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BETTI NUMBERS OF MONOID ALGEBRAS.
APPLICATIONS TO 2-DIMENSIONAL
TORUS EMBEDDINGS

O. A. LAUDAL and A. SLETSJQE

Introduction.

The starting point of this paper is the rather elementary observation (1.2),
which leads to a formula (1.3) for the Betti numbers of a monoid algebra in
terms of the combinatorial properties of the monoid, see [2]. The rest of the
paper is concerned with the application of this formula to the case of 2-
dimensional torus embeddings, see [3]. More specifically: In section 1 we give
a method for computing the Betti numbers B;=dim, Tor# (k, k), when A is the
monoid algebra over k of a commutative monoid A with cancellation law, and
no non-trivial inverses. Proposition 1.3 relates the Betti numbers to the local
homology of the simplicial set associated to A4, =A4—{1} ordered such that
AZA-u, when A, u e A.

In section 2 this is used to compute the Betti numbers of 2-dimensional torus
embeddings A4. In particular we prove that the Betti series

B(t) = z ﬂntn
n20
of A is a rational function P(t)/Q(t). The main result of this paper is, in fact, the
explicit computation of the denominator Q(t), see Corollary 2.20.

1. Betti numbers of monoid algebras.

Fix a field k and let A be a commutative monoid with cancellation law, i.e.
such that A-p=A-y' implies u=y'". Let A=k(A) and put m=A,-A where 4,
=A—{1}. Assume A/m =k, that is assume A has no non-trivial subgroups. Put
B;=dim, Tor/ (k, k), the ith Betti number of A. Then the power series B(t)
=Y,>0B,t" is called the Betti serties of 4. The purpose of this first paragraph is‘
to giv; a method for computing the Betti series of 4 using only combinatorial
properties of A,.
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Let A, be ordered as follows: 4, <4, if and only if there exists a u € A such
that u-A, =A4,. There is a natural presheaf (projective system)

F: A, - Ab

defined by F(A)=A4, where F(A,<4,): F(4,) —» F(4,) is multiplication by
u=24,/4,.

LemMma 1.1,
imF = (A,)A =m.
4,

Proor. For every A€ A,, consider the morphism n,: F(A) — A4, the
multiplication by A This defines a morphism

n:limF - m.
—
A,
Given an element a € m, there is a unique representation a=3Y/N, a; 4;

«; € k, A € A,. Consider o, as an element of F(4) and let &, be the image of a;
in lim, F. Define p:m — lim, F by u(@)=3N , &. Then y is an inverse of 1.

LemMma 1.2,

li_nl(,,,F =0 for nzl.

A,

Proor. By [1, (1, 1.4)] it is enough to show that F is coflabby (coflasque). Let
A€ A, and put

I={ked,| rsa}.

Suppose A, A is such that if ' € A, and X <4”, then A" € 4,. F is coflabby if
in this situation
imF — limF = FA) =A
4 1
is an injection.
However, the proof of Lemma 1.1 applies to show that
imF = {X/A| X e A,} 4
4,
and that the morphism
limF — limF = A
A, T
is the obvious inclusion. Therefore we are done.
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Consider the resolving complex C.(A4,; —) for lim, , see [1, (1.2)]. By
Lemma 1.2, C.(A,; F) is an A-free resolution of the maximal ideal m of A.
Therefore

k i=0
Hi ((C.(A+; FI®4k) i1,
Now C.(A,; F)® 4 k=C.(A,; F® 4k), therefore

Hi_(C.(A4; )@ k) = lim_ ) (FQ 4k) .

A,

Observe that the projective system F® 4k is isomorphic to L1 4, k(4), where
k(A) is the projective system defined by
0 if A4
k if A=A.

Torf (k, k) =~ {

umm={

Put for any A€ 4.,

A={Xed,| ¥4
L) = {Xed, | YSAXV+A} = 1-{4}.

It is easy to see that there are isomorphisms

lim, k(4) = @(,,k(l) for n20.

Ay b
In fact this follows from the existence of a []-projective resolution of k(4),
trivial outside of A, see [1, (1.2)]. Let k; be the constant projective system on 1
defined by k,(A)=k, and let k) be the subprojective system of k; defined by
Ky (X)=0 if X =A and Kk(X)=k if A'+A Then there is an exact sequence of
projective systems on A

0> k- k;, > k() — 0.

