Enriques surface fibrations with even index Joint work with F. Suzuki.

John Christian Ottem

November 6, 2020
$X=$ a smooth projective variety over \mathbb{C}.
$B=$ a smooth curve
$f: X \rightarrow B$ a morphism

Graber-Harris-Starr theorem: If the general fiber of f is rationally connected, then f has a section.
$X=$ a smooth projective variety over \mathbb{C}.
$B=$ a smooth curve
$f: X \rightarrow B$ a morphism

Graber-Harris-Starr theorem: If the general fiber of f is rationally connected, then f has a section.
\therefore Any rationally connected variety X / K, over $K=k(B)$, has a K-point.

Serre (1958) (in a letter to Grothendieck):
Is the same conclusion true for varieties X / K with $H^{i}\left(X, \mathcal{O}_{X}\right)=0$ for $i>0$?
Serre adds that it is "sans doute trop optimiste".
Graber-Harris-Mazur-Starr, Lafon, Starr (~ 2002)
No: There exist Enriques surface fibrations over curves with no section.

A question of Esnault:

For $f: X \rightarrow B$ with \mathcal{O}-acyclic fibers: Is the index of f equal to 1 ?

$$
\operatorname{index}(f)=\operatorname{gcd}\{\operatorname{deg}(C / B) \mid C \subset X \text { a curve }\}
$$

In other words, does X / K admit a 0 -cycle of degree 1 ?

Main result of this talk:

Theorem (O.-Suzuki)

There exists an Enriques surface fibration

$$
X \rightarrow \mathbb{P}^{1}
$$

such that the index is even.
In other words, every curve $C \subset X$ has even degree over \mathbb{P}^{1}.

Thus, Serre's question has a negative answer even with 'rational point' replaced by ' 0 -cycle of degree 1 '.

Other consequences

The 3 -fold X gives counterexamples to other questions:

1. The Integral Hodge conjecture
2. The Hasse principle for the reciprocity obstruction for varieties over function fields of curves
3. Murre's conjecture on the universality of Abel-Jacobi maps

The Integral Hodge Conjecture

Colliot-Thélène-Voisin: For $f: X \rightarrow B$ with \mathcal{O}-acyclic fibers:

$$
f_{*}: H_{2}(X, \mathbb{Z}) \rightarrow H_{2}(B, \mathbb{Z})
$$

is surjective.
Thus there is a homology class $\sigma \in H_{2}(X, \mathbb{Z})$ which has degree 1 on a fiber. \therefore "there is no topological obstruction to the existence of sections"

This class is automatically Hodge, so we obtain a counterexample to
The integral Hodge conjecture (IHC):

$$
H^{k, k}(X, \mathbb{C}) \cap H^{2 k}(X, \mathbb{Z})
$$

is generated by classes of algebraic subvarieties.
In our example, 4σ is algebraic, but σ is not.

Enriques surfaces

Surfaces S with

- $\pi_{1}(S)=\mathbb{Z} / 2$
- $2 K_{S}=0$

There is a universal cover $\pi: Z \rightarrow S$ where Z is a K3 surface

Example

Let $S \subset \mathbb{P}^{2} \times \mathbb{P}^{2}$ be the surface defined by the 2×2 minors of a generic matrix

$$
\left(\begin{array}{ccc}
p_{0} & p_{1} & p_{2} \\
q_{0} & q_{1} & q_{2}
\end{array}\right) \quad \begin{aligned}
& p_{i}=p_{i}\left(x_{0}, x_{1}, x_{2}\right) \\
& q_{i}=q_{i}\left(y_{0}, y_{1}, y_{2}\right)
\end{aligned}
$$

where $\operatorname{deg} p_{i}=(2,0)$ and $\operatorname{deg} q_{i}=(0,2)$. Then S is an Enriques surface.

