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Why do we need a model

of random perturbations
In infinite dimension?



Stochastic heat equation

Let & C R

0X 0*X
E(tﬂa) — Or2 (t,?“)




Stochastic heat equation

Llet © CR and f: R — R:

0X 0°X ON
W(t,r) =5 (t,7) + f(X(t,r))E(t,fr) forallre o, tel0,T).

noise in t and r



Stochastic heat equation

Llet © CR and f: R — R:

0X 0°X ON
W(t,r) =5 (t,7) + f(X(t,r))E(t,fr) forallre o, tel0,T).

noise in t and r

Search solution X := (X (¢,-): t € [0,T)]) in L*(0):

dX dN
E(t’ )= AX(t,-) + f(X(¢, '))ﬁ(t’ ) for all t € [0,T],

——
noise in L*(0)

where A : dom(A) C L(0) — L2(0) with Af = 44



Stochastic heat equation

Llet © CR and f: R — R:

0X 0°X ON
E(tﬁ) = 92 (t,7) + f(X(t,T))E(t,'r) forallr € &, t e [0,T].

noise in t and r

Search solution X := (X (¢,-): t € [0,T)]) in L*(0):

dX dN
E(t’ )= AX(t,-) + f(X(¢, '))ﬁ(t’ ) for all t € [0,T],

——
noise in L*(0)

where A : dom(A) C L*(0) — L*(0) with Af = %' As integral equation:

X(t,-):X(O,')—|—/tAX(S,')dS—F/tf(X(S,-))N(dS,-) for all t € [0, T].

stochastic integral



Why cannot we use

a standard Brownian motion
in infinite dimensions?



Brownian motion

Definition. Let U be a Hilbert space. A stochastic process (W (t) : t
with values in U is called a Brownian motion, if

WV
=

(1) W(0) = 0;

(2) W has independent, stationary increments;

(3)W(t) —W(s) Z N(0, (¢t — 5)Q) forall 0<s<t,

where (): U — U is a linear operator with the following properties:
symmetric: (Qu,v)y = (u, Qu)y for all u,v € U;

non-negative: (Qu,u)y = 0 for all u € U;
0

nuclear: Z(Qek,ek>U < oo for an orthonormal basis {e }ren.
k=1



Why are Brownian motions not sufficient?

There does not exist a Brownian motion with independent components
in an infinite dimensional Hilbert space:

Let U be a Hilbert space with orthonormal basis {ex}ren and

W (t) =4 N(0,tQ) with independent components. Then we have

t o ifk=1

t{Qex,e)u = E <W<t)’e’“>U<W(t)’el>U} "o, ik 7

which implies () = Id. However, () = Id is not a nuclear operator:

©.@) ©.@)
D (Qerseryu =) el = oo.
k=1

k=1



What Is a
cylindrical Brownian motion?



Common definition
Working definition: Let H be a Hilbert space with orthonormal basis

{er}ren and let {bx}ren be independent real valued Brownian motions.

A cylindrical Brownian motion in H is a family (W (¢) : ¢ > 0) such that

oo

W(t) =) exbr(t), t=0,

k=1

converges in square mean in a larger Hilbert space H; containing H.



Genuine vs. cylindrical

Solution of X (¢ / AX(s,-)ds+ W (t):

Time Position Time Position

genuine Brownian motion W cylindrical Brownian motion W

Code & graphics by David Cohen (University of Gothenburg)



Cylindrical random variables

and

cylindrical measures



Cylindrical measures

Let U be a Banach space with dual space U* and dual pairing (-, -) and
let (€2, o7, P) denote a probability space.

The cylindrical algebra 3(U,T") for some I' C U* is defined by
3(U,T) := {{ue U: ((u,uy),...,(u,ur)) € B} :u; €', BeB(R"),n € N}

If T is finite, then 3(U,T") is a o-algebra.



Cylindrical measures

Let U be a Banach space with dual space U* and dual pairing (-, -) and
let (€2, o7, P) denote a probability space.

The cylindrical algebra 3(U,T") for some I' C U* is defined by
3(U,T) := {{ue U: ((u,uy),...,(u,ur)) € B} :u; €', BeB(R"),n € N}

If T is finite, then 3(U,T") is a o-algebra.

Definition: A map p: 3(U,U*) — [0,1] is called a cylindrical (proba-
bility) measure if for each finite I' € U™, the restriction |3y is a

probability measure.