As
. k for n=0
I—l%n*""k‘ =0 for n21
and since

lim, k; = lim, k = H,(E(); k) nz0
b L&
where k is the constant projective system k on L(4), and where we denote by
E(A) the simplicial set defined by the ordered set L(4), see [1, (1.1)], we obtain
an exact sequence
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0 — lim,, k() — limk} — k — limk(2) - 0
7 i Ey

and isomorphisms
lim, k() = H,_,(E4); k) n22.
i

Notice that li_mjk(l) =0 unless A is minimal in 4, in which case Erg;k(l)gk,
and E‘P,u)k(/l)=0-

If lzis not minimal, then
lim, k(4) = Hy(E(%); k)
A

where A is the augmented homology.
Summing up we have proved the following

ProrosiTioN 1.3.

lk n=0
Tor4 (k,k) = | ¥° n=1
llg By y(EG) ) nz2

where g is the number of minimal elements of A ,.

2. Application to 2-dimensional Torus embeddings.

Let A’ be a submonoid of Z2, satisfying the following condition:
There exist (m,n) € A’, i=1,2 with m; and n, relatively prime such that

(i) A4 = {(mo,no) € Z3 | 3t;€ Z,, j=0,1,2 such that
to(mo, ng) =t, (my, ny) +t5(my, ny)}
(ii) m,-ny—myn, = p>0.

Any such monoid will be referred to as a saturated rational (sub)monoid (of
Z2), see Fig. 1.

There is a one-to-one correspondence between saturated rational
submonoids A’ of Z2 and affine 2-dimensional normal torus imbeddings 4, see
[3], such that A =k(A").

By (1.3) we know that

Tork™) (k, k) = lu A,_,(ER, k), n22.
€A,
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Fig. 1. A',L(3) Fig. 2. 4

The purpose of the rest of this paper is to establish a recursion formula for
computing H,(E(A),k), A € A',, r=0, see (2.17), from which we easily deduce
the rationality of the Betti series

B() = 20 Bt

where
B, = dim, Tor¥) (k k) .

We are therefore interested in the simplicial structure of E(4), A € A’,, which is
determined by the structure of the ordered set L(A).

Consequently we shall have to study the ordered sets L(A) for arbitrary
Ae A, see Fig. 1 and 2.
Consider first the unique linear transformation T: Z* — Z? mapping (m,, n,)
to (p,0) and (m,,n,) to (0,p). T is represented by the 2 x 2 matrix

ny —my
[‘"1 ’"1]
Put A=T(A'). Notice that A is submonoid of Z% but no longer a saturated
rational submonoid, see Fig. 2. Nevertheless T defines an isomorphism A’ = A,
and we shall, from now on, find it more convenient to work with 4. We may
assume p=2, since otherwise A=k(A) is a polynomial algebra in 2 variables,

for which the Betti series is well known.
Let, for n21, A,={(n,r) € A | r e Z,}. Then the following lemma holds:
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LEMMA 2.1. There exists a unique £ € Z ., with 0 <& <p, such that

Ay = {(L,E+np)| neZ,}
A, = {(nné+np| neZn+np20}.

PROOF. Since (m,,n,)= 1, there exists an integer pair (x,, o) € Z* such that

T(xg, o) = (n2xo—m;Y0, —nyXo+myyo) € ({1} xZ) .

The set {(m,,n,), (m,,n,)} forms a basis for Q?, and there exist «, # € Q such
that

(* (X0, Yo) = a(my,ny)+ Bo(my,ny) .
But T is a linear map so we have
T(x0,yo) = a* T(my,ny)+ Bo" T(my,ny)
- (p,0)+ B, (0,p) € ({1} xZ).

This implies a=1/p and from equation (*) and the fact (m,,n,)=1 we deduce
that B, ¢ Z. So there exists an integer u € Z such that 0<f,+pu<1 and

T((x0, yo) + 1(mz, n)) = - (p,0)+ (Bo +w)(0,p) € ({1} x [0,p]) -

Put =P, p and (x, y) = (xo, ¥o) + i(m,, n,) € Z%, and let y be the product of
the denominators of « and . The numbers y-a, y- B are integers, and

r(xyea.

