BETTI NUMBERS OF MONOID ALGEBRAS. APPLICATIONS TO 2-DIMENSIONAL TORUS EMBEDDINGS

O. A. LAUDAL and A. SLETSJØE

Introduction.

The starting point of this paper is the rather elementary observation (1.2), which leads to a formula (1.3) for the Betti numbers of a monoid algebra in terms of the combinatorial properties of the monoid, see [2]. The rest of the paper is concerned with the application of this formula to the case of 2-dimensional torus embeddings, see [3]. More specifically: In section 1 we give a method for computing the Betti numbers $\beta_i = \dim_k \operatorname{Tor}_i^A(k, k)$, when A is the monoid algebra over k of a commutative monoid Λ with cancellation law, and no non-trivial inverses. Proposition 1.3 relates the Betti numbers to the local homology of the simplicial set associated to $\Lambda_+ = \Lambda - \{1\}$ ordered such that $\lambda \leq \lambda \cdot \mu$, when $\lambda, \mu \in \Lambda$.

In section 2 this is used to compute the Betti numbers of 2-dimensional torus embeddings A. In particular we prove that the Betti series

$$B(t) = \sum_{n \geq 0} \beta_n t^n$$

of A is a rational function P(t)/Q(t). The main result of this paper is, in fact, the explicit computation of the denominator Q(t), see Corollary 2.20.

1. Betti numbers of monoid algebras.

Fix a field k and let Λ be a commutative monoid with cancellation law, i.e. such that $\lambda \cdot \mu = \lambda \cdot \mu'$ implies $\mu = \mu'$. Let $A = k(\Lambda)$ and put $m = \Lambda_+ \cdot \Lambda$ where $\Lambda_+ = \Lambda - \{1\}$. Assume A/m = k, that is assume Λ has no non-trivial subgroups. Put $\beta_i = \dim_k \operatorname{Tor}_i^A(k, k)$, the *i*th Betti number of A. Then the power series $B(t) = \sum_{n \geq 0} \beta_n t^n$ is called the Betti serties of A. The purpose of this first paragraph is to give a method for computing the Betti series of A using only combinatorial properties of Λ_+ .

Received April 12, 1983.

Let Λ_+ be ordered as follows: $\lambda_1 \le \lambda_2$ if and only if there exists a $\mu \in \Lambda$ such that $\mu \cdot \lambda_1 = \lambda_2$. There is a natural presheaf (projective system)

$$F: \Lambda_+ \to Ab$$

defined by $F(\lambda) = A$, where $F(\lambda_1 \le \lambda_2)$: $F(\lambda_2) \to F(\lambda_1)$ is multiplication by $\mu = \lambda_2/\lambda_1$.

LEMMA 1.1.

$$\lim_{A \to A} F = (A_+) \cdot A = \mathfrak{m} .$$

PROOF. For every $\lambda \in \Lambda_+$, consider the morphism $\eta_{\lambda} : F(\lambda) \to A$, the multiplication by λ . This defines a morphism

$$\eta: \varinjlim_{A_+} F \to \mathfrak{m}.$$

Given an element $\alpha \in \mathfrak{m}$, there is a unique representation $\alpha = \sum_{i=1}^{N} \alpha_i \cdot \lambda_i$; $\alpha_i \in k$, $\lambda_i \in \Lambda_+$. Consider α_i as an element of $F(\lambda_i)$ and let $\bar{\alpha}_i$ be the image of α_i in $\lim_{\Lambda_+} F$. Define $\mu : \mathfrak{m} \to \varinjlim_{\Lambda_+} F$ by $\mu(\alpha) = \sum_{i=1}^{N} \bar{\alpha}_i$. Then μ is an inverse of η .

LEMMA 1.2.

$$\lim_{A \to \infty} F = 0 \quad \text{for } n \ge 1.$$

PROOF. By [1, (1, 1.4)] it is enough to show that F is coflabby (coflasque). Let $\lambda \in \Lambda_+$ and put

$$\lambda = \{\lambda' \in \Lambda_+ \mid \lambda \leq \lambda'\}$$
.

Suppose $\Lambda_1 \subseteq \lambda$ is such that if $\lambda' \in \Lambda_1$ and $\lambda' \subseteq \lambda''$, then $\lambda'' \in \Lambda_1$. F is coflabby if in this situation

$$\lim_{A \to \infty} F \to \lim_{A \to \infty} F = F(\lambda) = A$$

is an injection.

However, the proof of Lemma 1.1 applies to show that

$$\lim_{\stackrel{\longrightarrow}{\Lambda_1}} F = \{ \lambda'/\lambda \mid \lambda' \in \Lambda_1 \} \cdot A$$

and that the morphism

$$\lim_{A_1} F \to \lim_{X} F = A$$

is the obvious inclusion. Therefore we are done.

Consider the resolving complex $C_{\cdot}(\Lambda_{+}; -)$ for $\varinjlim_{\Lambda_{+}}$, see [1, (1.2)]. By Lemma 1.2, $C_{\cdot}(\Lambda_{+}; F)$ is an A-free resolution of the maximal ideal m of A. Therefore

$$\operatorname{Tor}_{i}^{A}(k,k) \cong \begin{cases} k & i=0 \\ H_{i-1}(C_{\cdot}(\Lambda_{+}; F) \otimes_{A} k) & i \geq 1 \end{cases}.$$

Now $C_{\cdot}(\Lambda_{+}; F) \otimes_{A} k = C_{\cdot}(\Lambda_{+}; F \otimes_{A} k)$, therefore

$$H_{i-1}(C_{\cdot}(\Lambda_{+}; F) \otimes_{A} k) = \underset{\Lambda_{+}}{\underline{\lim}}_{(i-1)} (F \otimes_{A} k) .$$

Observe that the projective system $F \otimes_A k$ is isomorphic to $\coprod_{\lambda \in A_+} k(\lambda)$, where $k(\lambda)$ is the projective system defined by

$$k(\lambda)(\lambda') = \begin{cases} 0 & \text{if } \lambda' \neq \lambda \\ k & \text{if } \lambda' = \lambda \end{cases}.$$

Put for any $\lambda \in \Lambda_+$,

$$\hat{\lambda} = \{ \lambda' \in \Lambda_+ \mid \lambda' \leq \lambda \}
L(\lambda) = \{ \lambda' \in \Lambda_+ \mid \lambda' \leq \lambda, \lambda' \neq \lambda \} = \hat{\lambda} - \{ \lambda \}.$$

It is easy to see that there are isomorphisms

$$\underline{\lim}_{\Lambda_{+}} k(\lambda) \cong \underline{\lim}_{\Lambda} k(\lambda) \quad \text{for } n \ge 0.$$

In fact this follows from the existence of a \coprod -projective resolution of $k(\lambda)$, trivial outside of $\hat{\lambda}$, see [1, (1.2)]. Let k_{λ} be the constant projective system on $\hat{\lambda}$ defined by $k_{\lambda}(\lambda') = k$, and let k'_{λ} be the subprojective system of k_{λ} defined by $k'_{\lambda}(\lambda') = 0$ if $\lambda' = \lambda$ and $k'_{\lambda}(\lambda') = k$ if $\lambda' \neq \lambda$. Then there is an exact sequence of projective systems on $\hat{\lambda}$

$$0 \to k'_{\lambda} \to k_{\lambda} \to k(\lambda) \to 0$$
.