Here is the K3 cover:
On $\mathbb{P}^{5}=\operatorname{Proj} k\left[x_{0}, x_{1}, x_{2}, y_{0}, y_{1}, y_{2}\right]$, there is an involution

$$
\iota: \mathbb{P}^{5} \rightarrow \mathbb{P}^{5}
$$

defined by $\iota^{*}\left(x_{i}\right)=x_{i}, \iota\left(y_{i}\right)=-y_{i}$.
Consider the quadrics

$$
F_{i}=p_{i}+q_{i}
$$

$$
\begin{aligned}
p_{i} & =p_{i}\left(x_{0}, x_{1}, x_{2}\right) \\
q_{i} & =q_{i}\left(y_{0}, y_{1}, y_{2}\right)
\end{aligned}
$$

These define a K3 surface

$$
Z=\left\{F_{0}=F_{1}=F_{2}=0\right\} \subset \mathbb{P}^{5}
$$

ι acts freely on Z, as Z is disjoint from

$$
\operatorname{Fix}(\iota)=P_{1} \cup P_{2}
$$

$$
\begin{aligned}
& P_{1}=V\left(x_{0}, x_{1}, x_{2}\right) \simeq \mathbb{P}^{2} \\
& P_{2}=V\left(y_{0}, y_{1}, y_{2}\right) \simeq \mathbb{P}^{2}
\end{aligned}
$$

Hence $S=Z / \iota$ is a smooth Enriques surface.

Two Enriques surface fibrations

- $X \subset \mathbb{P}^{1} \times \mathbb{P}^{2} \times \mathbb{P}^{2}$ is the threefold defined by the 2×2 minors of a generic matrix

$$
\left(\begin{array}{ccc}
p_{0} & p_{1} & p_{2} \\
q_{0} & q_{1} & q_{2}
\end{array}\right) \quad \begin{aligned}
& p_{i}=s^{2} A_{i}+s t B_{i}+t^{2} C_{i} \\
& q_{i}=s^{2} D_{i}+s t E_{i}+t^{2} F_{i}
\end{aligned}
$$

where $\operatorname{deg} p_{i}=(\mathbf{2}, \mathbf{2}, \mathbf{0})$ and $\operatorname{deg} q_{i}=(\mathbf{2}, \mathbf{0}, \mathbf{2})$.
Then X is a smooth threefold, and the first projection defines an Enriques surface fibration

$$
p: X \rightarrow \mathbb{P}^{1}
$$

- $Y \subset \mathbb{P}^{1} \times \mathbb{P}^{2} \times \mathbb{P}^{2}$ is defined by

$$
\left(\begin{array}{ccc}
p_{0} & p_{1} & p_{2} \\
q_{0} & q_{1} & q_{2}
\end{array}\right) \quad \begin{aligned}
& p_{i}=s A_{i}+t B_{i} \\
& q_{i}=s C_{i}+t D_{i}
\end{aligned}
$$

where $\operatorname{deg} p_{i}=(\mathbf{1}, \mathbf{2}, \mathbf{0})$ and $\operatorname{deg} q_{i}=(\mathbf{1}, \mathbf{0}, \mathbf{2})$.

Properties of X

- X has Kodaira dimension 1
- X is simply connected and $H^{*}(X, \mathbb{Z})$ has no torsion.
- Hodge diamond

$$
1
$$

0
50

0
0

0
99
99
0

- $C H_{0}(X)=\mathbb{Z}$ (as expected by the Bloch conjecture)

Properties of Y

- Y has Kodaira dimension 1
- Y is simply connected and $H^{*}(X, \mathbb{Z})$ has no torsion.
- Hodge diamond

$$
1
$$

0
26
0

0
45
45
0

- $C H_{0}(Y)=\mathbb{Z}$ (as expected by the Bloch conjecture)

