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[Note: This is the pdf version of the 2 x 45 minutes Nils Talk III I
gave at the Geilo Winter School, January 2017. In my actual
presentation I of course did both of (a) saying quite a bit more
than is on the page and (b) skidding semi-quickly over chunks of
the material, including parts of the mathematics, complete with
the usual mixture of hand-waving, glossing over technicalities, and
swiping of details under imaginary carpetry. The pdf notes
themselves are meant to be decently coherent, though, and may be
suitable for study.]
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Traditional Bayesian analysis: with data y from model with
likelihood L(θ), the Bayes formula takes the pre-data prior π(θ) to
the post-data posterior

π(θ |data) =
π(θ)L(θ)∫
π(θ′)L(θ′) dθ′

.

This requires well-defined densities (w.r.t. suitable measures), and
in essence that θ is finite-dimensional.

Bayesian nonparametrics: about attempts to carry out such
schemes, from pre-data to post-data, in infinite- or very
high-dimensional models.

This is a tall order: conceptually; elicitation-wise; mathematically
(distributions over very big spaces); operationally (there is no direct
Bayes theorem); computationally (MCMC with 1000 parameters?).

Priors and posteriors for densities, regression functions, hazard
rates, big hierarchical models, etc.
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Plan & outline

A What is it?

B From the Dirichlet distribution to the Dirichlet process

C The Beta process (e.g. for survival analysis)

D Bernshtĕın–von Mises theorems (sometimes not)

E Stationary time series

F Bayesian nonparametrics for quantile analysis

G Clustering models

H Other issues & concluding remarks
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Hjort, Holmes, Müller, Walker, 2010
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A: What is it?

Well, what is itc? Theorem: If the world is frequentist or Bayes,
and parametric or nonparametric, then

IV = (I ∪ II ∪ III)c .

frequentist Bayes
parametric I II

nonparametric III IV

I: Smallish finite models, estimation and inference for aspects of θ.

II: Smallish finite models, estimation and posterior inference, via
prior π(θ) (this was all of Bayes inference, from c. 1774 to c. 1973).

III: Bigger models, density estimation, nonparametric regression,
confidence bands, etc.

IV: Priors and posteriors for random functions, bigger structures,
hierarchies of hierachies, ...
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Bayesian nonparametrics invites constructions for ‘approximately
normal’, ‘approximately linear regression’, etc.

With ψ1, ψ2, . . . orthogonal functions on [0, 1], like
ψj(u) =

√
2 cos(jπu), try

f (y) = f (y , θ)exp
{ 100∑

j=1

ajψj(F (y , θ))
}/

c100(a1, . . . , a100),

with a prior on θ along with aj ∼ N(0, τ2/j2). Data will tell us (via
lots o’ MCMC) how close the real f is to the parametric start.

Approximately linear regression with approximately normal errors:

yi = a + bxi +
100∑
j=1

γjhj(xi ) + εi for i = 1, . . . , n,

with perhaps γj ∼ N(0, κ2/j2), where the εi are from f ≈ N(0, σ2).

Fascinating and promising – but raises a long list of questions.
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A de Finetti theorem

Why should we go for Bayesian nonparametrics? – Apart from ‘it
works, and can solve big problems’, there’s a
mathematical-probabilistic argument:

Consider y1, y2, . . ., a sequence of observations, with the
exchangeability property:

(y1, y2, y3, y4, y5) ∼ (y3, y1, y5, y4, y2),

i.e. have the same distribution – and similarly for all permutations,
and all lengths. Then there is a de Finetti measure π, on the set of
all distributions P, such that

Pr{y1 ∈ A1, . . . , yn ∈ An} =

∫
P(A1) · · ·P(An)π(dP)

for all A1, . . . ,An, and all n.

So there is a (nonparametric) prior behind what you see (whether
you knew or not), and y1, y2, . . . are i.i.d. given P.
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B: The Dirichlet process: from finite to infinite

I begin with two boxes (1-or-0 measurements): With
y ∼ Bin(n, p),

f (y | p) ∝ py (1− p)n−y ,

and with p ∼ Beta(a, b),

p | y ∝ pa−1(1− p)b−1py (1− p)n−y = pa+y−1(1− p)b+n−y−1,

which means p |data ∼ Beta(a + y , b + n − y):

p̂ = E(p | y) =
a + y

a + b + n
=

a + b

a + b + n
p0 +

n

a + b + n

y

n
,

Var (p | y) =
1

a + b + n
p̂(1− p̂).

