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Process to Model:
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General themes

All models are wrong – but some are biologically more plausible
than others.

Hope: construction of good models (and then methods) for hazard
rates, for survival and event history data, for competing risks, etc.

I Cox model: some non-coherency issues

I Frailty modelling =⇒ classes of hazard rate models

I Bayesian nonparametrics =⇒ classes of hazard rate models

I Cumulative damage process reaches threshold =⇒ models

I Survival as long as all shocks are small =⇒ models

I Parallel damage processes =⇒ competing risks models

I Some damage process never reach threshold =⇒ cure models

I When ‘event’ is time related =⇒ extended logistic regression
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Plan

0 The incoherence of Cox; frailty and cumulative damage
processes =⇒ models

1 Gamma process time-to-hit =⇒ models

2 Applications A, B, C

3 Gamma process jumps =⇒ models

4 Extended logistic regression (with brief application)

5 Competing risks (with brief application)

6 Frailtifying the threshold model

7 Concluding remarks
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0: Issues with Cox type models

Consider survival data with two covariates x1 and x2. Cox
regression takes hazard to be

h(s | xi ,1, xi ,2) = h0(s) exp(β1xi ,1 + β2xi ,2).

There is a model-inconsistency problem here: if we only observe
xi ,1, and calculate the hazard rate h(s | xi ,1), then this will not be
of Cox regression form, regardless of distribution of x2 | x1.

Also: if there is perfect Cox structure given x1 alone, and perfect
Cox structure given x2 alone, one almost never has a Cox model in
(x1, x2).

Hence: the Cox model suffers from a coherence or plausibility
problem. Important: finding good, biologically plausible
background explanations that actually imply the Cox structure (or
other structures).
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Frailty processes

There is a broad literature on frailty in survival analysis. These are
unobservable or latent explanatory variables accounting for
risk-differences between individuals.

In Aalen and NLH (2002):

I some classes of frailty variables, derived via Lévy processes,
imply Cox structure;

I some classes of frailty processes also imply Cox structure.

Assume that individual i has covariate xi and an associated frailty
process Zi (t), growing in time, such that

S(t | xi ,Zi ) = Pr{Ti > t | xi ,Zi ) = exp{−Zi (t)}.

Different models for (the invisible) Zi (·) lead to different models for

S(t | xi ) = Pr{Ti > t | xi} = E exp{−Zi (t)}.

6/1001



Cumulative damage processes

Take in particular

Zi (t) =
∑

j≤Mi (t)

θiGi ,j ,

where Mi (·) is a Poisson process with rate λi (·) and the Gi ,j are
i.i.d., as in cumulative shock model. Then

S(t | xi ,Zi ) =
∏

j≤Mi (t)

exp(−θiGi ,j),

leading to

S(t | xi ) = E L0(θi )
Mi (t) = exp[−Λi (t){1− L0(θi )}].

Here L0(θi ) = E exp(−θiGi ,j) is the Laplace transform of the Gi ,j ,
and Λi (t) =

∫ t
0 λi (s) ds.

Different models for λi (s), for θi and Gi ,j , in terms of the covariate
xi , yield hazard rate regression models, via

h(s | xi ) = λi (s){1− E exp(−θiGi )}.
7/1001



Among many possibilities: θi constant over individuals; Gi same
distribution across individuals; and λi (s) as in multiplicative
Poisson regression, with λ0(s) exp(x ti β). This frailty process
construction then implies the Cox structure:

h(s | xi ) = λ0(s) exp(x ti β){1− E exp(−θG )}.

Competing models also emerge naturally. Among them:

h(s | xi ) = λ0(s) exp(x ti β)
exp(x ti γ)

1 + exp(x ti γ)
,

e.g. De Blasi and Hjort (2007). Also: additive regression models,
via additive model for Poisson rate.

‘Twin times’ models, via frailty processes

Z0(t) + Z1(t) and Z0(t) + Z2(t).

These have convenient joint Laplace transforms.
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1: Time-to-hit models

Time-to-hit-threshold models: Frailty process considerations also
inspire non-Cox regression models. Let

Ti = min{t ≥ 0: Zi (t) ≥ ci}

where
Zi (t) ∼ Gam(aMi (t), 1) a Gamma process.

Then

Si (t) = Pr{Ti ≥ t} = Pr{Zi (t) < ci}

= G (ci , aMi (t), 1) =

∫ ci

0
g(x , aMi (t), 1)dx .

This is a large class of models, with many shapes for hazards hi (t),
depending on Mi and size of ci . With acceleration factors
G (c , aM(κi t)) we may have crossing hazards.
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Thus the nonparametric process view generates fresh regression
models (parametric, semiparametric or nonparametric).

