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INTRODUCTION

The fundamental problem of deformation theory is finding a classifica-
tion space for all deformations of some object. If the object is a com-
mutative k-algebra A, we consider diagrams

S—— 4

Nt

k—— 4

where S is a local artinian k-algebra, Aisflat over S, and A® sk=~A The
set of such diagrams, modulo natural isomorphisms, is called the set of
deformations of 4 to the algebra S, denoted Def ,(S). Def ,(—) may be
regarded as a functor from the category of local artinian k-algebras into the
category of sets, and a natural question is whether the functor is represen-
table. This was studied by Schlessinger in [Schl] giving in general the
answer to be “no,” but under some conditions there is a surjection
Mor(H, —)— Def,(—), where the k-algebra H is the “hull” of the
deformation functor, parametrizing all deformations.

In [L1] Laudal gives an explicit description of H in terms of algebra
cohomology

APk, A; A)= lim""'" Der,(—,A4) p=0.

(k-free/4)"

The vector space 4'(k, A; A) is the dual of the tangent space of H and the

products A'(k, A; AY® A'(k, A; A) > A*(k, A; A) give the local equations

for H. Giving a formula for H in terms of 4 is of course, in general,

impossible. If we restrict to monoid algebras, i.e., algebras where the multi-

plicative structure is determined by the additive structure of some monoid,

the problem is much closer to its solution. In Section 2, we develop a
102
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COHOMOLOGY OF MONOID ALGEBRAS 103

theory for calculating algebra cohomology of monoid algebras, using only
the combinatorial properties of the monoid. Thus the problem of finding
the hull of the deformation functor is at least reducd to a combinatorial
problem,

Several authors (among others [L-S;R;Sch2; Ch]) have tried to
calculate the algebra cohomology groups for k-algebras of various kind.
For two-dimensional torus embeddings over a field of characteristic zero,
formulas for the lowest degree groups are known. But they have been
computed by quite different methods, using also the additive structure of
the monoid algebras, which are shown in Section 1 to be unneccessary.

The sections of the paper are organized as follows: In Section {, we
define various cohomology theories: algebra cohomology in the category of
k-algebras as well as in the category of monoids, and Harrison cohomol-
ogy, introduced by Harrison in [H 7}, which is defined on the complex level.
For monoid algebras &[ 4] all theories coincide.

In Section 2, we show that the cohomology of Section 1 can be deter-
mined by using only the combinatorial properties of the monoid. We intro-
duce the notion of monoid-like sets and Harrison cohomology of such.
That leads to the isomorphism of Theorem 2.10,

Hare”“(A, k[A1)S HA?(A, — A(=21), A, ;k),  p=0,

relating graded algebra cohomology with the purly combinatorial cohomology
of monoid-like sets, and as a corollary the vanishing of algebra cohomology in
positive degrees (Corollary 2.12).

In Section 3, we apply the theory to the case of two-dimensional torus
embeddings. For those algebras we have a complete description of the
monoid and we are able, because of certain vanishing properties, to give
the algebra cohomology in terms of Harrison cohomology of finite subsets
of the monoid.

In Section 4, we define products in algebra cohomology of monoid-like
sets and relate them to the products of algebra cohomology. In the special
case A'(k, A; A)® A'(k, A; A) > A*(k, A; A), giving the local equations
for the formal moduli space H, we show (Theorem 4.8) that the product
can be computed by an ordinary cup-product in stead of the much more
complex composition product.

Throughout the paper we work over a ground field &. The monoids are
always assumed to be finitely generated, ie, we put a noetherian
hypothesis on the monoid algebras. When the module of values in different
cohomology groups are the ground field &, it may be omitted, without
causing any confusion.
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1. CoHOMOLOGY OF MONOIDS IN DIFFERENT CATEGORIES

Let k-alg be the category of commutative k-algebras, and let k-free be
the full subcategory of free commutative k-algebras, i.e., polynomial rings
over k. Let 4 be an object of k-alg and denote by (k-free/A4) the category
where the objects are the morphisms I"—% A of the polynomial ring I” into
A, and the morphisms are commutative diagrams

r-=>r,
1) \ / 51'
A

If M is any A-module we define the functor
Der, (—, M) : (k—free/4) — Ab

by the equality Der, (5, M)=Der, (I, M), where M is considered as a
Imodule via § : "> A.

DeFmNITION 1.1. With the notation as above we define the algebra
cohomology groups of 4 with values in the 4-module M by

APk, A; M)= lim'» Der,(—, M) p=0.

(k-free/A4)’

Let F, be a free k-algebra and F,—~%> 4 a surjection. Consider the semi-
simplicial k-algebra

. I « —— b m—
F_.Af"—'Fo(-__—Fl‘“‘—Fz — ",

where F, = Fyx 4--- x4 F,, the fibered product of p+1 copies of F;.

PrOPOSITION 1.2. There exists a Leray spectral sequence with
E59=HPAYk, F, ; M)
converging to the cohomology A°(k, A; M), where F, is as above and M is
considered as an F_ -module via 6.

Proof. Follows immediately from the Leray spectral sequence of
[L1, (2.1.3)1. §

Let mon be the category of commutative monoids, and let free mon be
the full subcategory of free monoids, i.e., monoids isomorphic to Z”, . Let
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A be an object of mon and consider the category (free mon/A4) where the
objects are morphisms I'—2» A, with I free. Define

Der(—, M) : (free mon/A) — Ab,
where M is a k[ A]-module (and therefore a A-module) and
Der(é, M) =Der(I, M)
={D: > M| D(y,+7:)=7, D(32)+ 72 D(y))}.

