
CURVES ON VARIETIES

JOHN CHRISTIAN OTTEM

These are (rough) notes from a 4-part lecture series during the RTG/SCGP ”Grad-
uate Workshop on the Birational Complexity of Algebraic Varieties” held at the
Simons Center, December 5-9, 2022.

Part 1. Lecture I

1. Introduction

Variety = irreducible, separated, over an algebraically closed field k

Curve = usually a variety of dimension 1 – but sometimes easier to allow several
components. But always separated, and reduced, over a field k.

We are interested in studying the implication:

Geometry of
the set of curves on X

// Geometry of
X

e.g., amount of rational curves vs. ”birational complexity”

As a set, this is not particularly interesting: It‘s an infinite set with the same
cardinality as R.

Issues:

• It seems hopelessly hard to study this set.
• Main issue 1: curves come in families
• Main issue 2: we care mostly about special curves, e.g., rational curves.

E.g., X is uniruled, rationally connected, .. etc if there are many ratio-
nal curves. This puts restrictions on the topology on X, e.g., rationality,
fundamental group, Hodge numbers,..

Various other ways of studying the curves on X:

• CH1(X), quotients by equivalence relations, ..
• Hilbert schemes, Chow variety, Morphism schemes, ..
• Cone of curves (Mori cone)
• ..

The same can of course be done for higher dimensional varieties, but: (i) curves are
simpler; (ii) close link with divisors.
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2. Curves on surfaces

Theorem 2.1 (Cayley, Salmon, 1840s). There are 27 lines on a cubic surface.

Two proofs:

• Picard group
• Using incidence correspondence

2.1. Proof #1 – Picard group. We use the fact that a cubic surface is the blow-up
of P2 along 6 general points.

This in turn uses lines, but only to a limited degree (e.g., to prove the existence of
two disjoint lines, which is elementary).

The answer:

Pic(X) = Z7 = Zh+ Ze1 + . . .+ Ze6
Intersection numbers:

h2 = 1, hei = 0, e2i = −1

Canonical divisor −KX = 3h− e1 − . . .− e6.

This is also the divisor that gives the embedding X → P3.

If L ⊂ X is a line, then h · L = 1 = −KXL and L2 = −1 (by adjunction formula).
So if we write [L] = ah− b1e1 − . . .− b6e6, we must have

• 3a− b1 − . . .− b6 = 1
• a2 − b21 − . . .− b26 = −1

This gives that(
(a2 + 1)/6

)1/2
=

(
(b21 + . . .+ b26)/6

)1/2 ≥ (b1 + . . .+ b6)/6 = (3a− 1)/6

or, 0 ≥ 3a2 − 6a− 5 = 3(a− 1)2 − 8.

This can only happen for a = 0, 1, 2. Going through the short list of possibilities, we
find, up to permutation,

• e1 (6 exceptional divisors)
• h− e1 − e2 (15 strict transforms of lines through pairs of points)
• 2h− e1 − . . .− e5 (6 conics though 5 out of 6).

Thus we have all the 6 + 15 + 6 = 27 lines in total.

2.2. Proof #2 – Incidence correspondnce. Let G = Gr(2, 4) denote the variety
of lines in P3, and let

P19 = {
∑

aijklx
i
0x

j
1x

k
2x

l
3}

denote the linear system of cubic surfaces on P3. Let U ⊂ P19 denote the open set
of smooth cubic surfaces.

There is a universal cubic hypersurface

{
∑

aijklx
i
0x

j
1x

k
2x

l
3} ⊂ P19 × P3
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Let L denote the following variety:

L = {([l], f)|l is a line on Z(f)} ⊂ G× U

One checks that

• p : L → G is a projective bundle, so L is smooth irreducible of dimension
19.

• This means that q : U → P19 is generically finite.
In fact, an easy computation using the jacobian criterion shows that

q is in fact *etale* of some degree d. (the differential of q has full rank
everywhere, so this really looks like a finite covering map).

This means that if we can show that *some* cubic has 27 lines, then *every* smooth
cubic has 27 lines (because q is etale, so the same number of preimages everywhere).
Then we can just check, for the Fermat cubic

x3
0 + x3

1 + x3
2 + x3

3 = 0

that the number of lines is 27 (X has x0 + x1 = x2 + x3 = 0, plus lots of cube roots,
which give all of the lines..)

2.3. Conclusion. The first proof uses hinges on the fact that the group Pic(X) = Z7

is easy to study. In general, Chow groups are very complicated.

The second proof uses the notion of a parameter space. It is a sort of ”homotopy
continuation” argument. This is often used in proofs involving lines or more general
rational curves.

Example 2.2. The generic quartic surface contains no lines.

To prove this, we can either use the Picard group or an incidence correspondence.

Exercise 1. Prove this statement.

Theorem 2.3 (Noether-Lefschetz theorem). Picard group of a very general quartic
is Z.

There is a Hodge-theoretic proof of this (Lefschetz pencils).

Indicence correspondence proof: The family of quartics is of dimension(
4 + 3

3

)
− 1 =

(
7

3

)
− 1 = 7 ∗ 5− 1 = 34

What about lines? The variety of lines in P3 is 4-dimensional (=dim Gr(2,4)). For
each line, there is a projective space of quartic surfaces containing L.