One version: as above, with regression on both threshold and
acceleration:

Zi (t) ∼ Gam(M0(exp(x ti γ)t), 1) hits ci = exp(x ti β).

This is parametric if M0 fixed; may also employ a semi- or
nonparametric M0, or a prior for this function.

∃ links and connections to other work, time-to-hit, threshold
regressions, etc., by Aalen, Borgan, Gjessing, Lee, Whitmore, yet
others.

(Cf. talks by Emil Stoltenberg and Alex Whitmore.)
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2a: Application A: lifelengths in Roman Era Egypt

82 men and 49 women from Egypt, 1st century b.C.; range 0.5 to
96 years.
Gamma process threshold model: men and women die when

Zm(t) ∼ Gam(aM(t), 1) ≥ c ,

Zw (t) ∼ Gam(aM(t) + d extra(t), 1) ≥ c ,

where M(t) = exp(κt)− 1, with the same speed a and same level
threshold c for both men and women, and extra(t) the additional
base risk function for being a woman through age window [15, 40].

Can programme and maximise

`m(a, κ, c) + `w (a, κ, c , d).

Very good fit to data, better AIC scores than for various other
models.
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Kaplan–Meier curves along with gamma process based estimated
survival curves:
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2b: Application B: time to 2nd child after stillbirth

From the Norwegian Birth Registry: 451 married women whose
first child died at birth (stillbirth). We read off T , the number of
months till the birth of the 2nd child. Model: 2nd child is born
when

Z (t) ∼ Gam(aM(t), 1) ≥ c ,

with M(t) = 1− exp[−{(t − t0)/θ}d ], and t0 = 9/12 (time in
years).

I find ML estimates (â, ĉ , θ̂, d̂) from the 451 observations – with a
bit of trouble and care, since observations are on interval form,
with ∆Nj ∼ Bin(Yj , hj), data for interval [`j , rj ]:

hj = Pr{T ∈ [`j , rj ] |T ≥ `j} = 1−
G (c , aM(rj), 1)

G (c , aM(`j), 1)

for the different time intervals.

Model fits very well (via AIC, better than alternatives), also for the
T =∞ individuals; cf. cure models.
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Empirical and model-fitted hazard rates for the event of a 2nd
childbirth, after experiencing a first-born stillbirth, for a population
of 451 married Norwegian women.
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Simulated Gamma processes for ten couples. The process needs to
cross the level ĉ = 17.45 (also plotted in the diagram), in order for
a woman to have a 2nd child. With probability
p = G (c , a, 1)

.
= 0.097, there will never be a 2nd child.
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2c: Application C: regression for oropharynx survival data

Survival data (ti , δi , xi ,1, xi ,2, xi ,3, xi ,4) for n = 193 individuals, with

I x1: sex (1 male, 2 female);

I x2: condition (1-2-3-4, index of disability);

I x3: T-stage (1-2-3-4, size and infiltration of tumour);

I x4: N-stage (0-1-2-3, index of lymph node metastatis).

I take the gamma process time-to-hit model

ti = min{t ≥ 0: Zi (t) ≥ ci},

with Zi (t) ∼ Gam(aMi (t), 1), Mi (t) = 1− exp(−κi t),

ci = exp(β0 + β1xi ,1 + · · ·+ β4xi ,4),

κi = κ0 exp(γ(xi ,2 + xi ,3 + xi ,4)),

with at most 1 + 5 + 2 = 8 parameters. It does better than
Aalen–Gjessing (2001) and other models (in terms of AIC and FIC
scores).
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Estimated survival curves S(t) and hazard rate functions h(t) are
plotted for three individuals, corresponding to high risk (c = 0.20),
medium risk (c = 0.65) and low risk (c = 0.90). Hazards are not
proportional (so Cox regression does worse).
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3a: Survival models via Gamma process jumps

Consider a Gamma process, Z (t) ∼ Gam(A(t), 1), with
A(t) =

∫ t
0 a(s) ds. There are jumps (mostly small, but some

bigger) over each time interval. Suppose an individual is alive as
long as all shocks are ≤ v . Need to find

S(t) = Pr{T ≥ t} = Pr{J(t) < v},

where J(t) is biggest jump over [0, t].

With Zm(t) =
∑

j/m≤t Gm,j , and Gm,j ∼ Gam(a(j/m)(1/m), 1),
we have Zm →d Z , and we can prove a Poisson limit:

Nm(t) =
∑

j/m≤t

I (Gm,j > v)→d N(t) ∼ Pois(A(t)E1(v)),

with the exponential integral function
E1(v) =

∫∞
v (1/u) exp(−u)du. So:

S(t) = Pr{N(t) = 0} = exp{−A(t)E1(v)}.
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We have ‘reinvented’ the Cox proportional hazards model, from
shocks of a Gamma process – the cumulative hazard rates (can)
take the form

Hi (t) = A(t)E1(vi ) = A(t) exp(x ti β).