M is considered as a /-module via 6.

DeriniTION 1.3, With the notation as above we define the algebra
cohomology goups of A with values in the A-module M by

A7(A;M)= lim'"” Der(—, M) p=>0.

{free mon/A)’

Let I'% A4 be surjective, with I a free abelian monoid. Consider the
semi-simplicial monoid

r A «—5—1"0=1’*‘4__‘_F1=I“XAF«——-‘1‘2=><ArxA[‘<—..._

PrROPOSITION 1.4. There exists a Leray spectral sequence with
E34=H"AYT,; M)
converging to the cohomology A" (A; M).
Proof. Follows from [L1,(2.1.3)]. |}

Now observe that for an abelian monoid A4 and the associated monoid
k-algebra k[ A] we have the equality

Der(A; M)=Der, (k[ A]; M).

Consider the semi-simplicial monoid I”, defined as above. It is easily seen
that the associated k-algebra k[I",] is a semi-simplicial object of the
category k-alg. Moreover, there is a natural morphism of semi-simplicial
k-algebras

D k[ ]-k(I].,
where for each n> 1
D, k[ Ix,I'x - Xg L] = k[T %0y kLT Xupay -+ Xugar K0T

is defined by (¥ (1, . 17"), and @, is the identity.



106 ARNE B. SLETSJQE

Suppose @, is surjective. Then it follows from the proof of (2.1.3) in
[L1] that we may replace k[I"], by k[ 1", ] in Proposition 1.2. The reason
is that if we replace the complex C, = {(Z,k[I'],). d,},., of Lemma 2.1.1
in [L1] by C.={C(Z,k{I},]).d,},., we still have a resolution of
C(Z,k[A]) in the category Ab%* ™" So we must show that k, is
surjective.

k{I'] has a natural A-grading so we may work on the A-homogenous
parts. Pick ie A. Since A is finitely generated there is a finite number of
monomials ¢, ..., t"" such that §(¢"") = t*.

Let @ be a homogenous element of k[I'], of degree i. We can write

1 " m ”
w—_—(z a 'y b,y ety d,-f"‘),

i=1 i=1 P=1 =1

where a,, b;, ¢;, and d; are elements of the ground field k. We shall prove
the surjectivity of @ by constructing an element Wek(/,] such that
P(W)=o.

It is easily seen that the clement

mo- | m o1
W= Z a'_,('r'h)‘|,...,-,'x|+<bl _ Z a[) £ )

i=1 =1

m—1 m -1
+ Z bi plmevii ) oL +(dl _ Z (’,—) £ me e Y1)

i=2 i=1

m -1
+ Z d,‘ glm ) 4 dmth'mw--u}'m)
=2
has this property.

We have thus proved the following:

THEOREM 1.5, With the notation as above we have an isomorphism of
cohomology groups

AP(A; M)= A7k, k[AT; M) p=0.

The given definitions of algebra cohomology are rather nice-looking,
but no good when it comes to computations. For this purpose we rather
introduce the Harrison complex and prove that Harrison cohomology, i.c.,
cohomology of the Harrison complex, and algebra cohomology coincide.

Let I be a commutative monoid and M a k[ I"J-module. We use the
notation

Mor(I™, M)
={¢:I"—> M| $,,.,7,)=0if Jisuch that y,=0}.
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Note that for technical reasons we use the normalized complex, ie., the
complex consisting of morphisms vanishing on all tuples containing a zero.
The differential

d:Mor(I™", M) - Mor(I'"*', M) nxl1
is defined by

dq}(’}yl’ v iy l)= '}’l¢(}'2v s Py l)

+ Z (— 1 )i¢(}’l’ e "I'i+ yi+ Ta o« yn+ l)

i=1

+(_1)"+ 1¢('}'Is “ery yn) yn-#»l'

LemMMa 1.6, d?=0.
Proof. See, eg., [C-E]. |}

The definition of Harrison cohomology, firstly introduced in [H, is
based on the notion of shufflings of the set {1, .., n}. A permutation ne X,
is a shuffling if it satisfies the shuffle property; These exists 1 <i<n—1
such that n(j)<mn(k) whenever | <j<k<i or i+1<j<k<n Such a
permutation is called a (Z, n — i)-shuffling. Let s,,, ,=Y (sgn n)n, where n
ranges over all (i, n —i)-shufflings of {1, .., n}, and sgn n= + 1 is the sign
of the permutation n. We may view s,, _; as an element of the group-ring
Q[2,]. Now ne 2, acts on ¢ € Mor(A”, M) from the right by

(- A1y s A) = @A 10y coes Ap—ti))

and we extend this action to all @[X,] by linearity. We define, as a
generalization of the definition of Harrison in [H],

Morg (A", M)
={peMor(A", M) | p-s,,_ =0VI<i<n—1}.

LEMMA 1.7. The two-sided ideal of Q[Z,] generated by all (i,n—i)-
shufflings equals the principal ideal generated by s,, where s,=3%"_!s,, .
is the sum of all (i, n— i)-shufflings. '

Proof. Barr shows in [B] that there exists an element e, e Q[X,] with
the following properties:

(i) e, is a polynomial in s, without a constant term;
(i) e, s, =5, ;forall l<i<n-1
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Thus the ideal generated by all (i, n — i)-shufflings equals the principal ideal
generated by s, equals the principal ideal generated by e,. |

In [B], Barr also shows that the family {s,},-, commutes with the dif-
ferential 4 in the sense that s, _,d=ds,. Combining this information we
may define the Harrison complex as

Mor (A", M) = {$p e Mor(A", M) | $o5,=0}
with differential d, respecting the shuffle submodules.