If L = Z(x0, x1), the sequence

0 → O(−2) → O(−1)2 → IL → 0

shows that H0(P3, IL(4)) is of dimension

2

(
3 + 3

3

)
−

(
2 + 3

3

)
= 20 + 20− 10 = 30

So in all, we obtain a family of dimension 4+30-1=33. □
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3. Lines on a fixed hypersurface

Set up:

X ⊂ Pn a smooth hypersurface of degree d.

F = F (X)=variety of lines on X.

Note that F is a closed subset of the Grassmannian G = Gr(2, n+ 1). As such, it is
the zero set of a section of the vector bundle

Sd(U∗)

where U is the universal rank 2 sub-bundle on G.

0 → U → On+1 → Q → 0

This all fits into a diagram, similar to that in the first part:

L X

F

q

p

Here L ⊂ F ×X is given by the universal line

L = {([l], x)|t is a line with l ∋ x}

Note that p is a P1-bundle; q([l], x) = x forgets the line l. Explicitly, L = P(U∗).

Lemma 3.1. The expected dimension of F is given by

dimG− (d+ 1) = 2(n+ 1− 2)− (d+ 1) = 2n− d− 3.

If X is general, then this indeed counts the right dimension, and F is non-singular
by a Bertini theorem for zero sets of vector bundles (see Altman–Kleiman).

If X is non-general, e.g., xd
0 = 0, or less drastic, a cone over a hypersurface in Pn−1,

then the dimension of F can certainly be bigger than the above bound.

We expect a more precise statement for hypersurfaces:

Conjecture 1 (Debarre-de Jong). F has the correct codimension, provided X is
smooth and n ≥ d.

Proof. Note that the rank of Sd(U∗) is d+ 1.

Now, the bundle U∗, hence Sd(U∗) is generated by global sections, hence a general
section has zero set with expected codimension (Bertini). □

Example 3.2. The generic quartic surface contains no lines, but *some* smooth
quartic surfaces do contain lines, e.g., the Fermat. This shows that we need d ≤ n
in the above theorem.

If F has the correct codimension, we can ask about more information about F . As
a first question:
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Q: What is the class of F in CHd+1(G)?

A: It is given by the top Chern class cd+1(S
d(U∗)).

Example 3.3 (Quadrics). In the case d = 2, the variety of lines is a smooth of
dimension 2n− 5.

n = 3: F=union of two conics in Gr(2, 4). The class is c3(S
2U∗) = 4c1 ∗ c2.

n = 4: F = P3.

n ≥ 4: F = OG(2, n + 1) - ”orthogonal grassmannian” of 2-planes in an n + 1-
dimensional vector space.

Here is another way to see the dimension count:

First fix a point p on the quadric. Any line through p lies in the projective tangent
space TpQ.The intersection TpQ∩Q is a cone over a smooth quadric Q′ of dimension
n− 3, so the lines on Q through p are in bijection with the points of Q′. Varying
p, we get a space of dimension (n − 1) + (2n − 3) = 2n − 4. But we overcounted:
for each line, there is a 1-parameter family of points p for which it appears. So the
correct count is 2n− 4− 1 = 2n− 5.

Example 3.4 (Cubic surfaces again). dimG = dimGr(2, 4) = 4, rank S3(U∗) = 4,
hence the general cubic surface contains only finitely many lines. A Chern class
computation shows that [F ] is given by

18c21c2 + 9c22

where the c1, c2 are the Chern classes of U∗. This has degree 18 + 9 = 27, giving yet
another proof that a cubic surface contains exactly 27 lines, at least for the general
cubic.

In higher dimensions there are interesting cases where there is a interplay between
the hypersurface and its variety of lines. This has been particularly important in
rationality questions; creating both obstructions to irrationality, as well as unirational
parameterizations.

Example 3.5 (Cubic threefolds). dimG = dimGr(2, 5) = 6; rank S3(U∗) = 4.
Thus we expect F to be a surface.

Griffiths–Harris (1969): F is a smooth surface of general type, with invariants
TF = U , KF = 3Cs (Cs = curve of lines meeting a fixed line), K2 = 45.

1

5 5

10 25 10

The diagram above induces an Abel–Jacobi map

H3(F ) → H3(L) = H3(L) → H3(F ) = H3(F )
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GH showed that this is an isomorphism. In particular, the Abel–Jacobi map induces
an isomorphism between the Albanese variety of F and the intermediate jacobian
of X. This fact was crucial in GH’s famous proof of the irrationality of a cubic
threefold.

Example 3.6 (Cubic fourfolds). dimG = dimGr(2, 5) = 8; rank S3(U∗) = 4. Thus
we expect F to be a fourfold.

Beauville–Donagi (1985): F is a smooth fourfold of hyperKahler type, deformation
equivalent to K3[2].

Once again, there is an Abel-Jacobi map

H4(X) → H4(L) = H6(L) → H6(F ) = H2(F )

which is an isomorphism by [BD].

Example 3.7 (Cubic 5-folds). dimG = dimGr(2, 5) = 10; rank S3(U∗) = 4. Thus
we expect F to be a sixfold.

Here less is known. Whenever X is smooth, F is a Fano variety of dimension 6.

Any rational curve on F sweeps out a family of lines on X. Thus X is completely
covered by rational surfaces. This is in contrast to cubics of lower dimensions, where
F contain fewer rational curves.