As

$$\lim_{\substack{\longrightarrow \\ 1}} (n) k_{\lambda} = \begin{cases} k & \text{for } n = 0 \\ 0 & \text{for } n \ge 1 \end{cases}$$

and since

$$\underline{\lim_{\lambda \to (n)} k_{\lambda}} \cong \underline{\lim_{L(\lambda)}}_{(n)} k \cong H_n(E(\lambda); k) \qquad n \geq 0$$

where k is the constant projective system k on $L(\lambda)$, and where we denote by $E(\lambda)$ the simplicial set defined by the ordered set $L(\lambda)$, see [1, (1.1)], we obtain an exact sequence

$$0 \to \lim_{\stackrel{\longrightarrow}{1}} (1) k(\lambda) \to \lim_{\stackrel{\longrightarrow}{1}} k'_{\lambda} \to k \to \lim_{\stackrel{\longrightarrow}{1}} k(\lambda) \to 0$$

and isomorphisms

$$\underline{\lim}_{1}(n) k(\lambda) \cong H_{n-1}(E(\lambda); k) \qquad n \geq 2.$$

Notice that $\varinjlim_{(1)} k(\lambda) = 0$ unless λ is minimal in Λ_+ , in which case $\varinjlim_{(1)} k(\lambda) \cong k$, and $\lim_{(1)} k(\overline{\lambda}) = 0$.

If λ^{λ} is not minimal, then

$$\underset{\lambda}{\underline{\lim}}_{(1)} k(\lambda) \cong \widetilde{H}_0(E(\lambda); k)$$

where \tilde{H}_{i} is the augmented homology.

Summing up we have proved the following

Proposition 1.3.

$$\operatorname{Tor}_{n}^{A}(k,k) \cong \begin{cases} k & n=0\\ k^{\varrho} & n=1\\ \coprod_{\lambda \in A_{+}} \tilde{H}_{n-2}(E(\lambda); k) & n \geq 2 \end{cases}$$

where ϱ is the number of minimal elements of Λ_+ .

2. Application to 2-dimensional Torus embeddings.

Let Λ' be a submonoid of \mathbb{Z}_+^2 , satisfying the following condition: There exist $(m_i, n_i) \in \Lambda'$, i = 1, 2 with m_i and n_i relatively prime such that

(i)
$$A' = \{(m_0, n_0) \in \mathbb{Z}_+^2 \mid \exists t_i \in \mathbb{Z}_+, j = 0, 1, 2 \text{ such that } \}$$

$$t_0(m_0, n_0) = t_1(m_1, n_1) + t_2(m_2, n_2)$$

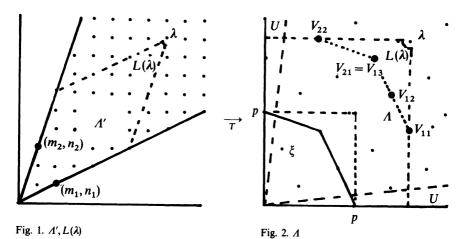
(ii)
$$m_1 \cdot n_2 - m_2 n_1 = p > 0$$
.

Any such monoid will be referred to as a saturated rational (sub)monoid (of \mathbb{Z}_{+}^{2}), see Fig. 1.

There is a one-to-one correspondence between saturated rational submonoids Λ' of \mathbb{Z}^2_+ and affine 2-dimensional normal torus imbeddings A, see [3], such that $A = k(\Lambda')$.

By (1.3) we know that

$$\operatorname{Tor}_{n}^{k(\Lambda')}(k,k) \cong \coprod_{\lambda \in \Lambda'_{-k}} \tilde{H}_{n-2}(E(\lambda),k), \quad n \geq 2.$$



The purpose of the rest of this paper is to establish a recursion formula for computing $\tilde{H}_r(E(\lambda), k)$, $\lambda \in \Lambda'_+$, $r \ge 0$, see (2.17), from which we easily deduce the rationality of the Betti series

$$B(t) = \sum_{n=0}^{\infty} \beta_n t^n$$

where

$$\beta_n = \dim_k \operatorname{Tor}_n^{k(\Lambda')}(k,k)$$
.

We are therefore interested in the simplicial structure of $E(\lambda)$, $\lambda \in \Lambda'_+$, which is determined by the structure of the ordered set $L(\lambda)$.

Consequently we shall have to study the ordered sets $L(\lambda)$ for arbitrary $\lambda \in \Lambda'_+$, see Fig. 1 and 2.

Consider first the unique linear transformation $T: \mathbb{Z}^2 \to \mathbb{Z}^2$ mapping (m_1, n_1) to (p, 0) and (m_2, n_2) to (0, p). T is represented by the 2×2 matrix

$$\begin{bmatrix} n_2 & -m_2 \\ -n_1 & m_1 \end{bmatrix}$$

Put $\Lambda = T(\Lambda')$. Notice that Λ is submonoid of \mathbb{Z}_+^2 but no longer a saturated rational submonoid, see Fig. 2. Nevertheless T defines an isomorphism $\Lambda' \cong \Lambda$, and we shall, from now on, find it more convenient to work with Λ . We may assume $p \geq 2$, since otherwise $A = k(\Lambda)$ is a polynomial algebra in 2 variables, for which the Betti series is well known.

Let, for $n \ge 1$, $\Lambda_n = \{(n, r) \in \Lambda \mid r \in \mathbb{Z}_+\}$. Then the following lemma holds:

LEMMA 2.1. There exists a unique $\xi \in \mathbb{Z}_+$, with $0 < \xi < p$, such that

$$A_1 = \{ (1, \xi + \eta \cdot p) \mid \eta \in \mathbb{Z}_+ \}$$

$$A_n = \{ (n, n \cdot \xi + \eta \cdot p \mid \eta \in \mathbb{Z}, n \cdot \xi + \eta \cdot p \ge 0 \}.$$

PROOF. Since $(m_2, n_2) = 1$, there exists an integer pair $(x_0, y_0) \in \mathbb{Z}^2$ such that

$$T(x_0, y_0) = (n_2 x_0 - m_2 y_0, -n_1 x_0 + m_1 y_0) \in (\{1\} \times \mathbb{Z})$$
.

