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Abstract. We prove that the Cup product and the Tie bracket of Hochschild

cohomology are graded products with respect to the decomposition.

Let k be a commutative ring with unit and A any commutative k-algebra.
In [G] Gerstenhaber studied the properties of the cup product and the Lie
bracket in the Hochschild cohomology of A with values in itself. He showed
that the cup product turns Hochschild cohomology into a graded commu-
tative ring and that the bracket product ¢s a graded Lie product. He also
proved that the adjoint representation « +— [a, 7] is a graded derivation of
Hochschild cohomology considered as a ring under the cup product.

Restricting to the zero characteristic case, Quillen gave a decomposition of
Hochschild cohomology

H"(A,A) = P HJ}y (A, A)
=1

using exterior powers of the cotangent complex. The decomposition was
studied further by Gerstenhaber-Schack [G-S], but by using quite different
methods. In this paper we show that the two binary operations are both
graded with respect to the decomposition.



Let k be a commutative ring containing the rational numbers Q and let V
be any k-module. Let

TV =k VeV g, ..

be the graded k-bimodule where we write (vy,...,v,) for the homogenous
element v, @ ... @ v, € VO, The unit of TV is denoted 1 € k = V®°, All
tensor products are over k.

The symmetric group S,, acts on V®" by permutation of the factors;

(V1 e s 0n) = (Vgm1(1)s -+ s Vo1 (n))

We extend the action by linearity to Q[S,], making V®" into a left
Q[S,,]-module.

Let P;1 =1, U...U I be a segmented partition of length k£ of the totally
ordered set I = [n], i.e. each I; is a segment of I and the sets I; are pairwise
disjoint. The number n is called the total weight of the partition. Define
Morp(I,I) to be the set of bijective maps o : I — I such that o is order-
preserving on each I;. A map o € Morp(I, 1) is called a multishuffle (if the
length of P equals 2 this is an ordinary shuffle). Put

sp = Z sgn(o) o € Q[S,]

c€Morp(I,T)

The partition P induces a natural tensor product decomposition of V©",
given by VO = Vi @ ... ® Vi, where V; = V®" and n; is the number
of elements in ;. The action of sp for various P of common length k
and arbitrary total weight n, defines a multilinear homogenous map s*) :
(TV)®k — TV where we use the notation

s (0), 0 0) = vy x ek
LEMMA (1). Let I be a totally ordered finite set and let P; I = [{Ul5UI3

be a partition. Let J = 11U ly. Let QQ; J = 11U I be the subpartition and let
R; I = J U3 be the “recoarsened” partition. Then we have

Morp(1,I) = Morg(I,I)x Morg(J,J)

Proof. There is obviously a map ¢ : Morg(I,I) x Morg(J,J) —
Morp(I,I) given by

6(0, N (j) = {j&f(j) e



If ¢p(01,\1) = ¢(02,A2) we have by definition o1 = o9 outside J. If j € J
we have o1 0 A1(j) = 09 0 Aa(j). Now suppose A\; # Ay. Then there are
i,7 € J such that A;(i) < A1(j) and Ay(i) > A2(j). But o7 and o9 are order-
preserving on J and we get a contradiction since o1 o Ay = 09 0 A\o. Thus
A1 = Ao and ¢ is injective.

On the other hand let ¢ € Morp(I,I). Since o is a bijection there is an
order preserving bijective map « : o(J) — J. The composition awo |y €
Morg(J,J) and the map 8 : I — I defined by 8 =a ! on J and g =0o
outside .J is an order preserving map on both J and I3. Thus 8 € Morg(I,I).
Finally, ¢(3, 0 0| ;) = ¢ and the lemma follows. O

PROPOSITION (2). The bilinear map TV TV = TV defines a graded
commutative associative product on T'V .

Proof. The associativity follows from the lemma; we could as well have
chosen J = I, U I3, since

(ay % ay) xaz = sr(sq(ay,as), as)

= SP(Q17Q27Q3)

Let I = I; U I3 be a partition and let v; @ v, = v be a similar splitting of
v e VO, Let p: I — I be the permutation changing I; and I, i.e. order
preserving on each I; and such that p(j) < p(i) if ¢ € I and j € I. The
sign of p is given by sgnp = (—1)™" where n; is the number of elements
of I;. Let (P o p) denote the partition given by I = I, U Iy, Iy < Iy. Then,
using the definition of sp, it is easily seen that s(po,) o p = sgn(p) sp, and
thus
vy %y = sp(v D 0y)
= (sgnp) spop(vs @ vy))
= (sgnp) vy * vy

Put 1 xv = v and the proposition follows. O

Define a k-linear map A : TV — TV @ TV by

n—1
Avyy ..., v,) :1®(v1,...,vn)—|—Z(vl,...,vi)®(vi+1,...,vn)
=1
+ (01, y0,) @1

It is well known that A is a comultiplication on 7'V and thus induces a
coalgebra structure on T'V. We denote by A(¥) the iterated comultiplication.