Since the monoid A’ is saturated, it follows that (x,y) € A". Let £=f-p. Then
T(n* (x,y))=(n,n-&). Now consider the equivalence

nl+np=npp+np
= (nB+n)pz0
< nf+n20.
If n-&+n-p=0 then we have
(mn-&+n-p) = T(n(x,y)+n(my,ny)
T(n-a(my,ny)+ (n* B+n)(my,ny))

and (n,n- & +n-p) € A. This follows from the fact that an integer pair, positively
generated by (m,,n,) and (m,,n,) is element of A'.

Suppose (x,)), (x',y) € A’ satisfy T(x,y)e 4, T(x',y)e€ A, for -some
ae Z,. Then we have
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Ny X—my'y = ny-x'—my-y
or equivalently
ny(x—x) = my(y—y).
Since (m,,n,)=1 this is equivalent to
Xx=x' =cm,; y-y =cn,
for some ¢ € Z. But then we have

—nyx+mycy = —ni(cmy+x)+m(y +c-ny)

—nyx'+myy —c(ngmy—m;-ny)
= —=ny;xX'+myy+cp

It is easy to see that this proves the lemma.

Thus we have a complete description of A given by
A = {(ab)eZ: | a-¢=b(modp)} .

If we interchange (my, n,) and (m,, n,) and apply the proof of Lemma 2.1 we get
a number n € Z, satisfying

)0<n<p
ii) n*¢€ = 1 (mod p)

The use of this will appear later.

REMARK 2.2. One of the advantages with this description of A is the following
property of A: If A=(a,b), X=(a',b)e A and if A —A=(da'—a,b'—b) € Z3,
then ' -4 ¢e 4.

In fact since for (a, b), (@',b) € A; b=a-{(mod p), b'=a’'-£(mod p), and @' —a
20, b—b20, we find b'—b=(a' —a) é(mod p) therefore (a'—a,b’—b) € A.
Notice that this implies that the order relation on A (see section 1) induced by
the order relation on A’ is the restriction of the ordinary order relation on Z2.

DEFINITION 2.3. Let P € Z2. Define the ordered set P associated with P by P
={AeA | AS P} c A. The associated simplicial set will also be denoted by B.

Correspondingly we shall let L(P)={Ae 4 | AgP} also denote the
associated simplicial set. (When P € 4, this is precisely the set E(P) of section
1, see Fig. 2, 3, and 4.
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ReMARK 2.4. Notice that for P € Z2 — A we have L(P)=P.

LEMMA 2.5. Let & and n be defined as above. Let U < Z2 be the set defined by
U= {@beZi| b>p+a-¢ or a>p+bn}.
Then for any P € U
A,(LP) =0

n=0.

Proor. It is obviously sufficient to prove the lemma in the case where
P = (a, b) satisfies the condition b>p+a-¢. Given P = (a,b) € Z%, and suppose
b>p+a-& Then there exist integers a, f € Z such that

b—at =oap+p

with 0 <f<p and o> 1. We shall prove the lemma by induction on the integer
a.
Suppose a=0. Then L(P) has a final object and the homology vanishes.
Suppose a>0. Let P=(a,b) € U, and suppose the formula is valid for all
(m,c) e U with m<a. Notice that Lemma 2.1 implies (a,b—p)=(a,a-¢
+a-p) € A.
Now it is easy to see that

i) L(P) = (a—1,b)" U (a,b— By
i) @—=1,b—p)" = (@a—1,b)"N(a,b—py.

Apply the Mayer-Vietoris sequence and obtain the long exact sequence
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s ﬁn(a_lab—ﬂ) - Hn(a’b_ﬂ)®ﬂn(a_l’b) g
- Hn(L(P)) - Hn—l(a_lab_ﬂ) - ...

where H (P) is the homology of the ordered set associated with P. But now we
have b>p+a-{>p+(a—1)-¢ and b—f=a-p+a-tZp+a-é>p+(@a—1)-¢
so (a—1,b) e U and (a—1,b—p) € U. The induction hypothesis implies

H,(a—1,b—p) = H(a—1,b) =0 VYn=0.
(a,b—p) e A and (a,b—p) has a final object; therefore
H,(a,b—p) =0 Vn20.
Thus, using the exactness of the above sequence, we get
H(MP) =0 Vn=0
which proves the lemma.