The set $\{(m_1, n_1), (m_2, n_2)\}$ forms a basis for \mathbb{Q}^2 , and there exist $\alpha, \beta \in \mathbb{Q}$ such that

(*)
$$(x_0, y_0) = \alpha(m_1, n_1) + \beta_0(m_2, n_2) .$$

But T is a linear map so we have

$$T(x_0, y_0) = \alpha \cdot T(m_1, n_1) + \beta_0 \cdot T(m_2, n_2)$$

= \alpha \cdot (p, 0) + \beta_0 \cdot (0, p) \in \left\{\frac{1}{2}} \times \mathbf{Z}\right).

This implies $\alpha = 1/p$ and from equation (*) and the fact $(m_1, n_1) = 1$ we deduce that $\beta_0 \notin \mathbb{Z}$. So there exists an integer $\mu \in \mathbb{Z}$ such that $0 < \beta_0 + \mu < 1$ and

$$T((x_0, y_0) + \mu(m_2, n_2)) = \alpha \cdot (p, 0) + (\beta_0 + \mu)(0, p) \in (\{1\} \times [0, p]).$$

Put $\beta = \beta_0 + \mu$ and $(x, y) = (x_0, y_0) + \mu(m_2, n_2) \in \mathbb{Z}_+^2$, and let γ be the product of the denominators of α and β . The numbers $\gamma \cdot \alpha$, $\gamma \cdot \beta$ are integers, and

$$\gamma \cdot (x, y) \in \Lambda'$$
.

Since the monoid Λ' is saturated, it follows that $(x, y) \in \Lambda'$. Let $\xi = \beta \cdot p$. Then $T(n \cdot (x, y)) = (n, n \cdot \xi)$. Now consider the equivalence

$$n \cdot \xi + \eta \cdot p = n \cdot \beta \cdot p + \eta \cdot p$$
$$= (n \cdot \beta + \eta) \cdot p \ge 0$$
$$\Leftrightarrow n \cdot \beta + \eta \ge 0.$$

If $n \cdot \xi + \eta \cdot p \ge 0$ then we have

$$(n, n \cdot \xi + \eta \cdot p) = T(n(x, y) + \eta(m_2, n_2))$$

= $T(n \cdot \alpha(m_1, n_1) + (n \cdot \beta + \eta)(m_2, n_2))$

and $(n, n \cdot \xi + \eta \cdot p) \in \Lambda$. This follows from the fact that an integer pair, positively generated by (m_1, n_1) and (m_2, n_2) is element of Λ' .

Suppose $(x, y), (x', y') \in \Lambda'$ satisfy $T(x, y) \in \Lambda_a$, $T(x', y') \in \Lambda_a$ for some $a \in \mathbb{Z}_+$. Then we have

$$n_2 \cdot x - m_2 \cdot y = n_2 \cdot x' - m_2 \cdot y'$$

or equivalently

$$n_2(x-x') = m_2(y-y')$$
.

Since $(m_2, n_2) = 1$ this is equivalent to

$$x-x'=c\cdot m_2, \quad y-y'=c\cdot n_2$$

for some $c \in \mathbb{Z}$. But then we have

$$-n_1 \cdot x + m_1 \cdot y = -n_1(c \cdot m_2 + x') + m_1(y' + c \cdot n_2)$$

$$= -n_1 \cdot x' + m_1 \cdot y' - c(n_1 \cdot m_2 - m_1 \cdot n_2)$$

$$= -n_1 \cdot x' + m_1 \cdot y' + c \cdot p$$

It is easy to see that this proves the lemma.

Thus we have a complete description of Λ given by

$$\Lambda = \{(a,b) \in \mathbb{Z}_+^2 \mid a \cdot \xi \equiv b \pmod{p}\}.$$

If we interchange (m_1, n_1) and (m_2, n_2) and apply the proof of Lemma 2.1 we get a number $\eta \in \mathbb{Z}_+$ satisfying

- i) $0 < \eta < p$
- ii) $\eta \cdot \xi \equiv 1 \pmod{p}$

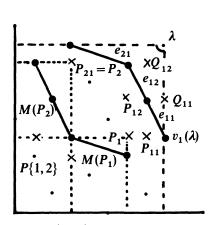
The use of this will appear later.

REMARK 2.2. One of the advantages with this description of Λ is the following property of Λ : If $\lambda = (a, b)$, $\lambda' = (a', b') \in \Lambda$ and if $\lambda' - \lambda = (a' - a, b' - b) \in \mathbb{Z}_+^2$, then $\lambda' - \lambda \in \Lambda$.

In fact since for (a, b), $(a', b') \in \Lambda$; $b \equiv a \cdot \xi \pmod{p}$, $b' \equiv a' \cdot \xi \pmod{p}$, and $a' - a \ge 0$, $b' - b \ge 0$, we find $b' - b = (a' - a) \cdot \xi \pmod{p}$ therefore $(a' - a, b' - b) \in \Lambda$. Notice that this implies that the order relation on Λ (see section 1) induced by the order relation on Λ' is the restriction of the ordinary order relation on \mathbb{Z}_+^2 .

DEFINITION 2.3. Let $P \in \mathbb{Z}_+^2$. Define the ordered set \hat{P} associated with P by $\hat{P} = \{\lambda \in \Lambda \mid \lambda \leq P\} \subseteq \Lambda$. The associated simplicial set will also be denoted by \hat{P} .

Correspondingly we shall let $L(P) = \{\lambda \in \Lambda \mid \lambda \leq P\}$ also denote the associated simplicial set. (When $P \in \Lambda$, this is precisely the set E(P) of section 1, see Fig. 2, 3, and 4.)



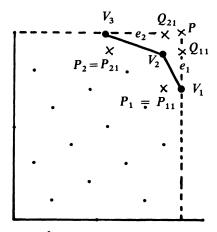


Fig. 3. $L(\lambda)$, $M(\lambda)$

Fig. 4. \hat{P} , M(P)

REMARK 2.4. Notice that for $P \in \mathbb{Z}_+^2 - \Lambda$ we have $L(P) = \hat{P}$.