Example 3.8. The family of lines contained in a Fermat hypersurface in Pn has
dimension at least n − 3, which is larger than the expected dimension for n < d.
Thus the requirement n ≥ d is neccessary in the Debarre–de Jong conjecture.

By the way, it would be enough to prove this conjecture for n = d, by taking
hyperplane sections.

This conjecture has been proved in many cases, e.g., n ≥ 5 by Debarre, and d ≤ 8
by Roya Beheshti (d ≤ 6 also by Landsberg-Tommasi, and Landsberg-Robles). For
n ≤ 2d− 4 by Beheshti–Riedl.

Example 3.9 (Quartic threefolds). The variety of lines on a smooth quartic
threefold has dimension at least 2 ∗ 4− 4− 3 = 1. In fact, it is always a curve in
char ̸= 2, 3 (Collino).

Notice that there are smooth quartic threefolds in P4 (for instance, the Fermat quar-
tic) which contain cones over curves. So the Fano varieties need not be irreducible.

Quartic fourfold? F is a threefold..

One can also ask about curves of higher degree and genus, e.g., conic curves. For
quadrics and cubics this is not so interesting (for cubics: each conic is contained in
a plane, and intersecting the cubic hypersurface with this plane gives the conic plus
a residual conic).

Example 3.10. The variety of conics on a quartic threefold is a smooth surface F .
There is an abel jacobi map

H3(F )

Letizia, The Abel-Jacobi mapping for the quartic threefold]
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Example 3.11. The variety of twisted cubics H in a cubic fourfold X is also
interesting [cf. CH. LEHN, M. LEHN, CH. SORGER, D. VAN STRATEN]. (We
assume that X does not contain a plane). Then H is a smooth projective 10-fold.
Moreover, there is a P2-bundle

H → Z

where Z is hyperkahler 8-fold of K3[4]-type.

Part 2. Lecture II

References: [Mumford: Pathologies in AG II, R. Harthshorne: Deformation theory]

4. Curves in projective space

Any curve C can be embedded in P3.

(Explain generic projection argument).

Example 4.1. We get many examples by taking curves lying on small degree
surfaces. If Q = P1 × P1 is a quadrics surface, then a curve of bidegree (a, b) has
degree d = a+ b and genus (a− 1)(b− 1).

If C ∼ ah− b1e1 − . . .− b6e6, then

d = 3a− b1 − . . .− e6

and

g =

(
a− 1

2

)
−

∑(
bi
2

)
However, given the curve and its genus g, there may be restrictions on the degree d
of the embedded curve C.

One such restriction is given by

Proposition 4.2 (Castelnuovo bound). Let C ⊂ P3 be a curve of degree d and
genus g, which is not contained in a plane. Then ≥ 3, and

g ≤

{
1/4d2 − d+ 1 if d is even

1/4(d2 − 1)− d+ 1 if d is even

Equality is attained for every d ≥ 3, and any curve for which we have = is contained
in a quadric surface.

Many such (d, g) arise on surfaces of degree 2 and 3.

Example 4.3. There is no curve of degree 9 and genus 11 (such a curve would
need to lie on a quadric surface, but this turns out not to be possible).
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5. Notation

If Y ⊂ X is a closed subscheme given by ideal sheaf I, the normal sheaf is defined
by

NY |X = HomY (I/I
2,OY ).

This is a vector bundle of rank = codimension Y if Y ⊂ X is smooth or lci.

Example 5.1. If Y is a complete intersection of r divisors D1, . . . , Dr, then

NY =

r⊕
i=1

O(Di)|Y

Example 5.2. Y = twisted cubic in P3, then Y ≃ P1, and

NY ≃ O(5)⊕O(5)

If Y ⊂ Pn is a projective variety, the Hilbert polynomial

Recall that this is the polynomial which for large values agrees with

m 7→ χ(OY (m))

where O(1) = OPn(1)|Y .

6. Hilbert schemes

Here is a basic fact on the existence of Hilbert schemes:

Let Y be a nonsingular closed subvariety of a nonsingular projective variety X ⊂ Pn

over a field k. Then

(1) There exists a scheme H, called the Hilbert scheme, parametrizing closed
subschemes of X with the same Hilbert polynomial P as Y .

There exists a universal subscheme

W ⊆ X ×H,

flat over H, such that the fibres of W over points h ∈ H are all closed
subschemes of X with the same Hilbert polynomial P .

W is universal in the sense that if T is any other scheme, if W0 ⊆ X × T
is a closed subscheme, flat over T , all of whose fibres are subschemes of X
with the same Hilbert polynomial P , then there exists a unique morphism
Φ : T → H, such that W0 = W ×H T .

(2) The Zariski tangent space to H at the point y ∈ H corresponding to Y is
given by

H0(Y,NY )

If

H1(Y,NY ) = 0,

then H is nonsingular at the point y, of dimension equal to

h0(Y,NY ) = dimkH
0(Y,NY )

.
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In any case, the dimension of H at y is at least

h0(Y,N)− h1(Y,N).

Hilbert schemes are used all over the place in algebraic geometry. One spectacular
application is in Mori’s proof of the Hartshorne conjecture, that a variety with an
ample tangent bundle must be projective space. This used the lower bound on the
dimension of the Hilbert scheme in a very clever way.

