Cylindrical Lévy processes

Markus Riedle

King's College London

Why do we need a model

of random perturbations in infinite dimension?

Stochastic heat equation

Let $\mathscr{O} \subseteq \mathbb{R}$

$$
\frac{\partial X}{\partial t}(t, r)=\frac{\partial^{2} X}{\partial r^{2}}(t, r)
$$

Stochastic heat equation

Let $\mathscr{O} \subseteq \mathbb{R}$ and $f: \mathbb{R} \rightarrow \mathbb{R}$:

$$
\frac{\partial X}{\partial t}(t, r)=\frac{\partial^{2} X}{\partial r^{2}}(t, r)+f(X(t, r)) \underbrace{\frac{\partial N}{\partial t}(t, r)}_{\text {noise in } t \text { and } r} \text { for all } r \in \mathscr{O}, t \in[0, T] .
$$

Stochastic heat equation

Let $\mathscr{O} \subseteq \mathbb{R}$ and $f: \mathbb{R} \rightarrow \mathbb{R}$:

$$
\frac{\partial X}{\partial t}(t, r)=\frac{\partial^{2} X}{\partial r^{2}}(t, r)+f(X(t, r)) \underbrace{\frac{\partial N}{\partial t}(t, r)}_{\text {noise in } t \text { and } r} \text { for all } r \in \mathscr{O}, t \in[0, T] .
$$

Search solution $X:=(X(t, \cdot): t \in[0, T])$ in $L^{2}(\mathscr{O})$:

$$
\frac{d X}{d t}(t, \cdot)=A X(t, \cdot)+f(X(t, \cdot) \underbrace{\frac{d N}{d t}(t, \cdot)}_{\text {noise in } L^{2}(\mathscr{O})} \quad \text { for all } t \in[0, T] \text {, }
$$

where $A: \operatorname{dom}(A) \subseteq L^{2}(\mathscr{O}) \rightarrow L^{2}(\mathscr{O})$ with $A f=\frac{d^{2} f}{d r^{2}}$.

Stochastic heat equation

Let $\mathscr{O} \subseteq \mathbb{R}$ and $f: \mathbb{R} \rightarrow \mathbb{R}$:

$$
\frac{\partial X}{\partial t}(t, r)=\frac{\partial^{2} X}{\partial r^{2}}(t, r)+f(X(t, r)) \underbrace{\frac{\partial N}{\partial t}(t, r)}_{\text {noise in } t \text { and } r} \quad \text { for all } r \in \mathscr{O}, t \in[0, T] .
$$

Search solution $X:=(X(t, \cdot): t \in[0, T])$ in $L^{2}(\mathscr{O})$:

$$
\frac{d X}{d t}(t, \cdot)=A X(t, \cdot)+f(X(t, \cdot)) \underbrace{\frac{d N}{d t}(t, \cdot)}_{\text {noise in } L^{2}(\mathscr{O})} \quad \text { for all } t \in[0, T]
$$

where $A: \operatorname{dom}(A) \subseteq L^{2}(\mathscr{O}) \rightarrow L^{2}(\mathscr{O})$ with $A f=\frac{d^{2} f}{d r^{2}}$. As integral equation:
$X(t, \cdot)=X(0, \cdot)+\int_{0}^{t} A X(s, \cdot) d s+\underbrace{\int_{0}^{t} f(X(s, \cdot)) N(d s, \cdot)}_{\text {stochastic integral }}$ for all $t \in[0, T]$.

Why cannot we use

a standard Brownian motion in infinite dimensions?

Brownian motion

Definition. Let U be a Hilbert space. A stochastic process $(W(t): t \geqslant 0)$ with values in U is called a Brownian motion, if
(1) $W(0)=0$;
(2) W has independent, stationary increments;
(3) $W(t)-W(s) \stackrel{\mathscr{D}}{=} N(0,(t-s) Q)$ for all $0 \leqslant s \leqslant t$, where $Q: U \rightarrow U$ is a linear operator with the following properties:
symmetric: $\langle Q u, v\rangle_{U}=\langle u, Q v\rangle_{U}$ for all $u, v \in U$;
non-negative: $\langle Q u, u\rangle_{U} \geqslant 0$ for all $u \in U$;
nuclear: $\sum_{k=1}^{\infty}\left\langle Q e_{k}, e_{k}\right\rangle_{U}<\infty$ for an orthonormal basis $\left\{e_{k}\right\}_{k \in \mathbb{N}}$.

Why are Brownian motions not sufficient?

There does not exist a Brownian motion with independent components in an infinite dimensional Hilbert space:

Let U be a Hilbert space with orthonormal basis $\left\{e_{k}\right\}_{k \in \mathbb{N}}$ and $W(t) \stackrel{\mathscr{D}}{=} N(0, t Q)$ with independent components. Then we have

$$
t\left\langle Q e_{k}, e_{l}\right\rangle_{U}=E\left[\left\langle W(t), e_{k}\right\rangle_{U}\left\langle W(t), e_{l}\right\rangle_{U}\right]= \begin{cases}t, & \text { if } k=l \\ 0, & \text { if } k \neq l\end{cases}
$$

which implies $Q=\mathrm{Id}$. However, $Q=\mathrm{Id}$ is not a nuclear operator:

$$
\sum_{k=1}^{\infty}\left\langle Q e_{k}, e_{k}\right\rangle_{U}=\sum_{k=1}^{\infty}\left\|e_{k}\right\|_{U}^{2}=\infty
$$

What is a
 cylindrical Brownian motion?