Strategy

We first study the geometry of Y.
Thus $Y \subset \mathbb{P}^{1} \times \mathbb{P}^{2} \times \mathbb{P}^{2}$ is the codimension 2 subvariety defined by the minors of

$$
\left(\begin{array}{ccc}
p_{0} & p_{1} & p_{2} \\
q_{0} & q_{1} & q_{2}
\end{array}\right) \quad \begin{aligned}
& p_{i}=s A_{i}+t B_{i} \\
& q_{i}=s C_{i}+t D_{i}
\end{aligned}
$$

where $\operatorname{deg} p_{i}=(\mathbf{1}, \mathbf{2}, \mathbf{0})$ and $\operatorname{deg} q_{i}=(\mathbf{1}, \mathbf{0}, \mathbf{2})$.
On Y we prove certain congruence of intersection numbers between curves C and divisors E_{i}.

We then use this to study curves on X, using a degeneration argument.
X is the variety that will give the main counterexample.

The geometry of Y

Let $F_{i}=p_{i}+q_{i}$, considered as a $(1,2)$ form on $\mathbb{P}^{1} \times \mathbb{P}^{5}$.

$$
Z_{0}=\left\{F_{0}=F_{1}=F_{2}=0\right\} \subset \mathbb{P}^{1} \times \mathbb{P}^{5} \quad Y \subset \mathbb{P}^{1} \times \mathbb{P}^{2} \times \mathbb{P}^{2}
$$

π is the blow-up of the fixed points of ι :

- $\left(\mathbb{P}^{1} \times P_{1}\right) \cap Z_{0}\left(=12\right.$ points $\left.p_{1,1}, \ldots, p_{1,12}\right)$; and
- $\left(\mathbb{P}^{1} \times P_{2}\right) \cap Z_{0}\left(=12\right.$ points $\left.p_{2,1}, \ldots, p_{2,12}\right)$
~ 24 exceptional divisors

$$
\begin{array}{lll}
E_{1,1}, & \ldots & E_{1,12} \\
E_{2,1}, & \ldots & E_{2,12}
\end{array}
$$

p is a double cover, ramified along the $E_{i, j}$.

Out of the $24 E_{i, j}$'s, we single out $E_{1,1}, \ldots, E_{1,12}$ (from the fixed points on P_{1}).
If Y is defined by $\left(\begin{array}{ccc}p_{0} & p_{1} & p_{2} \\ q_{0} & q_{1} & q_{2}\end{array}\right)$, the $E_{1, i}$ are the components of

$$
E_{1}=\left\{p_{0}=p_{1}=p_{2}=0\right\} \subset Y
$$

Claim

For a curve $C \subset Y$ we have

$$
\operatorname{deg}\left(C / \mathbb{P}^{1}\right) \equiv C \cdot\left(\sum_{j=1}^{12} E_{1, j}\right) \quad \bmod 2 .
$$

\therefore If $C \subset Y$ is a section of $X \rightarrow \mathbb{P}^{1}$, then C has to intersect at least one of the $E_{1, j}$'s (!).

We consider a degeneration $\mathcal{Y} \rightarrow T$ with special fiber \mathcal{Y}_{0}.
If $Y=\mathcal{Y}_{t}$ is a very general fiber, then there is a specialization map

$$
\mathrm{CH}_{1}(Y) \rightarrow \mathrm{CH}_{1}\left(\mathcal{Y}_{0}\right)
$$

compatible with intersection products.
So it suffices to prove the congruence

$$
\operatorname{deg}\left(C / \mathbb{P}^{1}\right) \equiv C \cdot\left(\sum_{j=1}^{12} E_{1, j}\right) \quad \bmod 2 .
$$

on \mathcal{Y}_{0}.