Thomas Bayes did this, with (a, b) = (1, 1), i.e. a uniform prior –
not in Divine Benevolence, or an Attempt to Prove That the
Principal End of the Divine Providence and Government is the
Happiness of His Creatures (1731), but in the other one (1763).
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Then k boxes: from binomial to multinomial. With (y1, . . . , yk)
the number of cases of types 1, . . . , k , the likelihood is

n!

y1! · · · yk !
py11 · · · p

yk−1

k−1 (1− p1 − · · · − pk−1)yk ,

if the n trials are independent with the same probabilities
p1, . . . , pk each time.

This calls on the Dirichlet distribution, Dir(a1, . . . , ak):

π(p1, . . . , pk−1) =
Γ(a1 + · · ·+ ak)

Γ(a1) · · · Γ(ak)

×pa1−11 · · · pak−1−1
k−1 (1− p1 − · · · − pk−1)ak−1

on the simplex of (p1, . . . , pk−1).

Multiplying prior and likelihood:

(p1, . . . , pk) | (y1, . . . , yk) ∼ Dir(a1 + y1, . . . , ak + yk).
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So we can pass from prior Dir(a1, . . . , ak) to posterior
Dir(a1 + y1, . . . , ak + yk) by simply adding the observed counts for
the k boxes. We have

p̂j = E(pj | data) =
aj + yj
a + n

,

σ̂2j = Var (pj | data) =
1

a + n + 1
p̂j(1− p̂j),

with a = a1 + · · ·+ ak .

Easy to use, via simulation:

(p1, . . . , pk) =
( G1

G1 + · · ·+ Gk
, . . . ,

Gk

G1 + · · ·+ Gk

)
,

with Gj ∼ Gamma(aj , 1) (for the prior), or
Gj ∼ Gamma(aj + yj , 1) (for the posterior).
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Example: I throw my die 60 times and get 8, 8, 7, 13, 9, 15. Is p6
bigger than it should be? With prior Dir(2, 2, 2, 2, 2, 2) this is the
posterior for ρ = p6/(p1 · · · p5)1/5, and Pr(ρ > 1 | data) = 0.947:
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Then from k boxes to the infinite full-space process: We’re helped
by this collapsibility lemma: If

(p1, . . . , p10) ∼ Dir(a1, . . . , a10),

then

(p1 + p2, p3 + p4 + p5, p6, p7 + p8 + p9 + p10)

∼ Dir(a1 + a2, a3 + a4 + a5, a6, a7 + a8 + ap + a10),

etc. With P0 a distribution on the sample space S , we say that
P ∼ Dir(aP0), a Dirichlet process with parameter aP0, if

(P(A1), . . . ,P(Ak)) ∼ Dir(aP0(A1), . . . , aP0(Ak))

for each partition A1, . . . ,Ak .

Existence is non-trivial (Ferguson, 1973, Doksum 1974). We have

EP(A) = P0(A) and VarP(A) =
P0(A){1− P0(A)}

a + 1
.
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The Dirichlet process has various uses as a probabilistic model for
a random distribution. It is also well-suited for inference after
observations from unknown distribution. Master lemma says that if
(i) P ∼ Dir(aP0) and (ii) y1, . . . , yn |P are i.i.d. from P, then

P |data ∼ Dir(aP0 + δ(y1) + · · ·+ δ(yn)),

i.e. with posterior measure aP0 + nPn, with Pn = n−1
∑n

i=1 δ(yi ),
the empirical measure with point mass 1/n in each data point.

In particular:

P̂(A) = E {P(A) | data} =
a

a + n
P0(A) +

n

a + n
Pn(A),

Var {P(A) | data} =
1

a + n + 1
P̂(A){1− P̂(A)}.

May also form confidence bands for P(A), and may e.g. simulate
1000 realisations from P |data, from which we can read off
posterior for any θ(P).
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How to simulate a Dir(aP0), over the sample space S?

(i) May discretise, sample space cut into tiny pieces, and use a
finite-dimensional Dirichlet (aP0(A1), . . . , aP0(A1000)).