Operations for cylindrical measures

Image of a cylindrical measure:
If w: 3(U,U*) — [0,1] and F': U — V linear and continuous, then

F(p):=po F~t: 3(V,V*) = [0,1]
is a cylindrical measure defined by

Fu)({v eV ((v,07),..., (v,0)) € BY )

::,u({ue U: ((u, F*v]), ..., (u, F*v})) EB})



Operations for cylindrical measures

Image of a cylindrical measure:
If w: 3(U,U*) — [0,1] and F': U — V linear and continuous, then

F(p) :=po F~1: 3(V,V*) = [0,1]

is a cylindrical measure defined by

Fu)({v eV ((v,07),..., (v,0)) € BY )

::,u({ue U: ((u, F*v]), ..., (u, F*v})) EB})

Convolution of cylindrical measures:
If u, v: 3(U,U*) — [0, 1] then the convolution

(pxv): 3(U,U*) — [0, 1], (pxv)(C) = /U,u(C —u) v(du).



Finite-dimensional projections
For p: 3(U,U*) — [0,1] and uj,...,u’ € U* define
......

.....



Finite-dimensional projections
For p: 3(U,U*) — [0,1] and uj,...,u’ € U* define
Tor s U — RY, T, (U) = ((u,ui), ..., (u,ul)).

Then the image of 1 under T, u defines a probability measure

,uo7r;{1m o B(R™) — 0, 1].
The family {,uow;*l o oul,...,uy € Ut,n € N} satisfies the

1,--.’ n

consistency condition:

[Ixe b L oAl = {4 O WZ(luik,...,u*) for all A € R"™".

ul,oo-,un n



Finite-dimensional projections
For p: 3(U,U*) — [0,1] and uj,...,u’ € U* define
Tor s U — RY, T, (U) = ((u,ui), ..., (u,ul)).

Then the image of 1 under T, u defines a probability measure

,uo7r;{1m o B(R™) — 0, 1].
The family {,uow;*l o oul,...,uy € Ut,n € N} satisfies the

1,--.’ n

consistency condition:

[Ixe b L oAl = {4 O WZ(luik,...,u*) for all A € R"™".

ul,oo-,un n

Lemma. If a family {Mu’{,...,u* cuy,...,ur € U yn € N} of Borel

n

MeASUres [l % ON B(R"™) satisfies the consistency condition

fot .. © Al = HAGE ... u) forall Ae R™" u; € U*,n € N,

n

then it defines a cylindrical measure on 3(U,U™).



Characteristic function

For a cylindrical measure 1 the mapping

o, U — C, o (u”) = /Uei<“’“*> p(du)

is called characteristic function of p.



Characteristic function

For a cylindrical measure 1 the mapping

o, U — C, o (u”) = /Uei<“’“*> p(du)

is called characteristic function of p.

Theorem. (Kolmogorov 1935)

For cylindrical measures 1 and v the following are equivalent:

(1) p=v;

(2) Pu — Pu-



Bochner’s theorem

Bochner’s Theorem. (finite dimensions)
Let ©: RY — C be a function. Then ¢ is the characteristic function

of a probability measure on B(R?) if and only if ¢ is continuous with

©(0) = 1 and positive-definite.



Bochner’s theorem

Bochner’s Theorem. (finite dimensions)
Let ©: RY — C be a function. Then ¢ is the characteristic function

of a probability measure on B(R?) if and only if ¢ is continuous with

©(0) = 1 and positive-definite.

But not correct in infinite dimensional Banach spaces.



Bochner’s theorem

Bochner’s Theorem. (finite dimensions)

Let ©: RY — C be a function. Then ¢ is the characteristic function
of a probability measure on B(R?) if and only if ¢ is continuous with
©(0) = 1 and positive-definite.

But not correct in infinite dimensional Banach spaces.

Bochner’s Theorem. (infinite dimensions) (Bochner 1955)

Let ¢: U* — C be a function. Then ¢ is the characteristic function
of a cylindrical probability measure if and only if ¢ is continuous with
©(0) = 1 and positive-definite.



Genuineness test

Lemma. Let p: B(U) — [0,1] be a genuine Radon measure with

characteristic function
p,: U= C, pu(u™) == / e 1 (du).
U

Then ¢, is weak™ sequentially continuous.

1 2 _ i
Example. The function A — e 21" s not sequentially weak™ continuous.



