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Pre-talk comment: Stability and Change at CAS

We’ve had six workshops, with two core groups, the Stat People
(the Nils crowd) and the PRIO people (the Håvard crowd):

0 PreCas Workshop (May 11-12, 2022)

1 ProcMod, From Processes to Models (Oct 19-20, 2022)

2 PredUnc, Prediction with Uncertainty (Dec 6-7, 2022)

3 N000, Counting the Uncounted (22 Feb 2023)

4 ChangeTrend, Changes, Trends, Windows (Mar 28-29, 2023)

5 DemoIndex, Democracy Indexes (Apr 26-27, 2023)

* Follow-up Workshop (Oct 2023)

Open, friendly, conducive atmosphere, international participants
from both statistics and political science – lots o’ common ground,
and more to come.
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This talk: mini-summary & footnote

Christopher Sims won the 2011 Sveriges Riksbank Prize in
Economic Sciences im Memory of Alfred Nobel. For his Stockholm
acceptance speech (and paper): showcased Bayes and MCMC, for
a particular dataset and macroeconomic vector time series model,
to reach inference for a few crucial parameters.

I use Confidence Distributions instead (same data, same model, but
no priors). Our analyses differ significantly (and I claim I’m right).

♠ I like to think that I mostly give new talks about new things.

♠ But 75% of today’s theme is inside Confidence, Likelihood,
Probability (Schweder and Hjort, 2016, Ch. 14); also, this was
essentially Tore’s idea, analysis, reporting.

♠ But I have redone both the Bayes and the CD analyses, have
25% more material, and understand issues better. Will land in
Statistical Inference: 666 Exercises, 66 Stories
(Hjort and Stoltenberg, 2023).
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C.A. Sims won the ... Sveriges Riksbank Prize in 2011, with
T.J. Sargent. He praises Haavelmo, and uses modern Bayes.
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Plan

A The macroeconomic dataset: (Ct , It ,Gt), for
t = 1929, . . . , 1940 (Consumption, Investment, Government
spending).

B The Sims model: 6 regression parameters, 3 variance
parameters. The Bayes with MCMC method, and results:
B(θ1 | data) (and for other parameters).

C Confidence Distributions, what they are, how to compute
them, t-bootstrapping.

D When Bayes and CD tend to agree – and when they’re not.

E Finding C (θ1 | data) (and CDs for other parameters).

F Remarks.
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A: Consumption, Investment, Government spending

The Sims prewar macroeconomic dataset, for (Ct , It ,Gt):

year C I G

1929 736.3 101.4 146.5
1930 696.8 67.6 161.4
1931 674.9 42.5 168.2
1932 614.4 12.8 162.6
1933 600.8 18.9 157.2
1934 643.7 34.1 177.3
1935 683.0 63.1 182.2
1936 752.5 80.9 212.6
1937 780.4 101.1 203.6
1938 767.8 66.8 219.3
1939 810.7 85.9 238.6
1940 752.7 119.7 245.3

The unit is 1 billion 1932 dollars.
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B: the Sims model (with priors)

Vector autoregressive time series model (translated from his paper):

Ct = β0 + β1(Ct + It + Gt) + σC ε1,t ,

It = θ0 + θ1(Ct − Ct−1) + σI ε2,t ,

Gt = γ0 + γ1Gt−1 + σG ε3,t ,

with the εj ,t being i.i.d. standard normal.

Such models, with such data, also called multiple structural
equation models, started with Haavelmo (1943, 1944).

So 6 regression parameters and 3 variance parameters.

Sims further says θ1 ≥ 0, and also γ1 ≤ 1.03, 1− β1(1 + θ1) > 0:
model does not explode.