Example 6.1. If Y = D is a divisor, then NY = OX(D)|D. The Hilbert scheme of
Y is non-singular: It is the projective space |D| associated to H0(X,D). Note that
it is not always the case that dimHilb = dimH0(D,OX(D)|D) – there may be h1.

Example 6.2. For a projective variety X, an interesting special case is the Hilbert
scheme X [n] which parameterizes length n 0-dimensional subschemes of X.

Here P (d) = n, the constant polynomial.

This is closely related to the symmetric product X(n) = Xn/Sn; there is the
Hilbert-Chow morphism

X [n] → X(n)

which associates a length subscheme Z ⊂ X to the 0-cycle [Z]; that is, the support
of Z decorated with multiplicities.

When X is a smooth surface, then X [n] is a smooth variety of dimension 2n [Fogarty].

However, the Hilbert schemes X [n] can in general be very complicated, be non-
reduced and have many different components, even if X is A3.

Example 6.3. In the first lecture, we studied Hilbert schemes of lines on hypersur-
faces. That is, associated to the Hilbert polynomial

P (d) = d+ 1.

In many cases, these were smooth varieties. I

Example 6.4. The Hilbert scheme H2d+1 of conics C ⊂ P3 has dimension 8. The
normal bundle of a conic C equals

NC = OP1(h)⊕OP1(2h) = OP1(2)⊕OP1(4)

which has h0(NC) = 3 + 5 = 8, and no h1.

Geometrically, H2d+1 is a P5-bundle over Gr(3, 4) = P3.

Example 6.5 (Piene–Schlessinger, 1985). The Hilbert scheme Hilb3d+1(P3) consists
of two irreducible components H12 and H15 of dimension 12 and 15. Both of these
are smooth, and rational. H12 ∩H15 is transversal, and = a smooth rational 11-fold.

Here H12 = maps P1 → P3 given by 4 cubic polynomials in s, t.

H15 consists of (plane cubic)∪(point).

(draw picture)

Example 6.6. Let C ⊂ X, be a smooth rational curve with normal bundle

NC = OP1(a1)⊕ . . .⊕OP1(an−1)
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If ai ≥ 1, then X is rationally connected. We can see this because C has a very
large Hilbert scheme. In fact, C deforms in a family of dimension

dimH0(NC) =
∑

(ai + 1) = deg detN + (n− 1) ≥ n

In fact, if we fix a point p ∈ X, then NC(−p) is globally generated. Sections of
H0(NC(−p)) now correspond to the deformations of C fixing the point p. There are
at least n− 1 of these, and they cover X, so X is rationally connected.

Actually, X is rationally connected if and only if there is a smooth rational curve
with ai ≥ 1 in the normal bundle (the normal bundle is ”ample”). I

7. Mumford’s example

We saw that the varieties parameterizing lines on hypersurfaces were often quite
nice (smooth projective varieties). This is not the case in general, even for X = P3!

Theorem 7.1 (Mumford, 1962). There is an irreducible component of the Hilbert
scheme of smooth irreducible curves in P3 of degree 14 and genus 24 that is generically
non-reduced.

Proof. Three steps:

a) We construct an irreducible family U of smooth curves of degree 14 and genus
24, and show that the dimension of the family is 56.

b) For any curve C in the family, we show that H0(C,NC) has dimension 57.

Thus dimT[C]H = 57 > dimU for [C] ∈ H.

c) We finally show that the family U is not contained in any other irreducible family
of curves with the same degree and genus, of dimension > 56.

Step c) shows that the family U is actually an open subset of an irreducible component
of the Hilbert scheme, of dimension 56. Hence the scheme Ured is integral, and
therefore non-singular on some open subset V ⊂ Ured. Since U has dimension 56,
we get that U is non-reduced.

Here is the construction.

Let X be a non-singular cubic surface in P3.

We view X as a blow up of P2 at 6 points in general position

X = Bl6P2

In the usual basis for Pic(X), we consider the the divisor class

12h− 4e1 − 4e2 − 4e3 − 4e4 − 4e5 − 2e6 = −4KX + 2e6

This class is very ample, so the linear system contains irreducible nonsingular curves
C (Bertini).

The hyperplane divisor H of X equals H = −KX , so

degC = H · C = −KXC = 14
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and the genus is g = 24, from the adjunction formula 2g − 2 = C(C +K).

Define

U = set of all non-singular curves C in the above linear system,
for all choices of X a smooth cubic surface and L a line on X.

The cubic surfaces move in an irreducible family of dimension 19,

As they move, the lines on them are permuted transitively, so that U is an irreducible
family of curves. Since Pic(X) is discrete, the only algebraic families of curves on X
are the linear systems.

This means that

dimU = 19 + dim |C| = 18 + h0(X,OX(C))

Note that since d > 9, each of our curves C is contained in a unique cubic surface.

Use the exact sequence

0 → OX → OX(C) → OC(C) → 0.

We have h0(OX) = 1, h1(OX) = 0.

The linear system OC(C) on C has degree C2 = 60. This is greater than 2g − 2, so
there is no h1. Riemann–Roch gives h0(OC(C) = 60 + 1− 24 = 37.

Hence

dimU = 18 + 37 + 1 = 56

Step b). Computation of h0(C,NC). There is an exact sequence of normal bundles

0 → NC/X → NC → NX |C → 0.