LEMMA 2.5. Let ξ and η be defined as above. Let $U \subseteq \mathbb{Z}_+^2$ be the set defined by $U = \{(a,b) \in \mathbb{Z}_+^2 \mid b > p + a \cdot \xi \text{ or } a > p + b \cdot \eta\}.$

Then for any $P \in U$

$$\widetilde{H}_n(L(P)) = 0 \qquad n \ge 0.$$

PROOF. It is obviously sufficient to prove the lemma in the case where P = (a, b) satisfies the condition $b > p + a \cdot \xi$. Given $P = (a, b) \in \mathbb{Z}_+^2$, and suppose $b > p + a \cdot \xi$. Then there exist integers $\alpha, \beta \in \mathbb{Z}$ such that

$$b-a\cdot\xi = \alpha\cdot p+\beta$$

with $0 < \beta \le p$ and $\alpha \ge 1$. We shall prove the lemma by induction on the integer a.

Suppose a=0. Then L(P) has a final object and the homology vanishes.

Suppose a > 0. Let $P = (a, b) \in U$, and suppose the formula is valid for all $(m, c) \in U$ with m < a. Notice that Lemma 2.1 implies $(a, b - \beta) = (a, a \cdot \xi + \alpha \cdot p) \in \Lambda$.

Now it is easy to see that

i)
$$L(P) = (a-1,b)^{\hat{}} \cup (a,b-\beta)^{\hat{}}$$

ii)
$$(a-1, b-\beta)^{\hat{}} = (a-1, b)^{\hat{}} \cap (a, b-\beta)^{\hat{}}$$
.

Apply the Mayer-Vietoris sequence and obtain the long exact sequence

$$\cdots \to \widetilde{H}_n(a-1,b-\beta) \to \widetilde{H}_n(a,b-\beta) \oplus \widetilde{H}_n(a-1,b) \to$$
$$\to \widetilde{H}_n(L(P)) \to \widetilde{H}_{n-1}(a-1,b-\beta) \to \cdots$$

where $\tilde{H}_{\cdot}(P)$ is the homology of the ordered set associated with P. But now we have $b>p+a\cdot\xi>p+(a-1)\cdot\xi$ and $b-\beta=\alpha\cdot p+a\cdot\xi\geq p+a\cdot\xi>p+(a-1)\cdot\xi$, so $(a-1,b)\in U$ and $(a-1,b-\beta)\in U$. The induction hypothesis implies

$$\tilde{H}_n(a-1,b-\beta) = \tilde{H}_n(a-1,b) = 0 \quad \forall n \ge 0.$$

 $(a, b - \beta) \in \Lambda$ and $(a, b - \beta)$ has a final object; therefore

$$\tilde{H}_n(a,b-\beta) = 0 \quad \forall n \geq 0.$$

Thus, using the exactness of the above sequence, we get

$$\tilde{H}_n(P) = 0 \quad \forall n \ge 0$$

which proves the lemma.

DEFINITION 2.6. Let $P \in \mathbb{Z}_+^2$. The maximal polygon associated with P, M(P) is the set of maximal elements of the convex hull of L(P) in \mathbb{R}_+^2 , see Fig. 3 and 4.

Put $M_0(P) = L(P) \cap M(P)$. Then the following lemma holds.

LEMMA 2.7. $M_0(P)$ is the set of maximal elements of L(P).

PROOF. Let $\max L(P)$ be the set of maximal elements of L(P). Obviously $M_0(P) \subseteq \max L(P)$. Assume $\lambda \in \max L(P)$ and $\lambda \notin M_0(P)$. M(P) is a convex polygon and λ has to sit strictly below some edge e. Pick vertices of e, $\mu, \mu' \in M_0(P)$, $\mu \neq \mu'$, and consider the element $\eta = \mu + \mu' - \lambda$. Since $\eta \in \mathbb{Z}_+^2$ we have seen (Remark 2.2) that $\eta \in \Lambda$. An easy argument then shows that $\eta \in L(P)$ and that η is above the edge e, a contradiction.

It is easily seen that M(P) must lie inside a square, $p \times p$, with P as the maximal point.

LEMMA 2.8. For every $P \in \mathbb{Z}_+^2$ with $P \geq (p, p)$, and every $\lambda \in \Lambda$

$$M(P+\lambda) = M(P) + \lambda$$
.

PROOF. It is enough to show the equality $M_0(P+\lambda) = M_0(P) + \lambda$ So let $\mu \in M_0(P)$. Then $\lambda \le \mu + \lambda < P + \lambda$. Now choose $\eta \in M_0(P+\lambda)$ such that $\lambda \le \mu + \lambda \le \eta < P + \lambda$. Then we have $\mu \le \eta - \lambda < P$. Since $\mu, \eta, \lambda \in \Lambda$, the remark (2.2) implies $\eta - \lambda \in \Lambda$, thus we get $\mu = \eta - \lambda$ or $\eta = \mu + \lambda$. Consequently $\mu + \lambda \in \Lambda$.

 $M_0(P+\lambda)$ and $M_0(P)+\lambda\subseteq M_0(P+\lambda)$. To prove the inverse inclusion, we first notice that if $\mu\in M_0(P+\lambda)$, then $\mu\geq\lambda$ This follows from the fact that $P\geq (p,p)$ and that $M_0(P+\lambda)$ sits inside a square $p\times p$ with $P+\lambda$ as the maximal point.

So let $\mu \in M_0(P+\lambda)$. Then $\mu < P+\lambda$ or $\mu-\lambda < P$. Choose $\eta \in M_0(P)$ such that $\mu-\lambda \le \eta < P$. This implies $\mu \le \eta + \lambda < P + \lambda$. But $\mu \in M_0(P+\lambda)$ so the last equation implies $\mu = \eta + \lambda$, which proves the lemma.

DEFINITION 2.9. Let $P \in \mathbb{Z}_+^2$ and denote by

$$\{V_{i,j}(P) \mid i=1,2,\ldots,n; j=1,2,\ldots,m_i\}$$

the lattice points on M(P) where i is the number of the edge counted from right, and j is the number of the lattice point on the edge, also counted from right. (See Fig. 2, 3, and 4.)

Put $V_i = V_{i,1}$ for i = 1, 2, ..., n and $V_{n+1} = V_{n,m}$. Notice that for i = 1, 2, ..., n we have $m_i \ge 2$ and $V_{i,m} = V_{i+1}$.

Denote by

$$\{e_{i,j}(P) \mid i=1,2,\ldots,n; j=1,\ldots,m_i\}$$

the edges between $V_{i,j}(P)$ and $V_{i,j+1}(P)$. For $i=1,\ldots,n$,

$$e_i(P) = \bigcup_{i=1}^{m_i-1} e_{i,j}(P)$$

are then the edges of M(P).