THEOREM (3). TV with multiplication * and comultiplication A is a
bialgebra.

Proof. (cf.[S]) O

Now suppose V' = A is a commutative k-algebra with units k — A. Let A,
be the cokernel of the unit map, and let Cq(A) = A @ T Ay be the graded
commutative associative algebra with multiplication (a ®@ a/) x (b @ b') =
ab @ (a’ *b'). Define the A-linear map 0 : Co(A) — Co(A) of degree —1 by

d(ay,...,a.) =ay(as,...,a —|—E Yi(at, ..., aiaiy1,....a,)

+ (=D"a-(ay,..., ar_l)

An easy computation shows that 92> = 0 and in addition Barr proved (cf.[B])
that
(a1, ... a;) % (Aig1y.--yapn)) =0(a1, ..., a;) * (Wig1y--.,an)
+ (_1)1'(&17 SRR ai) * a(a'L'+17 SRR a'n)

Thus Co(A) is a differential graded commutative algebra, called the normal-
ized Hochschild complex.

DEFINITION (4). Hochschild (co-)homology of A with coeffi-
cients (resp. values) in the A-bimodule M is defined as (co-)homology of the
complex Co(A) @4 M (resp. Homa(Ce(A), M)).

Let M = A with the obvious bimodule structure and put

C*(A) = Homa(Ca(A), A)
= Homy(T A4, A)

The induced differential § acts on f:TA; — A as follows

df(ay,...,a.) =aif(ag, ..., a +Z flay, ... a;a;41,...,a;)

=1
+ (=D)"arf(ay,...,a,_1)

There are projection maps p, : TA; — (A;)®™ and we say that a cochain
f € C*(A) is homogenous of degree n if f-p, = f. Every homogenous
map g : TAy — A of degree m may be uniquely extended to a coderivation
D, :TA, — TA, defined via

n

Pn- Dy = Z(_l)(i_l)(m_m(pi—l @9 pa_i) A

=1



The composition product f o g is defined as the composition f - D,.
Using the same terminology we write the cup product as

f—g=m-(fog) A

These products were originally defined by Gerstenhaber in [G]. He also de-
fined the graded Lie product;

DEFINITION (5). The graded Lie product of the cochain complex
C*(A) is defined by

[f,9]=Ffog—(=1)""gof
where f and g are homogenous cochains of degree n and m respectively.

Observe that the multiplication of A, denoted m(a,b) = ab is a cocycle.
Moreover, it is the coboundary of the identity map; m = 0 id. Also observe
that the differential 6 may be defined as the adjoint representation of m;

of = _[f7 m]

The composition product of two cocycles is not neccessarily another cocycle,
but the cup product and the Lie bracket are.

PROPOSITION (6). Let f, g be homogenous cochains of degree n,
respectively m. Then we have
i) 8(fof)y=fodf+(=1)"0fo f=[fdf] ifn is odd.
(iii) 6(f — g)=6f — g+ (-1)"f —dg
Proof. (cf. [G]) O

Let I be the augmentation ideal of TA, ie. I = &,>1A%", and denote by
I* the k-th shuffle power of this ideal. Let I* be the image of A®™ under
the left action of 372’” = > sp where the sum is taken over all partitions P

of total weight n and of length k.

PROPOSITION (7). For all 1 < k < n we have the equality p,(I*) =
Ik,

Proof. Since p, (I*) is the image in A®™ under the action of sp for vari-
ous partitions P of total weight n and of length £, it is enough to show that
the left ideal sh;, = (sp,, Sp,,--.,sp,) C Q[Sx], generated by all multishuffles
(k))

of length k, equals the principal ideal (s; ). We need a lemma.



LEMMA (8). Given s as above, there exists another element in the

ring Q[S,], denoted e%"“, with the following properties;

i) egzk) 15 a polynomaial in sgzk) without constant term.

ii) sgn(e%m) = 1, where sgn is extended to all Q[S,] by linearity.
iii) 9l = e 9
i) (e,(lk))2 = e

v) ef{“) -sp = sp for all k-multishuffleproducts sp where P is a partition of

total weight n and of length k.

