Enriques surface fibrations with even index
Joint work with F. Suzuki.

John Christian Ottem

November 6, 2020



X = a smooth projective variety over C.
B = a smooth curve
f X — B a morphism

B

Graber—Harris—Starr theorem: If the general fiber of f is rationally connected,
then f has a section.



X = a smooth projective variety over C.
B = a smooth curve
f X — B a morphism

B

Graber—Harris—Starr theorem: If the general fiber of f is rationally connected,
then f has a section.

.. Any rationally connected variety X/K, over K = k(B), has a K-point.



Serre (1958) (in a letter to Grothendieck):
Is the same conclusion true for varieties X/K with H'(X,Ox) = 0 for i > 0?

Serre adds that it is “sans doute trop optimiste”.

Graber—Harris—Mazur—Starr, Lafon, Starr (~ 2002)
No: There exist Enriques surface fibrations over curves with no section.



A question of Esnault:

For f: X — B with O-acyclic fibers: Is the index of f equal to 17

index(f) = ged{ deg(C/B) | C C X a curve}

In other words, does X/K admit a 0-cycle of degree 17

X
;



Main result of this talk:
Theorem (O.-Suzuki)

There exists an Enriques surface fibration
X P

such that the index is even.
In other words, every curve C C X has even degree over P!,

Thus, Serre’s question has a negative answer even with ‘rational point’ replaced by
‘O-cycle of degree 1°.



Other consequences

The 3-fold X gives counterexamples to other questions:
1. The Integral Hodge conjecture

2. The Hasse principle for the reciprocity obstruction for varieties over function fields
of curves

3. Murre’s conjecture on the universality of Abel-Jacobi maps



The Integral Hodge Conjecture
Colliot-Théléne—Voisin: For f : X — B with O-acyclic fibers:
f«: Ho(X,Z) — Hao(B,Z)
is surjective.

Thus there is a homology class o € Ha(X,Z) which has degree 1 on a fiber.
.. “there is no topological obstruction to the existence of sections”

This class is automatically Hodge, so we obtain a counterexample to
The integral Hodge conjecture (IHC):

H"E(X,C)n H?**(X,7)
is generated by classes of algebraic subvarieties.

In our example, 40 is algebraic, but o is not.



Enriques surfaces

Surfaces S with
e m1(S)=17/2
e 2Kg=0

There is a universal cover 7 : Z — S where Z is a K3 surface

Example
Let S C P? x P? be the surface defined by the 2 x 2 minors of a generic matrix

(po P1 p2> pi = pi(zo,z1,22)
q q1 Qg2 q = Qz‘(yo,yhyQ)

where deg p; = (2,0) and degg; = (0,2). Then S is an Enriques surface.



Here is the K3 cover:
On P° = Proj k[zg, 1, T2, Yo, Y1, Yo, there is an involution

L P5 — PO

defined by *(x;) = z;, t(y;) = —vyi.
Consider the quadrics

pi = pi(zo,T1,72)

P piT ¢ = (Yo, Y1,Y2)
These define a K3 surface
Z={Fy=F=F=0CcP

¢ acts freely on Z, as Z is disjoint from

P = V(wg,z1,20) ~ P?

Fi =P, UP
IX(L) ! 2 P2 = V(y()? Y1, y2) = ]P)2

Hence S = Z/. is a smooth Enriques surface.



Two Enriques surface fibrations

o X C P! x P2 x P? is the threefold defined by the 2 x 2 minors of a generic matrix

po P12 pi = $°A;+ stB; +t2C;
o @ 9 ¢ = s°D;+ stE; +t°F;
where degp; = (2,2,0) and degq; = (2,0, 2).

Then X is a smooth threefold, and the first projection defines an Enriques surface
fibration

p: X - PL
o Y C P! x P2 x P? is defined by
<p0 D1 pz) pi = sA;+1B;
G q q ¢ = sC;+1tD;

where degp; = (1,2,0) and degq; = (1,0, 2).



Properties of X

® X has Kodaira dimension 1
e X is simply connected and H*(X,Z) has no torsion.

¢ Hodge diamond

0 99 99
e CHy(X) =7 (as expected by the Bloch conjecture)



Properties of Y

® Y has Kodaira dimension 1
® Y is simply connected and H*(X,Z) has no torsion.

¢ Hodge diamond

0 45 45
e CHy(Y) =7 (as expected by the Bloch conjecture)



Strategy

We first study the geometry of Y.

Thus Y C P! x P? x P? is the codimension 2 subvariety defined by the minors of

Do P1 P2 pi = SA;+1tB;
g 91 9 ¢ = sCi+1tD;

where degp; = (1,2,0) and degq; = (1,0, 2).

On Y we prove certain congruence of intersection numbers between curves C' and
divisors FEj;.

We then use this to study curves on X, using a degeneration argument.

X is the variety that will give the main counterexample.



The geometry of YV
Let F; = p; + i, considered as a (1,2) form on P! x P®.

Z = Blpix(pupy)Zo

Zy={Fy=F =F=0}CP!' xP° Y C P! x P? x P?