Common definition

Working definition: Let H be a Hilbert space with orthonormal basis $\left\{e_{k}\right\}_{k \in \mathbb{N}}$ and let $\left\{b_{k}\right\}_{k \in \mathbb{N}}$ be independent real valued Brownian motions.

A cylindrical Brownian motion in H is a family $(W(t): t \geqslant 0)$ such that

$$
W(t)=\sum_{k=1}^{\infty} e_{k} b_{k}(t), \quad t \geqslant 0
$$

converges in square mean in a larger Hilbert space H_{1} containing H.

Genuine vs. cylindrical

Solution of $X(t, \cdot)=\int_{0}^{t} \Delta X(s, \cdot) d s+W(t)$:

genuine Brownian motion W

cylindrical Brownian motion W

Code \& graphics by David Cohen (University of Gothenburg)

Cylindrical random variables

and

cylindrical measures

Cylindrical measures

Let U be a Banach space with dual space U^{*} and dual pairing $\langle\cdot, \cdot\rangle$ and let (Ω, \mathscr{A}, P) denote a probability space.

The cylindrical algebra $\mathfrak{Z}(U, \Gamma)$ for some $\Gamma \subseteq U^{*}$ is defined by
$\mathfrak{Z}(U, \Gamma):=\left\{\left\{u \in U:\left(\left\langle u, u_{1}^{*}\right\rangle, \ldots,\left\langle u, u_{n}^{*}\right\rangle\right) \in B\right\}: u_{i}^{*} \in \Gamma, B \in \mathfrak{B}\left(\mathbb{R}^{n}\right), n \in \mathbb{N}\right\}$
If Γ is finite, then $\mathcal{Z}(U, \Gamma)$ is a σ-algebra.

Cylindrical measures

Let U be a Banach space with dual space U^{*} and dual pairing $\langle\cdot, \cdot\rangle$ and let (Ω, \mathscr{A}, P) denote a probability space.

The cylindrical algebra $\mathfrak{Z}(U, \Gamma)$ for some $\Gamma \subseteq U^{*}$ is defined by
$\mathfrak{Z}(U, \Gamma):=\left\{\left\{u \in U:\left(\left\langle u, u_{1}^{*}\right\rangle, \ldots,\left\langle u, u_{n}^{*}\right\rangle\right) \in B\right\}: u_{i}^{*} \in \Gamma, B \in \mathfrak{B}\left(\mathbb{R}^{n}\right), n \in \mathbb{N}\right\}$
If Γ is finite, then $\mathcal{Z}(U, \Gamma)$ is a σ-algebra.
Definition: A map $\mu: \mathfrak{Z}\left(U, U^{*}\right) \rightarrow[0,1]$ is called a cylindrical (probability) measure if for each finite $\Gamma \subseteq U^{*}$, the restriction $\left.\mu\right|_{3_{(U, \Gamma)}}$ is a probability measure.

Operations for cylindrical measures

Image of a cylindrical measure:
If $\mu: \mathfrak{Z}\left(U, U^{*}\right) \rightarrow[0,1]$ and $F: U \rightarrow V$ linear and continuous, then

$$
F(\mu):=\mu \circ F^{-1}: \mathfrak{Z}\left(V, V^{*}\right) \rightarrow[0,1]
$$

is a cylindrical measure defined by

$$
\begin{aligned}
& F(\mu)\left(\left\{v \in V:\left(\left\langle v, v_{1}^{*}\right\rangle, \ldots,\left\langle v, v_{n}^{*}\right\rangle\right) \in B\right\}\right) \\
& \quad:=\mu\left(\left\{u \in U:\left(\left\langle u, F^{*} v_{1}^{*}\right\rangle, \ldots,\left\langle u, F^{*} v_{n}^{*}\right\rangle\right) \in B\right\}\right)
\end{aligned}
$$

Operations for cylindrical measures

Image of a cylindrical measure:
If $\mu: \mathfrak{Z}\left(U, U^{*}\right) \rightarrow[0,1]$ and $F: U \rightarrow V$ linear and continuous, then

$$
F(\mu):=\mu \circ F^{-1}: \mathfrak{Z}\left(V, V^{*}\right) \rightarrow[0,1]
$$

is a cylindrical measure defined by

$$
\begin{aligned}
& F(\mu)\left(\left\{v \in V:\left(\left\langle v, v_{1}^{*}\right\rangle, \ldots,\left\langle v, v_{n}^{*}\right\rangle\right) \in B\right\}\right) \\
& \quad:=\mu\left(\left\{u \in U:\left(\left\langle u, F^{*} v_{1}^{*}\right\rangle, \ldots,\left\langle u, F^{*} v_{n}^{*}\right\rangle\right) \in B\right\}\right)
\end{aligned}
$$

Convolution of cylindrical measures:
If $\mu, \nu: \mathfrak{Z}\left(U, U^{*}\right) \rightarrow[0,1]$ then the convolution

$$
(\mu * \nu): \mathfrak{Z}\left(U, U^{*}\right) \rightarrow[0,1], \quad(\mu * \nu)(C):=\int_{U} \mu(C-u) \nu(d u)
$$

Finite-dimensional projections

For $\mu: \mathcal{Z}\left(U, U^{*}\right) \rightarrow[0,1]$ and $u_{1}^{*}, \ldots, u_{n}^{*} \in U^{*}$ define

$$
\pi_{u_{1}^{*}, \ldots, u_{n}^{*}}: U \rightarrow \mathbb{R}^{n}, \quad \pi_{u_{1}^{*}, \ldots, u_{n}^{*}}(u)=\left(\left\langle u, u_{1}^{*}\right\rangle, \ldots,\left\langle u, u_{n}^{*}\right\rangle\right)
$$