Now NC/X = OC(C), which has h0 = 37 and no h1.

Since X is a cubic surface, NX = OX(3), so we find

h0(NC) = 37 + h0(OC(3)).

By Riemann-Roch,

h0(OC(3)) = 3 · 14 + 1− 24 + h1(OC(3)) = 19 + h1(OC(3)).

By Serre duality on C:

h1(C,OC(3)) = h0(ωC(−3))

By adjunction , on X,

ωC = OC(C +KX) = OC(C −H) = OC(3H + 2e6)

. Thus h1(OC(3)) = h0(OC(2e6)). Now we use the sequence

0 → OX(2e6 − C) → OX(2e6) → OC(2e6) → 0.
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Note that 2e6 − C = −4H, which has h0 = h1 = 0 by Kodaira vanishing. Hence

h0(OC(2e6)) = h0(OX(2e6)) = 1

(e6 is effective, and no multiple moves on X).

Thus

h1(OC(3)) = 1, h0(OC(3)) = 20

and

h0(NC) = 37 + 20 = 57.

Step c). To show that U is not contained in a larger family of dimension > 56, we
proceed by contradiction.

If D ∈ W was a general curve in this supposed larger family W , then D would be
smooth, still of degree 14 and genus 24, but would not be contained in any cubic
surface, because our family U contains all those curves that can be obtained by
varying X and varying C on X.

From the exact sequence

0 → ID(4) → OP3(4) → OD(4) → 0

we find

0 → H0(ID(4)) → H0(OP3(4)) → H0(OC(4)) → ..

The dimension of the middle term is 35; that of the term on the right, by Rie-
mann–Roch, 33. Hence h0(ID(4)) ≥ 2.

Take two independent quartic surfaces F0, F1 containing D.

Since D is not contained in a cubic (or lesser degree) surface, F0, F1 are irreducible
and distinct, so their intersection has dimension 1, and provides us with a linkage
from D to the residual curve Q = F0 ∩ F1 −D.

Q has degree 16− 14 = 2, so Q is a possibly reducible conic in P3.

Note that each C determines a Q, and vice versa: given F, F0 containing a conic Q,
we can recover C by taking the residual curve F ∩ F0 −Q.

We can study the set of triples (F0, F1, Q):

We saw that the Hilbert scheme H2d+1 of conics in P3 has dimension 8.

By the exact sequence

0 → O(1) → O(2)⊕O(3) → IQ(4) → 0

we get that For each conic Q,

h0(Q, IQ(4)) = 10 + 20− 4 = 26.

The choice of the pencil < F0, F1 >, is then parameterized by a Grassmannian
Gr(2, 26), which has dimension 2 · (24) = 48.

This means that the dimension of the family of curves D as above is ≤ 8 + 48 = 56.
This completes the proof. □
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7.1. Further pathologies.

Theorem 7.2 (Vakil). The following Hilbert schemes satisfy Murphy’s Law for
moduli spaces:

• The Hilbert scheme of nonsingular surfaces in P5
• the Hilbert scheme of surfaces in P4

8. The morphism scheme

For two varieties X and Y there is a scheme Mor(X,Y ) which parameterizes the
set of morphisms

f : Y → X

This generalizes the Hilbert scheme which parameterizes closed subschemes Y → X.

But it is in fact also a special case of the Hilbert scheme construction, because
one can associate a morphism its graph Γf which is a subvariety of Γf ⊂ X ×X
isomorphic to Y .

When X is smooth along the image of f , the normal bundle of Γf equals f∗TX .

In this setting, the tangent space to Mor(Y,X) at f : Y → X is given by

T[f ]Mor(Y,X) = H0(Y, f∗TX).

More generally: If X and Y are projective varieties, the tangent space to Mor(Y,X)
at f : Y → X is given by

T[f ]Mor(Y,X) = Hom(f∗ΩX ,OY ).

Theorem 8.1. Let X and Y be projective varieties and let

f : Y → X

be a morphism such that X is non-singular along f(Y ). Then, locally around [f ]
the scheme Mor(Y,X) can be defined by h1(Y, f∗TX) equations in a non-singular
variety of dimension h0(Y, f∗TX).

In particular, any irreducible component of Mor(Y,X) through [f ] has dimension
at least

h0(Y, f∗TX)− h1(Y, f∗TX)

Example 8.2 (Twisted cubics again). We consider the maps f : P1 → P3 defining
twisted cubics.

We pull back the Euler sequence to P1:

0 → f∗O → f∗O(1)4 → f∗TP3 → 0

(exact because everything is locally free). And we find

h0(f∗TP3) = 4 · 4− 1 = 15

To get the Hilbert scheme of twisted cubic, we factor out by the action of PGL(2),
to get

dimH12 = 15− dimPGL(2) = 15− 3 = 12,

as we expected.
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Corollary 8.3. Let f : P1 → X be a (non-constant) morphism, then

dimMor(P1, X) = −KX · C + (1− g) dimX = −KX · C + dimX

Part 3. Curves on K3 surfaces

Reference: [D. Huybrechts: Lectures on K3 surfaces].

The Fermat quartic

x4
0 + . . .+ x4

3 = 0

contains 48 lines: x0 = ωx1, x2 = ω′x3 for ω4 = −1.