7 is the blow-up of the fixed points of ¢
e (P! x P|)N Zy (= 12 points Pi1,---,p1,12); and
® (Pl X PQ) M Z() (: 12 points P21y -- ,p2’12)

~~~> 24 exceptional divisors

Ei1, ... Ei12
Es1, ... Eon

p is a double cover, ramified along the Fj ;.



Out of the 24 E; ;’s, we single out Ey 1,...,Eq 12 (from the fixed points on P).

If Y is defined by <ZO ]q?l 22>, the Fq; are the components of
0 @1 g2

Ei={po=p1=p2=0} CY.

Claim

For a curve C C Y we have

deg(C/P!) = ZEU mod 2.

. If C CY is asection of X — P!, then C has to intersect at least one of the Ey ;s (!).



We consider a degeneration ) — T with special fiber ).

If Y =) is a very general fiber, then there is a specialization map
CHl(Y) — CHl(yo)
compatible with intersection products.

So it suffices to prove the congruence

deg(C/PY) =C ZEU mod 2.

on ).



The degeneration: ) C P! x P2 x P? — Spec k[e] defined by the minors of

M. — Pbo b1 D2
€ — 2 2 2
Sy +€ro Ssyy +e€r1 Ssy; +ere

Special fiber over € = 0: ) = Yy UY]

* Yo NY] = {s = 0}= an Enriques surface
® V(po,p1,p2) = E11U---U Ej 12 does not intersect Y| (hence lies in (Vp)reg)-



deg(C/PY) = C - (2;2:1 El’j) mod 2

Yy is defined by the matrix

<P0 4! P2)
woui v
Let D1 = {po = 0}; this is a divisor of type (1,2,0).

For C' C Yj a curve,

deg(C/P')=D;-C mod 2

On the other hand,
12

Dy ={y5 =0} + ZELJ’
=1

This gives the desired congruence.



The threefold X and proof of the main theorem

Theorem
Let X be defined by a very general matriz in P! x P? x P?

<p0 b1 p2)

qQ 91 Qg2
where degp; = (2,2,0) and degq; = (2,0,2).

Then any curve C C X — P! has even degree over P!.



On X C P! x P2 x P? there are now 24 + 24 = 48 exceptional divisors

Ei1, ... Eioa
Esq, ... Egpo4
We focus on Fjy1,..., F24; the components of

Basic strategy: Prove the following key congruence:

12
deg(C/]P’l) =C. (Z Eij) mod 2
k=1

for any 12-tuple 1 < j; < ... < j12 < 24.
This will imply the theorem: We would get that
C'El,l E"'EC'E1724 mod 2,

and hence that deg(C/P!) is even.



We want to prove that

deg(C/P) = Z E1 j, mod 2 (2)

1. Monodromy argument: Reduce to proving (2) for some 12-tuple j; < ... < jio.

2. Specialization argument: Prove (2) for some (j1,...,j12) by analyzing a certain
degeneration of X.



Here is the degeneration:

_(spo+erg (s—t)pr+err (s+t)pa+ers
stqo+esg t(s—t)q1 +e€s1 t(s+t)ge + €so

K
| Ry

1

/\_/ﬂ?

The special fiber over € = 0 is a union

Y UR{URyURg3



K R, & |
/—\_/ [F

e Y is the previous Enriques surface fibration with 12 planes E j,,. ..

e On Y we know that

deg(C/P!) = (Z E, M) mod 2

(2) follows from this.

B s



Thank you for the attention!



A counterexample to a question of Murre

Let CHP(V)qy C CHP(V') denote the subgroup of cycle classes algebraically equivalent
to 0.
~~> Abel-Jacobi map

_ H*~(V,C)
— H?p—l(V’ Z) + FpHQp—l(V’ (C)

PP CHP(V)qg — JP(V)



This is defined by integration:

Take v € CHP(V)qq
~~> [y] =0T in HP(V,Z) where I is a (2n — 2p + 1)-chain.
~~> define

PWP(y) = (w > /F w mod H?~L(V, Z))

where w € FP~PHL2n=20+1(y C). (Note that H*~1(V,C)/FPH*~(V,C) is dual to
this vector space).



Theorem

Let
JEP(V) := the image of YP in JP(V).

Then JE(V) is an abelian variety (the Lieberman jacobian).
and P : CHP(V )4y — JE(V) is a regular homomorphism.

Here ¢ : CHP(V)qq — A is regular if
V smooth proj. S, Vsg € S, VI' € CHP(S x V'), then the composition

S = CHP(V)ay & A

given by s — [x(s — sp), is a morphism of algebraic varieties.



Murre’s conjecture: J5 (V) is universal among regular homomorphisms AP(V) — A
to an abelian variety A:

AP(V) A

JE(V)

The universality of ¥P was known for

p = 1: Picard variety

p = dim X: Albanese variety

p = 2: Proved by Murre (using algebraic K-theory, results by Saito, Bloch-Ogus theory,
Merkurjev—Suslin, ..).

We get a counterexample for p = 3 for V = X x E for a very general elliptic curve F.