Cylindrical random variables

Definition: A cylindrical random variable Z in U is a mapping

Z:U* = L%(;R) linear and continuous.

A cylindrical process in U is a family (Z(t) : t > 0) of cylindrical
random variables.

o |. E. Segal, 1954

e |. M. Gel'fand 1956: Generalized Functions

e L. Schwartz 1969: seminaire rouge,
radonifying operators




Cylindrical measures and cylindrical random variables

Theorem.
(a) Let Z: U* — LY (2;R) be a cylindrical random variable. By defining

p({ueU: ((u,uy),...,(u,uy)) € B}) := P((Zuj,..., Zu}) € B)

for all uf € U*, B € B(R"™) we obtain a cylindrical measure on 3(U,U™).



Cylindrical measures and cylindrical random variables

Theorem.
(a) Let Z: U* — LY (2;R) be a cylindrical random variable. By defining

p({ueU: ((u,uy),...,(u,uy)) € B}) := P((Zuj,..., Zu}) € B)

for all uf € U*, B € B(R"™) we obtain a cylindrical measure on 3(U,U™).

(b) Let p be a cylindrical measure on 3(U,U*). Then there exists a
probability space (€)', .7’ P") and a cylindrical random variable Z: U* —
L%(2; R) such that

n({ueU: ((u,uy),...,(u,uy)) € B}) = P'((Zuj,..., Zu}) € B)

n

for all uf € U*, B € B(R").



Cylindrical measures and cylindrical random variables

Definition. Let Z: U* — LY (Q;R) be a cylindrical random variable.
(a) The cylindrical measure 1 defined previously is called the (cylindrical)
distribution of Z.

(b) The function

pz: U — C, pz(u*):=F [eizu*} .

is called characteristic function of ~Z.

It follows: ¢, = ¢z.



Example: induced cylindrical random variable

Example: Let X : Q) — U be a (classical) random variable. Then
Z:U* = L%(Q; R), Zu* = (X, u”)

defines a cylindrical random variable.



Example: induced cylindrical random variable

Example: Let X : Q) — U be a (classical) random variable. Then
Z:U* = L%(Q; R), Zu* = (X, u”)
defines a cylindrical random variable.

But: not for every cylindrical random variable Z : U* — L%(9Q; R) there
exists a classical random variable X : 2 — U satisfying

Zu* = (X, u™) for all ™ € U™.



Cylindrical Lévy processes



Definition: cylindrical Lévy process

Definition. (Applebaum, Riedle (2010))

A cylindrical process (L(t) : t > 0) is called a cylindrical Lévy process,
if for all u3,...,u;, € U" and n € N the stochastic process :

((L(t)u}'[, L)t o)

is a Lévy process in R".

A stochastic process (£(t) : t > 0) with values in R" is called Lévy process, if:
(1) £(0) = O
(2) £ has stationary, independent increments;

(3) ¢ has cadlag paths and jumps only at random times.



Verifying a cylindrical Lévy process

Lemma. A cylindrical process (L(t) : t > 0) in U is a cylindrical Lévy
process if and only if the following two conditions are satisfied:

(i) for each uj,...,u> € U*, tg <t1 < --- < t, and n € N the random
variables

(L(t1) — L(to))ui, ..., (L(tn) — L(tn=1))u;,

are independent;
(i1) (L(t)u* : t > 0) is a Lévy process for all u* € U*.



Example: genuine Lévy process

If (Y(t):t>0)is a genuine Lévy process in U then
L(t): U* — L% R), Lt)u* := (Y (t),u")

defines a cylindrical Lévy process (L(t) : t > 0).



Example: cylindrical compound Poisson process

Let (Yx : k € N) be a sequence of independent cylindrical random
variables in U with identical cylindrical distribution. If (n(¢) : ¢ > 0) is a
real valued Poisson process which is independent of {Y,u* : k € N, u* €
U*} then the cylindrical compound Poisson process (L(t) : t > 0) is
defined for each u* € U™ by

0, if n(t) =0,
Yiu" + -+ Y, pu”, else.



Example:

Hedgehog cylindrical Lévy processes



Example: hedgehog processes

Theorem. Let U be a Hilbert space with ONB (ex)ren and (ok)ren C R;

(hi)ren be a sequence of independent, real-valued Lévy processes.