Proof. We have sgn st # 0, in fact Loday (see [L]) gives the formula

sgn s = Zle <]:> (—1)"=4". Put

1 1
egck) = Esgc) = Z sgn(o)o = €
o€ES,,

(k) (k) (k)

Suppose we have found e;", e,/ ,..., €, satisfying the given conditions.

Let eflk_)l = p(sff_)l) where p is the polynomial of i), and define

0

el = p(si) + (1=p(s0) - —" 5
SN Sp,

We start by proving the lemma for e,gm. By construction it satisfies i) and
ii). Furthermore de;, = 0 = 6112—18- ei = ¢, and the only k-shuffling in s;, is
multiplication by €. Hence ¢ satisfies i)-v).

Consider e{). Once more; by construction it satisfies i) and ii). In [L] Loday

proves that 83,(1k) = sflk_)lﬁ and therefore

(k)
Sn
dell) = ap(s() + 01 = p(s\) ) - —"5

sgn Sp

k 1 k k
= p(sh2)0 + ——5 (1 = plsi2))) - 52,0
Sgn Sy,
1
=e™ o+ + Gl e® ). 5™ g
sgn Sp

= eff_)la

since sflk_)l — ZP Sp and sflk—)l — e(k)lsflk_)l = 0. Furthermore, 8(657,k>>2 =

n—

(eflk_)l)Qﬁ = eff_)la = 0el). Hence 8((6£1k))2 — e,(lk)) = 0 and therefore



(e;’“))Q =P (this is a consequence of Prop 2.1 in [B]). The equalities

86,#:)813[7“1, ) rn]

- 651]6_)188]3[7'1, R rn]

n

aj (k
(—1) Jefl_)ISPj [P1s T, ] @O0Pa; 415+ 5 Tayi] @ [Tajpr41s -5 T

3 .
I
)

(—1>aj8Pj [’I”l, .. .,Ta].] ® 8[7“aj+1, .. .,Taj+1] ® [Taj+1_|_1, . .,Tn]

<.
I
o

Q

Splriy ...yl

where P; is the induced partition on I —{j}, implies that 8(6,(1k)s p—sp)=0
hence, as another consequence of Prop. 2.1 in [B],

e;’%p —sp = sgn(eg‘“)a’p —sp)e, =0

Thus we have also proved v), which completes the proof (This proof is an
immediate generalization of Barr‘s proof (cf.[B]) in the case k = 2). O

Going back to the proof of Proposition 7, we obviously have inclusions
(e) C (s) C shy,

Lemma 8 says that sp = eglk) . sp € (e%m) for all partitions P and the

inclusions must be equalities. O

REMARK (9). The ideal (sgk)) = (e,(lk)) # (1) because eF) is an idem-
potent different from 1 and therefore a zero-divisor. Thus eﬁf“ cannot be a
unit, consequently T'A is infinitly generated as k-algebra with generators in

all degrees.

Now consider the augmentation ideal I of TA. The indecomposables with
respect to the multiplication x (the dual notion of primitive elements in a
coalgebra) are given by Q = I/I? and if Q is flat over A/I ~ k (i.e. I is quasi-
regular in the sence of Quillen), we have the equality S(Q) = ©p>ol?/IPT!,
where S(Q) is the graded symmetric algebra on Q. If char(k) = 0, the
dual version of the Poincaré-Birkhoff-Witt-theorem (cf.[Q]) now gives the
decomposition
TA~S(Q) = &ps0l”/ I

Tensor product and direct sum commutes, consequently
Co(A) = ARTA=A® (Bpxol? /TP
= @pxo(A @ IP/1PH)



But Co(A) is a differential graded commutative algebra and the splitting
induces a splitting of cohomology. Thus we have the following theorem,
essentially due to Quillen (cf.[Q])

THEOREM (10). Let k, A and I be as above. Then Hochschild coho-

mology decomposes into a direct sum

H*(A,A) = @ H*(Homy(I?/IPT!, A))

p>1

— ¢ H (A A
5 (A 4)

where in particular H(%(A, A)=0ifp>n.

REMARK (11). Using Proposition 7 it is easy to see that this decompo-
sition is the same as the decomposition induced by the A-filtration of Loday
in [L]. It also coincides with the decomposition of Gerstenhaber-Schack (cf.
[G-S]) which extends the definition of commutative algebra cohomology made
by Harrison in [H].