The degeneration: $\mathcal{Y} \subset \mathbb{P}^{1} \times \mathbb{P}^{2} \times \mathbb{P}^{2} \rightarrow$ Spec $k[\epsilon]$ defined by the minors of

$$
M_{\epsilon}=\left(\begin{array}{ccc}
p_{0} & p_{1} & p_{2} \\
s y_{0}^{2}+\epsilon r_{0} & s y_{1}^{2}+\epsilon r_{1} & s y_{2}^{2}+\epsilon r_{2}
\end{array}\right)
$$

Special fiber over $\epsilon=0: \mathcal{Y}_{0}=Y_{0} \cup Y_{0}^{\prime}$

- $Y_{0} \cap Y_{0}^{\prime}=\{s=0\}=$ an Enriques surface
- $V\left(p_{0}, p_{1}, p_{2}\right)=E_{1,1} \cup \cdots \cup E_{1,12}$ does not intersect Y_{0}^{\prime} (hence lies in $\left.\left(\mathcal{Y}_{0}\right)_{\text {reg }}\right)$.
$\operatorname{deg}\left(C / \mathbb{P}^{1}\right) \equiv C \cdot\left(\sum_{j=1}^{12} E_{1, j}\right) \quad \bmod 2$
Y_{0} is defined by the matrix

$$
\left(\begin{array}{lll}
p_{0} & p_{1} & p_{2} \\
y_{0}^{2} & y_{1}^{2} & y_{2}^{2}
\end{array}\right)
$$

Let $D_{1}=\left\{p_{0}=0\right\}$; this is a divisor of type $(1,2,0)$.
For $C \subset Y_{0}$ a curve,

$$
\operatorname{deg}\left(C / \mathbb{P}^{1}\right) \equiv D_{1} \cdot C \quad \bmod 2
$$

On the other hand,

$$
D_{1}=\left\{y_{0}^{2}=0\right\}+\sum_{j=1}^{12} E_{1, j}
$$

This gives the desired congruence.

The threefold X and proof of the main theorem

Theorem

Let X be defined by a very general matrix in $\mathbb{P}^{1} \times \mathbb{P}^{2} \times \mathbb{P}^{2}$

$$
\left(\begin{array}{lll}
p_{0} & p_{1} & p_{2} \\
q_{0} & q_{1} & q_{2}
\end{array}\right)
$$

where $\operatorname{deg} p_{i}=(\mathbf{2}, \mathbf{2}, \mathbf{0})$ and $\operatorname{deg} q_{i}=(\mathbf{2}, \mathbf{0}, \mathbf{2})$.
Then any curve $C \subset X \rightarrow \mathbb{P}^{1}$ has even degree over \mathbb{P}^{1}.

On $X \subset \mathbb{P}^{1} \times \mathbb{P}^{2} \times \mathbb{P}^{2}$ there are now $24+24=48$ exceptional divisors

$$
\begin{array}{lll}
E_{1,1}, & \ldots & E_{1,24} \\
E_{2,1}, & \ldots & E_{2,24}
\end{array}
$$

We focus on $E_{1,1}, \ldots, E_{1,24}$; the components of

$$
E_{1}=\left\{p_{0}=p_{1}=p_{2}=0\right\}
$$

Basic strategy: Prove the following key congruence:

$$
\begin{equation*}
\operatorname{deg}\left(C / \mathbb{P}^{1}\right) \equiv C \cdot\left(\sum_{k=1}^{12} E_{1, j_{k}}\right) \quad \bmod 2 \tag{1}
\end{equation*}
$$

for any 12 -tuple $1 \leq j_{1}<\ldots<j_{12} \leq 24$.
This will imply the theorem: We would get that

$$
C \cdot E_{1,1} \equiv \cdots \equiv C \cdot E_{1,24} \quad \bmod 2
$$

and hence that $\operatorname{deg}\left(C / \mathbb{P}^{1}\right)$ is even.

We want to prove that

$$
\begin{equation*}
\operatorname{deg}\left(C / \mathbb{P}^{1}\right) \equiv C \cdot\left(\sum_{j=1}^{12} E_{1, j_{k}}\right) \quad \bmod 2 \tag{2}
\end{equation*}
$$

1. Monodromy argument: Reduce to proving (2) for some 12 -tuple $j_{1}<\ldots<j_{12}$.
2. Specialization argument: Prove (2) for some $\left(j_{1}, \ldots, j_{12}\right)$ by analyzing a certain degeneration of X.

