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Why do we need a model

of random perturbations

in infinite dimension?



Stochastic heat equation

Let O ⊆ R and f : R→ R:

∂X

∂t
(t, r) =

∂2X

∂r2
(t, r)+f(X(t, r))

∂N

∂t
(t, r)︸ ︷︷ ︸

noise in t and r

for all r ∈ O, t ∈ [0, T ].

Search solution X := (X(t, ·) : t ∈ [0, T ]) in L2(O):

dX

dt
(t, ·) = AX(t, ·) + f(X(t, ·))dN

dt
(t, ·)︸ ︷︷ ︸

noise in L2(O)

for all t ∈ [0, T ],

where A : dom(A) ⊆ L2(O)→ L2(O) mit Af = d2f
dr2 . As integral equation:

X(t, ·) = X(0, ·) +

∫ t

0

∆X(s, ·)ds+

∫ t

0

f(X(s, ·))N(ds, ·)︸ ︷︷ ︸
stochastic integral

for all t ∈ [0, T ].
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Why cannot we use

a standard Brownian motion

in infinite dimensions?



Brownian motion

Definition. Let U be a Hilbert space. A stochastic process (W (t) : t > 0)

with values in U is called a Brownian motion, if

(1) W (0) = 0;

(2) W has independent, stationary increments;

(3)W (t)−W (s)
D
= N(0, (t− s)Q) for all 0 6 s 6 t,

where Q : U → U is a linear operator with the following properties:

symmetric: 〈Qu, v〉U = 〈u,Qv〉U for all u, v ∈ U ;

non-negative: 〈Qu, u〉U > 0 for all u ∈ U ;

nuclear:
∞∑
k=1

〈Qek, ek〉U <∞ for an orthonormal basis {ek}k∈N.



Why are Brownian motions not sufficient?

There does not exist a Brownian motion with independent components

in an infinite dimensional Hilbert space:

Let U be a Hilbert space with orthonormal basis {ek}k∈N and

W (t)
D
= N(0, tQ) with independent components. Then we have

t〈Qek, el〉U = E
[
〈W (t), ek〉U 〈W (t), el〉U

]
=

t, if k = l,

0, if k 6= l,

which implies Q = Id. However, Q = Id is not a nuclear operator:

∞∑
k=1

〈Qek, ek〉U =

∞∑
k=1

‖ek‖2U =∞.



What is a

cylindrical Brownian motion?



Common definition

Working definition: Let H be a Hilbert space with orthonormal basis

{ek}k∈N and let {bk}k∈N be independent real valued Brownian motions.

A cylindrical Brownian motion in H is a family (W (t) : t > 0) such that

W (t) =

∞∑
k=1

ekbk(t), t > 0,

converges in square mean in a larger Hilbert space H1 containing H.



Genuine vs. cylindrical

Solution of X(t, ·) =

∫ t

0

∆X(s, ·) ds+W (t):

genuine Brownian motion W cylindrical Brownian motion W

Code & graphics by David Cohen (University of Gothenburg)



Cylindrical random variables

and

cylindrical measures



Cylindrical measures

Let U be a Banach space with dual space U∗ and dual pairing 〈·, ·〉 and

let (Ω,A , P ) denote a probability space.

The cylindrical algebra Z(U,Γ) for some Γ ⊆ U∗ is defined by

Z(U,Γ) :=
{
{u ∈ U : (〈u, u∗1〉, . . . , 〈u, u∗n〉) ∈ B} : u∗i ∈ Γ, B ∈ B(Rn), n ∈ N

}
If Γ is finite, then Z(U,Γ) is a σ-algebra.

