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X = a smooth projective variety over C.
B = a smooth curve
f : X → B a morphism

Graber–Harris–Starr theorem: If the general fiber of f is rationally connected,
then f has a section.



X = a smooth projective variety over C.
B = a smooth curve
f : X → B a morphism

Graber–Harris–Starr theorem: If the general fiber of f is rationally connected,
then f has a section.

∴ Any rationally connected variety X/K, over K = k(B), has a K-point.



Serre (1958) (in a letter to Grothendieck):
Is the same conclusion true for varieties X/K with H i(X,OX) = 0 for i > 0?

Serre adds that it is “sans doute trop optimiste”.

Graber–Harris–Mazur–Starr, Lafon, Starr (∼ 2002)
No: There exist Enriques surface fibrations over curves with no section.



A question of Esnault:

For f : X → B with O-acyclic fibers: Is the index of f equal to 1?

index(f) = gcd{ deg(C/B) | C ⊂ X a curve}

In other words, does X/K admit a 0-cycle of degree 1?



Main result of this talk:

Theorem (O.-Suzuki)

There exists an Enriques surface fibration

X → P1

such that the index is even.
In other words, every curve C ⊂ X has even degree over P1.

Thus, Serre’s question has a negative answer even with ‘rational point’ replaced by
‘0-cycle of degree 1’.



Other consequences

The 3-fold X gives counterexamples to other questions:

1. The Integral Hodge conjecture

2. The Hasse principle for the reciprocity obstruction for varieties over function fields
of curves

3. Murre’s conjecture on the universality of Abel-Jacobi maps



The Integral Hodge Conjecture

Colliot-Thélène–Voisin: For f : X → B with O-acyclic fibers:

f∗ : H2(X,Z)→ H2(B,Z)

is surjective.

Thus there is a homology class σ ∈ H2(X,Z) which has degree 1 on a fiber.
∴ “there is no topological obstruction to the existence of sections”

This class is automatically Hodge, so we obtain a counterexample to

The integral Hodge conjecture (IHC):

Hk,k(X,C) ∩H2k(X,Z)

is generated by classes of algebraic subvarieties.

In our example, 4σ is algebraic, but σ is not.



Enriques surfaces

Surfaces S with

• π1(S) = Z/2
• 2KS = 0

There is a universal cover π : Z → S where Z is a K3 surface

Example
Let S ⊂ P2 × P2 be the surface defined by the 2× 2 minors of a generic matrix(

p0 p1 p2

q0 q1 q2

)
pi = pi(x0, x1, x2)
qi = qi(y0, y1, y2)

where deg pi = (2, 0) and deg qi = (0, 2). Then S is an Enriques surface.



Here is the K3 cover:
On P5 = Proj k[x0, x1, x2, y0, y1, y2], there is an involution

ι : P5 → P5

defined by ι∗(xi) = xi, ι(yi) = −yi.
Consider the quadrics

Fi = pi + qi
pi = pi(x0, x1, x2)
qi = qi(y0, y1, y2)

These define a K3 surface

Z = {F0 = F1 = F2 = 0} ⊂ P5

ι acts freely on Z, as Z is disjoint from

Fix(ι) = P1 ∪ P2
P1 = V (x0, x1, x2) ' P2

P2 = V (y0, y1, y2) ' P2

Hence S = Z/ι is a smooth Enriques surface.



Two Enriques surface fibrations

• X ⊂ P1 × P2 × P2 is the threefold defined by the 2× 2 minors of a generic matrix(
p0 p1 p2

q0 q1 q2

)
pi = s2Ai + stBi + t2Ci
qi = s2Di + stEi + t2Fi

where deg pi = (2,2,0) and deg qi = (2,0,2).

Then X is a smooth threefold, and the first projection defines an Enriques surface
fibration

p : X → P1.

• Y ⊂ P1 × P2 × P2 is defined by

(
p0 p1 p2

q0 q1 q2

)
pi = sAi + tBi
qi = sCi + tDi

where deg pi = (1,2,0) and deg qi = (1,0,2).



Properties of X

• X has Kodaira dimension 1

• X is simply connected and H∗(X,Z) has no torsion.

• Hodge diamond

1

0 0

0 50 0

0 99 99 0

• CH0(X) = Z (as expected by the Bloch conjecture)



Properties of Y

• Y has Kodaira dimension 1

• Y is simply connected and H∗(X,Z) has no torsion.

• Hodge diamond

1

0 0

0 26 0

0 45 45 0

• CH0(Y ) = Z (as expected by the Bloch conjecture)



Strategy

We first study the geometry of Y .

Thus Y ⊂ P1 × P2 × P2 is the codimension 2 subvariety defined by the minors of(
p0 p1 p2

q0 q1 q2

)
pi = sAi + tBi
qi = sCi + tDi

where deg pi = (1,2,0) and deg qi = (1,0,2).

On Y we prove certain congruence of intersection numbers between curves C and
divisors Ei.

We then use this to study curves on X, using a degeneration argument.

X is the variety that will give the main counterexample.



The geometry of Y
Let Fi = pi + qi, considered as a (1, 2) form on P1 × P5.

π is the blow-up of the fixed points of ι:

• (P1 × P1) ∩ Z0 (= 12 points p1,1, . . . , p1,12); and

• (P1 × P2) ∩ Z0 (= 12 points p2,1, . . . , p2,12)
// 24 exceptional divisors

E1,1, . . . E1,12

E2,1, . . . E2,12

p is a double cover, ramified along the Ei,j .