DEerINITION 2.6.Let P € Z2. The maximal polygon associated with P, M(P)
is the set of maximal elements of the convex hull of L(P) in R, see Fig. 3 and 4.

Put M,(P)=L(P)N M(P). Then the following lemma holds.
LemMa 2.7. My(P) is the set of maximal elements of L(P).

Proor. Let max L(P) be the set of maximal elements of L(P). Obviously
M, (P)cmax L(P). Assume A € max L(P) and Ad My(P). M(P) is a convex
polygon and 4 has to sit strictly below some edge e. Pick vertices of e,
u, i € My(P), u+ ', and consider the element n=pu+pu' —A Since n € Z2 we
have seen (Remark 2.2) that n € A. An easy argument then shows that n € L(P)
and that 7 is above the edge e, a contradiction.

It is easily seen that M(P) must lie inside a square, px p, with P as the
maximal point.

LeEMMA 2.8. For every P € Z% with P2 (p,p), and every A€ A
M(P+2) = M(P)+A.
Proor. It is enough to show the equality Mo(P+4)=M,(P)+A So let
4 € My(P). Then AS p+A<P+A Now choose n € Mo(P +4) such that ASpu

+A<n<P+A Then we have u<n—A<P. Since y,1,4 € 4, the remark (2.2)
implies n—A € A, thus we get u=n—A or n=p+A Consequently u +Ae

Math. Scand. 56 - 11
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My(P+2) and My(P)+ A My(P+4). To prove the inverse inclusion, we first
notice that if u € My(P + A), then u= A This follows from the fact that P> (p, p)
and that M, (P + A) sits inside a square p x p with P+ A as the maximal point.

So let u € My(P+4A). Then u<P+A or u—A<P. Choose n € My(P) such
that u—A<n<P. This implies u<n+A<P+A But u € My(P+2) so the last
equation implies y=n+ 4, which proves the lemma.

DEFINITION 2.9. Let P € Z2 and denote by
VP | i=12,...,n; j=1,2,...,m}

the lattice points on M (P) where i is the number of the edge counted from right,
and j is the number of the lattice point on the edge, also counted from right.
(See Fig. 2, 3, and 4.)

Put V=V, for i=1,2,...,n and V,,, =V, ,. Notice that for i=1,2,...,n
we have m;22 and V,,, =V,,,.

Denote by

{e;(P)| i=1,2,...,n; j=1,...,m}
the edges between V, ;(P) and V,;,,(P). For i=1,...,n,

m—1
eP)= U ei,j(P)
i=1

are then the edges of M(P).
Let {S,(P)};-,.... be the absolute values of the slopes of the e;(P)’s and let
finally

{Xi(P)}i=l ..... m Xi = X(Vi,z)_X(Vl,l)
and
{Yi(P)}I=l.....m Y, = Y(Vt.z)" Y(V“)

be the differences in the values of the coordinates of V;,(P) and V,,(P).
It is clear that M (P) is determined by these families of numbers. Moreover,
we deduce the following

Y(P) = S,(P)-X,(P) i=1,...,n.

Put, as a shorthand, o,(P)=X(P)— X (V,(P)) and B,(P)=Y(P)— Y(V,(P)), and
notice that ;. (P)>a;(P), B4, (P)<py(P).
For every pair (i,j), i=1,...,n,j=1,...,m, the proof of Lemma 2.7 gives the

existence of unique points
Qu(P ) = (X (VI.J(P )): Y(Vi,j+1(P )))
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and

Pyj(P) = (X(Vy541(P)), Y(V,(P))
with the properties

L(Qij(P) = Vi;(PY NV, (PY
Pi,j(P)A = Vi,j(P)A n Vi,j+1(P)A'
(See Fig. 3 and 4.

DeriNITION 2.10. Denote by P; the unique element of Z2 such that P;
i=1Ti,j

Let A€ A4 and let n be the number of edges of M(4). The next lemma will
show that M(P,(A) is congruent to the polygon M(A) with the ith edge
removed. We shall therefore index the vertices and the edges etc. of M (P,(4)) by
restricting the corresponding indexing of M(A). Thus ¢;(P;(4)) does not exist
and, modulo translation, e;(P;(4)) is congruent to e;(A) whenever i#j. Likewise
Vi(Pi(d) does not exist and V;_, , _(P,(4))=V,,,(P,(4). Notice that the
intersection points P;(P;(4)) and P;(P;(4)) are, in general, different when i+j.
Let Py; 4(4) denote their intersection, i.c. the unique element of Z2 such that

Puj() = PP,A) N Py(P,(A)), see Fig. 3..
In general we make the following definition (A>>0 means X (4), Y(4) > 0).