Definition: A map µ : Z(U,U∗) → [0, 1] is called a cylindrical (pro-

bability) measure if for each finite Γ ⊆ U∗, the restriction µ|Z(U,Γ)

is a probability measure.
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Operations for cylindrical measures

Image of a cylindrical measure:

If µ : Z(U,U∗)→ [0, 1] and F : U → V linear and continuous, then

F (µ) := µ ◦ F−1 : Z(V, V ∗)→ [0, 1]

is a cylindrical measure defined by

F (µ)
(
{v ∈ V : (〈v, v∗1〉, . . . , 〈v, v∗n〉) ∈ B}

)
:= µ

(
{u ∈ U : (〈u, F ∗v∗1〉, . . . , 〈u, F ∗v∗n〉) ∈ B}

)

Convolution of cylindrical measures:

If µ, ν : Z(U,U∗)→ [0, 1] then the convolution

(µ ∗ ν) : Z(U,U∗)→ [0, 1], (µ ∗ ν)(C) :=

∫
U

µ(C − u) ν(du).
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Finite-dimensional projections

For µ : Z(U,U∗)→ [0, 1] and u∗1, . . . , u
∗
n ∈ U∗ define

πu∗1,...,u∗n : U → R
n, πu∗1,...,u∗n(u) =

(
〈u, u∗1〉, . . . , 〈u, u∗n〉

)
.

Then the image of µ under πu∗1,...,u∗n defines a probability measure

µ ◦ π−1
u∗1,...,u

∗
n

: B(Rn)→ [0, 1].

The family {µ ◦ π−1
u∗1,...,u

∗
n

: u∗1, . . . , u
∗
n ∈ U∗, n ∈ N} satisfies the

consistency condition:

µ ◦ π−1
u∗1,...,u

∗
n
◦A−1 = µ ◦ π−1

A(u∗1,...,u
∗
n) for all A ∈ Rm,n .

Lemma. If a family {µu∗1,...,u∗n : u∗1, . . . , u
∗
n ∈ U∗, n ∈ N} of Borel

measures µu∗1,...,u∗n on B(Rn) satisfies the consistency condition

µu∗1,...,u∗n ◦A
−1 = µA(u∗1,...,u

∗
n) for all A ∈ Rm,n, u∗i ∈ U∗, n ∈ N,

then it defines a cylindrical measure on Z(U,U∗).



Finite-dimensional projections

For µ : Z(U,U∗)→ [0, 1] and u∗1, . . . , u
∗
n ∈ U∗ define

πu∗1,...,u∗n : U → R
n, πu∗1,...,u∗n(u) =

(
〈u, u∗1〉, . . . , 〈u, u∗n〉

)
.

Then the image of µ under πu∗1,...,u∗n defines a probability measure

µ ◦ π−1
u∗1,...,u

∗
n

: B(Rn)→ [0, 1].

The family {µ ◦ π−1
u∗1,...,u

∗
n

: u∗1, . . . , u
∗
n ∈ U∗, n ∈ N} satisfies the

consistency condition:

µ ◦ π−1
u∗1,...,u

∗
n
◦A−1 = µ ◦ π−1

A(u∗1,...,u
∗
n) for all A ∈ Rm,n .

Lemma. If a family {µu∗1,...,u∗n : u∗1, . . . , u
∗
n ∈ U∗, n ∈ N} of Borel

measures µu∗1,...,u∗n on B(Rn) satisfies the consistency condition

µu∗1,...,u∗n ◦A
−1 = µA(u∗1,...,u

∗
n) for all A ∈ Rm,n, u∗i ∈ U∗, n ∈ N,

then it defines a cylindrical measure on Z(U,U∗).



Finite-dimensional projections

For µ : Z(U,U∗)→ [0, 1] and u∗1, . . . , u
∗
n ∈ U∗ define

πu∗1,...,u∗n : U → R
n, πu∗1,...,u∗n(u) =

(
〈u, u∗1〉, . . . , 〈u, u∗n〉

)
.

Then the image of µ under πu∗1,...,u∗n defines a probability measure

µ ◦ π−1
u∗1,...,u

∗
n

: B(Rn)→ [0, 1].

The family {µ ◦ π−1
u∗1,...,u

∗
n

: u∗1, . . . , u
∗
n ∈ U∗, n ∈ N} satisfies the

consistency condition:

µ ◦ π−1
u∗1,...,u

∗
n
◦A−1 = µ ◦ π−1

A(u∗1,...,u
∗
n) for all A ∈ Rm,n .

Lemma. If a family {µu∗1,...,u∗n : u∗1, . . . , u
∗
n ∈ U∗, n ∈ N} of Borel

measures µu∗1,...,u∗n on B(Rn) satisfies the consistency condition

µu∗1,...,u∗n ◦A
−1 = µA(u∗1,...,u

∗
n) for all A ∈ Rm,n, u∗i ∈ U∗, n ∈ N,

then it defines a cylindrical measure on Z(U,U∗).