Then the image of μ under $\pi_{u_{1}^{*}, \ldots, u_{n}^{*}}$ defines a probability measure

$$
\mu \circ \pi_{u_{1}^{*}, \ldots, u_{n}^{*}}^{-1}: \mathfrak{B}\left(\mathbb{R}^{n}\right) \rightarrow[0,1] .
$$

Finite-dimensional projections

For $\mu: \mathfrak{Z}\left(U, U^{*}\right) \rightarrow[0,1]$ and $u_{1}^{*}, \ldots, u_{n}^{*} \in U^{*}$ define

$$
\pi_{u_{1}^{*}, \ldots, u_{n}^{*}}: U \rightarrow \mathbb{R}^{n}, \quad \pi_{u_{1}^{*}, \ldots, u_{n}^{*}}(u)=\left(\left\langle u, u_{1}^{*}\right\rangle, \ldots,\left\langle u, u_{n}^{*}\right\rangle\right)
$$

Then the image of μ under $\pi_{u_{1}^{*}, \ldots, u_{n}^{*}}$ defines a probability measure

$$
\mu \circ \pi_{u_{1}^{*}, \ldots, u_{n}^{*}}^{-1}: \mathfrak{B}\left(\mathbb{R}^{n}\right) \rightarrow[0,1] .
$$

The family $\left\{\mu \circ \pi_{u_{1}^{*}, \ldots, u_{n}^{*}}^{-1}: u_{1}^{*}, \ldots, u_{n}^{*} \in U^{*}, n \in \mathbb{N}\right\}$ satisfies the consistency condition:

$$
\mu \circ \pi_{u_{1}^{*}, \ldots, u_{n}^{*}}^{-1} \circ A^{-1}=\mu \circ \pi_{A\left(u_{1}^{*}, \ldots, u_{n}^{*}\right)}^{-1} \quad \text { for all } A \in \mathbb{R}^{m, n}
$$

Finite-dimensional projections

For $\mu: \mathfrak{Z}\left(U, U^{*}\right) \rightarrow[0,1]$ and $u_{1}^{*}, \ldots, u_{n}^{*} \in U^{*}$ define

$$
\pi_{u_{1}^{*}, \ldots, u_{n}^{*}}: U \rightarrow \mathbb{R}^{n}, \quad \pi_{u_{1}^{*}, \ldots, u_{n}^{*}}(u)=\left(\left\langle u, u_{1}^{*}\right\rangle, \ldots,\left\langle u, u_{n}^{*}\right\rangle\right) .
$$

Then the image of μ under $\pi_{u_{1}^{*}, \ldots, u_{n}^{*}}$ defines a probability measure

$$
\mu \circ \pi_{u_{1}^{*}, \ldots, u_{n}^{*}}^{-1}: \mathfrak{B}\left(\mathbb{R}^{n}\right) \rightarrow[0,1] .
$$

The family $\left\{\mu \circ \pi_{u_{1}^{*}, \ldots, u_{n}^{*}}^{-1}: u_{1}^{*}, \ldots, u_{n}^{*} \in U^{*}, n \in \mathbb{N}\right\}$ satisfies the consistency condition:

$$
\mu \circ \pi_{u_{1}^{*}, \ldots, u_{n}^{*}}^{-1} \circ A^{-1}=\mu \circ \pi_{A\left(u_{1}^{*}, \ldots, u_{n}^{*}\right)}^{-1} \quad \text { for all } A \in \mathbb{R}^{m, n} .
$$

Lemma. If a family $\left\{\mu_{u_{1}^{*}, \ldots, u_{n}^{*}}: u_{1}^{*}, \ldots, u_{n}^{*} \in U^{*}, n \in \mathbb{N}\right\}$ of Borel measures $\mu_{u_{1}^{*}, \ldots, u_{n}^{*}}$ on $\mathfrak{B}\left(\mathbb{R}^{n}\right)$ satisfies the consistency condition

$$
\mu_{u_{1}^{*}, \ldots, u_{n}^{*}}^{*} \circ A^{-1}=\mu_{A\left(u_{1}^{*}, \ldots, u_{n}^{*}\right)} \quad \text { for all } A \in \mathbb{R}^{m, n}, u_{i}^{*} \in U^{*}, n \in \mathbb{N} \text {, }
$$

then it defines a cylindrical measure on $\mathfrak{Z}\left(U, U^{*}\right)$.

Characteristic function

For a cylindrical measure μ the mapping

$$
\varphi_{\mu}: U^{*} \rightarrow \mathbb{C}, \quad \varphi_{\mu}\left(u^{*}\right):=\int_{U} e^{i\left\langle u, u^{*}\right\rangle} \mu(d u)
$$

is called characteristic function of μ.

Characteristic function

For a cylindrical measure μ the mapping

$$
\varphi_{\mu}: U^{*} \rightarrow \mathbb{C}, \quad \varphi_{\mu}\left(u^{*}\right):=\int_{U} e^{i\left\langle u, u^{*}\right\rangle} \mu(d u)
$$

is called characteristic function of μ.
Theorem. (Kolmogorov 1935)
For cylindrical measures μ and ν the following are equivalent:
(1) $\mu=\nu$;
(2) $\varphi_{\mu}=\varphi_{\nu}$.