(ii) May write P(A) = G (A)/G (S), with G a Gamma process with
independent pieces over disjoint sets, G (A) ∼ Gamma(aP0(A)).

(iii) Via the Tiwari–Sethuraman representation theorem:

P =
∞∑
j=1

pjδ(θj),

where the random locations θ1, θ2, . . . are i.i.d. from P0, and where
the random stick-breaking probabilities are

p1 = B1, p2 = (1− B1)B2, p3 = (1− B1)(1− B2)B3, . . . ,

with B1,B2,B3, . . . i.i.d. Beta(1, a).

Note that the random distribution P is discrete.
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C: The Beta process

For survival analysis, consider life-times T , with distribution F ,
and cumulative hazard rate function A:

dA(s) =
dF (s)

F [s,∞)
= Pr{die in [s, s + ds] | still alive at s}.

The survival curve is

S(t) = Pr{T ≥ t} =
∏
[0,t]

{1− dA(s)}.

Hjort (1985, 1990) constructs a Beta process, with independent
increments: With A0(·) the prior mean function, and c(·) a prior
strength function,

dA(s) ≈d Beta
(
c(s) dA0(s), c(s){1− dA0(s)}

)
.

The existence is non-trivial, since a sum of Betas is not a Beta; a
fine-limit-argument is needed (cf. Lévy processes).
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As for the Dirichlet process, also the Beta process has various
probabilistical uses in studies of random transitions phenomena,
and as the de Finetti measure of the Indian Buffet Processes.

They are particularly well-suited for survival analysis. Survival data
(ti , δi ), with ti = min(t0i , zi ) and δi = I{t0i ≤ zi} the indicator for
non-censoring: The classical nonparametric estimators for
cumulative hazard and survival are

Ã(t) =

∫ t

0

dN(s)

Y (s)
and S̃(t) =

∏
[0,t]

{
1− dN(s)

Y (s)

}
,

the Nelson–Aalen and Kaplan–Meier estimators. Here Y (s) is the
number at risk at time s and dN(s) the number of those dying in
[s, s + ds].

With the Beta process, we reach Bayesian nonparametric
extensions of these.
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If A ∼ Beta(c ,A0), then

A |data ∼ Beta(c + Y , Â),

with

Â(t) = E{A(t) |data} =

∫ t

0

c(s)dA0(s) + dN(s)

c(s) + Y (s)
.

The Bayes estimator for survival is

Ŝ(t) = E{S(t) | data} =
∏
[0,t]

{
1− c(s) dA0(s) + dN(s)

c(s) + Y (s)

}
.

With c(s)→ 0 we do not trust the prior, and we get the
Nelson–Aalen and Kaplan–Meier estimators.

May also simulate 1000 posterior realisations from the distributions
A | data and S |data, and read off relevant features and
probabilities.
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Example: Analyse life-lengths from ancient Egypt, for 82 men and
59 women [see Nils talk I], via posterior distribution for
Pr(Tm ≥ t)− Pr(Tw ≥ t). I start with Beta process priors for Am

and Aw , and simulate 5000 posterior curves Sm − Sw .
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Sir David Cox (b. 1924) is an Eternal Guru of Statistics (the first
ever winner of the International Prize in Statistics, 2017). His
most important invention (from 1972) is the hazard rate regression
model

αi (s) = α(s) exp(x ti β)

along with deep methodology for handling such and similar models,
starting with survival data (ti , δi , xi ).

The canonical semiparametric Bayesian extension of this method
(Hjort, 1990) starts with

1− dAi (s) = {1− dA(s)}exp(xti β),

a prior for β, and A ∼ Beta(c ,A0).

There is a long list of further generalisations and uses of the Beta
process in models with transtions over time (medicine,
demography, biology, event history analysis, etc.).
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D: Bernshtĕın–von Mises theorems (do not always hold)

For ordinary parametric inference, there’s a comforting general
theorem saying frequentist and Bayesian inferences ‘agree in the
end’, with enough data.

Suppose n data points or vectors have been observed, from a
model f (y , θ), with θ̂ the maximum likelihood estimator. First,

√
n(θ̂ − θ0)→d Np(0, J−1).

Second, having started with any prior, the posterior π(θ |data) is
such that √

n(θ − θ̂) |data→d N(0, J−1).