DerFmNiTION 1.8, Harrison cohomology of A with values in the k[ A ]-
module M is defined by

Harr"(A, M)= H"(Mor¢(A°, M), d) nzl.

The important property of the Harrison cohomology is its vaaishing on
free monoids. This result is obtained in two steps. The first proposition
shows that Harrison cohomology commutes with (co-)products, and the
second gives Harrison cohomology of the additive monoid Z , .

PrOPOSITION 1.9. Suppose chark=0 and let M be a k[I'|]- and a
k{ T, ]-module, and therefore a k[ I’y x I';]-module. There is an isomorphism
of cohomology groups

Harr"(I", x Iy, M) ~ Harr"(I",, M)@® Harr"(I'",, M)
for all n= 1.
Proof. See Proposition 3.3 of [S]. 1
ProOPOSITION 1.10. Let M be any k[Z , ]-module. Then
Harr"(Z,, M)=0 n=2.

Proof. See, e.g., Proposition 3.1 of [B] or Proposition 3.4 of [S]. |}

The two propositions make up the foliowing important resulit.
THEOREM 1.11. If I'~Z', is a free abelian monoid and M is any k(I }-
module, then
Harr"(I, M)=0 nz2.

We end this section by proving the coincidence of Harrison cohomology
and algebra cohomology of a monoid.
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We can consider, for M a k[ A4]-module,
Morg(—", M) : (free mon/A) — complex of ab.gr.

as a contravariant functor from the category of free monoids over A
into the category of complexes of abelian groups. If we let C
((free mon/A)°, —) be the resolving complex for the functor

lim -

(free mon/1)?

we get the double complex

K™ = C*((free mon/A)°, Morg(—", M))

and the two spectral sequences

1E127.4= lim(p) H"(Mors(—', M))

2222

(free mon/1)°

"E§"’=H" m(p) MOI‘S(—',M)

(free mon/ 1Y

both converging to the cohomology of the double complex K**. We know
that for a free monoid [~

HiMorg(I, MY)=Harr(I, M)=0  ¢g=2.
For g=1, we get
Harr'(I, M)=ker{Mor (I, M) - Morg(I"%, M)}
={peMor(I', M) | ¢(y,+72) =7:0(7;) + $(1)72}
= Der(I", M),

and for the first spectral sequence, using the definition of algebra coho-
mology,

,Ep‘q_{o if g#1
2= .
AP(A, M) if g=1.

To calculate the other sequence we need a lemma.

LemMMA 1.12.  With the above assumptions we have

liﬁ MorS(_.’M)=M0rS(A‘aM)

(free mon/1)°
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and

lim Morg(—4 M)=0 for g=landp=1.

L LES

(free nom;/ .1)”

Proof. For each g>1 and every A=(4,,..,4,)eA”", we define a
morphism

EM):T(p)— A

given by E(A)(i)= 4;, where I'(p) is the free monoid on the set {1, .., p}.
We consider £(X) as an object of the category (freemon/A). If x: "> A is
another object in the same category, we have

Mor(E(h), )= { (11, 7)€ 7 | a3 )= A i=1, o, p)

and, in fact,
U Mor(E(L), a)=17.
he AP
We may construct a [[-flabby object (see [L1]) in the category
(k[ A ]-mod)freemeni1” defined by the objects £()) and the k[ 4 J-module M

o I M =[] M =Mor(I"”, M).

Uwne A Mor(E(X), %) rr

Thus by [L1] we have

im'" Mor(—", M)=0, g¢>1,

(free mon/1)"
and for ¢ =0,
lim Mor(—*, M)=Mor(A?, M).

(free mon; 1)’

The resolving complex for

m(p)

{fre mon,/1)"

is exact on functors. But Morg{—", M}s Mor(—", M) is a split injection
and the lemma follows. |

Thus we have proved the following:

THEOREM 1.13.  With the notation as above, we have an isomorphism

AP(A, M)~ H?* ' (Morg(A°, M), d) p=0.
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Combining this with Definition 1.7, we obtain

CoOROLLARY 1.14.

A”(A, M)~ Harr”* (A, M) p=0.

2. COHOMOLOGY OF MoNoOID-LIKE SETS

Let A be a cancellative monoid with no non-trivial subgroups. 4 has the
structure of an ordered set given by

A< A, if JueAsuchthat A, +pu=4,

whenever 4,, A,€ 4. Let L = A be some sub-ordered set.

DerintTiON 2.1. L < A4 is said to be a monoid-like ordered set if for all
relations 2, € 4, in L there exists ue L such that A, + u= 4, as elements of
the monoid.

Define
S (Ly={{A, ., A,)EL" | w(h)e L},

where the weight w(l) of (A) is given by w(h)=3"_, 4,€ A. The permuta-
tion group Z, acts on S,(L) by

0’(}.) = 0’(/11, ey /{") = (/ﬂ..azl(”, ey /At(,—l("‘}.

Let C,(L) be the vector space on S,(L). The action of 2, on S,(L)
induces an action on C, (L) by permuting the basis elements.

We also define the dual groups; C"(L)=Hom,(C,(L), k), with the
action of X, given by (¢-o)r)=¢(a(k)) for ¢eC"(L), 6, and
(M) e S, (L)

Denote by Sh,(L) the subspace of C,(L) generated by all shuffle-
products, ie., the submodule s, -C, (L), (see Lemma 1.7) and the dual,
C%(L)y=Hom,(C,(L)/Sh,(L), k). The differentials

C,(Ly-C, (L)
and

3 C" ML)y C(L)

481/161,1-8
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are defined by their actions on the basis elements of C, (L), resp. C"(L);

n—1

on(ils- .y n)=( YDy eney ,,)+ Z (_‘1)(/1,..., Vi ;I+l""’;‘"1)

i=1
+ ('—])"(/lls eees AH* l)
resp.

