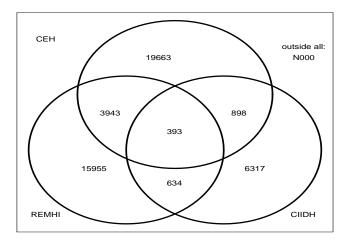
How many were killed in Guatemala, 1978-1996?

Nils Lid Hjort

Department of Mathematics, University of Oslo, and Statistical War and Peace Project, Centre for Advanced Research, Oslo

NordStat, Göteborg, June 2023

Counting the not counted



Lists REMHI, CEH, CIIDH: $n_{1,1,1} = 393$, $n_{1,1,0} = 3943$, $n_{1,0,0} = 15955$, $n_{1,0,1} = 634$, $n_{0,1,1} = 898$, $n_{0,1,0} = 19663$, $n_{0,0,1} = 6317$. How big is N000?

Today (with more details elsewhere)

Clearly we need to assume something, to construct estimates of $N_{0,0,0}$ and the total

$$\begin{split} N &= N_{1,1,1} + N_{1,1,0} + N_{1,0,1} + N_{0,1,1} + N_{1,0,0} + N_{0,1,0} + N_{0,0,1} + XXX \\ &= N_{\rm counted} + N_{0,0,0}. \end{split}$$

Easiest start assumption is list independence, which means Pr(counted in 1, 2, 3) = pqr etc. Then $2^3 - 1 = 7$ probabilities are modelled via 3 parameters.

I will develop a log-likelihood profile method, with $\ell_{\text{prof}}(N)$, giving \widehat{N} and also a full confidence curve cc(N) – and apply this for Guatemala lists.

The methodology works also for other submodels (and for more than three lists).

I'm building a FIC for N000, a Focused Information Criterion that sorts through candidate models and finds the best.

Two lists: N = N11 + N10 + N01 + how many more?

Multinomial setup, with $(N_{0,0}, N_{0,1}, N_{1,0}, N_{1,1})$ having sum N, and probabilities

$$p_{i,j} = \Pr(X = i, Y = j) \text{ for } i, j = 0, 1,$$

1-0 for counted and not-counted. Under list independence:

 $p_{0,0} = (1-p)(1-q), \ \ p_{0,1} = (1-p)q, \ \ p_{1,0} = p(1-q), \ \ p_{1,1} = pq.$

Two quantities aiming for the same *pq*:

$$\frac{N_{1,1}}{N}$$
 and $\frac{N_{1,0} + N_{1,1}}{N} \frac{N_{0,1} + N_{1,1}}{N}$

Equating these gives the Petersen estimator (counting fish in Limfjorden, 1896):

$$N^* = \frac{(N_{1,0} + N_{1,1})(N_{0,1} + N_{1,1})}{N_{1,1}} = \frac{N_{1,\cdot}N_{\cdot,1}}{N_{1,1}}.$$

Behaviour of N^*

May work with the four multinomial ratios $\hat{p}_{i,j} = N_{i,j}/N$:

 $N^{1/2}(\widehat{p}_{i,j}-p_{i,j}) \rightarrow_d A_{i,j},$

a mean-zero four-normal with a clear covariance matrix. Delta method yields:

$$\frac{N^* - N}{\sqrt{N}} = N^{1/2} \left(\frac{N^*}{N} - 1\right) \rightarrow_d U = \frac{A_{1,0} + A_{1,1}}{p} + \frac{A_{0,1} + A_{1,1}}{q} - \frac{A_{1,1}}{pq}.$$

We learn

$$N^*/\sqrt{N} - \sqrt{N} \approx_d N(0, \tau^2), \quad \tau^2 = rac{(1-p)(1-q)}{pq}$$

Can construct confidence intervals etc. using this.

Note that p, q small implies high uncertainty (& vice versa).