DEeFINITION 2.11. Let A € A and M (4) as above, A>>0. Let I<{1,2,...,n} be
a set of integers different from the empty set. Define P;(A) recursively via the
intersection property

Py = QI PP ()
where Py (A=A

Lemma 2.12 will show that M(Py; j(4)) is congruent to M(4) with the ith and
the jth edge removed, and that in general M(P;(4)) is congruent to M (A) with
the ith edge removed for every i € Ic{1,2,...,n}.

LEMMA 2.12. Let A, M(A) be as above and let 1<{1,2,...,n} be a set of
integers, the empty set included.

i) The maximal polygon M (P(2)) of the set P(A)" is congruent to the maximal
polygon M(A) of A~ with the ith edge removed for every i € I.
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ii) Let for i=1,2,...,n, r;=(o;, B;). Then for every j ¢ I

Pj(Pl(A'» = l—zl ri—=Fpe1— Z eh—(aj+1_'aj’0) s
ie hé¢l
hzj

where e, is the vector 7,,17,”1 associated to the edge e,(A), and a;=o;(A), B;

= ﬁi ('1)

Proor. We shall prove the lemma by induction on the number of elements of
I, #I=k.
The case k=0 is vacuous; just notice that e,=r,—r,,, so

A=Tpr1— Y &y = A—rj.

h¢l
35

Suppose the lemma holds for #I=k—1,0<k<n, and let Ic{1,.,...,n} with
#I=k. To simplify notation, write for every iel; P, (A)=P;(P,_ {,.}(it)).
Obviously

PyA = '_Dl Py = ("f’el;lx (Pr,;(A), Tflel;l Y(P I,i(”))

so we have to study the relation between the intersection points P;;(4). The
induction hypothesis gives

(‘*) P’,j(l) = A‘— Z rl-—r,,_,,l— Z e,,—(aj+l—aj,0)
iel—{j} h$l—.{j}
hzj
= A—Z r,.+ Z e,,—-(otj+1—ocj,0) .
iel hel
h>j

Consider the last part of the above sum, Y} 4>jen+ (X (e),0). The fact that
;43 >0, and B;,, <pB; shows that the X-value of this vector increases and the
Y-value decreases with increasing j € I. So it follows that

PiA) = Pr (A NP (2
(X (P, (), Y(Pr, ())

where I={i; <i,<...<i}. From (**) we deduce that X(P;(4))=X(P; ()
=X(A—Zier7i+1) and Y(Py(A)=Y(Py;,(A))=Y(A—X;crr). In addition we get
the two inequalities

P® < =% sy
iel

Pl,l'k()') < 2:"'2 r‘ .
iel
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Obviously A—3c/ri2A—Firivy—ry and A—=F i 2A= T i —Tpiy
and therefore

A=Y ripy—r <Pid) and A=Y ri—r,, < Pi(R).
iel

iel
Thus A—Y;  risy—ry and A=Y, ,r,—r,,, are the “endpoints” of the
maximal polygon of P;(A). ‘
Using the fact that }}_, e,=r, —r,,, we have the equalities

}'“Z Figp—rp = A—Z Fiv1 = The1— Z €y
iel iel

= A‘Z (’i+1""i)"‘z Fi—Tps1— Z €
iel iel

= A=) ri=Twr1— ), &
iel h¢l
This proves part i).

To prove ii) observe that i) implies

X(P;(P, (%) = X()'“'Z Fier—ri+ Y e,,)

iel h¢l
hsj

=X[(A-Y ri—ry1—
hzj

We already know
Y(Pj(Pl(l))) = Y<A—ZI Fi—=Tper1— Z eh)

and therefore

PJ(PI(A')) = A- Zl Fi—Tpe1— Z eh+(X(ej)90) ’
ie hé¢lI
h2j

which is the claimed equation for P;(P;(4), #I=k.
COROLLARY 2.13. P;(A) € A if and only if I={1,2,...,n} or I=(J.

