Base change, transitivity and Künneth formulas for the Quillen decomposition of Hochschild homology

by

Christian Kassel and Arne B. Sletsjøe

Let A be any commutative algebra over a commutative ring k and let M be any symmetric A-bimodule. In [Q], §8, Quillen proved that the Hochschild groups

$$H_{\star}(A,M) = Tor_{\star}^{A \otimes A}(M,A)$$

have a natural decomposition, called the Quillen decomposition,

$$H_n(A,M) \cong \bigoplus_{p+q=n} D_q^{(p)}(A/k,M)$$

under the hypothesis that A is flat over k, containing the field \mathbf{Q} of rational numbers. The right-hand side is defined in terms of exterior powers of the cotangent complex of A over k For p = 1, the groups $D_{\star}^{(1)}(A/k, M)$ are isomorphic to the André-Quillen homology groups $D_{\star}(A/k, M)$.

The purpose of this note is to prove base change, transitivity and Künneth formulas for all $D_{\star}^{(p)}(A/k, M)$ - and hence for Hochschild homology in characteristic zero - extending analogous formulas established by André [A] and Quillen [Q] for $D_{\star}(A/k, M)$.

Lately M. Ronco [R] proved that the Quillen decomposition coincides with a decomposition introduced by combinatorial methods on the level of Hochschild standard complex by Gerstenhaber-Schack [GS]. The latter decomposition coincides with another one due to Feigin-Tsygan [FT] and Burghelea-Vigué [BV][V]. In the notation of [L], M. Ronco's result can be written as follows (for all p and n)

$$D_{n-p}^{(p)}(A/k, M) \simeq H_n^{(p)}(A, M)$$

We assume all rings to be commutative with unit.

1. Definition of $D_{\star}^{(p)}(A/k, M)$

For any map of rings $u: k \to A$ and any nonnegative integer p, we define the simplicial A-module

$$\mathbf{L}_{A/k}^p = \Omega_{P/k}^p \otimes_P A$$

where P is a simplicial cofibrant k-algebra resolution of A in the sense of [Q]. By [Q], the simplicial A-module $\mathbf{L}_{A/k}^p$ is independent, up to homotopy equivalence, of the choice of P. In Quillen's notation

$$\mathbf{L}_{A/k}^p = \Lambda_A^p \mathbf{L}_{A/k}^1$$

where $\mathbf{L}_{A/k}^1$ is the cotangent complex. Thus we define

$$D_{\star}^{(p)}(A/k, M) = H_{\star}(\mathbf{L}_{A/k}^p \otimes_A M)$$
 and $D_{(p)}^{\star}(A/k, M) = H^{\star}(Hom_A(\mathbf{L}_{A/k}^p, M))$ for any A-module M .

REMARK (1.1).

a) If p = 0, then $\mathbf{L}_{A/k}^p \simeq A$ and

$$D_n^{(0)}(A/k, M) = \begin{cases} M & \text{if } n = 0\\ 0 & \text{otherwise.} \end{cases}$$

b) If p = 1, $D_{\star}^{(1)}(A/k, M) = D_{\star}(A/k, M)$ where the right-hand side was defined by André [A] and Quillen [Q]. These groups coincide with the Harrison groups [H] in characteristic zero.

We derive now some properties of the group $D_{\star}^{(p)}(A/k,M)$ which are immediate consequences of Quillen's formalism.

LEMMA (1.2). $\mathbf{L}_{A/k}^p$ is a free simplicial A-module.

Proof. This follows from the fact that if P is free over k, say $P = S_k(V)$, then

$$\Omega_{P/k}^p \otimes_P A \simeq (\Lambda_k(V) \otimes_k P) \otimes_P A \simeq \Lambda_k(V) \otimes_k A$$

COROLLARY (1.3). For any exact sequence of A-modules

$$0 \to M' \to M \to M'' \to 0$$

there are long exact sequences

$$... \to D_n^{(p)}(A/k, M') \to D_n^{(p)}(A/k, M) \to D_n^{(p)}(A/k, M'') \to D_{n-1}^{(p)}(A/k, M') \to ...$$

and

$$\dots \to D^n_{(p)}(A/k,M') \to D^n_{(p)}(A/k,M) \to D^n_{(p)}(A/k,M'') \to D^{n+1}_{(p)}(A/k,M') \to \dots$$

The module $\mathbf{L}_{A/k}^p$ has the following vanishing property.