O"E(Ayy wun Ap) =4y, s 4) + z (= 1Y E(Ay,s o A Ay gy o Ay)

i=1

+(—D"EA,, s 4y )

In the case n=1 we put §,(4)=45"'¢ =0. It is easily seen that the differen-
tials are dual, i.e, for £ C"(L), we have

0"E(A)=<&(8, (M)
LemMma 22, (i) 6,,_,6,=0.
(it) For xe C,(L), ye C (L), we have
Opiq(xey)=0,(x)ey+(—1)xed,(y),
where the shuffle-products are extended by linearity.
Proof. A simple computation. ||
DeriNiTION 2.3, The inhomogenous Harrison (co-)homology HA, (L)

(resp. HA"(L, k)) of the ordered set L is the (co-)homology of the complex
C3(L) (resp. C5(L)) with the inhomogenous differential 8, (resp. ”).

Remark 2.4. There is also a relative version of Harrison (co-)homol-
ogy. Let Lyc L= A and suppose L, is full in L, ie, if yeL, yoe L, and
¥ =70, then y € Ly. The relative Harison complex is given by

C3(L— Ly, LY=C,(L— Ly, L)/Sh,(L)
(resp. C"(L— Lo, L) = {¢ € C"(L — Lo, L) | ¢(Sh, (L)) =0},
where
C,(L—Ly, L)y =C,(L)/{(A;,...4)lw(h)eL—Ly}
(resp. C"(L— Lo, L)={¢e C"(L) | g(h)=0for w(hye L — Ly}

and relative Harrison {co-)homology is (co-)}homology of the relative
complex.
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PROPOSITION 2.5. With the notation as above there is a long-exact
sequence

0— HAL— Ly, Lik)— HA'(L; k)= HA'(L— Ly: k)
< HAYL—Ly, L:k)— -

relating Harrison cohomology of the ordered sets L and L — Ly with relative
cohomology.

Proof. The relative complex gives rise to a short-exact sequence of
complexes

0 Cy(L—Ly, Lik)—» Cy(L; k)= Cx(L— Ly k)= 0,
where L — L, is a monoid-like ordered set because L, is full in L. |

The next theorem is the first main result of this section. It relates the
“local” cohomology HA”(4; k) for elements A€ A to the “global” cohomol-
ogy HA (L k). First, we explain the hat-set notation.

DerFINITION 2.6, Let L © A be a monoid-like set and let A€ A. We define
i={ieL|}<i}
to be the set of all elements less than 4, including 4 as the maximal element.

THEOREM 2.7. There exists a spectral sequence given by

E2¢=1im'" HA"(Z; k)

i€l
converging to HA*(L; k).

Proof. Using the definition of the complex it is easily seen that for some
ordered set L

Cy(L; k)= lim Cy(=;k).
ie L
The shuffle-products are homogeneous and the inhomogeneous differential
is well defined on the sets A.
Now denote by D*(L, —) the resolving complex for the invers limit over
L. Let K™ be the double complex

“=D(L, Cx(—;k)).
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We have two associated spectral sequences:
'E5 = H"HD'(L, C5(~:k)))

= HP(D(L, HAY( = k)))
=lim"” HAY( = k),
1

and the other one

"E%Y=HHY(D (L, C5(=;k))).

If 4, < 4,, the map

Ch Ay k)= CLlhys k)

is surjective and by [L2] we have

lim'” Ci(=;k)=0  p>0.
1

For p=0,
Hélim Cy( = k)= HIC,(L; k)= HAY(L; k).
L

The double complex is situated in the first quadrant and the two spectral
sequences have the same abutment. The second sequence degenerates to
HA%L; k) and the theorem follows. ]

There is a close relation between Harrison cohomology and the graded
parts of algebra cohomology. From now on we consider the case
A+(—AY=2Z" and we equip the complex Mor (1% k[A]) with a
Z'-grading. For Z,e Z’, define

Mor (A%, k[ A7)
= {gpeMor (A9 q[A]) | ¢: homogenous of degree 4, }.

¢ homogenous means that ¢(}) is homogenous and that the element

deg ¢ = w(¢(h)) —w(X)e Z"

is independent of choice of (A). It is the Z"-degree of ¢. Remembering the
definitions of ch. 1, it is easy to see that the differential respects the grading,
and that its degree is 0.
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DerFiNiTiON 2.8.  The graded Harrison cohomology of A4 with values in
k[ A] is defined by

Harr™*(A, k[A]) = H" Mor (A", k[ 4])

forn=0, ieZ'.

Put as an abbreviation M’ = Mory(A",k[4]) and M7} =
Mor% (A", k[ A]).

PROPOSITION 2.9. (a) The inclusion 11, ,, Ms' =My of complexes
induces an inclusion at the cohomology level;

[I Harr™#(A, k[A]) - Hart™(A, k[A4])  n20.
seZ'
(b) The inclusion is an isomorphism whenever Hart"(A, k[A]) is a
Z"-graded group.

Proof. (a) Let ¢ € M":* be homogenous and suppose y € M’ ! satisfies
dyy = ¢. Let ; be the i-graded homogenous part of . Since deg d =0, we
must have ¢ =dy;.

