information (no raw data; we just
read the summaries of the two papers).

I How can we translate this to confidence curves for abundance,
for 1995 and 2001?

I How can we do data fusion, arriving at one cc?

(Here we’re not assuming normality.)
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Via certain transformation tricks (etc.), Cunen and Hjort (2016):
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9: CDs for prediction

What is the distribution of a ynew (not yet observed)?
(i) Cpred(ynew, y) should be a cdf in ynew for each dataset y ;
(ii) Cpred(Ynew,Y ) ∼ unif.

Example: the next normal. With y1, . . . , yn i.i.d. N(µ, σ2), we have
ynew − ȳ ∼ N(0, σ2(1 + 1/n)). With σ known:

t =
ynew − ȳ

σ(1 + 1/n)1/2
∼ N(0, 1),

and

Cpred(ynew,data) = Φ
( ynew − ȳ

σ(1 + 1/n)1/2

)
.

With σ unknown:

Cpred(ynew, data) = Fν
( ynew − ȳ

σ̂(1 + 1/n)1/2

)
.
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Regression: Suppose yi ∼ N(x t
i β, σ

2) for i = 1, . . . , n. What is the
value of a new ynew, with covariates xnew? Here

β̂ = (X tX )−1X ty ∼ Np(β, σ2Σ−1),

with Σ = X tX =
∑n

i=1 xix
t
i .

For a new xnew:

ynew − x t
newβ̂

σ̂(1 + x t
newΣ−1xnew)1/2

∼ tν ,

so

Cpred(ynew,data) = Fν
( ynew − x t

newβ̂

σ̂(1 + x t
newΣ−1xnew)1/2

)
.

More challenging (but more important): time series, spatial
models, kriging, etc.

87/91



From approximate CD predictive to a better CD predictive:

F (Ynew, θ̂)→d F (Ynew, θ0) ∼ unif,

so for large n, plug-in Cpred,0(ynew, y) = F (y , θ̂) is ok.

But it can be improved upon:

F (Ynew, θ̂) ∼ G (·, θ) (not yet fully uniform),

so
G (F (Ynew, θ̂), θ) ∼ unif (exact).

We estimate, using a ‘second round’, via simulation or
bootstrapping:

Cpred,1(ynew, y) = G (F (ynew, θ̂), θ̂)

=
1

B

B∑
j=1

I{F (y∗j ,new, θ̂
∗
j ) ≤ F (ynew, θ̂obs)}.
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Skiing days at Bjørnholt
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Quo vadimus? The number of skiings days per year at Bjørnholt.
When did the gradient change? What’s y2030?
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Predictive confidence distributions for the number of skiing days at
Bjørnholt, 2014 to 2022, based on data up to 2013. Displayed are
0.05, 0.25, 0.50, 0.75, 0.95 quantiles.
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10: Extensions and related themes

Efron (1998): “Maybe Fisher’s biggest blunder will become a big
hit in the 21st century!”

I confidence curves for change-points and regime shifts (Cunen,
Hermansen, Hjort, JSPI 2017)

I use of models when they’re not (necessarily) correct

I robust estimation (Walker and Hjort, 2017)

I post-model-selection

I bigger models

I epistemic vs. aleatory vs. subjective probability

I factoring in Bayes in II-CC-FF:

log π0(ψ) +
k∑

j=1

`j(ψj)

(requiring prior only for ψ, not for full (θ1, . . . , θp))
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