PROPOSITION (1.4). If A is a free k-algebra, then $\mathbf{L}_{A/k}^p$ has the homotopy type of $\Omega_{A/k}^p$. Consequently, for any A-module M

$$D_n^{(p)}(A/k, M) = D_{(p)}^n(A/k, M) = 0$$
 if $n \ge 1$

and

$$D_0^{(p)}(A/k, M) = \Omega_{A/k}^p \otimes_A M$$
 and $D_{(p)}^0(A/k, M) = Hom_A(\Omega_{A/k}^p, M)$

Proof. Take P = A.

2. Base change and Künneth formulas

The following result states how \mathbf{L}^p behaves under tensor products.

THEOREM (2.1). If A and B are k-algebras such that $Tor_q^k(A, B) = 0$ for q > 0, then we have the following isomorphisms

a) Base change

$$\mathbf{L}_{A\otimes\ B/B}^p \simeq A \otimes_k \mathbf{L}_{B/k}^p$$

b) Künneth-type formula

$$\mathbf{L}^p_{A\otimes\ B/k}\simeq \underset{q+r=p}{\oplus}(\mathbf{L}^q_{A/k}\otimes_k\mathbf{L}^r_{B/k})$$

Proof. Under the hypothesis of the theorem, if P (resp. Q) is a cofibrant k-resolution of A (resp. of B), then $A \otimes_k Q$ (resp. $P \otimes_k Q$) is a cofibrant resolution of $A \otimes_k B$ over B (resp. over k). Now

$$\Omega_{A\otimes Q/k}^{p} \otimes_{A\otimes Q} (A \otimes_{k} B) \simeq (A \otimes_{k} \Omega_{Q/k}^{p}) \otimes_{A\otimes Q} (A \otimes_{k} B)$$
$$\simeq A \otimes_{k} (\Omega_{Q/k}^{p} \otimes_{Q} B)$$

For the Künneth formula, we have

$$\Omega_{P\otimes Q/k}^{p} \otimes_{P\otimes Q} (A \otimes_{k} B) = \bigoplus_{q+r=p} ((\Omega_{P/k}^{q} \otimes_{k} \Omega_{Q/k}^{r}) \otimes_{P\otimes Q} (A \otimes_{k} B)$$

$$\simeq \bigoplus_{q+r=p} ((\Omega_{P/k}^{q} \otimes_{P} A) \otimes_{k} (\Omega_{Q/k}^{r} \otimes_{Q} B))$$

COROLLARY (2.2). Under the same hypothesis as Theorem 2.1, and for any $A \otimes_k B$ module M, we have the following isomorphisms of graded modules

$$D_{\star}^{(p)}(A \otimes_k B/B, M) \simeq D_{\star}^{(p)}(B/k, M)$$

and

$$D_{\star}^{(p)}(A \otimes_k B/k, M) \simeq \bigoplus_{q+r=p} D_{\star}^{(q)}(A/k, M) \otimes_k D_{\star}^{(r)}(B/k, M)$$

In characteristic zero the corresponding isomorphism for $HH^{(p)}_{\star}(A \otimes_k B)$ and for the cyclic groups $HC^{(p)}_{\star}(A \otimes_k B)$ are also proved in [K].

3. Transitivity

Suppose we have maps $k \xrightarrow{u} A \xrightarrow{v} B$ of commutative rings. We start by defining a filtration of $\Omega^p_{B/k}$. Let $F_A^i = F_A^i(\Omega^p_{B/k})$ be the sub-A-module of $\Omega^p_{B/k}$ generated by $b_0 db_1 \dots db_p$ where at least i elements among b_1, \dots, b_p lie in A. We have the following sequence of inclusions of A-modules,

$$\Omega_{B/k}^p = F_A^0 \supset F_A^1 \supset \ldots \supset F_A^p = \Omega_{A/k}^p \otimes_k B$$

LEMMA (3.1). If B is A-free and A is k-free, then the map

$$\psi_i: \Omega^i_{A/k} \otimes_A \Omega^{p-i}_{B/A} \longrightarrow F^i_A/F^{i+1}_A$$

given by

$$\psi(a_0 da_1 \dots da_i \otimes b_0 db_{i+1} \dots db_p) = a_0 b_0 da_1 \dots da_i \cdot db_{i+1} \dots db_p$$

is an isomorphism.

Proof. First check that ψ_i is well-defined without any hypothesis on A and B. If $A = S_k(V)$ and $B = S_A(A \otimes W) = S_k(V) \otimes S_k(W) = S_k(V \oplus W)$ one computes easily both source and target of ψ_i .