Bochner's theorem

Bochner's Theorem. (finite dimensions)
Let $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{C}$ be a function. Then φ is the characteristic function of a probability measure on $\mathfrak{B}\left(\mathbb{R}^{d}\right)$ if and only if φ is continuous with $\varphi(0)=1$ and positive-definite.

Bochner's theorem

Bochner's Theorem. (finite dimensions)
Let $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{C}$ be a function. Then φ is the characteristic function of a probability measure on $\mathfrak{B}\left(\mathbb{R}^{d}\right)$ if and only if φ is continuous with $\varphi(0)=1$ and positive-definite.

But not correct in infinite dimensional Banach spaces.

Bochner's theorem

Bochner's Theorem. (finite dimensions)
Let $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{C}$ be a function. Then φ is the characteristic function of a probability measure on $\mathfrak{B}\left(\mathbb{R}^{d}\right)$ if and only if φ is continuous with $\varphi(0)=1$ and positive-definite.

But not correct in infinite dimensional Banach spaces.

Bochner's Theorem. (infinite dimensions) (Bochner 1955)
Let $\varphi: U^{*} \rightarrow \mathbb{C}$ be a function. Then φ is the characteristic function of a cylindrical probability measure if and only if φ is continuous with $\varphi(0)=1$ and positive-definite.

Genuineness test

Lemma. Let $\mu: \mathfrak{B}(U) \rightarrow[0,1]$ be a genuine Radon measure with characteristic function

$$
\varphi_{\mu}: U^{*} \rightarrow \mathbb{C}, \quad \varphi_{\mu}\left(u^{*}\right):=\int_{U} e^{i\left\langle u, u^{*}\right\rangle} \mu(d u) .
$$

Then φ_{μ} is weak* sequentially continuous.

Example. The function $h \mapsto e^{-\frac{1}{2}\|h\|^{2}}$ is not sequentially weak* continuous.

Cylindrical random variables

Definition: A cylindrical random variable Z in U is a mapping

$$
Z: U^{*} \rightarrow L_{P}^{0}(\Omega ; \mathbb{R}) \quad \text { linear and continuous. }
$$

A cylindrical process in U is a family $(Z(t): t \geqslant 0)$ of cylindrical random variables.

- I. E. Segal, 1954
- I. M. Gel'fand 1956: Generalized Functions
- L. Schwartz 1969: seminaire rouge, radonifying operators

Cylindrical measures and cylindrical random variables

Theorem.
(a) Let $Z: U^{*} \rightarrow L_{0}^{P}(\Omega ; \mathbb{R})$ be a cylindrical random variable. By defining

$$
\mu\left(\left\{u \in U:\left(\left\langle u, u_{1}^{*}\right\rangle, \ldots,\left\langle u, u_{n}^{*}\right\rangle\right) \in B\right\}\right):=P\left(\left(Z u_{1}^{*}, \ldots, Z u_{n}^{*}\right) \in B\right)
$$

for all $u_{i}^{*} \in U^{*}, B \in \mathfrak{B}\left(\mathbb{R}^{n}\right)$ we obtain a cylindrical measure on $\mathfrak{Z}\left(U, U^{*}\right)$.

Cylindrical measures and cylindrical random variables

Theorem.

(a) Let $Z: U^{*} \rightarrow L_{0}^{P}(\Omega ; \mathbb{R})$ be a cylindrical random variable. By defining

$$
\mu\left(\left\{u \in U:\left(\left\langle u, u_{1}^{*}\right\rangle, \ldots,\left\langle u, u_{n}^{*}\right\rangle\right) \in B\right\}\right):=P\left(\left(Z u_{1}^{*}, \ldots, Z u_{n}^{*}\right) \in B\right)
$$

for all $u_{i}^{*} \in U^{*}, B \in \mathfrak{B}\left(\mathbb{R}^{n}\right)$ we obtain a cylindrical measure on $\mathfrak{Z}\left(U, U^{*}\right)$.
(b) Let μ be a cylindrical measure on $\mathfrak{Z}\left(U, U^{*}\right)$. Then there exists a probability space $\left(\Omega^{\prime}, \mathscr{A}^{\prime}, P^{\prime}\right)$ and a cylindrical random variable $Z: U^{*} \rightarrow$ $L_{P}^{0}(\Omega ; \mathbb{R})$ such that

$$
\mu\left(\left\{u \in U:\left(\left\langle u, u_{1}^{*}\right\rangle, \ldots,\left\langle u, u_{n}^{*}\right\rangle\right) \in B\right\}\right)=P^{\prime}\left(\left(Z u_{1}^{*}, \ldots, Z u_{n}^{*}\right) \in B\right)
$$

for all $u_{i}^{*} \in U^{*}, B \in \mathfrak{B}\left(\mathbb{R}^{n}\right)$.

Cylindrical measures and cylindrical random variables

Definition. Let $Z: U^{*} \rightarrow L_{0}^{P}(\Omega ; \mathbb{R})$ be a cylindrical random variable. (a) The cylindrical measure μ defined previously is called the (cylindrical) distribution of Z.
(b) The function

$$
\varphi_{Z}: U^{*} \rightarrow \mathbb{C}, \quad \varphi_{Z}\left(u^{*}\right):=E\left[e^{i Z u^{*}}\right] .
$$

is called characteristic function of Z.
It follows: $\varphi_{\mu}=\varphi_{Z}$.

Example: induced cylindrical random variable

Example: Let $X: \Omega \rightarrow U$ be a (classical) random variable. Then

$$
Z: U^{*} \rightarrow L_{P}^{0}(\Omega ; \mathbb{R}), \quad Z u^{*}:=\left\langle X, u^{*}\right\rangle
$$

defines a cylindrical random variable.