Characteristic function

For a cylindrical measure µ the mapping

ϕµ : U∗ → C, ϕµ(u∗) :=

∫
U

ei〈u,u
∗〉 µ(du)

is called characteristic function of µ.



Characteristic function

For a cylindrical measure µ the mapping

ϕµ : U∗ → C, ϕµ(u∗) :=

∫
U

ei〈u,u
∗〉 µ(du)

is called characteristic function of µ.

Theorem. (Kolmogorov 1935)

For cylindrical measures µ and ν the following are equivalent:

(1) µ = ν;

(2) ϕµ = ϕν.



Bochner’s theorem

Bochner’s Theorem. (finite dimensions)

Let ϕ : Rd → C be a function. Then ϕ is the characteristic function

of a probability measure on B(Rd) if and only if ϕ is continuous with

ϕ(0) = 1 and positive-definite.

But not correct in infinite dimensional Banach spaces.

Bochner’s Theorem. (infinite dimensions) (Bochner 1955)

Let ϕ : U∗ → C be a function. Then ϕ is the Fourier transform of

a cylindrical probability measure if and only if ϕ is continuous with

ϕ(0) = 1 and positive-definite.
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Genuineness test

Lemma. Let µ : B(U) → [0, 1] be a genuine Radon measure with

characteristic function

ϕµ : U∗ → C, ϕµ(u∗) :=

∫
U

ei〈u,u
∗〉 µ(du).

Then ϕµ is weak∗ sequentially continuous.

Example. The function h 7→ e−
1
2‖h‖

2

is not sequentially weak∗ continuous.



Cylindrical random variables

Definition: A cylindrical random variable Z in U is a mapping

Z : U∗ → L0
P (Ω;R) linear and continuous.

A cylindrical process in U is a family (Z(t) : t > 0) of cylindrical

random variables.

• I. E. Segal, 1954

• I. M. Gel’fand 1956: Generalized Functions

• L. Schwartz 1969: seminaire rouge,

radonifying operators

 



Cylindrical measures and cylindrical random variables

Theorem.

(a) Let Z : U∗ → LP0 (Ω;R) be a cylindrical random variable. By defining

µ
(
{u ∈ U : (〈u, u∗1〉, . . . , 〈u, u∗n〉) ∈ B}

)
:= P

(
(Zu∗1, . . . , Zu

∗
n) ∈ B

)
for all u∗i ∈ U∗, B ∈ B(Rn) we obtain a cylindrical measure on Z(U,U∗).

(b) Let µ be a cylindrical measure on Z(U,U∗). Then there exists

a probability space (Ω′,A ′, P ′) and a cylindrical random variable

Z : U∗ → L0
P (Ω;R) such that

µ
(
{u ∈ U : (〈u, u∗1〉, . . . , 〈u, u∗n〉) ∈ B}

)
= P ′

(
(Zu∗1, . . . , Zu

∗
n) ∈ B

)
for all u∗i ∈ U∗, B ∈ B(Rn)
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Cylindrical measures and cylindrical random variables

Definition. Let Z : U∗ → LP0 (Ω;R) be a cylindrical random variable.

(a) The cylindrical measure µ defined previously is called the (cylindrical)

distribution of Z.

(b) The function

ϕZ : U∗ → C, ϕZ(u∗) := E
[
eiZu

∗]
.

is called characteristic function of Z.

It follows: ϕµ = ϕZ.



Example: induced cylindrical random variable

Example: Let X : Ω→ U be a (classical) random variable. Then

Z : U∗ → L0
P (Ω; R), Zu∗ := 〈X,u∗〉

defines a cylindrical random variable.

But: not for every cylindrical random variable Z : U∗ → L0
P (Ω; R) exists

a genuine random variable X : Ω→ U satisfying

Za = 〈X, a〉 for all a ∈ U∗.



Example: induced cylindrical random variable

Example: Let X : Ω→ U be a (classical) random variable. Then

Z : U∗ → L0
P (Ω; R), Zu∗ := 〈X,u∗〉

defines a cylindrical random variable.