Sims uses Bayes, with

(i) flat priors on the line for β0, β1, θ0, θ1, γ0, γ1,
subject to these constrains;

(ii) σ1, σ2, σ3 having independent 1/σj priors.
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Likelihood for the Sims model

With yt = (Ct , It ,Gt)
t, rewriting the model in matrix form:

H0yt = c + H1yt−1 + εt for t = 1, . . . , n,

with the εt ∼ f0. Translation is ok with

H0 =

1− β1, −β1, −β1
−θ1, 1, 0

0 0 1

 , H1 =

 0, 0, 0
−θ1, 0, 0

0, 0, γ1

 , c =

β0θ0
γ0

.
Then from yt = H−10 zt , with zt = c + H1yt−1 + εt having density
ft(zt | yt−1), likelihood is

L =
n∏

t=1

g(yt | yt−1)

=
n∏

t=1

ft(H0yt | yt−1)|H0| =
n∏

t=1

f0(H0yt − c − H1yt−1)|H0|.

For Sims case, εt ∼ Np(0,D), with diagonal D.
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Bayes and posterior distributions

The above leads to log-likelihood

` =
n∑

t=1

[
log |H0|+

p∑
j=1

{− log σj − 1
2 ε̃

2
t,j/σ

2
j }
]

where ε̃t,j = H0yt − c − H1yt−1.

With priors πa(α) and πs(σ) for α = (β0, β1, θ0, θ1, γ0, γ1)t and
σ = (σ1, σ2, σ3)t, posterior becomes

π(α, σ | data) ∝ πa(α)πs(σ) exp{n log |H0(α)|}
3∏

j=1

(1/σj)
n exp{−1

2Qj(α)/σ2j },

with Qj(α) =
∑n

t=1 ε̃j ,t(α)2. With independent 1/σj priors:

π(α |data) ∝ πa(α) exp{n log |H0(α)|}
3∏

j=1

1/Qj(α)n/2.
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MCMC for posterior of β0, β1, θ0, θ1, γ0, γ1

So I have π(α |data) for α = (β0, β1, θ0, θ1, γ0, γ1)t. I set up
a good MCMC in dimension 6. Flat prior, but constraints

θ1 ≥ 0, γ1 ∈ [0, 1.03], 1− β1(1 + θ1) > 0.

From αold, proposal αprop a symmetric push away, accepted with
probability

praccept = min
{

1,
π(αprop | data)

π(αold | data)

}
.

So αnew = okαprop + (1− ok)αold, with ok = 1(accept).

This works well (and is essentially what Sims did). Can in
particular read off posteriors for the more crucial parameters,
like θ1 and γ1.

Can also use this machinery for guided prediction (say 1941, 1942
based on 1929–1940 data; what happens to Ct , It , if government
decides Gt?).
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Running MCMC, in dimension 6, reading off for θ1 (easy to let it
run for 105 steps):
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Reading off posterior B(θ1 |data); median 0.06,
95% interval [0, 0.24], etc. I’ve essentially re-done Sims (2012a).
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C: Confidence Distributions

CDs are (almost) posteriors without priors.

Simpler versions go back to Fiducial Fisher 1930. Lots of modern
developments, with connections in various directions; see
Schweder and Hjort Confidence, Likelihood, Probability (2016).

With φ a focus parameter, and y the data, suppose C (φ, y) is a
cdf in φ for any y , and that

U = C (φtrue,Y ) ∼ unif at true position.

Then

Prtrue(C−1(0.05,Y ) ≤ φtrue ≤ C−1(0.95,Y )) = 0.90,

etc. So C (φ, data) acts like a frequentist posterior cdf for φ.

Also, confidence curve cc(φ, data) = |1− 2C (φ, data)| has the
property

CI = {φ : cc(φ, data) ≤ 0.90} has Prtrue(φ ∈ CI) = 0.90

etc.
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Computing the CD

With φ = g(θ1, . . . , θp) a focus parameter, various recipes, for
different situations, in CLP.

Finding a pivot: Suppose t = {h(φ̂)− h(φ)}/κ̂ has distribution H,
independent of parameters. Then

C (φ, y) = 1− H({h(π̂obs)− h(φ)}/κ̂obs).

Normal approximation: if φ̂ ≈d N(φ, κ̂2), use

C (φ,data) = Φ((φ− φ̂)/κ̂).