Example: induced cylindrical random variable

Example: Let $X: \Omega \rightarrow U$ be a (classical) random variable. Then

$$
Z: U^{*} \rightarrow L_{P}^{0}(\Omega ; \mathbb{R}), \quad Z u^{*}:=\left\langle X, u^{*}\right\rangle
$$

defines a cylindrical random variable.

But: not for every cylindrical random variable $Z: U^{*} \rightarrow L_{P}^{0}(\Omega ; \mathbb{R})$ there exists a classical random variable $X: \Omega \rightarrow U$ satisfying

$$
Z u^{*}=\left\langle X, u^{*}\right\rangle \quad \text { for all } u^{*} \in U^{*} .
$$

Cylindrical Lévy processes

Definition: cylindrical Lévy process

Definition. (Applebaum, Riedle (2010))
A cylindrical process $(L(t): t \geqslant 0)$ is called a cylindrical Lévy process, if for all $u_{1}^{*}, \ldots, u_{n}^{*} \in U^{*}$ and $n \in \mathbb{N}$ the stochastic process :

$$
\left(\left(L(t) u_{1}^{*}, \ldots, L(t) u_{n}^{*}\right): t \geqslant 0\right)
$$

is a Lévy process in \mathbb{R}^{n}.

A stochastic process $(\ell(t): t \geqslant 0)$ with values in \mathbb{R}^{n} is called Lévy process, if:
(1) $\ell(0)=0$;
(2) ℓ has stationary, independent increments;
(3) ℓ has càdlàg paths and jumps only at random times.

Verifying a cylindrical Lévy process

Lemma. A cylindrical process $(L(t): t \geqslant 0)$ in U is a cylindrical Lévy process if and only if the following two conditions are satisfied:
(i) for each $u_{1}^{*}, \ldots, u_{n}^{*} \in U^{*}, t_{0} \leqslant t_{1} \leqslant \cdots \leqslant t_{n}$ and $n \in \mathbb{N}$ the random variables

$$
\left(L\left(t_{1}\right)-L\left(t_{0}\right)\right) u_{1}^{*}, \ldots,\left(L\left(t_{n}\right)-L\left(t_{n-1}\right)\right) u_{n}^{*}
$$

are independent;
(ii) $\left(L(t) u^{*}: t \geqslant 0\right)$ is a Lévy process for all $u^{*} \in U^{*}$.

Example: genuine Lévy process

If $(Y(t): t \geqslant 0)$ is a genuine Lévy process in U then

$$
L(t): U^{*} \rightarrow L_{P}^{0}(\Omega ; \mathbb{R}), \quad L(t) u^{*}:=\left\langle Y(t), u^{*}\right\rangle
$$

defines a cylindrical Lévy process $(L(t): t \geqslant 0)$.

Example: cylindrical compound Poisson process

Let $\left(Y_{k}: k \in \mathbb{N}\right)$ be a sequence of independent cylindrical random variables in U with identical cylindrical distribution. If $(n(t): t \geqslant 0)$ is a real valued Poisson process which is independent of $\left\{Y_{k} u^{*}: k \in \mathbb{N}, u^{*} \in\right.$ $\left.U^{*}\right\}$ then the cylindrical compound Poisson process $(L(t): t \geqslant 0)$ is defined for each $u^{*} \in U^{*}$ by

$$
L(t) u^{*}:= \begin{cases}0, & \text { if } n(t)=0, \\ Y_{1} u^{*}+\cdots+Y_{n(t)} u^{*}, & \text { else. }\end{cases}
$$

Example:

Hedgehog cylindrical Lévy processes

Example: hedgehog processes

Theorem. Let U be a Hilbert space with ONB $\left(e_{k}\right)_{k \in \mathbb{N}}$ and $\left(\sigma_{k}\right)_{k \in \mathbb{N}} \subseteq \mathbb{R}$; $\left(h_{k}\right)_{k \in \mathbb{N}}$ be a sequence of independent, real-valued Lévy processes.

1) (weak convergence) If for all $u^{*} \in U$ and $t \geqslant 0$ the sum

$$
L(t) u^{*}:=\sum_{k=1}^{\infty}\left\langle e_{k}, u^{*}\right\rangle \sigma_{k} h_{k}(t)
$$

converges P-a.s. then it defines a cylindrical Lévy process $(L(t): t \geqslant 0)$.
2) (strong convergence) If for all $t \geqslant 0$ the sum

$$
L(t):=\sum_{k=1}^{\infty} e_{k} \sigma_{k} h_{k}(t)
$$

converges P-a.s. then it defines an genuine Lévy process $(L(t): t \geqslant 0)$.

Example: hedgehog processes

Theorem. Let U be a Hilbert space with ONB $\left(e_{k}\right)_{k \in \mathbb{N}}$ and $\left(\sigma_{k}\right)_{k \in \mathbb{N}} \subseteq \mathbb{R}$;
$\left(h_{k}\right)_{k \in \mathbb{N}}$ be a sequence of independent, real-valued Lévy processes.