But: not for every cylindrical random variable Z : U∗ → L0
P (Ω; R) there

exists a classical random variable X : Ω→ U satisfying

Zu∗ = 〈X,u∗〉 for all u∗ ∈ U∗.



Cylindrical Lévy processes



Definition: cylindrical Lévy process

Definition. (Applebaum, Riedle (2010))

A cylindrical process (L(t) : t > 0) is called a cylindrical Lévy process,

if for all u∗1, . . . , u
∗
n ∈ U∗ and n ∈ N the stochastic process :(

(L(t)u∗1, . . . , L(t)u∗n) : t > 0
)

is a Lévy process in Rn.

A stochastic process (`(t) : t > 0) with values in Rn is called Lévy process, if:

(1) `(0) = 0;

(2) ` has stationary, independent increments;

(3) ` has càdlàg paths and jumps only at random times.



Verifying a cylindrical Lévy process

Lemma. A cylindrical process (L(t) : t > 0) in U is a cylindrical Lévy

process if and only if the following two conditions are satisfied:

(i) for each u∗1, . . . , u
∗
n ∈ U∗, t0 6 t1 6 · · · 6 tn and n ∈ N the random

variables

(
L(t1)− L(t0)

)
u∗1, . . . ,

(
L(tn)− L(tn−1)

)
u∗n

are independent;

(ii) (L(t)u∗ : t > 0) is a Lévy process for all u∗ ∈ U∗.



Example: genuine Lévy process

If (Y (t) : t > 0) is a genuine Lévy process in U then

L(t) : U∗ → L0
P (Ω;R), L(t)u∗ := 〈Y (t), u∗〉

defines a cylindrical Lévy process (L(t) : t > 0).



Example: cylindrical compound Poisson process

Let (Yk : k ∈ N) be a sequence of independent cylindrical random

variables in U with identical cylindrical distribution. If (n(t) : t > 0) is a

real valued Poisson process which is independent of {Yku∗ : k ∈ N, u∗ ∈
U∗} then the cylindrical compound Poisson process (L(t) : t > 0) is

defined for each u∗ ∈ U∗ by

L(t)u∗ :=

0, if n(t) = 0,

Y1u
∗ + · · ·+ Yn(t)u

∗, else.



Example:

Hedgehog cylindrical Lévy processes



Example: hedgehog processes

Theorem. Let U be a Hilbert space with ONB (ek)k∈N and (σk)k∈N ⊆ R;

(hk)k∈N be a sequence of independent, real-valued Lévy processes.

1) (weak convergence) If for all u∗ ∈ U and t > 0 the sum

L(t)u∗ :=

∞∑
k=1

〈ek, u∗〉σkhk(t)

converges P -a.s. then it defines a cylindrical Lévy process (L(t) : t > 0).

2) (strong convergence) If for all t > 0 the sum

L(t) :=

∞∑
k=1

ek σkhk(t)

converges P -a.s. then it defines an genuine Lévy process (L(t) : t > 0).
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Example 0: for hk standard, real-valued Brownian motion:

(σk)k∈N ∈ `∞ ⇐⇒ cylindrical (Brownian) Lévy process

(σk)k∈N ∈ `2 ⇐⇒ genuine (Brownian) Lévy process
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Example 1: for hk Poisson process with intensity 1:

(σk)k∈N ∈ `2 ⇐⇒ cylindrical Lévy process

(σk)k∈N ∈ `1 ⇐⇒ genuine Lévy process



Example: hedgehog processes

Theorem. Let U be a Hilbert space with ONB (ek)k∈N and (σk)k∈N ⊆ R;

(hk)k∈N be a sequence of independent, real-valued Lévy processes.

1) (weak convergence) If for all u∗ ∈ U and t > 0 the sum

L(t)u∗ :=

∞∑
k=1

〈ek, u∗〉σkhk(t)

converges P -a.s. then it defines a cylindrical Lévy process (L(t) : t > 0).

Example 2: for hk symmetric, standardised, α-stable:

(σk)k∈N ∈ `(2α)/(2−α) ⇐⇒ cylindrical Lévy process

(σk)k∈N ∈ `α ⇐⇒ genuine Lévy process



Example:

Subordination



Example: subordination

Theorem.