There are various refinements.

Wilks theorems, with log-profile-likelihoods: via deviance
D(φ) = 2{`prof(φ̂)− `prof(φ)}, use

cc(φ, data) = Γ1(D(φ)).

Again, refinements, via Bartletting etc.
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CDs via t-bootstrapping

t-bootstrapping I: Suppose t = (φ̂− φ)/κ̂ has a distribution H
approximately constant in the relevant parameter region. Then

C (φ, y) = 1− H((φ̂obs − φ)/κ̂obs),

where H may be computed by simulation of a high number of
t∗ = (φ̂∗ − φ̂)/κ̂∗.

t-bootstrapping II: Write the full model parameter as (φ, γ). Write
the cdf of t = (φ̂− φ)/κ̂ as H(·, φ, γ). Then

C0(φ, y) = 1− H((φ̂obs − φ)/κ̂obs, φ, γ)

would’ve been perfect (but we can’t use it in general). I use

C (φ, y) = 1− H((φ̂obs − φ)/κ̂obs, φ, γ̂obs(φ))

= Pr∗((φ̂∗ − φ̂obs)/κ̂∗ ≥ (φ̂obs − φ)/κ̂obs).

For each φ, simulate a high number of t∗ = (φ̂∗ − φ̂obs)/κ̂∗.
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D: Bayes and CDs often agree (but not always)

In regular, smooth models, with reasonable

ratio = (data volume) / (model complexity),

Bayes and CDs will be in reasonable agreement.

This is the terrain of Bernshtĕın–von Mises theorems, and also
prior matching, and more.

In particular: a Bayesian machine produces intervals with ok
coverage: if BI(0.90) is a Bayesian posterior 0.90 interval
for some φ, then

Prtrue(φtrue ∈ BI(0.90)) ≈ 0.90,

etc.

It’s not forbidden to be purist Bayes, with your own special prior,
and its consequent special posterior – but for lots of science, be
more objective and careful.
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Boundary parameters

When parameters are close to boundaries: things are more messy,
for frequentists and Bayesians: the Big Industrial Complex of
approximate normality, Maximum Likelihood, Wilks theorems,
AIC, BIC, FIC, Bayes (driving 90 percent of applied statistics?),
does not work without care and modifications.

Case in point, here, prototype situation: y | θ ∼ N(θ, 1), a priori
θ ≥ 0. Perfect CD:

C (θ,data) = Φ(θ − y) for θ ≥ 0,

with pointmass Φ(−y) at zero, etc. Bayes with flat prior:

b(θ | y) = φ(θ − y)/{1− Φ(−y)} for θ ≥ 0.

But the coverage can be far off (if θtrue small):

Prtrue(θtrue ≤ B−1(q | y)), with B−1(q | y) = Φ−1(1− (1− q)Φ(y))

is often seriously overshooting q.

We shall see, for θ1: Sims’ 0.75 interval has coverage 0.9999, etc.
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Coverage Prtrue(θtrue ∈ BI(q)), for levels q = 0.01, . . . , 0.99,
for cases θtrue = 0.1, 0.5, 1.0, 1.5.

The CD is perfect, regardless of θtrue.
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E: Finding the CDs in Sims setup

First I estimate the 6 + 3 parameters in the Sims model via ML.

With α = (β0, β1, θ0, θ1, γ0, γ1)t, I profile out σ1, σ2, σ3: starting
from

` = n log |H0(α)|+
3∑

j=1

{
− n log σj − 1

2

n∑
t=1

ε̃2t,j/σ
2
j

}
,

I reach

`prof(α) = n log |H0(α)| − n
3∑

j=1

log σ̂j(α)− 1
23n

with σ̂j(α)2 = Qj(α)/n and Qj(α) =
∑n

t=1 ε̃j ,t(α)2.

