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Counting the not counted

 

 

393

19663

15955 6317

3943 898

634

N000

outside all:

REMHI CIIDH

CEH

Lists REMHI, CEH, CIIDH:
n1,1,1 = 393, n1,1,0 = 3943, n1,0,0 = 15955, n1,0,1 = 634,
n0,1,1 = 898, n0,1,0 = 19663, n0,0,1 = 6317. How big is N000?
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Today (with more details elsewhere)

Clearly we need to assume something, to construct estimates of
N0,0,0 and the total

N = N1,1,1 + N1,1,0 + N1,0,1 + N0,1,1 + N1,0,0 + N0,1,0 + N0,0,1 + XXX

= Ncounted + N0,0,0.

Easiest start assumption is list independence, which means
Pr(counted in 1, 2, 3) = pqr etc. Then 23 − 1 = 7 probabilities
are modelled via 3 parameters.

I will develop a log-likelihood profile method, with `prof(N),

giving N̂ and also a full confidence curve cc(N) – and apply this
for Guatemala lists.

The methodology works also for other submodels (and for more
than three lists).

I’m building a FIC for N000, a Focused Information Criterion
that sorts through candidate models and finds the best.
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Two lists: N = N11 + N10 + N01 + how many more?

Multinomial setup, with (N0,0,N0,1,N1,0,N1,1) having sum N,
and probabilities

pi ,j = Pr(X = i ,Y = j) for i , j = 0, 1,

1-0 for counted and not-counted. Under list independence:

p0,0 = (1− p)(1− q), p0,1 = (1− p)q, p1,0 = p(1− q), p1,1 = pq.

Two quantities aiming for the same pq:

N1,1

N
and

N1,0 + N1,1

N

N0,1 + N1,1

N
.

Equating these gives the Petersen estimator (counting fish in
Limfjorden, 1896):

N∗ =
(N1,0 + N1,1)(N0,1 + N1,1)

N1,1
=

N1,·N·,1
N1,1

.
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Behaviour of N∗

May work with the four multinomial ratios p̂i ,j = Ni ,j/N:

N1/2(p̂i ,j − pi ,j)→d Ai ,j ,

a mean-zero four-normal with a clear covariance matrix.
Delta method yields:

N∗ − N√
N

= N1/2(
N∗

N
− 1)→d U =

A1,0 + A1,1

p
+

A0,1 + A1,1

q
− A1,1

pq
.

We learn

N∗/
√
N −

√
N ≈d N(0, τ2), τ2 =

(1− p)(1− q)

pq
.

Can construct confidence intervals etc. using this.

Note that p, q small implies high uncertainty (& vice versa).
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Via log-likelihood profiling

It’s fruitful to work with log-likelihood and profiling: results will be
(a) it gives N̂ almost equivalent to Petersen estimator N∗;
(b) there is a useful χ2

1 recipe;
(c) matters generalise to k ≥ 3 lists (where @ Petersen).

With N0,1,N1,0,N1,1 and hence S = N0,1 + N1,0 + N1,1 observed,
but N = S + N0,0 unknown:

L(N, p, q) =
N!

(N − S)!N1,0!N0,1!N1,1!
{(1− p)(1− q)}N−S

{(1− p)q}N0,1{p(1− q)}N1,0(pq)N1,1 .

Taking log, and maximising over p, q:

`prof(N) = log(N!)− log((N − S)!) + NH(p̂N) + NH(q̂n),

in terms of p̂N = N1,·/N and q̂N = N·,1/N, and

H(r) = r log r + (1− r) log(1− r).
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A chi-squared theorem for two independent lists

Some analysis, involving approximations, limiting normality,
information, etc., and the quantity

J =
1− p0,0
p0,0

− p

1− p
− q

1− q
=

pq

(1− p)(1− q)
,

leads to

D(N0) = 2{`prof,max − `prof(N0)} →d U2/J ∼ χ2
1

at the true (but still unknown) N0.

Confidence interval: {N0 : D(N0) ≤ 1.962}, etc.

Full confidence curve:

cc(N0) = Γ1(D(N0)),

with Γ1(·) the χ2
1 c.d.f.
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Srebrenica 1995

From Brunborg, Lyngstad, Urdal (2003): ICRC and PHR lists:
N1,1 = 5712, N1,0 = 1586, N0,1 = 192.
Estimate 7543; interval [7528, 7560]; p̂ = 0.967, q̂ = 0.783.
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Three lists

First: Assuming list independence:

pi ,j ,k = pi ,·,· p·,j ,· p·,·,k for i , j , k = 0, 1.