Let $\{S_i(P)\}_{i=1,...,n}$ be the absolute values of the slopes of the $e_i(P)$'s and let finally

$$\{X_i(P)\}_{i=1,\ldots,n}, \quad X_i = X(V_{i,2}) - X(V_{i,1})$$

and

$$\{Y_i(P)\}_{i=1,\dots,n}, Y_i = Y(V_{i,2}) - Y(V_{i,1})$$

be the differences in the values of the coordinates of $V_{i,1}(P)$ and $V_{i,2}(P)$.

It is clear that M(P) is determined by these families of numbers. Moreover, we deduce the following

$$Y_i(P) = S_i(P) \cdot X_i(P)$$
 $i = 1, ..., n$.

Put, as a shorthand, $\alpha_i(P) = X(P) - X(V_i(P))$ and $\beta_i(P) = Y(P) - Y(V_i(P))$, and notice that $\alpha_{i+1}(P) > \alpha_i(P)$, $\beta_{i+1}(P) < \beta_i(P)$.

For every pair (i, j), $i = 1, ..., n, j = 1, ..., m_i$ the proof of Lemma 2.7 gives the existence of unique points

$$Q_{i,j}(P) = (X(V_{i,j}(P)), Y(V_{i,j+1}(P)))$$

and

$$P_{i,j}(P) = (X(V_{i,j+1}(P)), Y(V_{i,j}(P)))$$

with the properties

$$L(Q_{i,j}(P)) = V_{i,j}(P) \cap V_{i,j+1}(P) \cap P_{i,j}(P) = V_{i,j}(P) \cap V_{i,j+1}(P).$$

(See Fig. 3 and 4.)

DEFINITION 2.10. Denote by P_i the unique element of \mathbb{Z}^2_+ such that P_i = $\bigcap_{j=1}^{m_i} P_{i,j}$.

Let $\lambda \in \Lambda$ and let n be the number of edges of $M(\lambda)$. The next lemma will show that $M(P_i(\lambda))$ is congruent to the polygon $M(\lambda)$ with the ith edge removed. We shall therefore index the vertices and the edges etc. of $M(P_i(\lambda))$ by restricting the corresponding indexing of $M(\lambda)$. Thus $e_i(P_i(\lambda))$ does not exist and, modulo translation, $e_j(P_i(\lambda))$ is congruent to $e_j(\lambda)$ whenever $i \neq j$. Likewise $V_i(P_i(\lambda))$ does not exist and $V_{i-1,m_{i-1}}(P_i(\lambda)) = V_{i+1}(P_i(\lambda))$. Notice that the intersection points $P_j(P_i(\lambda))$ and $P_i(P_j(\lambda))$ are, in general, different when $i \neq j$. Let $P_{\{i,j\}}(\lambda)$ denote their intersection, i.e. the unique element of \mathbb{Z}_+^2 such that

$$P_{\{i,j\}}(\lambda)^{\hat{}} = P_i(P_j(\lambda))^{\hat{}} \cap P_j(P_i(\lambda))^{\hat{}}, \text{ see Fig. 3.}$$

In general we make the following definition $(\lambda \gg 0 \text{ means } X(\lambda), Y(\lambda) \gg 0)$.

DEFINITION 2.11. Let $\lambda \in \Lambda$ and $M(\lambda)$ as above, $\lambda \gg 0$. Let $I \subseteq \{1, 2, ..., n\}$ be a set of integers different from the empty set. Define $P_I(\lambda)$ recursively via the intersection property

$$P_I(\lambda)^{\hat{}} = \bigcap_{i \in I} P_i(P_{I-\{i\}}(\lambda))^{\hat{}}$$

where $P_{\emptyset}(\lambda) = \lambda$.

Lemma 2.12 will show that $M(P_{\{i,j\}}(\lambda))$ is congruent to $M(\lambda)$ with the *i*th and the *j*th edge removed, and that in general $M(P_I(\lambda))$ is congruent to $M(\lambda)$ with the *i*th edge removed for every $i \in I \subseteq \{1, 2, ..., n\}$.

LEMMA 2.12. Let λ , $M(\lambda)$ be as above and let $I \subseteq \{1, 2, ..., n\}$ be a set of integers, the empty set included.

i) The maximal polygon $M(P_I(\lambda))$ of the set $P_I(\lambda)$ is congruent to the maximal polygon $M(\lambda)$ of λ with the ith edge removed for every $i \in I$.

ii) Let for i = 1, 2, ..., n, $r_i = (\alpha_i, \beta_i)$. Then for every $j \notin I$

$$P_{j}(P_{I}(\lambda)) = \lambda - \sum_{i \in I} r_{i} - r_{n+1} - \sum_{\substack{h \notin I \\ h \geq i}} e_{h} - (\alpha_{j+1} - \alpha_{j}, 0) ,$$

where e_h is the vector $\overrightarrow{V_hV_{h+1}}$ associated to the edge $e_h(\lambda)$, and $\alpha_i = \alpha_i(\lambda)$, $\beta_i = \beta_i(\lambda)$.

PROOF. We shall prove the lemma by induction on the number of elements of I, # I = k.

The case k=0 is vacuous; just notice that $e_h = r_h - r_{h+1}$ so

$$\lambda - r_{n+1} - \sum_{\substack{h \in I \\ h > i}} e_h = \lambda - r_j.$$

Suppose the lemma holds for #I = k-1, $0 < k \le n$, and let $I \subseteq \{1, \ldots, n\}$ with #I = k. To simplify notation, write for every $i \in I$; $P_{I,i}(\lambda) = P_i(P_{I-\{i\}}(\lambda))$. Obviously

$$P_I(\lambda)^{\hat{}} = \bigcap_{i \in I} P_{I,i}(\lambda)^{\hat{}} = \left(\min_{i \in I} X(P_{I,i}(\lambda)), \min_{i \in I} Y(P_{I,i}(\lambda))\right)^{\hat{}}$$

so we have to study the relation between the intersection points $P_{I,i}(\lambda)$. The induction hypothesis gives

$$P_{I,j}(\lambda) = \lambda - \sum_{i \in I - \{j\}} r_i - r_{n+1} - \sum_{\substack{h \notin I - \{j\} \\ h \ge j}} e_h - (\alpha_{j+1} - \alpha_j, 0)$$

$$= \lambda - \sum_{i \in I} r_i + \sum_{\substack{h \in I \\ h > j}} e_h - (\alpha_{j+1} - \alpha_j, 0).$$