So frequentist and (every) Bayesian inference tend to agree, with
µ̂± 1.96 κ̂/

√
n as the 95% confidence or credibility interval, etc.

The nonparametric world is bigger and scarier (?), however.
Various reasonable-looking nonparametric Bayesian schemes don’t
work – lack of consistency, wrong coverage, etc.
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E: Stationary time series

Bayesian nonparametrics for covariance functions with application
to time series – the following reports briefly on joint work with
Gudmund Hermansen.

I Covariance and correlation functions: via spectral measure F

I Prior on F ⇒ prior on covariances and correlations

I F a Dirichlet: C (h) =
∫ π
0 cos(hω) dF (ω) is a valid correlation

sequence

I Stationary time series: full nonparametric Bayes inference

I Other spatial and spatial-temporal models: prior, posterior,
Bayesian inference ok; but fewer hard results
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Plan:

I 1. Priors for stationary Gaussian time series – Spectral
representation: F first, then C

I 2. Frequentist analysis – Periodogramme, cumulative,
Brownian motion

I 3. Exact and approximate Bayesian updating – Whittle
approximation, MCMC

I 4. Limit theorems and Bernshtĕın–von Mises

I 5. [Illustration: sun spots, etc.; not here (!)]
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E1. Priors for stationary Gaußian time series

Let Y1,Y2, . . . be a zero-mean stationary Gaußian time series with
unknown covariance function

C (h) = C (|i − j |) = cov(Yi ,Yj) for |j − i | = h.

Wish to use Bayesian nonparametrics for modelling C (·) – and
hence any function of C (·), i.e. any function of the n × n
covariance matrix.

If we manage, this leads to full Bayesian inference for a time series
with ‘uncertain covariance function’. Can then also answer
predictive questions, like the Geiloesque

α = Pr{Yn+1 ≥ y0,Yn+2 ≥ y0,Yn+3 ≥ y0 | data}.

Would also wish to centre the random C (·) as some given C0(·),
say C0(h) = σ2ρh for AR(1).
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Not easy to do it ‘directly’ – placing a random band around ρh

quickly produces outcomes that are non-valid, i.e. the associated
covariance matrices may be negative definite. We need

I the random C (·) is positive definite;
I clear interpretation of prior;
I big (or full) prior support;
I simulations (or approximations) to the posterior;
I posterior consistency;
I perhaps more, e.g. Bernshtĕın–von Mises.

General approach (but not the only one): modelling C (·) via
spectral measure F (·) on [0, π]. Wold’s theorem:

C (h) = 2

∫ π

0
cos(hu)dF (u) for h = 0, 1, 2, . . . ,

with F nondecreasing and finite; in particular
C (0) = 2F (π) = σ2 = VarYi . Hence also for correlation function:

corr(h) =

∫ π

0
cos(hu)

dF (u)

F (π)
with

F

F (π)
random cdf.
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Main idea & programme:

I model for F (·)
I ⇒ model for C (·)
I ⇒ model for full covariance matrix and all related quantities

I ⇒ full posterior distribution of ‘everything’, when coupled
with data likelihood, which is

Ln ∝ exp(−1
2 log |Σn| − 1

2y
tΣ−1n y).

To understand F models from C properties (and vice versa, they
are a ‘Fourier couple’):

C (h) = 2

∫ π

0
cos(hu) dF (u),

f (u) =
1

2π

∞∑
h=−∞

exp(−ihu)C (u) =
σ2

2π
+

1

π

∞∑
h=1

cos(hu)C (h).

Prior for F should match prior knowledge for C (·). May centre F
at F0 that matches some C0.

26/41



Example: AR(1). Here C0(h) = σ2ρh and spectral density becomes

f0(u) =
σ2

2π

1− ρ2

1− 2ρ cos u + ρ2
for u ∈ [0, π].

May e.g. choose a prior for F with prior mean matching
F0(u) =

∫ u
0 f0(v) dv , and with uncertainty band matching prior

uncertainty about C (h) around C0(h).

Many possibilities: any random finite measure F gives rise to a
random C etc.

Take J Bayesian nonparametrics papers for random finite measures
⇒ new papers paper1, . . . ,paperJ for Bayesian nonparametric
analysis of stationary time series.