Via log-likelihood profiling

It's fruitful to work with log-likelihood and profiling: results will be (a) it gives \widehat{N} almost equivalent to Petersen estimator N^* ;

(b) there is a useful χ_1^2 recipe;

(c) matters generalise to $k \ge 3$ lists (where \nexists Petersen).

With $N_{0,1}$, $N_{1,0}$, $N_{1,1}$ and hence $S = N_{0,1} + N_{1,0} + N_{1,1}$ observed, but $N = S + N_{0,0}$ unknown:

$$L(N, p, q) = \frac{N!}{(N-S)! N_{1,0}! N_{0,1}! N_{1,1}!} \{(1-p)(1-q)\}^{N-S} \\ \{(1-p)q\}^{N_{0,1}} \{p(1-q)\}^{N_{1,0}} (pq)^{N_{1,1}}.$$

Taking log, and maximising over p, q:

 $\ell_{\text{prof}}(N) = \log(N!) - \log((N-S)!) + NH(\widehat{p}_N) + NH(\widehat{q}_n),$

in terms of $\widehat{p}_N = N_{1,\cdot}/N$ and $\widehat{q}_N = N_{\cdot,1}/N$, and

$$H(r)=r\log r+(1-r)\log(1-r).$$

A chi-squared theorem for two independent lists

Some analysis, involving approximations, limiting normality, information, etc., and the quantity

$$J = \frac{1 - p_{0,0}}{p_{0,0}} - \frac{p}{1 - p} - \frac{q}{1 - q} = \frac{pq}{(1 - p)(1 - q)},$$

leads to

 $D(N_0) = 2\{\ell_{\mathrm{prof},\mathrm{max}} - \ell_{\mathrm{prof}}(N_0)\} \rightarrow_d U^2/J \sim \chi_1^2$

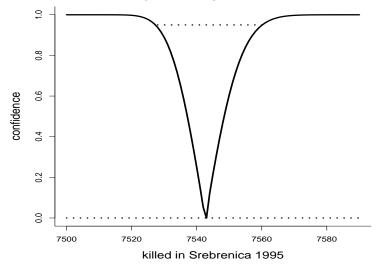
at the true (but still unknown) N_0 . Confidence interval: { $N_0: D(N_0) \le 1.96^2$ }, etc. Full confidence curve:

 $\operatorname{cc}(N_0)=\Gamma_1(D(N_0)),$

with $\Gamma_1(\cdot)$ the χ_1^2 c.d.f.

Srebrenica 1995

From Brunborg, Lyngstad, Urdal (2003): ICRC and PHR lists: $N_{1,1} = 5712$, $N_{1,0} = 1586$, $N_{0,1} = 192$. Estimate 7543; interval [7528,7560]; $\hat{p} = 0.967$, $\hat{q} = 0.783$.



Three lists

First: Assuming list independence:

 $p_{i,j,k} = p_{i,\cdot,\cdot} p_{\cdot,j,\cdot} p_{\cdot,\cdot,k}$ for i,j,k = 0,1.

No clear generalisation of the Petersen estimator. But log-likelihood profiling works well:

 $\ell_{\text{prof}}(N) = \log(N!) - \log((N-S)!) + N\{H(\widehat{p}_N) + H(\widehat{q}_n) + H(\widehat{r}_N)\},$ with the same $H(x) = x \log x + (1-x) \log(1-x)$ and

$$\widehat{p}_N = N_{1,\cdot,\cdot}/N, \quad \widehat{q}_N = N_{\cdot,1,\cdot}/N, \quad \widehat{r}_N = N_{\cdot,\cdot,1}/N.$$

Also, a crucial quantity

$$J = \frac{1 - p_{0,0,0}}{p_{0,0,0}} - \frac{p}{1 - p} - \frac{q}{1 - q} - \frac{r}{1 - r}$$

is at work. Theorem:

 $D(N_0) = 2\{\ell_{
m prof,max} - \ell_{
m prof}(N_0)\} \rightarrow_d U^2/J \sim \chi_1^2$ at the true (but still unknown) N_0 .