Consider the last part of the above sum, $\sum_{h \in I, h > f} e_h + (X(e_j), 0)$. The fact that $\alpha_{j+1} > \alpha_j$ and $\beta_{j+1} < \beta_j$ shows that the X-value of this vector increases and the Y-value decreases with increasing $j \in I$. So it follows that

$$P_{I}(\lambda) = P_{I,i_{1}}(\lambda) \cap P_{I,i_{k}}(\lambda)$$
$$= (X(P_{I,i_{k}}(\lambda)), Y(P_{I,i_{k}}(\lambda)))^{\hat{}}$$

where $I = \{i_1 < i_2 < \ldots < i_k\}$. From (**) we deduce that $X(P_I(\lambda)) = X(P_{I,i_1}(\lambda)) = X(\lambda - \sum_{i \in I} r_{i+1})$ and $Y(P_I(\lambda)) = Y(P_{I,i_k}(\lambda)) = Y(\lambda - \sum_{i \in I} r_i)$. In addition we get the two inequalities

$$P_{I,j_1}(\lambda) < -\sum_{i \in I} r_{i+1}$$

$$P_{I,i_k}(\lambda) < \lambda - \sum_{i \in I} r_i$$
.

Obviously $\lambda - \sum_{i \in I} r_i \ge \lambda - \sum_{i \in I} r_{i+1} - r_1$ and $\lambda - \sum_{i \in I} r_{i+1} \ge \lambda - \sum_{i \in I} r_i - r_{n+1}$ and therefore

$$\lambda - \sum_{i \in I} r_{i+1} - r_1 < P_I(\lambda)$$
 and $\lambda - \sum_{i \in I} r_i - r_{n+1} < P_I(\lambda)$.

Thus $\lambda - \sum_{i \in I} r_{i+1} - r_1$ and $\lambda - \sum_{i \in I} r_i - r_{n+1}$ are the "endpoints" of the maximal polygon of $P_I(\lambda)$.

Using the fact that $\sum_{h=1}^{n} e_h = r_1 - r_{n+1}$ we have the equalities

$$\lambda - \sum_{i \in I} r_{i+1} - r_1 = \lambda - \sum_{i \in I} r_{i+1} - r_{n+1} - \sum_{h=1}^{n} e_h$$

$$= \lambda - \sum_{i \in I} (r_{i+1} - r_i) - \sum_{i \in I} r_i - r_{n+1} - \sum_{h=1}^{n} e_h$$

$$= \lambda - \sum_{i \in I} r_i - r_{n+1} - \sum_{h \notin I} e_h$$

This proves part i).

To prove ii) observe that i) implies

$$\begin{split} X\big(P_j(P_I(\lambda))\big) &= X\bigg(\lambda - \sum_{i \in I} r_{i+1} - r_1 + \sum_{\substack{h \notin I \\ h \leq j}} e_h\bigg) \\ &= X\bigg(\lambda - \sum_{i \in I} r_i - r_{n+1} - \sum_{\substack{h \notin I \\ h \geq i}} e_h + e_j\bigg) \,. \end{split}$$

We already know

$$Y(P_{j}(P_{I}(\lambda))) = Y\left(\lambda - \sum_{i \in I} r_{i} - r_{n+1} - \sum_{\substack{h \notin I \\ h \ge j}} e_{h}\right)$$

and therefore

$$P_{j}(P_{I}(\lambda)) = \lambda - \sum_{i \in I} r_{i} - r_{n+1} - \sum_{\substack{h \notin I \\ h \geq j}} e_{h} + (X(e_{j}), 0),$$

which is the claimed equation for $P_j(P_I(\lambda))$, # I = k.

COROLLARY 2.13. $P_I(\lambda) \in \Lambda$ if and only if $I = \{1, 2, ..., n\}$ or $I = \emptyset$.

PROOF. $0 \le \sum_{i \in I} \alpha_{i+1} - \alpha_i \le p$ with equality on the left or right if and only if $I = \emptyset$, respectively $I = \{1, 2, ..., n\}$.

In the next few lemmas we shall relate the homology of L(P) to the homology of ordered sets connected with M(P). Let $P \in \mathbb{Z}_+^2$ and assume $P \gg 0$. Put M = M(P), $V_i = V_i(P)$, etc.

LEMMA 2.14. In the situation above we have an isomorphism for every $r \ge 0$

$$\bigoplus_{j=1}^{m_i-1} \widetilde{H}_r(P_{i,j}) \cong \bigoplus_{j=2}^{m_i-1} \widetilde{H}_r(L(V_{i,j})) \oplus \widetilde{H}_r(P_i) .$$

PROOF. Define $V = V_i - r_{i+1} \in \Lambda$. Then for $j = 1, 2, ..., m_i$

$$P_{i,j}^{\hat{}} = (X(P_{i,j}), Y(V))^{\hat{}} \cup (X(V), Y(P_{i,j}))^{\hat{}} V^{\hat{}} = (X(P_{i,j}), Y(V))^{\hat{}} \cap (X(V), Y(P_{i,j}))^{\hat{}}.$$

The proof of this is left to the reader; an argument analogous to the proof of Lemma 2.7 will give the result.

Applying the reduced Mayer-Vietoris sequence, and using the fact that V has a final object, we get an isomorphism for $j = 1, 2, ..., m_i - 1$ and $r \ge 0$

$$(***) \tilde{H}_r(P_{i,j}) \cong \tilde{H}_r(X(P_{i,j}), Y(V)) \oplus \tilde{H}_r(X(V), Y(P_{i,j})) .$$

But we also have for $j = 2, 3, ..., m_i - 1$

$$L(V_{i,j}) = (X(P_{i,j-1}), Y(V)) \cup (X(V), Y(P_{i,j}))$$

$$V = (X(P_{i,j-1}), Y(V)) \cap (X(V), Y(P_{i,j})) .$$

So for every $r \ge 0$

$$(****) \tilde{H}_r(L(V_{i,j})) \cong \tilde{H}_r(X(P_{i,j-1}), Y(V))) \oplus \tilde{H}_r(X(V), Y(P_{i,j})) .$$

Summing over $j = 1, 2, ..., m_i - 1$ the isomorphisms (***), changing parenthesises, and using (****) we get

$$\bigoplus_{j=1}^{m_{i}-1} \widetilde{H}_{r}(P_{i,j}) \cong \bigoplus_{j=2}^{m_{i}-1} \widetilde{H}_{r}((V_{i,j})) \oplus \widetilde{H}_{r}(X(V), Y(P_{j,1})) \oplus \widetilde{H}_{r}(X(P_{i,m_{i}-1}), Y(V))$$

$$\cong \bigoplus_{j=2}^{m_{i}-1} \widetilde{H}(L(V_{i,j})) \oplus \widetilde{H}_{r}(P_{i}) \quad \forall r \geq 0$$

The next lemma gives the relation between the homology of L(P) and the homology of the intersection points P_i .