(b) Suppose Harr"(A, k[A]) is Z'-graded and let Yy e Mg, diy =0.
Then we may replace (modim(d)) ¢ by some i, which is sum of
homogenous components. ||

We are now in position to state the important relation between graded
Harrison cohomology groups and Harrison cohomology of ordered sets, as
defined in the previous section. This relation shows that we can compute
algebra cohomology of a monoid algebra only using purely combinatorial
properties of the monoid.

THEOREM 2.10.  With the notation as above there is an isomorphism in
cohomology
Harrp‘)-(Aak[A]):’HAp(A+—A(_2)9A+;k)7 p?os
where A(L)=(A+A)ynA,, and A, =A4-{0}.

Proof. Put ¢(Lh)=¢q(A)w(r)+ 4) where ¢o(h)ek. The map ¢ @, is
easily seen to induce an isomorphism of vector spaces

Mor (A", k[A]) S Cx(A, —A(—1), A, 1 k).

It also takes the graded version of the differential d into the inhomogenous
differential d. Recall that in the definition of Morj(A4°, k[4]) we agreed
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that ¢(2)=0 if 3/ such that 4;=0. That is the reason why we use the
positive part A, instead of 4. |

We end this chapter with a couple of results about graded Harrison
cohomology. A close study of the complexes C5(A, — A(—4), A, ; k) for
various A€ Z" gives the next proposition.

PrROPOSITION 2.11. Fix some n=> 1. The cohomology groups Harr™*(A,k[A])
are equal for all A€ A.

Proof. 1If ieA we have A(—A)=(—-A+ A, })n A, = A, and
A, —A(—4)={0}. This means that for all A€ 4 the complexes are the
same. |

COROLLARY 2.12. Suppose the cohomology group AF(A,k[A]) is of
finite dimension over k. Then

Harr” 44, k[4]) =0

for all Je A.

Proof. k[ A] has infinite dimension over k. |}

3. HARRISON COHOMOLOGY OF 2-dim TORUS EMBEDDINGS

The simplest, but still very important family of monoid-algebras are the
two-dimensional torus embeddings k[ 4] over a field of characteristic zero.

Let A =Z? be a commutative saturated monoid such that A+ (—4)=
Z* and let A, be the positive part, ie., 4, =A4— {0}. As earlier we put
AA)=(A+A)uA,.

We want to study the “local” and “global” Harrison cohomology of
monoids, that is, the cohomology of monoid-like subsets of the monoid as
well as the monoid itself. Also the submonoids A, — A(4) for various
Ae A+ (—A) are of great interest, and we start with a closer look at these
objects.

Fix some Ae A+ (—A4) and let 7, and 7, be the generators for the one
dimensional faces of A (see, for instance, [K-K-M-S] for details), and
define

F=T (A, A)={eA|VIeZ, A+ ¢AA)}  i=12

['; is an ordered set with the same ordering as A. Furthermore, it is easily
seen that

ryur,=A4, —A(3)
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and
r'inl,=L1,

where L’ is the “strong” link defined as follows: There is a unique
description of 4 given by

A=ay, +ayy,,
where the a,’s are rational numbers. We put
Li={l=by, +byy,ed, |1 #0,0<b<a,i=12}

(Note: For the normal link the definition is 0 < b; < a,, but A’ # 4, 0.) In the
case where e —A weseethat I' =T,=L'A=A, —A(l)=].

ProroSITION 3.1.  With the notation as above there is a Mayer—Vietoris
sequence

!im""HA"(:)-—vli_m”" HA"(;)xlm”" HA"(;)

A, - A n r
_'lif_.n,(mHAq(;)“’ l_im‘”*”HA"(l}—»..-
L Ay — A

Jor all q= 1. (We have without any possible confusion skipped the ground
field in HAY(— k).)

Proof. Using the functor HA%(=) on the system of inclusions

PN

rinrl,
of ordered sets, we get

lim HAY =)=~ lim lim HAY(~)
r,

rnnr; ]
and for the higher derivatives, a spectral sequence
End= lim‘ im "' HAY( Z )
7 I
converging to

lim "’ HAY(2).

il
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E59=0for p#0, | and the spectral sequence degenerates to the two exact
sequences

0—EL? > lim"* " HAY( =) > E}"+' >0
IETaVA]

and

0~ E7 - im'™ HA(=) x B HA%(~)

o r

- li_m”” HA‘I(:)__)E;J’_,O.

i

Putting them together, we obtain the long-exact sequence of the
proposition. |}

To state and prove the next proposition we need some technical notation
and definitions.
For ioe A and L< A we let C, (L, 4,) be the vector space on the set

zé_, n= 00}

i=1

S, (L, i) = «{(m, ot )ELY

and consider the complex (C. (L, 4y), ), where the differential is the
homogeneous part of the inhomogeneous differential J, of Section 2,
denoted ¢,. We recall the definition

an : CH(L’ ’2'()) - Cn I(L7 )“0)
with
n- 1

Bnrr o A= X (=Y (Ays o Ay Ay 1a o ).

i=1
It is easy to see that ¢,_, ¢, =0. Denote by
U,={lo€A| H,(C (4, 4), 8)=0}
the subset of A where the ¢ th homology of the given comple vanish.
PROPOSITION 3.2. The map HA%(,; k)~ HAY(A, k), =1, induced by

the inclusion A, < A, is an isomorphism whenever L, — A, < U,, where U, is
defined as above.