1) (weak convergence) If for all $u^{*} \in U$ and $t \geqslant 0$ the sum

$$
L(t) u^{*}:=\sum_{k=1}^{\infty}\left\langle e_{k}, u^{*}\right\rangle \sigma_{k} h_{k}(t)
$$

converges P-a.s. then it defines a cylindrical Lévy process $(L(t): t \geqslant 0)$.
Example 0: for h_{k} standard, real-valued Brownian motion:

$$
\begin{aligned}
\left(\sigma_{k}\right)_{k \in \mathbb{N}} \in \ell^{\infty} & \Longleftrightarrow \text { cylindrical (Brownian) Lévy process } \\
\left(\sigma_{k}\right)_{k \in \mathbb{N}} \in \ell^{2} & \Longleftrightarrow \text { genuine (Brownian) Lévy process }
\end{aligned}
$$

Example: hedgehog processes

Theorem. Let U be a Hilbert space with ONB $\left(e_{k}\right)_{k \in \mathbb{N}}$ and $\left(\sigma_{k}\right)_{k \in \mathbb{N}} \subseteq \mathbb{R}$;
$\left(h_{k}\right)_{k \in \mathbb{N}}$ be a sequence of independent, real-valued Lévy processes.

1) (weak convergence) If for all $u^{*} \in U$ and $t \geqslant 0$ the sum

$$
L(t) u^{*}:=\sum_{k=1}^{\infty}\left\langle e_{k}, u^{*}\right\rangle \sigma_{k} h_{k}(t)
$$

converges P-a.s. then it defines a cylindrical Lévy process $(L(t): t \geqslant 0)$.
Example 1: for h_{k} Poisson process with intensity 1 :

$$
\begin{aligned}
& \left(\sigma_{k}\right)_{k \in \mathbb{N}} \in \ell^{2} \Longleftrightarrow \text { cylindrical Lévy process } \\
& \left(\sigma_{k}\right)_{k \in \mathbb{N}} \in \ell^{1} \Longleftrightarrow \text { genuine Lévy process }
\end{aligned}
$$

Example: hedgehog processes

Theorem. Let U be a Hilbert space with ONB $\left(e_{k}\right)_{k \in \mathbb{N}}$ and $\left(\sigma_{k}\right)_{k \in \mathbb{N}} \subseteq \mathbb{R}$; $\left(h_{k}\right)_{k \in \mathbb{N}}$ be a sequence of independent, real-valued Lévy processes.

1) (weak convergence) If for all $u^{*} \in U$ and $t \geqslant 0$ the sum

$$
L(t) u^{*}:=\sum_{k=1}^{\infty}\left\langle e_{k}, u^{*}\right\rangle \sigma_{k} h_{k}(t)
$$

converges P-a.s. then it defines a cylindrical Lévy process $(L(t): t \geqslant 0)$.
Example 2: for h_{k} symmetric, standardised, α-stable:

$$
\begin{aligned}
\left(\sigma_{k}\right)_{k \in \mathbb{N}} \in \ell^{(2 \alpha) /(2-\alpha)} & \Longleftrightarrow \text { cylindrical Lévy process } \\
\left(\sigma_{k}\right)_{k \in \mathbb{N}} \in \ell^{\alpha} & \Longleftrightarrow \text { genuine Lévy process }
\end{aligned}
$$

Example:

Subordination

Example: subordination

Theorem.

Let W be a cylindrical Brownian motion in a Banach space U, ℓ be a real-valued Lévy subordinator, independent of W.

Then, for each $t \geqslant 0$,

$$
L(t): U^{*} \rightarrow L_{P}^{0}(\Omega ; \mathbb{R}), \quad L(t) u^{*}=W(\ell(t)) u^{*}
$$

defines a cylindrical Lévy process $(L(t): t \geqslant 0)$ in U.
Example. If ℓ is an $\alpha / 2$ stable process, then $\varphi_{L(t)}\left(u^{*}\right)=\exp \left(-t\left\|u^{*}\right\|^{\alpha}\right)$ for all $u^{*} \in U^{*}$.

Example:

Lévy basis

Independently scattered random measures

For $\mathscr{O} \subseteq \mathbb{R}^{d}$ define $\mathfrak{B}_{b}(\mathscr{O}):=\{A \subseteq \mathscr{O}: A$ relatively compact $\}$.
Definition (Rajput and Rosinski (1989)).
An infinitely divisible random measure is a map

$$
M: \mathfrak{B}_{b}(\mathscr{O}) \rightarrow L^{0}(\Omega, P)
$$

satisfying for each collection of disjoint sets $A_{1}, A_{2}, \ldots \in \mathfrak{B}_{b}(\mathscr{O})$:
(a) the random variables $M\left(A_{1}\right), M\left(A_{2}\right), \ldots$ are independent;
(b) if $\bigcup_{k \in \mathbb{N}} A_{k} \in \mathfrak{B}_{b}(\mathscr{O})$ then $M\left(\bigcup_{k \in \mathbb{N}} A_{k}\right)=\sum_{k \in \mathbb{N}} M\left(A_{k}\right) P$-a.s.
(c) the random variable $M(A)$ is infinitely divisible for each $A \in \mathfrak{B}_{b}(\mathscr{O})$.