PROOF. 0 Y10, — < p with equality on the left or right if'and only if
I=(, respectively I={1,2,...,n}.
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In the next few lemmas we shall relate the homology of L(P) to the
homology of ordered sets connected with M(P). Let P € Z% and assume
P>0. Put M=M(P), V;=V,(P), etc.

LEMMA 2.14. In the situation above we have an isomorphism for every r=0

m—1

m—1
]él-)l H(P,) = j-—-C-Bz AL, ))®H,P).

Proor. Define V=V;—r;,, € A. Then for j=1,2,...,m,
P = (X(P), Y(V)) U (X(V), Y(P,))
Vo= (X(P,),Y(V)) N (X(V),Y(P,)) .

The proof of this is left to the reader; an argument analogous to the proof of
Lemma 2.7 will give the result.

Applying the reduced Mayer-Vietoris sequence, and using the fact that ¥V~
has a final object, we get an isomorphism for j=1,2,...,m;—1 and r20

(***) A,(P,) = H(X(P,), Y(V)SH,(X(V), Y(P,)) .
But we also have for j=2,3,...,m;—1
LV,) = (X(Pij—, Y(V)] U (X(V), Y(P,)))
Vo= (X(Py— ) YOV N (X(V), Y(P)
So for every r=0
(****  B(LWV,)) = B(X(P;-), Y(V)OH(X(V), Y(P,)).

Summing over j=1,2,...,m;—1 the isomorphisms (***), changing parenthes-
ises, and using (****) we get

m— m—1
1@: Hr(Pl.j) = @ Hr((Vi,J))@H,(X(V), Y(Pj,l))@ﬁr()((pi.m_l), Y(V))
=@ ALV)ORF) V20

The next lemma gives the relation between the homology of L(P) and the
homology of the intersection points P,.

LEMMA 2.15. Let the symbols P, M, V, ; be as above; n is the number of edges of
M. There is an isomorphism for every r>0

B,(L(P) = [‘623‘ ":Qj_: H'-x(L(V:.J))]@ [“:él 17,-1'(1’;)]-
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ProoOF. As a consequence of Lemma 2.7 we have
n om-1
Lp=U U @,
i=1 j=1

where Q;;=0Q,;(P) and the intersections Q;;NQ;,,, and Q;,_,NQ.1,
always are ordered sets with ¥, ;, ,, respectively V., , ,, as final elements. Using
the Mayer-Vietoris sequence repeatedly we find

n m-—1

Hr(L(P)) = G—)l ®l Hr(Qi,j) .
i=1 j=

Apply the Mayer-Vietoris sequence once more to the system

(@i VipVij+1, Pij) Since V; ; has a final element we obtain an isomorphism

for every r>0

Hr(Qi,j) = Hr—l(Pi,j)

where i=1,...,n, j=1,...,m;—1. Using Lemma 2.14 the lemma follows
immediately.

LeEMMA 2.16. Let A€ A and let Ic{1,2,...,n}. Suppose 2<#I=k<n. Let P,
=P(A) and P;;=P,(P,_ {i}(l)). Then for every r=0 we have an isomorphism
'(-BI ﬁr(PI,i) = ®l Hr(L(Vi(le{l})))@Hr(Pl) s
* i+iy
where I={i; < ... <iy}.

Proor. Define Pj;; via the intersection property
P;,u = P;.in P;J
for every pair i,j € I. From the proof of Lemma 2.12 we deduce P;,h.i,
= P;-il,i,-. NPy, foreveryj=2,...,k Forj= 1,...,k—1 we have the inequalities
P, < Pri, < Vi(Pr—gi)
and from Lemma 2.12 the equality
(**"*) Pl,i,” = Vlj(Pl—{i,})""(Oa Bi,“-ﬁuuirl) .

Thus Py, <V, (P;_qi)) In addition we have the inequality V; (P;_(;)) =7+,
<Py; ;.. Thelast statement is an immediate consequence of the two relations

U

Vi(Prog)—Tier < Prie ViProg)—Tyss < Pry-

The first follows from equation (*****), the other is easily deduced from
Lemma 2.12 using the analytic formula for Pj;. Thus we have
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) Vi(Progp)—Tis1 S Pry, < Vi(Pr—gy)
i) Vi(Pr-g)—riys1 S Pry,, < Vi(Pr_giy)
i) X(Pp,,) = X(Vi,(P1-gp)
iv) Y(Pp) = Y(Vi(Pr_iiy) -

Applying the Mayer-Vietoris sequence three times we obtain for every r 20 an
isomorphism

Hr(PI,i,,i)QHr(PI,i,“) = H'(L(Vij(PI—{ij})))GH’(PIvileu) *

But P;; ; =P/ so an iterated use of the described process will give the lemma.