Fun to do: simulate, estimate, learn

```
Your fish population: \{1, \ldots, N\}.
```

Go fishing, with mark-release, probabilities p_1, p_2, p_3 . This gives subsets A_1, A_2, A_3 . Then do all of the above, with quite simple R tools

setdiff intersect union length

One learns about the importance of p_1, p_2, p_3 , the value of fishing even more (!), the somewhat skewed distributions of \widehat{N} , etc.

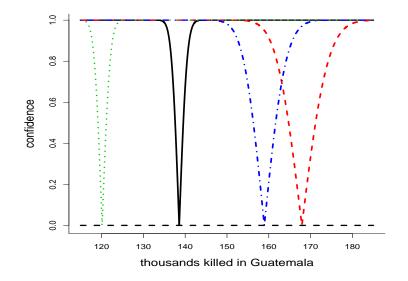
May also put priors into the game.

From Lum, Price, Banks (2013): Lists REMHI, CEH, CIIDH:

 $n_{1,1,1} = 393, n_{1,1,0} = 3943, n_{1,0,0} = 15955, n_{1,0,1} = 634, n_{0,1,1} = 898, n_{0,1,0} = 19663, n_{0,0,1} = 6317.$

Using list independence (first): total estimate 138,576; 95 percent interval 135,794 to 141,453; low detection rates $(\hat{p}, \hat{q}, \hat{r}) = (0.151, 0.179, 0.069).$

Can do two lists at a time and the three lists jointly (looking for biases?).



With list independence assumption: Three two-sources curves, three-sources cc(N) in the middle.

With dependence among the lists

The log-likelihood profile machinery still works, for any $p_{i,j,k}(\theta)$; need dim $(\theta) \leq 6$. A class of four-parameter models:

$$p_{0,0,0} = (1-p)(1-q)(1-r)/s$$

$$p_{0,0,1} = (1-p)(1-q)r \gamma/s$$

$$p_{0,1,0} = (1-p)q(1-r)/s$$

$$p_{0,1,1} = (1-p)qr/s$$

$$p_{1,0,0} = p(1-q)(1-r)/s$$

$$p_{1,0,1} = p(1-q)/s$$

$$p_{1,1,0} = pq(1-r)/s$$

$$p_{1,1,1} = pqr/s$$

where the γ is a parameter associated with cell 001, modifying independence in that direction; *s* is the factor to give sum 1. This is the best of 8 similar choices. Then a clear leap in log-likelihood, and much better Pearson statistic

$$\mathcal{K} = \sum_{i,j,k} (N_{i,j,k} - \widehat{N}\widehat{p}_{i,j,k})^2 / (\widehat{N}\widehat{p}_{i,j,k}).$$
_{13/22}

A five-parameter model

Starting with independence equations, then modifying, in two directions:

$$p_{0,0,0} = (1-p)(1-q)(1-r)/s$$

$$p_{0,0,1} = (1-p)(1-q)r \gamma_1/s$$

$$p_{0,1,0} = (1-p)q(1-r)/s$$

$$p_{0,1,1} = (1-p)qr/s$$

$$p_{1,0,0} = p(1-q)(1-r)/s$$

$$p_{1,0,1} = p(1-q)r/s$$

$$p_{1,1,0} = pq(1-r)/s$$

$$p_{1,1,1} = pqr \gamma_2/s$$

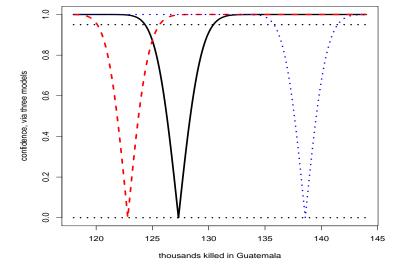
with *s* scale to get sum $p_{0,0,0} + \cdots + p_{1,1,1} = 1$.