However, most quartic surfaces do not contain lines.

In fact, K3 surfaces typically contain no P1s at all: If C ≃ P1, then

C2 = −2,

thus this cannot happen whenever Pic(X) = Z for instance.

Remark 8.4. The property ”does not contain a P1” is very much a ”very general
property” in the family of K3 surfaces; non-isotrivial 1-dimensional families X → T
of K3 surfaces contain infinitely many fibers Xt where there exists a smooth rational
curve.

However, it turns out that there is always lots of singular rational curves.

Example 8.5. For a quartic surface, there can be singular hyperplane sections
which are rational (e.g., quartic curves with three nodes, or perhaps a triple point.)

These curves are of interest in number theory; rational curves give us many rational
points.

Here is a sample theorem:

Theorem 8.6 (Bogomolov–Mumford, Mori–Mukai, ..).

a) Any polarized K3 surface (X,H) contains at least one rational curve C ∈ |H|.
b) The very general polarized K3 surface (X,H) contains a nodal integral rational

curve C ∈ |H|.
c) For any n > 0, the very general (X,H) contains an integral rational curve

C ∈ |nH|.

In particular the very general K3 surface contains an infinite (hence dense) set of
rational curves.

Part c) was improved recently by Chen–Gounelas–Liedke who proved that in fact
any K3 surface contains infinitely many rational curves.

The aim of today’s talk is to explain a) in this theorem.

But the same ideas basically also lead to b) and c).
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9. Proof of the theorem (i) and (ii)

Here is the main idea for the proof:

(I) Construct a special K3 surface X0, together with two smooth rational curves
C1, C2 that intersect transversely in a certain way

Explicit construction.
(II) Prove that the pair (X0, C1+C2) deforms to (X,C) where X is a very general

K3 surface, and C is an irreducible nodal rational curve.
Requires some defomation theory.

(III) Deduce that any K3 surface contains a rational curve.
This step is actually easy: Take any K3 X, and a family X → ∆ of K3s

specializing to X, i.e., X = X0. By (II), each Xt has an irreducible rational
normal curve Ct.

By the ”Hilbert scheme argument”, these fit into a family C → X .
This means that also X = X0 has some 1-cycle C0 of the same arithmetic

genus pa (by invariance of Hilbert polynomials). But this means that also X
has a rational curve.

9.1. Step (I). Many possible constructions possible here: one uses Kummer surfaces:

Take two elliptic curves E1, E2 with an isogeny

ϕ : E1 → E2

of degree 2d+ 5, e.g.,

C/(Z(2d+ 5)) + iZ) → C/(Z+ iZ)

Let Γ = Γϕ ⊂ E1 × E2 be the graph.

Γ contains 4 of the 16 fixed points.

We take S0 := E1 × E2/±, and let X0 denote the blow-up of S0 along the 16 fixed
points.

C1 ⊂ X0 – the strict transform of C1.

C2 ⊂ X0 – the strict transform of E1 × 0.

Then one checks:

• C1 and C2 are smooth rational curves; C2
1 = C2

2 = −2
• They intersect transversally in d+ 2 points
• C1 + C2 is nef and big on X0

Nef because (C1 + C2)Ci = d > 0.
Big because (C1 + C2)

2 = 2d.
• The class is primitive:

C1 + C2 intersects the fibers of X0 → E1/± and X0 → E2/± in 2 and
2d+ 5 respectively.
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9.2. Step (II). Take a family of K3 surfaces

π : X → S

over a smooth connected base S.

For instance, we can take the entire deformation space S = Def(X). (Warning:
Then some of the fibers can be non-algebraic K3s!). Perhaps a better choice: S =
Def(X,OX(C)) pameterizing deformations of X together with the line bundle.

Let C ⊂ X := X0 be a possibly reducible curve (e,g., C1 + C2).

H1(X,O(C)) = H2(X,O(C)) = 0, by Kawamata-Viehweg. This implies that any
curve in |C| is the specialization of a divisor on X .

More precisely, there is a line bundle L on X such that L|X = O(C), and any section
of H0(X,O(C)) comes from a section of L by restriction.

Deformations of C in the family π : X → S are parameterized by a projective bundle

P := P(π∗L) → S

(Again, by the vanishing above, the fibers are given by the linear systems |LXt
|.)

Note that P has dimension

dimP = dimS + g

where g = h0(X,O(C))− 1 = C2

2 + 1.

C is not a smooth curve, so it does not define a point on the moduli space of curves
of genus g, Mg.

However, it is a stable curve, i.e., nodal, and with only finitely many automorphisms.

// [C] defines a point in M g, the moduli space of stable curves.

This is a compactification of Mg. Here are some facts about this moduli space:

• M g is a smooth DM stack of dimension 3g − 3

• It has a coarse moduli space Mg, which is a projective variety with terminal
singularities. The closed points of this variety are indeed in bijection with
the set of stable curves up to isomorphism.

• M g − Mg is a snc divisor parameterizing singular curves of genus g.
It decomposes into strata

∂Mg =
∐

0≤h≤(g/2)

∆h

wherea
∆0 is the set of irreducible curves with exactly one node.
∆h is the set of cuves which are unions of two smooth rational curves

meeting at a point.
• The locus Wν ⊂ M g of stable curves C with ≥ ν nodes is a closed subset

of codimension ν in M g.