No clear generalisation of the Petersen estimator.
But log-likelihood profiling works well:

`prof(N) = log(N!)− log((N − S)!) + N{H(p̂N) + H(q̂n) + H(r̂N)},

with the same H(x) = x log x + (1− x) log(1− x) and

p̂N = N1,·,·/N, q̂N = N·,1,·/N, r̂N = N·,·,1/N.

Also, a crucial quantity

J =
1− p0,0,0
p0,0,0

− p

1− p
− q

1− q
− r

1− r

is at work. Theorem:

D(N0) = 2{`prof,max − `prof(N0)} →d U2/J ∼ χ2
1

at the true (but still unknown) N0.
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Fun to do: simulate, estimate, learn

Your fish population: {1, . . . ,N}.

Go fishing, with mark-release, probabilities p1, p2, p3. This gives
subsets A1,A2,A3. Then do all of the above, with quite simple
R tools

setdiff

intersect

union

length

One learns about the importance of p1, p2, p3, the value of fishing
even more (!), the somewhat skewed distributions of N̂, etc.

May also put priors into the game.
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Guatemala

From Lum, Price, Banks (2013): Lists REMHI, CEH, CIIDH:

n1,1,1 = 393, n1,1,0 = 3943, n1,0,0 = 15955, n1,0,1 = 634,
n0,1,1 = 898, n0,1,0 = 19663, n0,0,1 = 6317.

Using list independence (first): total estimate 138,576;
95 percent interval 135,794 to 141,453; low detection rates
(p̂, q̂, r̂) = (0.151, 0.179, 0.069).

Can do two lists at a time and the three lists jointly
(looking for biases?).
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With list independence assumption: Three two-sources curves,
three-sources cc(N) in the middle.
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With dependence among the lists

The log-likelihood profile machinery still works, for any pi ,j ,k(θ);
need dim(θ) ≤ 6. A class of four-parameter models:

p0,0,0 = (1− p)(1− q)(1− r)/s

p0,0,1 = (1− p)(1− q)r γ/s

p0,1,0 = (1− p)q(1− r)/s

p0,1,1 = (1− p)qr/s

p1,0,0 = p(1− q)(1− r)/s

p1,0,1 = p(1− q)/s

p1,1,0 = pq(1− r)/s

p1,1,1 = pqr/s

where the γ is a parameter associated with cell 001, modifying
independence in that direction; s is the factor to give sum 1.

This is the best of 8 similar choices. Then a clear leap in
log-likelihood, and much better Pearson statistic

K =
∑
i ,j ,k

(Ni ,j ,k − N̂p̂i ,j ,k)2/(N̂p̂i ,j ,k).
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A five-parameter model

Starting with independence equations, then modifying,
in two directions:

p0,0,0 = (1− p)(1− q)(1− r)/s

p0,0,1 = (1− p)(1− q)r γ1/s

p0,1,0 = (1− p)q(1− r)/s

p0,1,1 = (1− p)qr/s

p1,0,0 = p(1− q)(1− r)/s

p1,0,1 = p(1− q)r/s

p1,1,0 = pq(1− r)/s

p1,1,1 = pqr γ2/s

with s scale to get sum p0,0,0 + · · ·+ p1,1,1 = 1.

The best cell for modification 1, with γ1, is 001; and the best cell
for modification 2, with γ2, is 111.
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So with modification parameters γ1 placed at cell 001 and γ2
placed at cell 111, I have a quite good model, with data fitting the
model well (when it comes to the seven observed cells in the Venn
diagram; can never check the 000 box).

The modifications amount to upward pushes at these two cells,
with γ̂1 = 1.85 and γ̂2 = 2.32.

obs3 obs5 expect3 expect5 pearson3 pearson5

n000 90772 79522 90772.223 79521.883 -0.001 0.000

n100 15955 15955 16144.571 15905.047 -1.492 0.396

n010 19663 19663 19880.329 19713.270 -1.541 -0.358

n001 6317 6317 5740.255 6317.001 7.612 0.000

n110 3943 3943 3535.877 3942.820 6.847 0.003

n101 634 634 1020.951 684.094 -12.110 -1.915

n011 898 898 1257.193 847.890 -10.130 1.721

n111 393 393 223.602 392.995 11.328 0.000
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3-para: 138,576, with 135,794 to 141,453 (width 5,659)
4-para: 122,812, with 120,100 to 125,634 (width 5,534)
5-para: 127,314, with 124,341 to 130,415 (width 6,074)
Ball (1999): 132,174 (with a standard error of 6,568 ?).
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Things To Do: bigger models, more sources

Looking for biases.