The best cell for modification 1, with γ_1 , is 001; and the best cell for modification 2, with γ_2 , is 111.

So with modification parameters γ_1 placed at cell 001 and γ_2 placed at cell 111, I have a quite good model, with data fitting the model well (when it comes to the seven observed cells in the Venn diagram; can never check the 000 box).

The modifications amount to upward pushes at these two cells, with $\hat{\gamma}_1 = 1.85$ and $\hat{\gamma}_2 = 2.32$.

	obs3	obs5	expect3	expect5	pearson3	pearson5
n000	90772	79522	90772.223	79521.883	-0.001	0.000
n100	15955	15955	16144.571	15905.047	-1.492	0.396
n010	19663	19663	19880.329	19713.270	-1.541	-0.358
n001	6317	6317	5740.255	6317.001	7.612	0.000
n110	3943	3943	3535.877	3942.820	6.847	0.003
n101	634	634	1020.951	684.094	-12.110	-1.915
n011	898	898	1257.193	847.890	-10.130	1.721
n111	393	393	223.602	392.995	11.328	0.000



3-para: 138,576, with 135,794 to 141,453 (width 5,659) 4-para: 122,812, with 120,100 to 125,634 (width 5,534) 5-para: 127,314, with 124,341 to 130,415 (width 6,074) Ball (1999): 132,174 (with a standard error of 6,568?).

Things To Do: bigger models, more sources

Looking for biases.

Inventing and using other models for the

 $p_{i,j,k}(\theta) = \Pr(X = i, Y = j, Z = k) \quad \text{for } i, j, k = 0, 1.$

As long as $2^3 - 1 = 7$ probabilities in terms of θ of dimension 6 or lower, we're in business and can do log-likelihood profiling etc. Can search systematically (or 'logically') through

 $p_{i,j,k}(\theta) = p_{i,j,k}^{\text{ind}} \exp(d_1 e_{i,j,k} + d_2 f_{i,j,k})/\text{sum}.$

Insights \implies covariates, or priors; will be helpful.

Yes, we can attack situations with $k \ge 4$ lists, but then need more care, for both modelling; principles giving shorter lists of candidate models; and clever algorithms for identifying and travelling through the most important ones.

Bayesian versions.

Comparing models: Building a FIC for N

Consider a candidate model, $p_{i,j,k}(\theta)$ for $2^3 = 8$ probabilities. With $S = \sum_{\text{not } (0,0,0)} N_{i,j,k}$ the sum of 7 observed counts, $(N_{1,0,0}, \dots, N_{1,1,1}) | S \sim \text{multin}(S, q_{1,0,0}(\theta), \dots, q_{1,1,1}(\theta)),$ with

$$q_{i,j,k}(\theta) = p_{i,j,k}(\theta) / \{1 - p_{0,0,0}(\theta)\}$$

for the 7 cells. I estimate θ from this, then giving

$$\widehat{N} = rac{S}{1 - p_{0,0,0}(\widehat{ heta})}.$$

How to sift through and rank different candidate models?

For each candidate model, need to assess, approximate, estimate

$$\mathrm{E}_{\mathrm{true\,model}}(\widehat{N}/N_{\mathrm{true}}-1)^2.$$

This is a tall order, needing a list of clarifying lemmas and proofs.

Two of the required lemmas: Assume there is an underlying true multinomial $p_{i,j,k}$ for the 8 probabilities. First,

$$rac{\widehat{\mathcal{N}}}{\mathcal{N}_{ ext{true}}} = rac{S/\mathcal{N}_{ ext{true}}}{1-p_{0,0,0}(\widehat{ heta})} o_{ ext{pr}} \gamma = rac{1-p_{0,0,0}}{1-p_{0,0,0}(heta_0)},$$

involving the least false θ_0 for the parametric model. Second,

$$N_{\mathrm{true}}^{1/2}(\widehat{N}/N_{\mathrm{true}}-\gamma) \rightarrow_{d} \mathrm{N}(0,\tau^{2}),$$

with a long and semi-complicated formula for τ^2 , involving both the true model and the candidate model.