LetW be a cylindrical Brownian motion in a Banach space U ,

` be a real-valued Lévy subordinator, independent of W .

Then, for each t > 0,

L(t) : U∗ → L0
P (Ω;R), L(t)u∗ = W (`(t))u∗

defines a cylindrical Lévy process (L(t) : t > 0) in U .

Example. If ` is an α/2 stable process, then ϕL(t)(u
∗) = exp(−t ‖u∗‖α)

for all u∗ ∈ U∗.



Example:

Lévy basis



Independently scattered random measures

For O ⊆ Rd define Bb(O) := {A ⊆ O : A relatively compact}.

Definition (Rajput and Rosinski (1989)).

An infinitely divisible random measure is a map

M : Bb(O)→ L0(Ω, P )

satisfying for each collection of disjoint sets A1, A2, . . . ∈ Bb(O):

(a) the random variables M(A1), M(A2), . . . are independent;

(b) if
⋃
k∈N

Ak ∈ Bb(O) then M

(⋃
k∈N

Ak

)
=
∑
k∈N

M(Ak) P -a.s.

(c) the random variable M(A) is infinitely divisible for each A ∈ Bb(O).

M(A)
D
= (γ(A),Σ(A), νA) characteristics of M

λ(A) = ‖γ‖TV (A) + Σ(A) +
∫
R

(
β2 ∧ 1

)
νA(dβ) control measure of M



Independently scattered random measures

For O ⊆ Rd define Bb(O) := {A ⊆ O : A relatively compact}.

Definition (Rajput and Rosinski (1989)).

An infinitely divisible random measure is a map

M : Bb(O)→ L0
P (Ω;R)

satisfying for each collection of disjoint sets A1, A2, . . . ∈ Bb(O):

(a) the random variables M(A1), M(A2), . . . are independent;

(b) if
⋃
k∈N

Ak ∈ Bb(O) then M

(⋃
k∈N

Ak

)
=
∑
k∈N

M(Ak) P -a.s.

(c) the random variable M(A) is infinitely divisible for each A ∈ Bb(O).

M(A)
D
= (γ(A),Σ(A), νA) characteristics of M

λ(A) = ‖γ‖TV (A) + Σ(A) +
∫
R

(
β2 ∧ 1

)
νA(dβ) control measure of M



Lévy-valued random measure

Definition. A family (M(t) : t ≥ 0) of infinitely divisible random

measures M(t) : Bb(O) → L0
R(Ω,R) is called a Lévy-valued random

measure if, for every A1, . . . , An ∈ Bb(O), n ∈ N, the stochastic process

(
(M(t)(A1), . . . ,M(t)(An)) : t > 0

)
is a Lévy process in Rn. We shall write M(t, A) := M(t)(A).

We call the control measure λ of M(1, ·) the control measure of M

We call the characteristics (γ,Σ, ν) of M(1, ·) the characteristics of M



Example: stable noise (Balan (2014))

Define for B ∈ Bb

(
[0,∞)×Rd

)
:

M̃(B) :=


∫
B×R

y N(ds, dx, dy), if α ∈ (0, 1],∫
B×R

y Ñ(ds, dx, dy), if α ∈ (1, 2) ,

where N is a Poisson random measure on [0,∞)×Rd×R with intensity

leb⊗ leb⊗ να for να(dy) = α
2

1

|y|1+αdy.

Then

M
(
t, A
)

:= M̃
(
(0, t]×A

)
for A ∈ Bb(R

d), t > 0,

defines a Lévy-valued random measure on Rd with control measure

λ(A) = 2
2−αleb(A).



Integration (Rajput and Rosinski (1989))

Let M be a Lévy-valued random measure. For a simple function

f : O → R, f(x) =

n∑
k=1

αk1Ak(x),

for αk ∈ R and pairwise disjoint sets A1, . . . , An ∈ Bb(O), define∫
O

f(x)M(t,dx) :=

n∑
k=1

αkM(t, Ak) for all t > 0.