Proof. 1t is enough to show the proposition for L< L'c U,, where



COHOMOLOGY OF MONOID ALGEBRAS 119

L'— L =1{u} is a one-element set and u is minimally greater than L, that
is if u>u' for some u’ € U, then 1’ € L. This is because we have a filtration

illeCLZC e CL_rzj:.z,
where L,,,—L;={u,;}, u; is minimally greater than L, and u, belongs

to U,.
q
Consider the exact sequence of complexes

0 DL, u; k) C4(L'; k)= C4L(L; k) =0,
where
D4(L usk)={&:C,(L,u)~> k| &(xey)=0}
and the differential is the dual of the homogeneous differential given above.
x e+ y is the shuffle-product extended by linearity.
We must show that the complex (D%4(L, u; k), 2) is acyclic (except for

degree zero). Dualizing the problem we are led to the study of the short-
exact sequence of complexes

0— Sh(L,u)—C.(L u)— C5L,u)—0, (*)

where Sh,(L, u) is the subspace of C,(L,u) consisting of all shuffle-
products xe y with xe C,(L,u) and yeC, ,(L,u), and
CJ(L,u)=C, (L, u)/Sh, (L, u).
The differentials are the homogeneous ¢ defined above.
The question is whether a homotopy for C (L,u) will induce a

homotopy for the subcomplex Sh (L, u). We are working over a field of
characteristic zero, and the following lemma gives an answer.

LEMMA 3.3, Let g be a homotopy for C (L, u). The map
h:Sh (L,u)— Sh,(L,u)
defined by

h(xey)=3(g(x)s y+(—1)xeg(y))

for xeC,(L,u) and yeC, ,(L,u) is a homotopy for the subcomplex
Sh, (L, u).
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Proof.

(dh+ hd)=d(3(g(x) e ¥))+d(3(—1)"(x g(3)))
+h(d(x)e y)+ (= 1) h{xed(y))
=3(d(g(x) s y+(—1)"""g(x)ed(y)
+(—1)7d(x)s g(»)+ (= 1) xed(g(»)))
+3(gld(x)) e y+(=1)"" " d(x)» g(y)
+ (=P glx)ed(y)+(—=1)xeg(d(y)))
=3((dg+ gd)(x)e )+ ((— 1) '+ (=1)?) g(x)+d(y)
FU=1?+(=1)" Hdix)eg(y)+xe(dg+ gd)(y))
=4 {xesp+xey)

=Xe y' l

The assumption in the proposition ensures that the complex C_(L, u) is
acyclic and since working over a field, dualizing of the complexes in () will
give an inclusion of acyclic cochain complexes

Dy(Lyu;kye D (L, u;k). 1

The assumption in Proposition 3.2 is that the set iy — 4, sits inside u,.
So we must study the set U, or better, the complex C (L, u}) with differen-
tial 4.

A basis for C (L, u)) consists of all tuples (#,, .., n,)€ LY with 3 n,=u.
They may also be written as ordered tuples:

m<m+n<---<m+i+ - +0, <+ - tH,=u

Observe that all tuples have u as their maximal element. Removing this top
element we obtain an ordered tuple of the ordered set Lk(u)=
{AeL| i<u}, the link of 4. It is easy to see that this sets up a bijection
between {J, S, (L, u) and the simplicial set associated to the link Lk(u).

The homogeneous differential coincide through the bijection with the
usual differential of the ordered set, the alternating sum of the face maps.
The homology of the simplicial sets Lk(u) are studied in [L-S] and we
state, without proof, one result from his paper.

Let o be the right-most minimal element of 4, excepting the generator
of the face v,, and f the left-most minimal element excepting the generator
of the face y,. Denote by U the subset of A, given by

U={m-B+n-y,,m-a+n-y,|mneZ, n>1}.
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LemMa 34. For all g1 we have the inclusion U< U,,.

Proof. See Lemma 2.5 of [L-S7. |}

COROLLARY 3.5. The morphism HAY(%, < A,) is an isomorphism Jor all
g =1 whenever J,— 2, U.

Proof. Combine Proposition 3.2 and Lemma 3.4. |

To calculate the graded algebra cohomology groups we have seen that
we need information about invers limits of the pre-sheaves HA"(Q) over
various ordered subsets of the monoid A. In [L2], it is shown that these
calculations can be made over an even smaller subset under the assumption
of cofinality.

Let I'y< I" be ordered sets. If yeI" we put B, (Ig)={y'el |y >y}

DeFNITION 3.6. A subset I, = I is called cofinal if the following two
conditions are satisfied:

(i) Forevery yel, we have B, () # &.

(i1) For every finite family y,, v,, ... 7, of elements of B (/) there
exists a yo€ B, ([y) such that for every i= 1, 2, ..., s we have either y, >y, or
Yi<7%o-

Using the theory for cofinal subsets it is rather easy to prove the next
proposition.

PROPOSITION 3.7. For the subsets I, and I'5 of the monoid A, defined
above, we have the equation

lim'” HAY(~)=0  for i=1,2,p>1,q>1.

T,

Proof. In the ordered sets I', ~n U and I, n U there are cofinal subsets
{¥1s 72, -} isomorphic to Z, andAsuch that j,—7,_, = U. Equipe these
with the constant presheaf HAY(—). It is well known that the higher
derivatives vanish. Using the cofinality of the subset and Theorem 1.2.4 of
[L27 the proposition follows. |}

The following is also true:
ProrosITION 3.8. For a two-dimensional torus embedding A=k[A] we

have
HAYA,)=0  for ¢=2.