LEMMA 2.15. Let the symbols P, M, $V_{i,j}$ be as above; n is the number of edges of M. There is an isomorphism for every r > 0

$$\widetilde{H}_r(L(P)) \cong \left[\bigoplus_{i=1}^n \bigoplus_{j=2}^{m_i-1} \widetilde{H}_{r-1}(L(V_{i,j})) \right] \oplus \left[\bigoplus_{i=1}^n \widetilde{H}_{r-1}(P_i) \right].$$

PROOF. As a consequence of Lemma 2.7 we have

$$L(P) = \bigcup_{i=1}^{n} \bigcup_{j=1}^{m_i-1} Q_{i,j}$$

where $Q_{i,j} = Q_{i,j}(P)$ and the intersections $Q_{i,j} \cap Q_{i,j+1}$ and $Q_{i,m_{i-1}} \cap Q_{i+1,1}$ always are ordered sets with $V_{i,j+1}$, respectively $V_{i+1,1}$, as final elements. Using the Mayer-Vietoris sequence repeatedly we find

$$\widetilde{H}_r(L(P)) \cong \bigoplus_{i=1}^n \bigoplus_{j=1}^{m_i-1} \widetilde{H}_r(Q_{i,j}).$$

Apply the Mayer-Vietoris sequence once more to the system $(\hat{Q_{i,j}}, \hat{V_{i,j}}, \hat{V_{i,j+1}}, \hat{P_{i,j}})$. Since $\hat{V_{i,j}}$ has a final element we obtain an isomorphism for every r>0

$$\tilde{H}_r(Q_{i,j}) \cong \tilde{H}_{r-1}(P_{i,j})$$

where $i=1,\ldots,n,\ j=1,\ldots,m_i-1$. Using Lemma 2.14 the lemma follows immediately.

LEMMA 2.16. Let $\lambda \in \Lambda$ and let $I \subseteq \{1, 2, ..., n\}$. Suppose $2 \le \#I = k \le n$. Let $P_I = P_I(\lambda)$ and $P_{I,i} = P_i(P_{I-\{i\}}(\lambda))$. Then for every $r \ge 0$ we have an isomorphism

$$\bigoplus_{i\in I} \tilde{H}_r(P_{I,i}) \cong \bigoplus_{\substack{i\in I\\i\neq i,}} \tilde{H}_r(L(V_i(P_{I-\{i\}}))) \oplus \tilde{H}_r(P_I) ,$$

where $I = \{i_1 < ... < i_k\}$

PROOF. Define $P_{I,i,j}$ via the intersection property

$$\hat{P_{I,i,i}} = \hat{P_{I,i}} \cap \hat{P_{I,i}}$$

for every pair $i,j \in I$. From the proof of Lemma 2.12 we deduce $P_{I,i_1,i_j} = P_{I,i_1,i_{j-1}} \cap P_{I,i_j}$ for every $j = 2, \ldots, k$. For $j = 1, \ldots, k-1$ we have the inequalities

$$P_{I,i_1,i_j} < P_{I,i_j} < V_{i_j}(P_{I-\{i_j\}})$$

and from Lemma 2.12 the equality

$$(*****) P_{I_{i,...}} = V_{i,i}(P_{I-\{i,i\}}) - (0, \beta_{i,i+1} - \beta_{i,i+1+1}).$$

Thus $P_{I,i_{j+1}} < V_{i_j}(P_{I-\{i_j\}})$. In addition we have the inequality $V_{i_j}(P_{I-\{i_j\}}) - r_{i_j+1} < P_{I,i_1,i_{j+1}}$. The last statement is an immediate consequence of the two relations

$$V_{i_j}(P_{I-\{i_j\}})-r_{i_j+1} < P_{I,i_{j+1}}, V_{i_j}(P_{I-\{i_j\}})-r_{i_j+1} < P_{I,i_1}.$$

The first follows from equation (*****), the other is easily deduced from Lemma 2.12 using the analytic formula for P_{I,i_1} . Thus we have

i)
$$V_{i_j}(P_{I-\{i_j\}}) - r_{i_j+1} \leq P_{I,i_1,i_j} < V_{i_j}(P_{I-\{i_j\}})$$

ii)
$$V_{i_i}(P_{I-\{i_i\}}) - r_{i_i+1} \le P_{I,i_{i+1}} < V_{i_i}(P_{I-\{i_i\}})$$

iii)
$$X(P_{I,i_{I+1}}) = X(V_{i_I}(P_{I-\{i_I\}}))$$

iv)
$$Y(P_{I,i_1,i_2}) = Y(V_{i_1}(P_{I-\{i_1\}}))$$
.

Applying the Mayer-Vietoris sequence three times we obtain for every $r \ge 0$ an isomorphism

$$\tilde{H}_r(P_{I,i_1,i_j}) \oplus \tilde{H}_r(P_{I,i_{j+1}}) \cong \tilde{H}_r(L(V_{i_i}(P_{I-\{i_i\}}))) \oplus \tilde{H}_r(P_{I,i_1,j_{j+1}})$$
.

But $P_{I,i_1,j_k} = P_I$ so an iterated use of the described process will give the lemma.

We are now in position to state and prove the main result of this paragraph.

THEOREM 2.17. Let $\lambda \in \Lambda$, $\lambda \gg 0$ and $P_I = P_I(\lambda)$, as above. Let n be the number of edges of $M(\lambda)$. Then for every integer $r \ge n$ there is an isomorphism

$$\begin{split} \widetilde{H}_r(L(\lambda)) &= \left[\bigoplus_{k=1}^n \bigoplus_{\substack{\sharp I = k-1 \\ \sharp I = k}} \bigoplus_{\substack{i \notin I \\ i \neq i,}}^{m_i-1} \widetilde{H}_{r-k}(V_{i,j}(P_I)) \right] \oplus \\ &\oplus \left[\bigoplus_{k=2}^n \bigoplus_{\substack{\sharp I = k \\ i \neq i,}}^{n} \widetilde{H}_{r-k}(L(V_i(P_{I-\{i\}}))) \right] \end{split}$$

where $P_{\varnothing} = \lambda$ and $I = \{i_1 < \ldots < i_k\}$.