Variation I: Suppose individual is alive as long as 3 biggest shocks
are below v . Then

S3(t) = Pr{N(t) ≤ 3} = exp{−B(t)}{1+B(t)+ 1
2B(t)2+ 1

6B(t)3},

with B(t) = A(t)E1(v). The hazard rate becomes

h3(t) = b(t)
1
6B(t)3

1 + B(t) + 1
2B(t)2 + 1

6B(t)3
= b(t)Q3(t),

with b(t) = a(t)E1(v) and Q3 growing from 0 to 1 over time.

Can fit each of S1,S2, S3, . . . to regression data and determine the
mixture proportions, or use AIC or FIC to select the best order.
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Variation II: Suppose some individuals ‘get used to shocks’ (and
tolerate more) while others are ‘worn out by shocks’ (and tolerate
less). Assume an individual is alive as long as
Gm,j ≤ v exp(γwj/m), in model formulation above. Then

Sm(t) =
∏

j/m≤t

Pr{Gm,j ≤ v exp(γwj/m)}

=
∏

j/m≤t

{1− a(j/m)(1/m)E1(v exp(γwj/m))}

→ exp
{
−
∫ t

0
a(s)E1(v exp(γws)) ds

}
.

With survival regression data (ti , δi , xi ), we have an extended Cox
model, with hazard rates

hi (t) = a(t)E1(vi exp(γwi s)), where E1(vi ) = exp(x ti β),

and wi is one of the covariates. Analysis for given data can provide
a confidence curve cc(γ).
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3b: Shocks and cumulative shocks, jointly

With a Z (t) ∼ Gam(A(t), 1), suppose an individual is alive as long
as Z (t) < c and J(t) < v , where J(t) is biggest jump experienced
over [0, t].

This leads to amenable models if we can derive a formula for the
survival, S(t) = Pr{Z (t) < c, J(t) < v}. Via Zm →d Z , with
Zm(t) =

∑
j/m≤t Gm,j , we have Nm(t) =

∑
j/m≤t I (Gm,j > v)

tending to a Poisson with A(t)E1(v), and we can prove

S(t) = Pr{Z (t) < c ,N(t) = 0}

=

∫ c

0
Pr{N(t) = 0 | z}g(z ,A(t), 1) dz

=

∫ c

0
Pr{J∗(t) < zv}g(z ,A(t), 1)dz ,

where J∗(t) is the biggest jump in a certain Dirichlet process D∗(·)
over [0, t]. Can be done, via Hjort and Ongaro (2006) =⇒ full
inference.
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3c: Life is full of dangers

Suppose an invidual lives a life full of independent competing
dangers, with cause j of event stemming from one of

Zj(t) ∼ Gam((1/m)b(j/m)M(t), 1) crossing threshold c(j/m).

Then with T = min(T1, . . . ,Tm), and m big,

S(t) = Pr{each Zj(t) < c
( j

m

)
} =

∏
j≤m

G
(
c
( j

m

)
,

1

m
b
( j

m

)
M(t), 1

)
=
∏
j≤m

{
1− 1

m
b
( j

m

)
M(t)E1

(
c
( j

m

))
+ O(1/m2)

}
→ exp

{
−M(t)

∫ 1

0
b(s)E1(c(s))ds

}
.

This leads to a large class of plausible models, where special
subclasses may be used for a set of given data.
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4: Extended logistic regression

Standard logistic regression:

pi = Pr(Yi = 1 | xi ) =
exp(x ti β)

1 + exp(x ti β)

= G
(
log{1 + exp(x ti β)}, 1, 1

)
,

with G (·, a, 1) the c.d.f. of Gam(a, 1).

Extension:

pi = Pr(Yi = 1 | xi , zi ) = G
(
log{1 + exp(x ti β)}, ai , 1

)
,

where ai = a(zi ). Could have ai = exp(zti γ), and with some
covariates for the xi part and others for the zi part.

These models, where ‘event’ is seen as a gamma process reaching
a threshold, are often better than plain logistic regressions, in
terms of AIC and FIC scores.
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Illustration: probability of child having birthweight ≤ 2.50 kg.
With xi ,1, xi ,2 weight and age of mother,

pi =

{
G (log{1 + exp(β0 + β1xi ,1 + β2xi ,2)}, 1 + δ, 1) if smoker

G (log{1 + exp(β0 + β1xi ,1 + β2xi ,2)}, 1− δ, 1) if nonsmoker.
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5a: Competing risks

Suppose each individual has two cumulative risk processes R1(t)
and R2(t) in his or her rucksack. There is event (e.g. death) when
either of these hit threshold c – of cause 1, if R1 is first; of
cause 2, if R2 is first.