Independently scattered random measures

For $\mathscr{O} \subseteq \mathbb{R}^{d}$ define $\mathfrak{B}_{b}(\mathscr{O}):=\{A \subseteq \mathscr{O}: A$ relatively compact $\}$.
Definition (Rajput and Rosinski (1989)).
An infinitely divisible random measure is a map

$$
M: \mathfrak{B}_{b}(\mathscr{O}) \rightarrow L_{P}^{0}(\Omega ; \mathbb{R})
$$

satisfying for each collection of disjoint sets $A_{1}, A_{2}, \ldots \in \mathfrak{B}_{b}(\mathscr{O})$:
(a) the random variables $M\left(A_{1}\right), M\left(A_{2}\right), \ldots$ are independent;
(b) if $\bigcup_{k \in \mathbb{N}} A_{k} \in \mathfrak{B}_{b}(\mathscr{O})$ then $M\left(\bigcup_{k \in \mathbb{N}} A_{k}\right)=\sum_{k \in \mathbb{N}} M\left(A_{k}\right) P$-a.s.
(c) the random variable $M(A)$ is infinitely divisible for each $A \in \mathfrak{B}_{b}(\mathscr{O})$.
$M(A) \stackrel{\mathscr{O}}{=}\left(\gamma(A), \Sigma(A), \nu_{A}\right)$ characteristics of M
$\lambda(A)=\|\gamma\|_{T V}(A)+\Sigma(A)+\int_{\mathbb{R}}\left(\beta^{2} \wedge 1\right) \nu_{A}(d \beta)$ control measure of M

Lévy-valued random measure

Definition. A family $(M(t): t \geq 0)$ of infinitely divisible random measures $M(t): \mathfrak{B}_{b}(\mathscr{O}) \rightarrow L_{R}^{0}(\Omega, \mathbb{R})$ is called a Lévy-valued random measure if, for every $A_{1}, \ldots, A_{n} \in \mathfrak{B}_{b}(\mathscr{O}), n \in \mathbb{N}$, the stochastic process

$$
\left(\left(M(t)\left(A_{1}\right), \ldots, M(t)\left(A_{n}\right)\right): t \geqslant 0\right)
$$

is a Lévy process in \mathbb{R}^{n}. We shall write $M(t, A):=M(t)(A)$.

Example: stable noise (Balan (2014))

Define for $B \in \mathfrak{B}_{b}\left([0, \infty) \times \mathbb{R}^{d}\right)$:

$$
\widetilde{M}(B):= \begin{cases}\int_{B \times \mathbb{R}} y N(\mathrm{~d} s, \mathrm{~d} x, \mathrm{~d} y), & \text { if } \alpha \in(0,1], \\ \int_{B \times \mathbb{R}} y \widetilde{N}(\mathrm{~d} s, \mathrm{~d} x, \mathrm{~d} y), & \text { if } \alpha \in(1,2),\end{cases}
$$

where N is a Poisson random measure on $[0, \infty) \times \mathbb{R}^{d} \times \mathbb{R}$ with intensity leb \otimes leb $\otimes \nu_{\alpha}$ for $\nu_{\alpha}(\mathrm{d} y)=\frac{\alpha}{2} \frac{1}{|y|^{1+\alpha}} \mathrm{d} y$.
Then

$$
M(t, A):=\widetilde{M}((0, t] \times A) \quad \text { for } A \in \mathfrak{B}_{b}\left(\mathbb{R}^{d}\right), t \geqslant 0
$$

defines a Lévy-valued random measure on \mathbb{R}^{d} with control measure

$$
\lambda(A)=\frac{2}{2-\alpha} \operatorname{leb}(A) .
$$

Integration (Rajput and Rosinski (1989))

Let M be a Lévy-valued random measure. For a simple function

$$
f: \mathscr{O} \rightarrow \mathbb{R}, \quad f(x)=\sum_{k=1}^{n} \alpha_{k} \mathbb{1}_{A_{k}}(x)
$$

for $\alpha_{k} \in \mathbb{R}$ and pairwise disjoint sets $A_{1}, \ldots, A_{n} \in \mathfrak{B}_{b}(\mathscr{O})$, define

$$
\int_{\mathscr{O}} f(x) M(t, \mathrm{~d} x):=\sum_{k=1}^{n} \alpha_{k} M\left(t, A_{k}\right) \quad \text { for all } t \geqslant 0
$$

Integration (Rajput and Rosinski (1989))

Let M be a Lévy-valued random measure. For a simple function

$$
f: \mathscr{O} \rightarrow \mathbb{R}, \quad f(x)=\sum_{k=1}^{n} \alpha_{k} \mathbb{1}_{A_{k}}(x)
$$

for $\alpha_{k} \in \mathbb{R}$ and pairwise disjoint sets $A_{1}, \ldots, A_{n} \in \mathfrak{B}_{b}(\mathscr{O})$, define

$$
\int_{\mathscr{O}} f(x) M(t, \mathrm{~d} x):=\sum_{k=1}^{n} \alpha_{k} M\left(t, A_{k}\right) \quad \text { for all } t \geqslant 0
$$

A measurable function $f: \mathscr{O} \rightarrow \mathbb{R}$ is said to be M-integrable if
(1) there exists a sequence of simple functions $\left(f_{n}\right)_{n \in \mathbb{N}}$ such that f_{n} converges pointwise to $f \lambda$-a.e., where λ is the control measure of M;
(2) for each $t \geq 0$, the sequence $\left(\int_{\mathscr{O}} f_{n}(x) M(t, \mathrm{~d} x)\right)_{n \in \mathbb{N}}$ converges in probability.
In this case: $\int_{A} f(x) M(t, \mathrm{~d} x):=P-\lim _{n \rightarrow \infty} \int_{A} f_{n}(x) M(t, \mathrm{~d} x)$.

Integration (Rajput and Rosinski (1989))

Let M be a Lévy-valued random measure with control measure λ.
The space of M-integrable functions is given by the Musielak-Orlicz space

$$
L_{M}(\mathscr{O}, \lambda):=\left\{f \in L^{0}(\mathscr{O}, \lambda): \int_{\mathscr{O}} \Phi_{M}(|f(x)|, x) \lambda(\mathrm{d} x)<\infty\right\}
$$

where $\Phi_{M}: \mathbb{R} \times \mathscr{O} \rightarrow \mathbb{R}$ is a function depending on the distribution of M.