We are now in position to state and prove the main result of this paragraph.

THEOREM 2.17. Let Ae A, A>0 and P;=P;(A), as above. Let n be the
number of edges of M(A). Then for every integer r =n there is an isomorphism

AL -G © @@ Atir|e
@[é D D Hr—k(L(Vi(PI—{i}))):l

k=2 #I=k iel
i%iy

where Py=2 and I={i;<... <ij}.

Proor. This is just an iterated use of Lemma 2.15 and Lemma 2.16, where
we for each step increase the order of I. Remember that if I + &, P; € A if and
only if I={1,...,n}. Therefore the process stops when #I=n. Moreover, for
$1<n we have L(P)=P).

Now go back to the calculation of the right-hand side of the equation in
Proposition 1.3. In Theorem 2.17 we made the assumption A>>0. In fact it
suffices to know that A> Y72 ! r,. This is to ensure that all the points needed in
Lemma 2.16 really are elements of A.

Put

n+1
zZ= {AEA| A>y ri}
i=1
and recall the definition of

U= {@beZi| b>p+a-¢ or a>p+b-¢},
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see (2.5). Put
= (A-Z)N (A-U).

W is a finite set containing all A € A— Z with the property A (4)+0. Since for
each 4 € 4, L(4) is a finite ordered set, there exist N’ such that H,,(L(4))=0 for
all m= N'. Since W is finite we may choose N’ such that H,,(L(4)=0 for all m
2N’ and all A € W. Putting h,,(L(4))=dim, A(L(4)) we have thus proved

Z hw(L(2) = z hw(L(2)

for every m= N'. Going back to Theorem 2.17 we see that the problem is to
calculate the number ¥, h,—i(L(V;, #(P1(2)))). So we need a lemma.

LeMMA 2.18. Let Z = A and N’ be defined as above. Let N=N'+n. Pickm=N
and let (k,1,i, j) be a quadruple which occurs in Theorem 2.17. Then we have the
equality

bk (L (Vi j(P1(A))) = ;Zz hm-(L(2) .

i€
Proor. The map A V,;(P;(4) from Z into A, is obviously a rigid
translation. Of course we have A2V, ;(P;(4) so
Z c {AeA| 3X e Z with A=V, ;(P,(X))} .

Let X € Z with V, ;(P;(X)) ¢ Z. We have m—k = N —k2= N’ and by definition of
N'; By (L(V; ;(P1(X))))=0. Since

Y B k(L(Vij(PiA)) = 2 B (L(R) + Z B (L (Vi (P1(X))))

AeZ

where Z'={X € Z | V,;(Pi(X)) ¢ Z}, we have proved the lemma.

THEOREM 2.19. Let the number N be as above. Let for every mzN,y,
=3 2¢ 4 huL(A). Then there exists a recursion in the y’s: y,, =3t Ry"Vm—x given

by
n—1 n
= . k—1 k=1,2,...,n,
e

where n is the number of edges of the maximal polygon M(A) of A A>>0, and §
=Y"_, (m;—2), where m, is the number of lattice points on the ith edge of M(2).

Proor. Due to Lemma 2.18 and Theorem 2.17 the only problem is to
calculate the sums (I={i;<...<i})
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m—1

§; = Z Z Z Ym—k
#I=k-1 &1 j=1

S2 = Z Z Ym-k -
#I=k jeg
i+i,

This is a purely combinatorial problem and it is easy to show that

n—1

(,'j)-(k—l)-ym-k

COROLLARY 2.20. Let A’ S Z2 be a saturated rational monoid, and let k[A'] be
the associated monoid algebra. Consider the corresponding isolated singularity of
the affine scheme X =Speck[A']. The Betti series B(t)=3,>oBnt™ of the local
ring of this singularity is rational with denominator

e [}

Proor. Follows immediately from Theorem 2.17 and the formula of
Proposition 1.3 implying B,,=7,,—-, for m>0.

Sz

which proves the theorem.
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