Now suppose we have Ext}(TA/IP, A) =0 for all p > 0. Then the map
Homy(TA/IPT' A) — Homy, (IP/IPF!, A)

is surjective for all p > 0. We lift the cochains of Hom, (I?/IP*1, A) to
cochains of Homy (T A/IP+!, A) and study their behaviour with respect to
the various products.

Let f and g be cochains of degree n and m and let a = a; * ... * a; where
a; # 1. Using the coalgebra structure of T'A and sigma notation we write

Aa = A(a; *...*ay)
= Aay *... % Aa,

= (221(1) D @y g)) Kok (Z A1y © o))
=Y Hayy *eF @) O (@geg) x e H Ay )

where the sign is the sign of the appropriate permutation of the coordinates
of the n+m — 1-tuple (ay, ..., @y1m—1). Notice that we may have a, G = 1-
Using the definition of the cup product we get

f—ygla)=m-(f@g)-Ala)
= Zif(g1(1)*-~*2k(1)) g(ay(a) * - X g2))



Now put J; = {j € {1,...,k}|a;q # 1} for i = 1,2 and let s be the number
of elements in J; and t the number of J;. We obviously have Jy U Jy =

{1,...,k} but the two sets are not neccessarily disjoint.

Let I C T'A be the augmentation ideal and let [° = I x...x I be the s-fold
shuffle product. Assume f € Homy(TA/IP, A) and g € Homy (T A/I%, A).
Then f(I*) = 0if s > p and g(I*) = 0 if t > ¢. Consider the product
F(I%)g(I') where s +t > p+ ¢ — 1. Either we have s > p, implying that
f(I*) = 0 and the product vanishes, or p > s+ 1. In that case s +¢ >
p+q—1> s+14+q—1 = s+q, therefore t > g and consequently f(I°)g(I*) =
F(I%)0 =0. Thus f(I*)g(I') =0if s+t > p+ q— 1. Our assumptions were
that f(I?) = g(I9) = 0 and s+t > k, and we have shown that the cup product
(f — g)(I*) vanishes whenever k > p+q— 1, obtaining the following lemma,;

LEMMA (12). Let f € Hom(TA/IP, A), g € Homy(TA/19,A). Then
the product f — g € Homy(TA/IPT971 A).

O

THEOREM (13). Let k be a commutative ring, containing the rational
numbers. Let A be a commutative k-algebra and let I be the augmentation
ideal of TA. Suppose I/1? is flat over A/I ~ k and that Ext;(TA/IP, A) =0
for all p> 0. Then the cup-product of Hochschild cohomology :

i HP (A, A) x HE (A, A) — BT (AL A)
18 graded with respect to decomposition degree.
Proof. Let f € H(”i)(A, A)and g € H(”J?)(A, A) be represented by cochains
f € Homp(TA/I'T A) and g € Homy,(TA/I’T, A). Then by Lemma 12
we have f — g € Homy(TA/I""*1 A). The image of this element in
Homy (I'T7 /"1 A) is a cocycle, representing the product f — g. O

In the notation of Gerstenhaber and Schack [G-S] the graded cup product
takes the form

—: HPY(A, A) x HPI (A, A) — HPTEH (A A)

LEMMA (14). Let f € Homy(TA/IP*1 A), g € Homy(TA/I9H1 A).
Then the composition fog € Homy(TA/IPTI A).

Proof. Let f = f-p,, and g = g - p,,. The composition product defined
by

fog=fDy=fpo-D,=f- Z(_l)(i—w(m—l)(pi_l @ gD pn_i) - AG)

=1



satisfies fog = (f 0 9) " Pngm—1- Suppose f(IPT1) = g(I9T1) = 0 and let
P be a partition of total weight n +m — 1 and of length p + ¢q. As before
we write sp(ay, ..., Gngm—1) = @y *...xa,,, € IPT4, We must show that

(fog)layx...xa,,,)=0.
We shall study the element

Y = A(S)(gl*...*gp+q)

= (A®g )% % (A(3)Qp+q)

where the equality holds because A is an algebra map respecting . Using
the sigma notation for comultiplication we can write

A®g, = ng) © a; (2) @ a; ()

Multiplication in the graded algebra TAQT AXT A is defined componentwise
and we have

Y= d(agay %% g (1) @ (@1 o) %K g )
D@ *e e x g (3)

which we simply write

Y = Z TyY1) @ Y2) © Y(3)

and where the sign is the sign of the appropriate permutation of the coor-
dinates of the n + m — 1-tuple (ay,...,a,4.,_1). Notice that we may have
a; j) = 1.