From random measure to cylindrical

Theorem. Let M be a Lévy-valued random measure on $\mathfrak{B}_{b}(\mathscr{O})$ with control measure λ. If U is a Banach space for which U^{*} is continuously embedded into $L_{M}(\mathscr{O}, \lambda)$, then

$$
L(t) f:=\int_{\mathbb{O}} f(x) M(t, d x) \quad \text { for all } f \in U^{*},
$$

defines a cylindrical Lévy processes L in U.

Example: stable noise

Define for $B \in \mathfrak{B}_{b}\left([0, \infty) \times \mathbb{R}^{d}\right)$:

$$
\widetilde{M}(B):= \begin{cases}\int_{B \times \mathbb{R}} y N(\mathrm{~d} s, \mathrm{~d} x, \mathrm{~d} y), & \text { if } \alpha \in(0,1] \\ \int_{B \times \mathbb{R}} y \tilde{N}(\mathrm{~d} s, \mathrm{~d} x, \mathrm{~d} y), & \text { if } \alpha \in(1,2),\end{cases}
$$

where N is a Poisson random measure on $[0, \infty) \times \mathbb{R}^{d} \times \mathbb{R}$ with intensity leb $\otimes \operatorname{leb} \otimes \nu_{\alpha}$ for $\nu_{\alpha}(\mathrm{d} y)=\frac{\alpha}{2} \frac{1}{|y|^{1+\alpha}} \mathrm{d} y$.
Then

$$
M(t, A):=\widetilde{M}((0, t] \times A) \quad \text { for } A \in \mathfrak{B}_{b}\left(\mathbb{R}^{d}\right), t \geqslant 0
$$

defines a Lévy-valued random measure on \mathbb{R}^{d} with control measure

$$
\lambda(A)=\frac{2}{2-\alpha} \operatorname{leb}(A)
$$

Example: stable noise

For each $\alpha \in(0,2)$ we have

$$
L_{M}(\mathscr{O}, \lambda)=L^{\alpha}(\mathscr{O}, \text { leb })
$$

Thus, M defines a cylindrical Levy process L on

$$
\begin{cases}U=L^{\alpha^{\prime}}(\mathscr{O}, \text { leb }), & \text { if } \alpha \in(1,2) \\ U=L^{p}(\mathscr{O}, \text { leb }), & \text { if } \alpha \in(0,1), \mathscr{O} \text { bounded, any } p>1\end{cases}
$$

Example: stable noise

For each $\alpha \in(0,2)$ we have

$$
L_{M}(\mathscr{O}, \lambda)=L^{\alpha}(\mathscr{O}, \text { leb })
$$

Thus, M defines a cylindrical Lévy process L on

$$
\begin{cases}U=L^{\alpha^{\prime}}(\mathscr{O}, \text { leb }), & \text { if } \alpha \in(1,2) \\ U=L^{p}(\mathscr{O}, \text { leb }), & \text { if } \alpha \in(0,1), \mathscr{O} \text { bounded, any } p>1\end{cases}
$$

In this case, we have for $f \in U^{*}$:

$$
\begin{aligned}
\varphi_{L(t)}(f) & =E\left[\exp \left(i \int_{\mathscr{O}} f(x) M(t, d x)\right)\right] \\
& =e^{-c_{\alpha} t\|f\|^{\alpha}}
\end{aligned}
$$

for a constant $c_{\alpha}>0$, i.e. L is the canonical α-stable cylindrical process.

From cylindrical to random measure

Definition. A cylindrical Lévy process $(L(t): t \geqslant 0)$ in $L^{p}(\mathscr{O}, \zeta)$ for some $p \geqslant 1$ is called independently scattered if

$$
L(t) \mathbb{1}_{A_{1}}, \ldots, L(t) \mathbb{1}_{A_{n}} \text { are independent }
$$

for any disjoint sets $A_{1}, \ldots, A_{n} \in \mathfrak{B}_{b}(\mathscr{O})$ and $n \in \mathbb{N}$.

From cylindrical to random measure

Definition. A cylindrical Lévy process $(L(t): t \geqslant 0)$ in $L^{p}(\mathscr{O}, \zeta)$ for some $p \geqslant 1$ is called independently scattered if

$$
L(t) \mathbb{1}_{A_{1}}, \ldots, L(t) \mathbb{1}_{A_{n}} \text { are independent }
$$

for any disjoint sets $A_{1}, \ldots, A_{n} \in \mathfrak{B}_{b}(\mathscr{O})$ and $n \in \mathbb{N}$.

Theorem An independently scattered cylindrical Lévy process $(L(t)$: $t \geq 0)$ in $L^{p}(\mathscr{O}, \zeta)$ for some $p \geqslant 1$ defines by

$$
M(t, A):=L(t) \mathbb{1}_{A} \quad \text { for all } A \in \mathfrak{B}_{b}(\mathscr{O}),
$$

a Lévy-valued random measure M on $\left(\mathscr{O}, \mathfrak{B}_{b}(\mathscr{O})\right)$.

Counterexample

Let $\left(h_{k}\right)$ be independent, identically distributed real-valued Lévy processes with characteristics $(0,0, \varrho)$. Every cylindrical Lévy process L of the form

$$
L(t) u^{*}:=\sum_{k=1}^{\infty}\left\langle e_{k}, u^{*}\right\rangle h_{k}(t)
$$

for an ONB $\left(e_{k}\right)$ of U is not independently scattered.