Out of the 24 Ei,j ’s, we single out E1,1, . . . , E1,12 (from the fixed points on P1).

If Y is defined by

(
p0 p1 p2

q0 q1 q2

)
, the E1,i are the components of

E1 = {p0 = p1 = p2 = 0} ⊂ Y.

Claim

For a curve C ⊂ Y we have

deg(C/P1) ≡ C ·

 12∑
j=1

E1,j

 mod 2.

∴ If C ⊂ Y is a section of X → P1, then C has to intersect at least one of the E1,j ’s (!).



We consider a degeneration Y → T with special fiber Y0.

If Y = Yt is a very general fiber, then there is a specialization map

CH1(Y )→ CH1(Y0)

compatible with intersection products.

So it suffices to prove the congruence

deg(C/P1) ≡ C ·

 12∑
j=1

E1,j

 mod 2.

on Y0.



The degeneration: Y ⊂ P1 × P2 × P2 → Spec k[ε] defined by the minors of

Mε =

(
p0 p1 p2

sy2
0 + εr0 sy2

1 + εr1 sy2
2 + εr2

)
Special fiber over ε = 0: Y0 = Y0 ∪ Y ′0

• Y0 ∩ Y ′0 = {s = 0}= an Enriques surface

• V (p0, p1, p2) = E1,1 ∪ · · · ∪ E1,12 does not intersect Y ′0 (hence lies in (Y0)reg).



deg(C/P1) ≡ C ·
(∑12

j=1 E1,j

)
mod 2

Y0 is defined by the matrix (
p0 p1 p2

y2
0 y2

1 y2
2

)
Let D1 = {p0 = 0}; this is a divisor of type (1, 2, 0).

For C ⊂ Y0 a curve,

deg(C/P1) ≡ D1 · C mod 2

On the other hand,

D1 = {y2
0 = 0}+

12∑
j=1

E1,j

This gives the desired congruence.



The threefold X and proof of the main theorem

Theorem

Let X be defined by a very general matrix in P1 × P2 × P2(
p0 p1 p2

q0 q1 q2

)
where deg pi = (2,2,0) and deg qi = (2,0,2).
Then any curve C ⊂ X → P1 has even degree over P1.



On X ⊂ P1 × P2 × P2 there are now 24 + 24 = 48 exceptional divisors

E1,1, . . . E1,24

E2,1, . . . E2,24

We focus on E1,1, . . . , E1,24; the components of

E1 = {p0 = p1 = p2 = 0}.

Basic strategy: Prove the following key congruence:

deg(C/P1) ≡ C ·

(
12∑
k=1

E1,jk

)
mod 2 (1)

for any 12-tuple 1 ≤ j1 < . . . < j12 ≤ 24.

This will imply the theorem: We would get that

C · E1,1 ≡ · · · ≡ C · E1,24 mod 2,

and hence that deg(C/P1) is even.



We want to prove that

deg(C/P1) ≡ C ·

 12∑
j=1

E1,jk

 mod 2 (2)

1. Monodromy argument: Reduce to proving (2) for some 12-tuple j1 < . . . < j12.

2. Specialization argument: Prove (2) for some (j1, . . . , j12) by analyzing a certain
degeneration of X.



Here is the degeneration:

M =

(
sp0 + εr0 (s− t)p1 + εr1 (s+ t)p2 + εr2

stq0 + εs0 t(s− t)q1 + εs1 t(s+ t)q2 + εs2

)

The special fiber over ε = 0 is a union

Y ∪R1 ∪R2 ∪R3



• Y is the previous Enriques surface fibration with 12 planes E1,j1 , . . . , E1,j12

• On Y we know that

deg(C/P1) ≡ C ·

(
12∑
k=1

E1,jk

)
mod 2 (3)

(2) follows from this.



Thank you for the attention!



A counterexample to a question of Murre

Let CHp(V )alg ⊂ CHp(V ) denote the subgroup of cycle classes algebraically equivalent
to 0.

// Abel-Jacobi map

ψp : CHp(V )alg → Jp(V ) =
H2p−1(V,C)

H2p−1(V,Z) + F pH2p−1(V,C)



This is defined by integration:
Take γ ∈ CHp(V )alg

// [γ] = ∂Γ in Hp(V,Z) where Γ is a (2n− 2p+ 1)-chain.
// define

ψp(γ) =

(
ω 7→

∫
Γ
ω mod H2p−1(V,Z)

)
where ω ∈ Fn−p+1H2n−2p+1(V,C). (Note that H2p−1(V,C)/F pH2p−1(V,C) is dual to
this vector space).



Theorem

Let
Jpa (V ) := the image of ψp in Jp(V ).

Then Jpa (V ) is an abelian variety (the Lieberman jacobian).
and ψp : CHp(V )alg → Jpa (V ) is a regular homomorphism.

Here ψ : CHp(V )alg → A is regular if
∀ smooth proj. S, ∀s0 ∈ S, ∀Γ ∈ CHp(S × V ), then the composition

S → CHp(V )alg
φ−→ A

given by s 7→ Γ∗(s− s0), is a morphism of algebraic varieties.



Murre’s conjecture: Jpa (V ) is universal among regular homomorphisms Ap(V )→ A
to an abelian variety A:

Ap(V ) A

Jpa (V )

ψp

The universality of ψp was known for
p = 1: Picard variety
p = dimX: Albanese variety
p = 2: Proved by Murre (using algebraic K-theory, results by Saito, Bloch–Ogus theory,
Merkurjev–Suslin, ..).

We get a counterexample for p = 3 for V = X × E for a very general elliptic curve E.