From these:

 $\mathrm{E}_{\mathrm{true}}\left(\widehat{\textit{N}}/\textit{N}_{\mathrm{true}}-1
ight)\doteq\gamma-1,\quad\mathrm{Var}_{\mathrm{true}}\left(\widehat{\textit{N}}/\textit{N}_{\mathrm{true}}-1
ight)\doteq au^2/\textit{N}_{\mathrm{true}},$

so need to estimate

$$\mathrm{mse} = \mathrm{E}_{\mathrm{true}} \, (\widehat{\textit{N}} / \textit{N}_{\mathrm{true}} - 1)^2 \doteq (\gamma - 1)^2 + \tau^2 / \textit{N}_{\mathrm{true}}.$$

This is somewhat complicated but doable: $fic = \widehat{mse}$.

Carrying out these things, and implementing FIC, requires selecting a wide model for the 8 probabilities $p_{i,j,k}$, deemed plausible, under which biases and variances can be quantified and estimated.

For Guatemala: I've carried model fitting and N estimation for 1 + 8 + 28 = 37 candidate models, using a plausible 5-parametric model as the wide model.

The winning model ... is this five-parameter model:

$$p_{0,0,0} = (1-p)(1-q)(1-r)/s$$

$$p_{0,0,1} = (1-p)(1-q)r\gamma_1/s$$

$$p_{0,1,0} = (1-p)q(1-r)/s$$

$$p_{0,1,1} = (1-p)qr/s$$

$$p_{1,0,0} = p(1-q)(1-r)/s$$

$$p_{1,0,1} = p(1-q)r/s$$

$$p_{1,1,0} = pq(1-r)/s$$

$$p_{1,1,1} = pqr\gamma_2/s$$

with *s* scale to get sum $p_{0,0,0} + \cdots + p_{1,1,1} = 1$. $\widehat{N} = 127,314$, with 124,341 to 130,415 (width 6,074).

Concluding remarks

- Constructing the FIC for N is a more ... delicate operation than for most other contexts and setups, as a plausible wide model needs to be put up.
- There are applications of 'how many deads' with e.g. 20 lists, i.e. 2²⁰ probabilities to be modelled (see reports from Patrick Ball).
- ♠ Many other application domains: from multinomial (N₀, N₁,..., N_k), we only observe N₁,..., N_k, and need to estimate N₀ − counting the not counted.
- Bayesian versions may be developed (both for estimation and for model selection), e.g. with a start prior for p_{0,0,0} or N_{0,0,0}.
- There is a need for extension to setups with covariates.

(Some) references

P Ball. Lots of papers and reports.

H Brunborg, TH Lyngstad, H Urdal (2003). Accounting for genocide: How many were killed in Srebrenica? *European Journal of Population*.

G Claeskens, NL Hjort (2008). Model Selection and Model Averaging. CUP.

C Cunen, NL Hjort (2022). Combining information across diverse sources: newine the II-CC-FF paradigm. *Scandinavian Journal of Statistics.*

C Cunen, NL Hjort, HM Nygård (2020). Statistical Sightings of Better Angels. *Journal of Peace Research.*

NL Hjort (2019). Your Mother is Alive with Probability One Half. *FocuStat* Blog xii.

NL Hjort, EAa Stoltenberg (2023). *Statistical Inference:* 666 Exercises, 66 Stories (and Solutions to All). CUP.

M Jullum, NL Hjort (2017). Parametric or nonparametric? The FIC approach. *Statistica Sinica*.

K Lum, ME Price, D Banks (2013). Applications of multiple systems estimation in human rights research. *American Statistician*.

T Schweder, NL Hjort (2016). Confidence, Likelihood, Probability. CUP.