PROOF. This is just an iterated use of Lemma 2.15 and Lemma 2.16, where we for each step increase the order of I. Remember that if $I \neq \emptyset$, $P_I \in \Lambda$ if and only if $I = \{1, ..., n\}$. Therefore the process stops when $\sharp I = n$. Moreover, for $\sharp I < n$ we have $L(P_I) = P_I$.

Now go back to the calculation of the right-hand side of the equation in Proposition 1.3. In Theorem 2.17 we made the assumption $\lambda \gg 0$. In fact it suffices to know that $\lambda > \sum_{i=1}^{n+1} r_i$. This is to ensure that all the points needed in Lemma 2.16 really are elements of Λ .

Put

$$Z = \left\{ \lambda \in \Lambda \mid \lambda > \sum_{i=1}^{n+1} r_i \right\}$$

and recall the definition of

$$U = \{(a,b) \in \mathbb{Z}^2 \mid b > p + a \cdot \xi \text{ or } a > p + b \cdot \xi\},$$

see (2.5). Put

$$W = (\Lambda - Z) \cap (\Lambda - U).$$

W is a finite set containing all $\lambda \in \Lambda - Z$ with the property $\tilde{H}_{.}(\lambda) \neq 0$. Since for each $\lambda \in \Lambda$, $L(\lambda)$ is a finite ordered set, there exist N' such that $\tilde{H}_{m}(L(\lambda)) = 0$ for all $m \geq N'$. Since W is finite we may choose N' such that $\tilde{H}_{m}(L(\lambda)) = 0$ for all $m \geq N'$ and all $\lambda \in W$. Putting $h_{m}(L(\lambda)) = \dim_{k} \tilde{H}(L(\lambda))$ we have thus proved

$$\sum_{\lambda \in Z} h_m(L(\lambda)) = \sum_{\lambda \in \Lambda} h_m(L(\lambda))$$

for every $m \ge N'$. Going back to Theorem 2.17 we see that the problem is to calculate the number $\sum_{\lambda \in Z} h_{m-k} (L(V_{i,j}(P_I(\lambda))))$. So we need a lemma.

LEMMA 2.18. Let $Z \subseteq \Lambda$ and N' be defined as above. Let N = N' + n. Pick $m \ge N$ and let (k, I, i, j) be a quadruple which occurs in Theorem 2.17. Then we have the equality

$$\sum_{\lambda \in \mathbb{Z}} h_{m-k} \big(L \big(V_{i,j} (P_I(\lambda)) \big) \big) = \sum_{\lambda \in \mathbb{Z}} h_{m-k} \big(L(\lambda) \big) .$$

PROOF. The map $\lambda \mapsto V_{i,j}(P_I(\lambda))$ from Z into Λ , is obviously a rigid translation. Of course we have $\lambda \ge V_{i,j}(P_I(\lambda))$ so

$$Z \subseteq \{\lambda \in \Lambda \mid \exists \lambda' \in Z \text{ with } \lambda = V_{i,j}(P_I(\lambda'))\}$$
.

Let $\lambda' \in \mathbb{Z}$ with $V_{i,j}(P_I(\lambda')) \notin \mathbb{Z}$. We have $m-k \ge N-k \ge N'$ and by definition of N'; $h_{m-k}(L(V_{i,j}(P_I(\lambda')))) = 0$. Since

$$\sum_{\lambda \in Z} h_{m-k} \left(L\left(V_{i,j}(P_I(\lambda))\right) \right) = \sum_{\lambda \in Z} h_{m-k}(L(\lambda)) + \sum_{\lambda' \in Z'} h_{m-k} \left(L\left(V_{i,j}(P_I(\lambda'))\right) \right)$$

where $Z' \equiv \{\lambda' \in Z \mid V_{i,j}(P_I(\lambda')) \notin Z\}$, we have proved the lemma.

THEOREM 2.19. Let the number N be as above. Let for every $m \ge N$, $\gamma_m = \sum_{\lambda \in \Lambda} h_m L(\lambda)$. Then there exists a recursion in the γ 's: $\gamma_m = \sum_{k=1}^h R_k \cdot \gamma_{m-k}$ given by

$$R_k = \binom{n-1}{k-1} \cdot S + \binom{n}{k} (k-1) \qquad k=1,2,\ldots,n,$$

where n is the number of edges of the maximal polygon $M(\lambda)$ of λ , $\lambda \gg 0$, and $S = \sum_{i=1}^{n} (m_i - 2)$, where m_i is the number of lattice points on the ith edge of $M(\lambda)$.

PROOF. Due to Lemma 2.18 and Theorem 2.17 the only problem is to calculate the sums $(I = \{i_1 < ... < i_k\})$

$$S_{1} = \sum_{\#I=k-1}^{\sum} \sum_{\substack{i \in I \\ i \in I}}^{m_{i}-1} \gamma_{m-k}$$

$$S_{2} = \sum_{\#I=k}^{\sum} \sum_{\substack{i \in I \\ i \neq i, \\ }} \gamma_{m-k}.$$

This is a purely combinatorial problem and it is easy to show that

$$S_{1} = \binom{n-1}{k-1} \cdot S \cdot \gamma_{m-k}$$

$$S_{2} = \binom{n}{k} \cdot (k-1) \cdot \gamma_{m-k}$$

which proves the theorem.

COROLLARY 2.20. Let $\Lambda' \subseteq \mathbb{Z}_+^2$ be a saturated rational monoid, and let $k[\Lambda']$ be the associated monoid algebra. Consider the corresponding isolated singularity of the affine scheme $X = \operatorname{Spec} k[\Lambda']$. The Betti series $B(t) = \sum_{n \geq 0} \beta_m t^m$ of the local ring of this singularity is rational with denominator

$$-1 + \sum_{k=1}^{n} \left[\binom{n-1}{k-1} \cdot S + \binom{n}{k} (k-1) \right] t^{k}.$$

PROOF. Follows immediately from Theorem 2.17 and the formula of Proposition 1.3 implying $\beta_m = \gamma_{m-2}$ for $m \gg 0$.

BIBLIOGRAPHY

- O. A. Laudal, Sur la théorie des limites projectives et inductives. Théorie homologique des ensembles ordonnés, Ann. Sci. École Norm. Sup. 82 (1965), 241-296.
- O. A. Laudal, Groups and monoids and their algebras. A cohomological study I. Preprint Series, Institute of Mathematics, University of Oslo, No. 12, 1982.
- T. Oda, Torus embeddings and applications, Tata Inst. of Fundamental Research, Lectures on Mathematics and Physics, 57, Bombay, 1978.

MATEMATISK INSITUTT UNIVERSITETET I OSLO BLINDERN, OSLO 3 NORWAY