THEOREM (3.2). Let $k \stackrel{u}{\rightarrow} A \stackrel{v}{\rightarrow} B$ be maps of commutative rings and let M be a B-module. Then there is a spectral sequence (E^r, d^r) converging to $D^{(p)}_{\bullet}(B/k, M)$. The k-modules $E^1_{i,j}$ have the following properties:

- a) $E_{i,j}^1 = 0$ for i > 0 or i < -p.
- b) $E_{0,j}^{1} = D_{j}^{(p)}(B/A, M)$ and $E_{-p,j}^{1} = D_{j-p}^{(p)}(A/k, M)$.
- c) Fix any p. For every i there is a first quadrant spectral sequence $({}^{(i)}E^r, d^r)$ converging to $E^1_{-i,i+\star}$ such that

$$^{(i)}E_{k,\ell}^2 = D_k^{(i)}(A/k, D_\ell^{(p-i)}(B/A, M))$$

REMARK (3.3).

a) The edge homomorphisms

$$D_i^{(p)}(B/k, M) \longrightarrow E_{0,j}^1 = D_i^{(p)}(B/A, M)$$

and

$$E^1_{-p,p+j} = D^{(p)}_j(A/k,M) \longrightarrow D^{(p)}_j(B/k,M)$$

are the natural homomorphisms. For p=1, the first spectral sequence reduces to two columns, so that one recovers the well-known long exact sequence

$$\ldots \to D_i(A/k, M) \to D_i(B/k, M) \to D_i(B/k, M) \to D_{i-1}(A/k, M) \to \ldots$$

b) Applying Theorem 3.2 to the map of rings $k \to A \to A \otimes_k B$, one sees that the spectral sequences degenerate and one recovers the Künneth formula of Corollary 2.2.

Proof of Theorem 3.2. Let P be a simplicial cofibrant k-resolution of A. Consider the composite map $P \to A \to B$ and choose a simplicial cofibrant P-resolution Q of B. Let us consider the following commutative diagram

Then it follows from [Q] that $A \otimes_P Q$ is a simplicial cofibrant A-resolution of B. We apply the construction of Lemma 3.1 to the map of rings $k \to P \to Q$. Then we get a filtration of $\Omega^p_{Q/k} \otimes_Q M$ such that the associated graded is $\Omega^i_{P/k} \otimes_P \Omega^{p-i}_{Q/P} \otimes_Q M$. This yields the first spectral sequence with

$$E_{i,j}^1 = H_{i+j}(\Omega_{P/k}^i \otimes_P (\Omega_{Q/P}^{p-i} \otimes_Q M))$$

converging to $H_{i+j}(\Omega_{Q/k}^p \otimes_Q M)$ which is $D_{i+j}^{(p)}(B/k, M)$ because Q is also a simplicial cofibrant k-resolution of B.

To compute the homology of $\Omega^i_{P/k} \otimes_P \Omega^{p-i}_{Q/P} \otimes_Q M$ we use the fact that it has a double simplicial structure. Therefore it gives rise to a spectral sequence with E^2 -term of the form

$$^{(i)}E_{k,\ell}^2 = H_k(\Omega_{P/k} \otimes_P H_\ell(\Omega_{Q/P}^{p-i} \otimes_Q M))$$
$$= D_k^{(i)}(A/k, H_\ell(\Omega_{Q/P}^{p-i} \otimes_Q M))$$

Now we use the base change formula of Theorem 2.1 to get the following isomorphism of P-modules

$$D_{\ell}^{(p-i)}(B/A, M) = H_{\ell}(\Omega_{A \otimes Q/A}^{(p-i)} \otimes_{A \otimes Q} M)$$
$$= H_{\ell}(\Omega_{Q/P}^{(p-i)} \otimes_{Q} M)$$

5

4. Applications

The following is an extension of Quillen's Theorem 5.4 [Q].

PROPOSITION (4.1). Assume that $k \supset \mathbf{Q}$ and $\Omega^1_{A/k}$ is A-flat.

- i) If $Spec A \to Spec k$ is étale, then $\mathbf{L}_{A/k}^p$ is acyclic for $p \ge 1$.
- ii) If $Spec A \to Spec k$ is smooth, then $\mathbf{L}_{A/k}^p \simeq \Omega_{A/k}^p$.

Proof. i) Let P be a simplicial cofibrant k-resolution of A. By [Q], if A is étale over k, then $\Omega^1_{P/k} \otimes_P A = \mathbf{L}^1_{A/k}$ is acyclic. Hence

$$\mathbf{L}_{A/k}^p = \Lambda_A^p \mathbf{L}_{A/k}^1$$

which is a direct summand (in characteristic zero) of $(\mathbf{L}_{A/k}^1)^{\otimes p}$ is acyclic.

ii) We have the following isomorphisms

$$\mathbf{L}_{A/k}^p = \Lambda_P^p \Omega_{P/k}^1 \otimes_P A \simeq \Lambda_A^p \Omega_{A/k}^1 \otimes_A A \simeq \Omega_{A/k}^p$$

in the derived category of A-modules.