First, new survival models emerge by working with new settings,
with T = min(T1,T2), etc. An easy instance is

S(t) = Pr{T ≥ t} = G (c , a1M1(t), 1)G (c , a2M2(t), 1).

Second, can set up models and methods for competing risks.
Simple setup:

Rj(t) ∼ Gam(ajMj(t), 1) for j = 1, 2,

with independence. Can then estimate all parameters from this
type of survival data,

(ti , xi , δi ), δi ∈ {0, 1, 2}.
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Can also carry out the necessary characterisations and
formalisation of likelihood components etc. for the case of

R1(t) = Z0(t) + Z1(t), R2(t) = Z0(t) + Z2(t),

with independent gamma processes Z0,Z1,Z2 (so full ML analysis
is amenable). This opens up for dependent risk processes.

This machinery also leads to formulae for relevant statistical
parameters and functions, like

qj(t) = Pr{death of cause j , at t | death at time t}

for j = 1, 2. Theory for ML works well enough to supply also
confidence bands etc.
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5b: War of Roses (1455-1487) and Game of Thrones

We have 400 noblemen from the two universes. They die of
violence or of natural causes.

I WoR: 126 dead men, 35% violence

I GoT: 274 dead men, 56 alive, 81% violence

We use two competing risk Gamma processes and time to hit:

Zn(t) ∼ Gam(ant
κn , 1) and Zv (t) ∼ Gam(av t

κv , 1).

Our model uses also L, the length of the wikipedia article:

αn = exp{βn,0 + βn,1I (GoT )},
αv = exp{βv ,0 + βv ,1I (GoT ) + βv ,2L + βv ,3I (GoT )× L}.

Inference based on log-likelihood:

`(θ) =
∑
δi=0

log S(ti | θ) +
∑
δi=1

log f ∗1 (ti | θ) +
∑
δi=2

log f ∗2 (ti | θ).
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Fitted cumulative incidence functions compared with
nonparametric estimators:
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The probability of dying of cause j given death at time t:
qj(t) = f ∗j (t)/{f ∗1 (t) + · · ·+ f ∗k (t)}. Here:
Pr{dies a violent death at t | dies at t}, in two universes.
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6: Frailtifying the Gamma process threshold model

My favourite Gamma process threshold model is: event takes place
when Z (t) ≥ c , where Z (t) ∼ Gam(aM0(t), 1):

S(t | c) = Pr{T ≥ t | c} = G (c, aM0(t), 1).

Frailty: give c a distribution with distribution F0(c) = 1− S0(c).
Then, observed in the population:

S(t) =

∫ ∞
0

S(t | c) dF0(c)

=

∫ ∫
I (x ≤ c)g(x , aM0(t), 1)dx dF0(c)

=

∫
S0(x)

1

Γ(aM0(t))
xaM0(t)−1 exp(−x) dx .

Frailty for thresholds translates to downweighting over time of the
gamma density. (Can also frailtify over a.)

Special case: c ∼ Expo(γ) implies S(t) = exp{−bM0(t)}, with
b = a log(1 + γ).
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7: Concluding remarks

1. Too often statisticians employ off-the-shelf models and methods.

2. My themes evolve around plausible processes =⇒ good models
(and then good methods). Of course there is a literature on such
themes (Aalen, Borgan, Gjessing, Lee, Whitmore, others), but
there is scope for more groundwork.

3. Many of the models coming out of plausible processes are
amenable to ML and Bayes analyses etc.; some are semiparametric
or nonparametric, with more work to be carried out.

4. Starting with classes of plausible processes one quickly has a
plethora of candidate models – so scope for more work, sorting the
Very Good Models from the not-as-successful models, e.g. using
model selection and model screeing methods (AIC, BIC, FIC).

5. Dynamics can be put into many of the models (covariates
changing over time; regime shifts).
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6. Models can be individualised, with applications for personalised
medicine etc.

7. Two-stage models for events: (i) first Z1(t) ∼ Gam(M(t), 1) at
work, until threshold c1 at time T1; (ii) then
Z2(t) ∼ Gam(M∗(t), 1) sets in, with different M∗, and might hit
c2. Links to cure models.

8. Gamma-Gamma process, to reflect more uncertainty (or random
effects): Z |Z0 ∼ Gam(Z0, 1) and Z0 ∼ Gam(M, 1). Then

EZ (t) = M(t) and VarZ (t) = M(t) + M(t).

Can again work with time-to-threshold and time-to-jumpsize.

9. Excessive risk in some time periods:

dZi (t) = dZ0(t) + xi (t) dR(t) =

{
dZ0(t) when normal,

dZ0(t) + dR(t) when danger.

With Gamma processes for Z0 and R, can make inference for their
parameters.
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