1) (weak convergence) If for all u* € U and t > 0 the sum

Zek, Yorhi(t)

k=1
converges P-a.s. then it defines a cylindrical Lévy process (L(t) : t > 0)
2) (strong convergence) If for all £ > 0 the sum
L(t) ==Y epophi(t)
k=1
converges P-a.s. then it defines an genuine Lévy process (L(t) : t > 0)



Example: hedgehog processes

Theorem. Let U be a Hilbert space with ONB (ex)ren and (ok)ren C R;

(hi)ren be a sequence of independent, real-valued Lévy processes.
1) (weak convergence) If for all u* € U and t > 0 the sum
= (er, u")orhi(t)
k=1
converges P-a.s. then it defines a cylindrical Lévy process (L(t) : ¢ > 0).

Example 0: for h;. standard, real-valued Brownian motion:

(0k)ken € £°° <= cylindrical (Brownian) Lévy process

(0k)ken € £2 <= genuine (Brownian) Lévy process



Example: hedgehog processes

Theorem. Let U be a Hilbert space with ONB (ex)ren and (ok)ren C R;

(hi)ren be a sequence of independent, real-valued Lévy processes.
1) (weak convergence) If for all u* € U and t > 0 the sum
= (er, u")orhi(t)
k=1
converges P-a.s. then it defines a cylindrical Lévy process (L(t) : ¢ > 0).

Example 1: for h; Poisson process with intensity 1:

(0k)keN € (? <= cylindrical Lévy process

(0k)keN € ¢! <= genuine Lévy process



Example: hedgehog processes

Theorem. Let U be a Hilbert space with ONB (ex)ren and (ok)ren C R;

(hi)ren be a sequence of independent, real-valued Lévy processes.
1) (weak convergence) If for all u* € U and t > 0 the sum
= (er, u")orhi(t)
k=1
converges P-a.s. then it defines a cylindrical Lévy process (L(t) : ¢ > 0).

Example 2: for h; symmetric, standardised, a-stable:

(0k)keN € ¢20)/(2=a)  —  cylindrical Lévy process

(0k)ken € L4 <= genuine Lévy process



Example:

Subordination



Example: subordination

Theorem.
Let W be a cylindrical Brownian motion in a Banach space U,
¢ be a real-valued Lévy subordinator, independent of .

Then, for each t > 0,
L(t):U" — L%(Q; R), L(t)u™ =W (£(t))u"

defines a cylindrical Lévy process (L(t): t > 0) in U.

Example. If £ is an a/2 stable process, then ¢r ) (u*) = exp(—t||u*|”)
for all u* € U™.



Example:

Lévy basis



Independently scattered random measures

For ¢ C R define B,(0) := {A C & : A relatively compact}.
Definition (Rajput and Rosinski (1989)).

An infinitely divisible random measure is a map

M: B, (0) — LY (Q, P)

satisfying for each collection of disjoint sets A1, Ao, ... € By(O):
(a) the random variables M (A1), M(As),... are independent;

(b) if | J Ak € Be(0) then M (U Ak> =Y M(A) P-as.

kEN kEN kEN
(c) the random variable M (A) is infinitely divisible for each A € %6,(0).



Independently scattered random measures

For ¢ C R? define B,(0) := {A C 0 : A relatively compact}.

Definition (Rajput and Rosinski (1989)).
An infinitely divisible random measure is a map

M: B, (0) = LY (O R)

satisfying for each collection of disjoint sets A1, Ao, ... € By(0):
(a) the random variables M (A;), M(As),... are independent;

(b) if | J Ak € Be(0) then M (U Ak> =Y M(A) P-as.

kEN kEN kEN
(c) the random variable M (A) is infinitely divisible for each A € %6,(0).

M(A) Z (v(A),%(A),v4) characteristics of M

AMA) = |[7Y]lpy (A) +2(A) + [ (B2 A1) va(dB) control measure of M



Lévy-valued random measure

Definition. A family (M (¢) : t > 0) of infinitely divisible random
measures M (t): By, (0) — L%(Q,R) is called a Lévy-valued random
measure if, for every Aq,..., A, € B,(0), n € N, the stochastic process

(M(t)(A1),..., M(t)(Ay)) : t=0)

is a Lévy process in R". We shall write M (t, A) := M(t)(A).