Grouping the terms in the sum by fixing y(2), we may write

y=2_> 0 DY DYe)

Y(2)

Put y = (id ® g @ id)(Y’). Choose one “in the middle”-term
Y) = di@) X X lpig(2) T iy (2) F 00 iy (2)
where the last equality holds since we assume that ;. (2) # 1 for all j =

1,2,....sand a; 4 =1 for all j # iy, 19, ..., 1.
Let 3’ be the part of y with this () fixed;

?J' — Z j:y(l) (029) (Qil (2) * .. .*Qis (2)) X Y(3)



We shall use the notation

{1y det=1{12,...;p+q} — {i1,...,is}

for the indices where a; ) = 1. Thus we can write

y(l) = Q_ﬂ(l) * .. *ij(l) *Qil(l) * .. '*Qis(l)

and
Y(3) = Qiy(3) * oo F i (3) ¥ Ljy(3) F - F LGy (3)

Let further

2=, (1) % x G, (1) O (@, o) %Ky (2) D (@ 5y * ek A (3))

and put b= a; *...%a; . Obviously z,b # 1. Let |z| be the tensor-degree

of z. Consider

n

S (=D (4 @ g @ i) ()

=1

It is easy to see that this sum has the same terms as the ones we obtain when
forming the product (1 ® g @ 1)(z) xb. To prove that the sums are equal we
must show that the signs of each term coincides in the two cases.

Let « be some term of (1 ® g @ 1)(z) % b; put

a= -y, @.. .00 01ogo)(2)a,, ©@...0a,

If o is another term in the shuffle product (1 ® g ® 1)(z) x b, “obtained ”
from a by “moving” a;, to the “other” side of (1 ® g @ 1)(2);

/

o' =D, @ Oa,  Gan,, ©...0a,© (10 g 1)(z)
Q@ at, . @ D apy, Day Dap,, ... @ ay,

then we have

| =lal+ (i =)+ 1@ g@1)(2)]+ (k- 1)
=la[+ [0 @ga1)(z)|+ (k-1)

On the other hand, producing the same effect on the terms of y/, i.e changing

B=D)lay, .. 04,004, ®...0aq

r



to

B =), @...0ay , Day,, @...Qa, ©2a,,
®...®atk®atl®atk+1®...®at

the sign equation is |3'| = |B| + |z| + (k —{). Thus we get

o[ = la| =1 @ g @ 1)(z)]+ (k1)
=[] =(m=1)+ (k=1
=[] =18l = (m = 1)

But if p;_1 © ¢ @ pn—;j(3) # 0 then p;_2 @ g @ pp—_;j+1(F") # 0, producing an
additional change in sign given by multiplication by (—1)™~1, and we obtain
the same effect on the signs in both expressions. Consequently we have the
equality

1®g©1)(z *b—iz 1)V (i1 @ g @ pa_i(y)

and y is a sum of such terms.

Using the vanishing property of g we see that if s > ¢+1, then (10g®1)(z) =
0. If s < g we have k = p+q—s > p+q—q = pand (10g®@1)(2)*b € IPTL, But
then f((1©g®@1)(2)*b) = 0 and in both cases we get (fog)(a;*...xa,, ) =0
as expected. ]

The second main theorem of this paper now follows as a corollary.

THEOREM (15). Let k be a commutative ring, containing the rational
numbers. Let A be a commutative k-algebra and let I be the augmentation
ideal of T A. Suppose I/1? is flat over A/I ~ k and that Ext;(TA/IP, A) =0
for all p > 0. There is an anti-commutative product on Hochschild cohomol-
0qy :

[ =] H{ (A A) x HEL (A, A) — HETE (A, A)

The product s graded up to a shift in the decomposition degree.

Proof. Let f € Hgi})(A A)and g € H?;'_'ll) (A, A) be represented by

cochains f € Homy(TA/T*2,A) and g € Homy(TA/I’F2 A). Then by
Lemma 14 we have fog € Hom(T A/I*T7+2  A) and the same for [f, g]. The
image of this element in Homy (1" /I7H7+2 A) is a cocycle, representing
the product [f, g]. O



Notice that the conditions of Theorem 13 and 15 are fullfilled e.g. if k is
a field of characteristic 0. Furthermore, if we put « = j = 0 the product

of Theorem 15 is precisely the Lie-bracket in Harrison cohomology [—, —] :
Ha" A, A) x Ha™ T (A, A) — Ha"T™mTL(A, A).
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