Let U ⊂ P denote the open set of curves which are stable. (Stability is an open
property)
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We get a classifying morphism ϕ : U → M g.

Note that ϕ[C] is contained in the locus Wg ⊂ M g of curves with at least g nodes.

We remarked above that this has codimension g in M g.

Hence we find a subvariety T ⊂ U , which parameterizes curves with at least g nodes,
and such that dimT ≥ dimU − g = dimS.

[DRAW PICTURE]

Now the kicker: these deformations do not deform within X = X0 (the curves we
have constructed are all unions of rational curves). Therefore they must deform out
of the special fiber to curves Ct ⊂ Xt.

This means that T → S is dominant.

Now take π : X → S such that ρ(Xt) = 1 for very general t. Since C is primitive,
the curves constructed must be irreducible. Hence we get integral nodal rational
curves in the very general K3 surface Xt.

Remark 9.1. To get c) in the theorem, we

10. More fun facts

Theorem 10.1. A K3 surface contains a 1-dimensional family of elliptic curves.
In particular, any K3 is dominated by an elliptic surface.

Theorem 10.2. Any hyperkahler manifold of dimension 2n of type, K3[n], GK, or
OG contain rational curves that move in famililes of dimension 2n− 2.

Theorem 10.3 (Mongardi–O.). Let X be a projective holomorphic symplectic
variety of K3[n]-type or of generalized Kummer type. Then the semigroup of effective
curve classes is generated (over Z) by classes of rational curves.

This is related to the Integral Hodge Conjecture, to be discussed tomorrow.

Part 4. The Integral Hodge conjecture for 1-cycles

10.1. The ”standard Hilbert scheme argument”. The following situation is
typical:

Given a family of varieties

// want to deduce something on Xt for (very) general t from something on X0.

Key point: If t is very general, then *any* subvariety of Xt extends to all other
fibers.

Why is this?

We have the relative Hilbert scheme H = Hilb(X/T ) which parameterizes closed
subschemes in the fibers of X → T . H has countably many components.

Let U → H denote the universal family.
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U X

H T

f

i

π

There is a projection map U → X → T .

Let H ′ denote the union of the components of H so that f ◦ i is *not* dominant.

Then

T ′ = (f ◦ i)(UH′ ⊊ T

is a countable union of closed subsets.

If t ∈ T − T ′ is any point, then any subscheme in Xt deforms out of Xt:
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Precisely, for Γ ⊂ Xt

// ∃ component H0 ⊂ H plus universal family Z → H0 such that f ◦ i : Z → T
is dominant, and Z|t = Γ.

The *specialization map*

CHp(Xt) → CHp(X0)

is compatible with intersection products.

Why does the Hilbert scheme have only countably many components? If we fix the
Hilbert polynomial P , the corresponding Hilbert scheme HP is a scheme of finite
type over k.

Thus since there are only countably many Hilbert polynomials P , the total Hilbert
scheme H =

⋃
P HP consists of at most countably many components.

The same holds for the morphism schemes Mor(Y,X).

This fact is very important in specialization arguments.

Example 10.4. Let X → T = A1
C denote a flat family of projective varieties. Let

s ∈ A1
C be a very general point. Then if X = Xs contains a rational curve, then

*every* Xt contains a rational curve, and these curves are deformations of eachother.

Example 10.5. Let X → T = A1
C denote a flat family of projective varieties. Let

s ∈ A1
C be a very general point. Then if X = Xs is rational, then Xt is also rational

for t ∈ T very general.

11. The Integral Hodge conjecture

Let X/C denote a smooth projective variety of dimension n.

We have the Hodge decomposition

Hi(X,C) =
⊕

p+q=i

Hp,q(X)

We define

Hp,p(X,Z) = classes of H2p(X,Z) which map into
Hp,q(X) in the above decomposition

In particular, torsion classes lie in this group.

The Integral Hodge conjecture Hp,p(X,Z) is generated by algebraic classes.

This means that the cycle class map CHp(X) → Hp,p(X,Z) is surjective.

The integral Hodge conjecture is not a conjecture: The first counterexamples were
given by Atiyah–Hirzebruch in the 60s, using projective approximations to classifying
spaces BG.

We will now present a simpler counterexample, due to Kollár .
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12. Kollár ‘s counterexample

Theorem 12.1 (Kollár ). Let X ⊂ P4 be a very general hypersurface of degree
p ≥ 5 is a prime number. Then

H4(X,Z) = Zl

and any curve has degree divisible by p.

Thus p3 · l is algebraic, but l is not.

Very general = outside a countable union of Zariski closed subsets.

One can improve this to degree 48, and show that any curve has degree divisible by
2.

Proof. Take p = 5 for simplicity.

Let C ⊂ X be a curve. We want to prove that

(*) h · C = 0 mod 5

Specialization method: If there exists *some* hypersurface X0 ⊂ P4 such that the
claim (*) holds, then it holds also on X.

X0 will be a very singular hypersurface.

Take five general polynomials of degree 5 f0, . . . , f4.

These define a morphism

ϕ : P3 → P4

and the image X0 is a degree 53 = 125.

We can view ϕ as a sequence of generic projection P3 → PN 99K PN−1 99K · · · 99K P4.