Proof. An immediate consequence of Corollary 2.12 and the fact that A4
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is an isolated singularity (see, for instance, [P]) and therefore has finite

dimensional cohomology groups. |

Remark 39. If we put L=4, and Ly=4, —A(4) into Proposi-

tion 2.5 and use Proposition 3.8 we get an exact sequence
0 HAY A, — A(A), A, ; k)
— HAYA, ;k)—> HA (A, — A(A); k)
- HA* (A, —A(A), A, ;k)—0
and isomorphisms
00— HA" (A, — A(A); k)
- HA" YA, —A(A), A, ;k)—>0 nz2.

We come back to the use of this in the next section.

The last theorem of this section gives the algebra cohomology groups of
a monoid algebra in terms of Harrison cohomology of finite monoid-like

subsets of the monoid.

THEOREM 3.10. Let A be as above and let L€ A. There is a spectral

sequence E59 converging to HA(A, — A(4); k), where

0— E%¢— lim HAY = ) x lim HAY(~)

n I
- lim HAY=)—>E} -0
IAEaY &)
and
ES¢=lim'"" " HAY = k)
L'
Sfor p=2.

Proof. Using Proposition 3.7, the Mayer—Vietoris sequence
Proposition 3.1 splits up into the following exact sequences:

0— lim HAYZ)-lim HAY( = )xlim HAY =)

ol I I

— lim HAYZ)- lim'" HAY(~)—-0

i riur;

0— !i_ng(")HA"(—:)——-) Lim”’*”HA"(:—)——)O

Iinr ror;

of

Combine this with the spectral sequence of Theorem 2.7, and the theorem

follows immediately. ||
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4. PRODUCTS

In this section we define products in Harrison cohomology. First, we do
it for algebras, and then in the graded case, for monoid-like sets. In the last
part of the section we consider the case of two-dimensional torus embed-
dings where we concentrate on the cup-products. Throughout this section
the k[ 4]-module M is k[ 4] itself and we start by defining the products in
the complex Morg (A", k[A]).

DermNITION 4.1. Let ¢eMorg(A”, k[A]) and neMorg(A™, k[A]).
Define the composition product Eenpe Morg(A" "~ k[A]) by
Eop= Y (=170,

i=1
where the i th composition product is given formally as
é 2 r’()"l » ey )'n+m - l)
= 5()~1s ey j’i— 1» r’ ('i'i’ bt '1"i+n~ 1)9 j'i+n’ At ] ’{n+m l)’
By formally, we mean that we extend the composition by linearity.

It is easily seen that the composition product of two cocycles not
necessarily again is a cocycle. But if we anti-symmetrize the product the
cocyle property survives.

DermNITION 4.2. The graded commutator product of the complex
Morg(A°, k[A]) is defined by

[En]l=Cen— (=1 D= Dyeg

where & and 5 are as above.

Lemma 4.3. Letr & and n be as in Definition 4.1. Then we have

dl&n]=[& dnl+(=1)""VLde, n].
Proof. See Theorem 4 of [G]. }

In Lemma 1.7, we define the element s,, the sum of all (i, n—i)-
shufflings, and we gave its action on Mor(A4", M). We extend the action to
the products.

LEMMA 44. Let & and n be as above. If &-s,=n-s, =0, then (Eon)-
Sn+m——l=0 and therefore [C’ '1] Sham-t =0.
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Proof. See Theorem 5.7 of [G-S]. |}

A consequence of the Lemmas 4.3 and 4.4 is that the graded commutator
product is a product in Harrison cohomology, i.e., it defines a graded
product

[—, —1:Harr(A, k[A]) x Harr™ (A, k[A])

— Harr"* "~ (A, k[ A]). (%)

The grading to which we refer is the N-grading of the cohomology
groups.

Remember from Chapter 2 that the semi-group A is a concellative
monoid, contained in some Z", and with no non-trivial subgroups. Such
monoids have natural structure as ordered sets defined by the monoid. The
monoid algebra k[ A], where A= Z",, has a natural Z’-grading, and the
same is true for the Harrison complex Morg(A°, k[4]).

We denote by Mori(A°, k[4]) the subcomplex of Morg(A", k[4])
consisting of all morphisms of degree ZeZ’. The N-graded product is
obviously N-Z"-bigraded and we may write the Z'-graded version of (x):

[—, —1:Harr™*(A, k[A]) x Harr™ (A, k[ A7)
_’Harrn+m7 l./‘.|+ig(/" k[A])
Remember that Theorem 2.10 gives an isomorphism between Z’-graded
Harrison cohomology of monoid-algebras and Harrison cohomology of

monoid-like sets. Using this correspondance we get the following important
theorem (where we again have skipped the ground field):

THEOREM 4.5. Let AcZ', and A(A)y=(A+A)nA,. There is a
Z"-graded product in Harrison cohomology of monoid-like sets
[ —):HAMA = A(4)), 4 YR HA™MA, — A(4,), 4,)
S HA" " YA, —AA + A, A,)
defined on complex level by
[&n)=Con—(—1)" "D Dyog,

where
7] .
Ty (—1)""""”'é(*/,,---.v,»], i
i=1

i+n—1

+ z Yio Vidns oo 7n+m—l>"7(‘}’ia ey 71+n—1)
k=0

and £ C(A, —A(=A), A, ) neCl(A, —A(=1y), A,).
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Proof. Just straightforward, but explicitly use the isomorphism of
Theorem 2.10. §

We study the product of Theorem 4.5 in the case n=m=1. This
corresponds to the cup-product of algebra cohomology and is the main
tool in the study of liftings of algebras.

Remember that in the torus case we have certain vanishing theorems and
consequently the following relations between relative and non-relative
Harrison cohomology (Remark 3.9).