Integration (Rajput and Rosinski (1989))

Let M be a Lévy-valued random measure. For a simple function

f : O → R, f(x) =

n∑
k=1

αk1Ak(x),

for αk ∈ R and pairwise disjoint sets A1, . . . , An ∈ Bb(O), define∫
O

f(x)M(t,dx) :=

n∑
k=1

αkM(t, Ak) for all t > 0.

A measurable function f : O → R is said to be M -integrable if

(1) there exists a sequence of simple functions (fn)n∈N such that fn

converges pointwise to f λ-a.e., where λ is the control measure of M ;

(2) for each t ≥ 0, the sequence
( ∫

O fn(x)M(t,dx)
)
n∈N converges in

probability.

In this case:

∫
A

f(x)M(t,dx) := P− lim
n→∞

∫
A

fn(x)M(t,dx).



Integration (Rajput and Rosinski (1989))

Let M be a Lévy-valued random measure with control measure λ.

The space of M -integrable functions is given by the Musielak-Orlicz space

LM(O, λ) :=

{
f ∈ L0(O, λ) :

∫
O

ΦM
(
|f(x)| , x

)
λ(dx) <∞

}
,

where ΦM : R×O → R is a function depending on the distribution of

M .



From random measure to cylindrical

Theorem. Let M be a Lévy-valued random measure on Bb(O) with

control measure λ. If U is a Banach space for which U∗ is continuously

embedded into LM(O, λ), then

L(t)f :=

∫
O

f(x)M(t, dx) for all f ∈ U∗,

defines a cylindrical Lévy processes L in U .



Example: stable noise

Define for B ∈ Bb

(
[0,∞)×Rd

)
:

M̃(B) :=


∫
B×R

y N(ds, dx, dy), if α ∈ (0, 1],∫
B×R

y Ñ(ds, dx, dy), if α ∈ (1, 2) ,

where N is a Poisson random measure on [0,∞)×Rd×R with intensity

leb⊗ leb⊗ να for να(dy) = α
2

1

|y|1+αdy.

Then

M
(
t, A
)

:= M̃
(
(0, t]×A

)
for A ∈ Bb(R

d), t > 0,

defines a Lévy-valued random measure on Rd with control measure

λ(A) = 2
2−αleb(A).



Example: stable noise

For each α ∈ (0, 2) we have

LM(O, λ) = Lα(O, leb).

Thus, M defines a cylindrical Levy process L onU = Lα
′
(O, leb), if α ∈ (1, 2),

U = Lp(O, leb), if α ∈ (0, 1), O bounded, any p > 1.



Example: stable noise

For each α ∈ (0, 2) we have

LM(O, λ) = Lα(O, leb).

Thus, M defines a cylindrical Lévy process L onU = Lα
′
(O, leb), if α ∈ (1, 2),

U = Lp(O, leb), if α ∈ (0, 1), O bounded, any p > 1.

In this case, we have for f ∈ U∗:

ϕL(t)(f) = E

[
exp

(
i

∫
O

f(x)M(t, dx)

)]
= e−cαt‖f‖

α

.

for a constant cα > 0, i.e. L is the canonical α-stable cylindrical process.



From cylindrical to random measure

Definition. A cylindrical Lévy process (L(t) : t > 0) in Lp(O, ζ) for

some p > 1 is called independently scattered if

L(t)1A1, . . . , L(t)1An are independent

for any disjoint sets A1, . . . , An ∈ Bb(O) and n ∈ N.



From cylindrical to random measure

Definition. A cylindrical Lévy process (L(t) : t > 0) in Lp(O, ζ) for

some p > 1 is called independently scattered if

L(t)1A1, . . . , L(t)1An are independent

for any disjoint sets A1, . . . , An ∈ Bb(O) and n ∈ N.

Theorem An independently scattered cylindrical Lévy process (L(t) :

t ≥ 0) in Lp(O, ζ) for some p > 1 defines by

M(t, A) := L(t)1A for all A ∈ Bb(O),

a Lévy-valued random measure M on (O,Bb(O)).



Counterexample

Let (hk) be independent, identically distributed real-valued Lévy processes

with characteristics (0, 0, %). Every cylindrical Lévy process L of the form

L(t)u∗ :=

∞∑
k=1

〈ek, u∗〉hk(t)

for an ONB (ek) of U is not independently scattered.