By the theory of generic projections, ϕ : P3 → X0 is generically injective, and

• 2:1 on a surface S ⊂ P3

• 3:1 on a curve Γ ⊂ P3

• 4:1 on a finite set of points.

By these properties, there is a cycle D on P3 such that ϕ∗(D) ∈ {C, 2C, 3C}, and
so deg ϕ∗D | 6 degC. On the other hand,

deg ϕ∗D = h · ϕ∗D

= ϕ∗h ·D
= O(5) ·D
= 0 mod 5

But then also degC = 0 mod 5, because 6 and 5 are coprime. □
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13. More on the IHC

Definition 13.1. We define the Voisin group as

Z2r(X) =
Hr,r(X,Z)

< algebraic classes >

The Integral Hodge conjecture (IHC) is particularly interesting for curves. I.e., we
ask whether Z2n−2 is zero or not.

Proposition 13.2. Z4(X) and Z2n−2(X) are birational invariants among smooth
projective varieties.

Proof. Easy to see using Weak factorization; we know how the cohomology groups
change after smooth blow ups. □

In Kollár ’s example Z4(X) → Z/p → 0, so Z4(X) ̸= 0.

But we do not know whether Z4(X) equals Z/p, Z/p2, or Z/p3.

13.1. IHC for 3-folds. For 3-folds, the IHC holds in many cases:

• κ = −∞ (=uniruled). Voisin: IHC holds for uniruled 3-folds.
• κ = 0. Voisin: IHC holds for 3-folds with KX = OX and H2(X,OX) = 0.
• κ = 0. Totaro: IHC holds for 3-folds with KX = OX and H0(X,KX) ̸= 0.
E.g., all abelian 3-folds.

Example 13.3 (Benoist-O.). The IHC can fail on products

X = S × E

where S is an Enriques surface and E is an elliptic curve.

These have κ = 0 and H0(KX) = 0, so Totaro’s result is essentially optimal.

Which class is non-algebraic? By Kunneth,

H4(X,Z) = H4(S)⊗H0(E)

⊕H3(S)⊗H1(E)

⊕H2(S)⊗H2(E)

Example 13.4 (Hassett–Tschinkel, Totaro). The IHC fails for many hypersurfaces
of bidegree (3, 4) in P1 × P3.

The proof degrenerates to

x4
0 + tx4

1 + t2x4
2 + t3x4

3 = 0

Here there is a clever valuation-theoretic argument.
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Example 13.5 (Hassett–Tschinkel, Totaro). The IHC fails for certain Enriques
surface fibrations

X → P1

This has some implication for questions in arithmetic flavour.

The proof involves a quite tricky degeneration argument!

13.2. Higher dimensions.

Example 13.6. The IHC can fail for uniruled 4-fold (P1×Kollár ’s example).

Example 13.7 (Schreieder). There exists a unirational 4-fold so that Z4(X) ̸= 0.

Theorem 13.8 (Mongardi–O.). Let X be a projective holomorphic symplectic
variety of K3[n]-type or of generalized Kummer type. Then the semigroup of effective
curve classes is generated (over Z) by classes of rational curves.

Corollary 13.9. The Integral Hodge conjecture holds for cubic fourfolds.

Why? Use the Abel-Jacobi isomorphism of Beauville–Donagi

H2(F,Z) → H4(X,Z)

(This isomorphism is compatible with the Hodge structures).

13.3. IHC and rationality. There are in fact deeper connections betwween the
IHC and rationality.

Example 13.10. X ⊂ P4 cubic threefold.

J3(X) = intermediate jacobian of X

= H3(X,C)/F 1H3(X,C) +H3(X,Z)

Then (J3(X),Θ) is a ppav of dimension g.

CG: X is rational =⇒ J3(X) is a product of jacobians of curves

⇐⇒ Θg−1

(g−1)! = [C1] + . . . [Cr], where Ci are curves on J3(X).

Θg−1

(g−1)! is called the minimal class; it lies in H2g−2(J3,Z).

If J = JC is a Jacobian of C, then C → JC has fundamental class Θg−1

(g−1)! by the

Poincare formula.

Theorem 13.11 (Voisin ∼ 2015). X stably rational =⇒ Θg−1

(g−1)! is algebraic.

Theorem 13.12 (C. Gabrowski). Z2g−2(A) for all abelian g-folds A ⇐⇒ Θg−1

(g−1)! is

algebraic for all (A,Θ).

The proof uses the fourier-Mukai transform



CURVES ON VARIETIES 23

13.4. Open questions. Notice that Kollár’s example constructed above is a hyper-
surface very high degree, hence is of general type. We can ask:

Conjecture 2. Let X be a Fano (or more generally, rationally connected) variety
of dimension n. Does the integral Hodge conjecture hold for cohomology classes of
degree 2n− 2? I.e., is it true that

Z2n−2(X) = 0

The motivation here is that rationally connected varieties contain a lot of rational
curves – enough to generate all of H2(X,Z)?

Conjecture 3 (Griffiths–Harris question). Let X ⊂ P4 be a very general hyper-
surface of degree d ≥ 6. Then the degree of every curve C ⊂ X is divisible by
d.

Theorem 13.13 (Paulsen). Let n ≥ 3 be an integer. Then there exists a set of
degrees d with positive density such that Conjecture 2 is true in degree d.
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