Here is the degeneration:

$$
M=\left(\begin{array}{ccc}
s p_{0}+\epsilon r_{0} & (s-t) p_{1}+\epsilon r_{1} & (s+t) p_{2}+\epsilon r_{2} \\
s t q_{0}+\epsilon s_{0} & t(s-t) q_{1}+\epsilon s_{1} & t(s+t) q_{2}+\epsilon s_{2}
\end{array}\right)
$$

The special fiber over $\epsilon=0$ is a union

$$
Y \cup R_{1} \cup R_{2} \cup R_{3}
$$

- Y is the previous Enriques surface fibration with 12 planes $E_{1, j_{1}}, \ldots, E_{1, j_{12}}$
- On Y we know that

$$
\begin{equation*}
\operatorname{deg}\left(C / \mathbb{P}^{1}\right) \equiv C \cdot\left(\sum_{k=1}^{12} E_{1, j_{k}}\right) \quad \bmod 2 \tag{3}
\end{equation*}
$$

(2) follows from this.

Thank you for the attention!

A counterexample to a question of Murre

Let $C H^{p}(V)_{\text {alg }} \subset C H^{p}(V)$ denote the subgroup of cycle classes algebraically equivalent to 0 .
\sim Abel-Jacobi map

$$
\psi^{p}: C H^{p}(V)_{a l g} \rightarrow J^{p}(V)=\frac{H^{2 p-1}(V, \mathbb{C})}{H^{2 p-1}(V, \mathbb{Z})+F^{p} H^{2 p-1}(V, \mathbb{C})}
$$

This is defined by integration:
Take $\gamma \in C H^{p}(V)_{\text {alg }}$ $\leadsto[\gamma]=\partial \Gamma$ in $H^{p}(V, \mathbb{Z})$ where Γ is a $(2 n-2 p+1)$-chain.
\leadsto define

$$
\psi^{p}(\gamma)=\left(\omega \mapsto \int_{\Gamma} \omega \quad \bmod H^{2 p-1}(V, \mathbb{Z})\right)
$$

where $\omega \in F^{n-p+1} H^{2 n-2 p+1}(V, \mathbb{C})$. (Note that $H^{2 p-1}(V, \mathbb{C}) / F^{p} H^{2 p-1}(V, \mathbb{C})$ is dual to this vector space).

Theorem

Let

$$
J_{a}^{p}(V):=\text { the image of } \psi^{p} \text { in } J^{p}(V)
$$

Then $J_{a}^{p}(V)$ is an abelian variety (the Lieberman jacobian). and $\psi^{p}: C H^{p}(V)_{a l g} \rightarrow J_{a}^{p}(V)$ is a regular homomorphism.

Here $\psi: C H^{p}(V)_{a l g} \rightarrow A$ is regular if \forall smooth proj. $S, \forall s_{0} \in S, \forall \Gamma \in C H^{p}(S \times V)$, then the composition

$$
S \rightarrow C H^{p}(V)_{a l g} \xrightarrow{\phi} A
$$

given by $s \mapsto \Gamma_{*}\left(s-s_{0}\right)$, is a morphism of algebraic varieties.

Murre's conjecture: $J_{a}^{p}(V)$ is universal among regular homomorphisms $A^{p}(V) \rightarrow A$ to an abelian variety A :

The universality of ψ^{p} was known for
$p=1$: Picard variety
$p=\operatorname{dim} X$: Albanese variety
$p=2$: Proved by Murre (using algebraic K-theory, results by Saito, Bloch-Ogus theory, Merkurjev-Suslin, ..).

We get a counterexample for $p=3$ for $V=X \times E$ for a very general elliptic curve E.