In the lowest degree an exact sequence

0— HANA, — A(2), A, )~ HA'(A,)

> HANA, — A(A)) 25 HANA, — A(A), A4,) =0
and for the higher degrees, » > 2, an isomorphism
0— HAYA, — A(A))—2> HA" YA, — A(A), A,)—0

(Note: It is of course not necessary that the algebra is a torus embedding
of dimension 2. What is required is that the Harrison cohomology
HA"(A ) vanish for n > 2. The above sequences exist and the rest of this
section work just as well if we more generally take 4 =k[A] to be a
monoid algebra with this vanishing property.)

We have a diagram of maps

HANA, — A(4)® HA(A , A(4,))

|

HAY A, = A(A), A )@ HAN A, — A(Ly), 4,)
HAY A, — A2+ 43))

|

T HANA, — A+ 45), 4,),
where the leftmost vertical arrow is the tensorproduct of two §,’s for the
values A=4, and Ai=4,. The horizontal arrow is the product of
Theorem 4.5 and the rightmost vertical arrow is 8, for another choice of 4.
If we use the fact that the isomorphism f§, has an invers, we get a map

Wi HAYA, — A(AL))@ HAY (A, — A(2y)) = HAXA , — A(A, + A,)).

This is a bilinear map which is symmetric and we call it the (Z'-)graded
cohomology product of A1, .
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Now let us look at the product from another point of view. There is a
natural cup-product defined on the complex level. We consider the diagram

0

|

CH A, = AL D®CHA, — A(4,)) CHA , — A%y + 4y)),

I |

C'(4,)®C'(41,) — C*(4,)

where ¢(&, n)(71, 72) = E(v() - n(y2) + &(v2) - n(y,), the symmetric cup-product.
. If ceCla, — A(4y)) _and ne C'(A, — A(4,)) we make extensions
E, feC'(A,) by setting E(A)=FA(A)=01for A¢ A, — A(A;), resp. A¢ A, —
A(4y).

DEerFINITION 4.6. With the notation as above we define

Eun=a(g(& 7)),

where a:C*(A,)— C¥ A, —A{4, + 4,)) is induced by the restriction
A, —A(4, + 1) 4, .

We want the cup-product not only to be a product of complexes, but in
fact a product in cohomology. The next lemma gives the details.

LemMa 4.7. The cup-product of Definition 4.6 is a product of coho-
mology, ie., if dé=dn =0 then also d(£ Un)=0.

Proof. Let y|,y,, y;€d, satisfy 3, +7y,+7;<A,+4,. Then we have

dCun)yy,v2,73)
=¢un(ys ys)—Eun(y +72,73)
+&un(yr, v2+vs)—Sun(y, 72)
=&(y,) Aiys) + Er2) iya) — i+ v2) iva) — E(ra) G +72)
+EG) A2+ 73+ &+ 7)) — E@) Al — &) AG)
=d&(y\, 72) A3+ E(33) - dily1. 72) — E31) - (72 73)
—d&(y2, 73) A7)
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Now suppose df=dn=0. We either have y, <A, and then necessarily
v2+73< 4, or we have 7, € 4,. In either case,

E(V])'dﬁ(}'z, 73)=0,

in the first case because dij(y;, y3)=dn(y,, y:)=0 and in the second case
because E(y, )=0.

The same procedure can be carried out for the relations y, € 4,, y, <4,
and y;<4,. §

Using the lemma we know that the cup-product {J induces a product in
cohomology, which we also denote by |J;

U HAY A, —A(L)® HA (A, — A(4y))
— HAXNA, — AG + 4y)).

Note the analogy with the product ¢ defined above. It is in fact the same
product, as proved in the next theorem.

THEOREM 4.8. The two products ¢ and () of Harrison cohomology
coincide, ie.,
Ylx, yy=xuy,
whenever xe HA (A, — A(A,)) and ye HA' (A, — A(4,)).

Proof. Let feCY A, — A(4;)) with df =0 represent x and
ne CYA, — A(4,)), dy=0 represent y. & and » are extended to whole A |
by &, resp. #j, where &(A,) =ii(io) for Age A(4,), resp. ig€ A(4,).

The product (&, n) is represented in C*(A, — A(2, +21,), 4,) by
[dE, di7]. On the other hand, x U y is represented in the same group by
d(¢(g7, #)). We must show that the two elements are cohomologous, te., are
equal modulo boundaries in C* (A, — A(4A,+ 4;), A, ).

Let y,,y,, 7;€ 4, . Then we have

(dE, dif](71, 720 v3) = (dE o dij + dij« dE)(y1, 72, 73)
=dl(y,+ 72+ A5, 73) (31, 72)
—d&(71. 72+ 73+ A2) dii(y2. 73)
iy, + 72+ Ay, v) - dE(1, 72)
—dii(y1, 72+ 73+ 4) - dE(72,75)
= d(¢(E, )10 V21 73)
—d(dE - )71, 720 73) — AT -ENT 1L 720 730

where d€ - 7i(y,, v2) = dE(y 1, 72) Al + 72+ Ay).

481/161/1-9
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Thus dfeC(A , — A(i, +4,), 4, ) implies dEfje CHA, —A(i,+4,), 4,). |

The theorem gives a nice way of computing the cup-product via the
ordinary cup-product rather than the less elegant composition product.

(B]
[C-E]

[Ch]

[G]
[G-8]
[H]

[K-K-M-S]

[L-5]
[L1]

(L2]

[P]

(R]
[s]
[Schi]
[Sch2)

[Sch-S]
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