Inventing and using other models for the

pi ,j ,k(θ) = Pr(X = i ,Y = j ,Z = k) for i , j , k = 0, 1.

As long as 23 − 1 = 7 probabilities in terms of θ of dimension 6 or
lower, we’re in business and can do log-likelihood profiling etc.
Can search systematically (or ‘logically’) through

pi ,j ,k(θ) = pindi ,j ,k exp(d1ei ,j ,k + d2fi ,j ,k)/sum.

Insights =⇒ covariates, or priors; will be helpful.

Yes, we can attack situations with k ≥ 4 lists, but then need more
care, for both modelling; principles giving shorter lists of candidate
models; and clever algorithms for identifying and travelling through
the most important ones.

Bayesian versions.
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Comparing models: Building a FIC for N

Consider a candidate model, pi ,j ,k(θ) for 23 = 8 probabilities. With
S =

∑
not (0,0,0)Ni ,j ,k the sum of 7 observed counts,

(N1,0,0, . . . ,N1,1,1) |S ∼ multin(S , q1,0,0(θ), . . . , q1,1,1(θ)),

with

qi ,j ,k(θ) = pi ,j ,k(θ)/{1− p0,0,0(θ)}

for the 7 cells. I estimate θ from this, then giving

N̂ =
S

1− p0,0,0(θ̂)
.

How to sift through and rank different candidate models?

For each candidate model, need to assess, approximate, estimate

Etruemodel(N̂/Ntrue − 1)2.

This is a tall order, needing a list of clarifying lemmas and proofs.
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Two of the required lemmas: Assume there is an underlying true
multinomial pi ,j ,k for the 8 probabilities. First,

N̂

Ntrue
=

S/Ntrue

1− p0,0,0(θ̂)
→pr γ =

1− p0,0,0
1− p0,0,0(θ0)

,

involving the least false θ0 for the parametric model. Second,

N
1/2
true(N̂/Ntrue − γ)→d N(0, τ2),

with a long and semi-complicated formula for τ2, involving both
the true model and the candidate model.

From these:

Etrue (N̂/Ntrue − 1)
.

= γ − 1, Vartrue (N̂/Ntrue − 1)
.

= τ2/Ntrue,

so need to estimate

mse = Etrue (N̂/Ntrue − 1)2
.

= (γ − 1)2 + τ2/Ntrue.

This is somewhat complicated but doable: fic = m̂se.
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Carrying out these things, and implementing FIC, requires selecting
a wide model for the 8 probabilities pi ,j ,k , deemed plausible, under
which biases and variances can be quantified and estimated.

For Guatemala: I’ve carried model fitting and N estimation for 1 +
8 + 28 = 37 candidate models, using a plausible 5-parametric
model as the wide model.

The winning model ... is this five-parameter model:

p0,0,0 = (1− p)(1− q)(1− r)/s

p0,0,1 = (1− p)(1− q)r γ1/s

p0,1,0 = (1− p)q(1− r)/s

p0,1,1 = (1− p)qr/s

p1,0,0 = p(1− q)(1− r)/s

p1,0,1 = p(1− q)r/s

p1,1,0 = pq(1− r)/s

p1,1,1 = pqr γ2/s

with s scale to get sum p0,0,0 + · · ·+ p1,1,1 = 1.

N̂ =127,314, with 124,341 to 130,415 (width 6,074).
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Concluding remarks

♠ Constructing the FIC for N is a more ... delicate operation
than for most other contexts and setups, as a plausible wide
model needs to be put up.

♠ There are applications of ‘how many deads’ with e.g. 20 lists,
i.e. 220 probabilities to be modelled (see reports from Patrick
Ball).

♠ Many other application domains: from multinomial
(N0,N1, . . . ,Nk), we only observe N1, . . . ,Nk , and need to
estimate N0 – counting the not counted.

♠ Bayesian versions may be developed (both for estimation and
for model selection), e.g. with a start prior for p0,0,0 or N0,0,0.

♠ There is a need for extension to setups with covariates.
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