Good tool: F a Gamma process (aF0, 1) ⇒ F/F (π) a Dirichlet
(cF0) on [0, π], etc.
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Left: simulated Dirichlet processes, F/F (π) ∼ Dir(cF0) on [0, π];
right: the accompanying random correlation functions
C (h) =

∫ π
0 cos(hu)dF (u)/F (π).
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E2. Frequentist analysis

Time series analysis is nearly always parametric (typically also with
model selection issues etc.), though nonparametric analysis is also
possible – for spectral density f , its cdf F , and hence the
covariance function. Consider the periodogramme (Schuster, 1898)

In(u) =
1

n

1

2π

∣∣∣ n∑
k=1

exp(−iku)yk

∣∣∣2 for u ∈ [0, π].

One has In(un,j) ≈ ftrue(u)Expo(1) when un,j → u, and
asymptotic independence between these limits when un,j

.
= πj/n.

There’s a big literature on smoothed periodogrammes etc., for
estimating ftrue, but here we are more interested in F than f .
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We may use either of

Fn(u) =

∫ u

0
In(v)dv and F̂n(u) =

π

n

∑
πj/n≤u

In(πj/n),

and have process convergence:

Zn(u) =
√
n{F̂n(u)− Ftrue(u)} →d W

(
2π

∫ u

0
ftrue(v)2 dv

)
.

The associated estimators of covariances C (h) are
Ĉn(h) = 2

∫ π
0 cos(uh)dF̂n(u). From Zn =

√
n(F̂n − Ftrue)→d Z , a

time-transformed Brownian motion, follows

√
n{Ĉn(h)− Ctrue(h)} →d Ah = 2

∫ π

0
cos(uh) dZ (u),

and variances and covariances may be written down and estimated
consistently. We have also good large-sample nonparametric
control over all other smooth functions of the Σn matrix, and can
put down normal approximations and confidence intervals etc.
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E3. Exact and approximate Bayesian updating

Attractive class of priors: let F have independent increments, and
split the spectral domain into windows,

[0, π] = W1 ∪ · · · ∪Wm,

perhaps of equal width, Wj = (π(j − 1)/m, πj/m]. The
log-likelihood also almost splits into m components, across
windows:

`n = −1
2 log |Σn| − 1

2y
tΣ−1n y + const,

˜̀
n = −1

2n
1

π

∫ π

0

{
log f (u) +

In(u)

f (u)

}
du + const =

m∑
j=1

˜̀
n,j .

Here ˜̀n is the Whittle approximation to the exact `n, and In(u) the
periodogramme. We need F to have a density f .

Hence Bayesian updating can be undertaken ‘window by window’.
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Special prior: locally constant spectral density,

f (u) = fj for u ∈ window Wj , j = 1, . . . ,m,

with priors π1(f1), . . . , πm(fm) for these constants. The random F
is continuous and piecewise linear.

Exact posterior distribution

π(f1, . . . , fm | data) ∝ π1(f1) · · ·πm(fm) exp{`n(f1, . . . , fm)},

can be worked with, both practically (MCMC) and theoretically.
For growing n (and windows not too small) it is close enough to its
easier Whittle approximation:

∝ π1(f1) exp{˜̀n,1(f1)} · · ·πm(fm) exp{˜̀n,m(fm)},

where

˜̀
n,j = −1

2n
1

π

∫
Wj

{
log fj +

In(u)

fj

}
du = −1

2n
1

π

(
wj log fj +

vn,j
fj

)
for window Wj , with wj length of Wj and vn,j =

∫
Wj

In(u) du.

32/41



Full Bayesian analysis may now be carried out, from a given
number of windows and given priors for the spectral heights
f1, . . . , fm.

We may use exact posterior via MCMC, or approximate posterior
via Whittle and independence,

π(fj |data) ∝ πj(fj) exp{−1
2n(1/π)(wj log fj + vn,j/fj)}

for j = 1, . . . ,m, with vn,j =
∫
Wj

In(u)du and wj the width of Wj .

Can use inverse gamma priors for the local constants (convenient
updating), but there are reasons for preferring gamma priors, say
fj ∼ Gam(af0,j , a).