COROLLARY (4.2). Under the hypothesis of Proposition 4.1 and if A is smooth over k, then for all p

$$D_n^{(p)}(A/k, M) = \begin{cases} \Omega_{A/k}^p \otimes_A M & if \ n = 0\\ 0 & otherwise \end{cases}$$

SPECIAL CASES (4.3).

Let $k \to A \to B$ be maps of rings such that $k \supset \mathbf{Q}$ and let M be a B-module.

a) If A is smooth over k, then by Theorem 3.2 and Corollary 4.2 the spectral sequence converging to $D_{\star}^{(p)}(B/k, M)$ has E^1 -term given by

$$E^1_{-i,i+j} = \Omega^i_{A/k} \otimes_A D^{(p-i)}_j(B/A, M)$$

b) If A/k is étale, we get: $D_{\star}^{(p)}(B/k, M) = D_{\star}^{(p)}(B/A, M)$ from Theorem 3.2 and Prop. 4.1.i. The resulting isomorphism for Hochschild homology

$$H_{\star}(B/k,M) \simeq H_{\star}(B/A;M)$$

was proved by Gerstenhaber-Schack [GES].

c) If B is smooth over A, then the E^1 -terms are given by

$$E^1_{-i,i+j} = D^{(i)}_j(A/k, \Omega^{(p-i)}_{B/A} \otimes_B M)$$

If moreover B is étale over A, then $\Omega_{B/A}^p = 0$ for p > 0. From Theorem 3.2 we get the following isomorphism:

$$D_{\star}^{(p)}(B/k, M) \simeq D_{\star}^{(p)}(A/k, M)$$

If the B-module M is extended from A, i.e. is of the form $B \otimes_A N$ where N is an A-module, then we have the following <u>étale descent</u> isomorphism

$$D^{(p)}_{\star}(B/k,M) \simeq D^{(p)}_{\star}(A/k,N) \otimes_A B$$

When N = A, we thus recover Theorem 0.1 of [WG] stating that

$$H_{\star}(B,B) \simeq H_{\star}(A,A) \otimes_A B$$

REFERENCES

- [A] M. André, Homologie des algèbres commutatives Springer Gru. 206, Berlin-Heidelberg-New York (1974).
- [BV] D.Burghelea, M.Vigué-Poirrier, Cyclic homology of commutative algebras I, Lect. Notes in Math. 1318 (1988) pp.51-72.
- [FT] B.L.Feigin, B.L.Tsygan, Additive K-theory and crystalline cohomology, Funct. Anal. Appl. 19 (1985) pp.124-132.
- [GES] M.Gerstenhaber, S.D.Schack, Relative Hochschild cohomology, rigid algebras and the Bockstein,
 - J. Pure Appl. Alg. 43 (1986) pp.53-74.
- [GS] M.Gerstenhaber, S.D.Schack, A Hodge-type decomposition for commutative algebra cohomology,
 - J. Pure Appl. Alg. 48 (1987) pp.229-247.
- [H] D.K.Harrison, Commutative algebras and cohomology, Trans. Amer. Math. Soc. 104 (1962) pp.191-204.
- [K] C.Kassel, Une formule de Künneth pour la décomposition de l'homologie cyclique des algèbres commutatives,

 Preprint, Strasbourg (1989).
- [L] J.-L.Loday, Opérations sur l'homologie cyclique des algèbres commutatives, Invent. Math. 96 (1989) pp.205-230.
- [Q] D.Quillen, On the (co)homology of commutative rings, Proc. Symp. Pure Math. 17 (1970) pp.65-87.

- [R] M.Ronco, Sur l'homologie d'André-Quillen, Preprint IRMA, Strasbourg (1990).
- [V] M.Vigué-Poirrier, Décomposition de l'homologie cyclique des algèbres différentielles graduées commutatives,

To appear in K-Theory.

[WG] C.A.Weibel, S.C.Geller, Étale descent for Hochschild and cyclic homology, Preprint (1990).

CHRISTIAN KASSEL UNIVERSITÉ LOUIS PASTEUR DÉPT. DE MATHÉMATIQUE 7, RUE RENÉ DESCARTES F-67084 STRASBOURG CEDEX FRANCE ARNE B. SLETSJØE MATEMATISK INSTITUTT UNIVERSITETET I OSLO PB. 1053 BLINDERN N-0316 OSLO 3 NORGE