This reduces numerical optimisation from dim = 9 to dim = 6.
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With focus on θ1 (similarly for other focus parameters): For each
θ1 on a grid: use

Ĥ0 =

1− β̂1, −β̂1, −β̂1
−θ1, 1, 0

0 0 1

 , Ĥ1 =

 0, 0, 0
−θ1, 0, 0

0, 0, γ̂1

 , ĉ =

β̂0θ̂0
γ̂0


to simulate 103 datasets

y∗t = Ĥ−10 (ĉ + Ĥ1yt−1 + εt) for t = 1, . . . , n

with y0 fixed to values for 1929. For each simulated dataset,
estimate 6 + 3 parameters, and compute t∗ = (θ̂∗1 − θ̂1,obs)/κ̂∗.
In the end I read off

C (θ1, data) = Pr∗(t
∗ ≥ (θ̂1,obs − θ1)/κ̂1,obs).

Quite heavy computing, as I need nontrivial ML estimation job for
103 new datasets, for each θ1.
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Bayes and CD for θ1

Result: CD for θ1 has pointmass C (0,data) = 0.989 at zero.
Figure shows Bayes posterior; good CD (very close to 1);
simple normal approximation CD. Sims does not detect that
θ1 is very likely zero; I am 99% confident about this.
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Bayes and CD for γ1

Prior constraint: γ1 ≤ 1.03 (decided by Sims). Bayes (with the
Sims priors) does not detect that γ1 is very likely in [0.95, 1.03].
The CD finds this.
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Bayes and CD for other parameters

The Sims model takes

Ct = β0 + β1(Ct + It + Gt) + σC ε1,t ,

It = θ0 + θ1(Ct − Ct−1) + σI ε2,t ,

Gt = γ0 + γ1Gt−1 + σG ε3,t .

Sims says θ1 is crucial, and gives parameter constraints

θ1 ≥ 0, γ1 ∈ [0, 1.03], 1− β1(1 + θ1) > 0.

For the other 4 parameters, Bayes (with MCMC) and CD
(with t-bootstrapping) give about the same results; the
drama is for θ1 and γ1, due to the boundary parameter effect.

If θ1 and γ1 had been a bit away from boundaries (to the right of
0, to the left of 1.03), there would have been no drama
(and Tore + Nils would have not have detected any trouble).
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F: Remarks

♣ So unlike Sims, I am 99% confident that increase in
consumption does not affect investment.

♣ In the 6 + 3 parameter model, Sims imposes the θ1 ≥ 0
restriction. Constrained ML is θ̂1 = 0:

β0 β1 θ0 θ1 γ0 γ1
Sims 166 0.566 63.00 0.00 10.70 0.991
Nils 201 0.525 63.88 0.00 10.79 0.990

Unconstrained ML is θ̂ = −0.566 (with sd approx 0.434).

♣ Same phenomenon in regression models: If
yi = a + b1xi ,1 + b2xi ,2 + εi , and postulate b2 ≥ 0, then the
perfect CD is

C (b2, data) = Gdf((b2 − b̂2)/κ̂2) for b2 ≥ 0,

with Gdf the cdf for tdf , here df = n− 3. A Bayes setup needs
to factor in that perhaps b2 = 0. Same in logistic regressions,
Poisson regression, etc.
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♣ There is a priori nothing wrong with Bayes – but using flat
priors on [0,∞) for nonnegative parameters may go wrong:
ok if some distance away from zero, but very wrong if truth is
close to zero. If θ = 0, you do not detect it! CDs do the job.

♣ The Bayes analysis becomes more clever (and agrees more
with the CDs) with more clever priors. May try
θ1 ∼ 1

2δ0 + 1
2 I(0,∞) (will do so, later, for Sims Story for

Hjort-Stoltenberg 2023 book; it takes a more complicated
MCMC setup).

♣ For prototype setup, y | θ ∼ N(θ, 1), our CD is optimal.
With a prior dπ(θ), posterior is

dπ(θ | y) = dπ(θ)φ(θ − y)/c(y) for θ ≥ 0.

But there is no prior succeeding in giving a posterior identical
to the CD.

♣ Would be useful to develop a FIC for vector autoregressive
time series models.
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