We may compute posterior mean and variance directly (involving
Bessel functions etc.), and also draw samples from π(fj | data).
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E4. Large-sample results

We have proven nice large-sample theorems that in a
Bernshtĕın–von Mises fashion mirror the frequentist results. The
essential conditions are m→∞ and m/

√
n→ 0, ‘more and

more windows, but not too many’. Then:

I the Whittle approximation becomes good enough (same limit
with exact and with Whittle);

I the parametric BvM theorem has time to kick in, for each
window:

fj | data ≈ N
(
w−1j

∫
Wj

dF̂n(u), 2π

∫
Wj

ftrue(v)2 dv/n
)
,

with xj midpoint of Wj ;
I nonparametric BvM process convergence:

√
n(F − F̂n) |data→d W

(
2π

∫ u

0
ftrue(v)2 dv);

with ‘invariance theorem’ consequences for C (h) etc.
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F: Nonparametric quantile inference

Suppose x1, . . . , xn are i.i.d. from a distribution F , with quantile
function

Q(y) = F−1(y) = inf{t : F (t) ≥ y}.

So Q(12) is the median; Q(14) and Q(34) the two quartiles, etc.

A quantile pyramid is constructed in this fashion:

1 give a prior for Q(12);

2 give priors for Q(14) and Q(34), given Q(12);

3 give priors for Q(18),Q(38),Q(58),Q(78), given
Q(14),Q(24),Q(34);

– &cetera, &cetera.

Under some conditions, this pans out well (Hjort and Walker,
Annals, 2009) – the full Q = {Q(y) : y ∈ (0, 1)} exists; there is a
characterisation of Q |data; this may be computed and simulated
from.
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The class of Quantile Pyramids is very large. It may be used for
purely probabilistic analyses of different types of phenomena, and
for statistical quantile inference. A broad model is

zi = m(xi ) + εi , where εi has quantile process Q,

with a prior process for m(x). May then reach inference for

(Q(0.05 | x),Q(0.50 | x),Q(0.95 | x),

presented as bands in x , etc.

A special case of the Quantile Pyramid Q = {Q(y) : y ∈ (0, 1)}
corresponds to F = {F (x) : x ∈ R} being a Dir(aF0). Cute
quantile estimator:

Q̂(y) =
n∑

i=1

(
n − 1

i − 1

)
y i−1(1− y)n−ix(i) for 0 ≤ y ≤ 1.

It has Q̂(0) = x(1) and Q̂(1) = x(n).
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A fully automatic density estimator (Hjort and Petrone, 2007):
solve Q̂(y) = x to identify y = F̂ (x), and then

f̂ (x) =
[n−1∑
i=1

(x(i+1) − x(i)) beta(F̂ (x); i , n − i)
]−1

.
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Quantile difference function G−1(y)− F−1(y), with bands, for F
age at hospitalisation and G age at death, for women and for men.
(I’ve re-analysed data from Laake, Laake, Aaberge, 1985.)
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G: Models and methods for clusters

A simple prototype setup: Data points y1, . . . , yn are to be
clustered, say as belonging to N(ξj , 1), with cluster centres ξj , and
we do not know the number of clusters in advance (so this is not
k-means or similar).

I 1 Let P ∼ Dir(aP0).

I 2 Let µ1, . . . , µn i.i.d. P – but only Dn of these n will be
distinct.

I 3 Let yi ∼ N(µi , 1) for i = 1, . . . , n.

May then set up a posterior scheme simulating from (µ1, . . . , µn).
From this one reads off both π(Dn | data) and the positions of
cluster centres.

∃ hundreds of variations – many in heavy use. Note that a
influences size of Dn: Dn ≈ a log n. (Can also have a prior on a.)
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H: Concluding remarks

Bayesian nonparametrics has grown drastically, from c. 1973 to
now – in horizon size, ambition level, flexibility, convenience,
popularity (!), computational feasibility, applicability, maturity. It’s
close friends with branches of probability theory and applications
and with machine learners and with all uses of Big Hierarchical
Constructions.

Its uses include more flexibility around stricter models
(nonparametric envelopes around parametric models).

It links with machine learning for nonparametric regression and
classification; for hierarchical structures (‘Dirichlet process of
Dirichlet processes’); and for clustering and allocation processes
(Chinese Restaurant Process, Indian Buffet Process).
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FocuStat Workshop May 2015: CDs and Related Fields
FocuStat Workshop May 2016: FICology
FocuStat Workshop May 23–25 2017: Building Bridges, ‘from
parametrics to nonparametrics’, including Bayesian nonparametrics.
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