Example: stable noise (Balan (2014))
Define for B € 9B, ([0, c0) x R%):

)
/ y N(ds,dz,dy), if a € (0,1],
BxR

/ y]\Nf(ds,dx,dy), if € (1,2),
BxR

where N is a Poisson random measure on [0, 00) x R? x R with intensity
leb ® leb ® v, for v, (dy) = 2| |1+ady
Then

M(t,A) == M((0,t]xA)  for A e By(RY), t >0,
defines a Lévy-valued random measure on R¢ with control measure

AA) = 52 leb(A).



Integration (Rajput and Rosinski (1989))

Let M be a Lévy-valued random measure. For a simple function
f:0=R,  fl@)=) apla(s),
k=1

for a, € R and pairwise disjoint sets Ay, ..., A, € B,(0), define

/ flz) M(t,dz) = zn:osz(t,Ak) for all ¢t > 0.
¢ k=1



Integration (Rajput and Rosinski (1989))

Let M be a Lévy-valued random measure.nFor a simple function
f10=R, f@) =3 axla(a),
for a, € R and pairwise disjoint sets Al,l:c.:.l, A, € By(0), define
/ f(x) M(t,dx) := zn:akM(t,Ak) for all ¢ > 0.
o k=1
A measurable function f: & — R is said to be M-integrable if

(1) there exists a sequence of simple functions (f,)n,en such that f,

converges pointwise to f A-a.e., where A is the control measure of M;

(2) for each t > 0, the sequence ( [, fu() M(t,da:))neN converges in
probability.

In this case: / flx) M(t,dx) := P— lim [ f,(x) M(t,dz).
A

n—oo A



Integration (Rajput and Rosinski (1989))

Let M be a Lévy-valued random measure with control measure .

The space of M-integrable functions is given by the Musielak-Orlicz space

Ly(O,)\) = {f c LY(0,\) /@7<I>M(|f(:1:)] ,x) A(dz) < oo},

where ®,,: R X0 — R is a function depending on the distribution of
M.



From random measure to cylindrical

Theorem. Let M be a Lévy-valued random measure on 5,(&) with

control measure A. If U is a Banach space for which U™ is continuously
embedded into L,/ (0, \), then

f_/f M(t,dx) forall f e U™,

defines a cylindrical Lévy processes L in U.



Example: stable noise

Define for B € 9B, ([0, 0c0) x R%):

)
/ y N(ds,dx,dy), if a € (0,1],
BXxR

/ yﬁ(ds,daj,dy), if € (1,2),
BXxR

where N is a Poisson random measure on [0, 00) x R¢ x R with intensity
leb ® leb ® v, for v, (dy) = 2| |1+ady
Then

M(t,A) == M((0,f]xA)  for A e By(RY), t >0,
defines a Lévy-valued random measure on R¢ with control measure

AA) = 52 leb(A).



Example: stable noise

For each o € (0,2) we have

La(6,)\) = L2(0,leb).

Thus, M defines a cylindrical Levy process L on

U= LY(0,leb), ifac(l,?2),
U=LP(0O,leb), ifaec(0,1), 0 bounded, any p > 1.



Example: stable noise

For each o € (0,2) we have

La(6,)\) = L2(0,leb).

Thus, M defines a cylindrical Lévy process L on

U= LY(0,leb), ifac(l,?2),
U=LP(O,leb), ifae(0,1), bounded, any p > 1.

In this case, we have for f € U*:

pr(f) = [exp( / f(x) M(t, dx) )]

_ o—catllfI

for a constant ¢, > 0, i.e. L is the canonical a-stable cylindrical process.



From cylindrical to random measure

Definition. A cylindrical Lévy process (L(t) : t > 0) in LP(0,() for
some p > 1 is called independently scattered if

L(t)La,,...,L(t)14, are independent

for any disjoint sets Ay,..., A, € B,(0) and n € N.



From cylindrical to random measure

Definition. A cylindrical Lévy process (L(t) : t > 0) in LP(0,() for
some p > 1 is called independently scattered if

L(t)La,,...,L(t)14, are independent

for any disjoint sets Ay,..., A, € B,(0) and n € N.

Theorem An independently scattered cylindrical Lévy process (L(t) :
t>0)in LP(0,() for some p > 1 defines by

M(t,A):=Lt)1a  forall A€ By(0),

a Lévy-valued random measure M on (0,5,(0)).



Counterexample

Let (hy) be independent, identically distributed real-valued Lévy processes
with characteristics (0,0, 0). Every cylindrical Lévy process L of the form

00
§ €k, U

k=1

for an ONB (ey) of U is not independently scattered.



