Fano varieties with torsion in H^3 (joint work with Jørgen Vold Rennemo)

John Christian Ottem

University of Oslo

October 21, 2023

X = smooth projective variety of dimension $n \ / \ \mathbb{C}$

Main object of the talk:

Tors $H^3(X, \mathbb{Z})$

This is a (stable) birational invariant, introduced by Artin-Mumford in the 1970s.

Michael Artin

David Mumford

Example

$$H^*(\mathbb{P}^n,\mathbb{Z})=\mathbb{Z},0,\mathbb{Z},0,\mathbb{Z},\ldots$$

Example

Any rational X has no torsion in $H^3(X, \mathbb{Z})$.

Reason: If $\widetilde{X} \to X$ is a blow-up in a smooth center $Z \subset X$, then

 $H^3(\widetilde{X},\mathbb{Z}) = H^3(X,\mathbb{Z}) \oplus H^1(Z,\mathbb{Z}) \cdot E$

No torsion in $H^1(Z,\mathbb{Z})$ \longrightarrow Tors $H^3(\widetilde{X},\mathbb{Z}) = \text{Tors } H^3(X,\mathbb{Z}).$

Theorem (Artin–Mumford (~ 1970))

There exist double covers

 $X \to \mathbb{P}^3$

branched along certain singular quartic surfaces $S \subset \mathbb{P}^3$, such that a *desingularization*

$$\widetilde{X} \to X$$

has torsion in $H^3(\widetilde{X}, \mathbb{Z})$.

These 3-folds are unirational, but not (stably) rational.

Constructing such examples is difficult.

Relation to Brauer group: For X smooth projective rationally connected, we have

$$\operatorname{Tors} H^{3}(X,\mathbb{Z}) = Br(X) = \frac{\left\{\mathbb{P}^{n} \text{-fibrations}\right\}}{\left\{\operatorname{projectivized vector bundles}\right\}}.$$

Question (Beauville) Is there a *Fano variety* with non-trivial torsion in $H^3(X, \mathbb{Z})$?

Example $(\dim X = 2)$

Example $(\dim X = 3)$

105 families of Fanos. They all have no torsion in $H^3(X, \mathbb{Z})$.

Main Theorem

Theorem (O.-Rennemo)

There are Fano 4-folds with

Tors $H^3(X, \mathbb{Z}) = \mathbb{Z}/2$.

The examples have Picard number 1.

Also examples in higher dimensions.

It is easy to make Fano varieties torsion in other cohomology groups, e.g., using blow-ups, products, etc.

 $\mathbb{P}^{14} = \mathbb{P}(S^2 V^{\vee})$ the space of quadrics in $V = \mathbb{C}^5$.

Definition

$$Z_r = \left\{ \text{quadrics of rank} \le r \right\}$$

= zero locus of $(r+1) \times (r+1)$ minors of $\begin{pmatrix} u_0 & u_1 & u_2 & u_3 & u_4 \\ u_1 & u_5 & u_6 & u_7 & u_8 \\ u_2 & u_6 & u_9 & u_{10} & u_{11} \\ u_3 & u_7 & u_{10} & u_{12} & u_{13} \\ u_4 & u_8 & u_{11} & u_{13} & u_{14} \end{pmatrix}$ in \mathbb{P}^{14}

- Z_4 is a quintic hypersurface (dimension 13)
- Z_3 is a subvariety of degree 20 (dimension 11)
- $Z_2 = \operatorname{Sym}^2(\mathbb{P}^4)$ (dimension 8)
- Z_1 is the 2nd Veronese embedding of \mathbb{P}^4 (dimension 4)

Note: $sing(Z_r) = Z_{r-1}$ for each r = 2, 3, 4.

$$Z_4 = \text{hypersurface defined by det} \begin{pmatrix} u_0 & u_1 & u_2 & u_3 & u_4 \\ u_1 & u_5 & u_6 & u_7 & u_8 \\ u_2 & u_6 & u_9 & u_{10} & u_{11} \\ u_3 & u_7 & u_{10} & u_{12} & u_{13} \\ u_4 & u_8 & u_{11} & u_{13} & u_{14} \end{pmatrix} = 0.$$

 Z_4 parameterizes rank 4 quadrics in \mathbb{P}^4 , e.g.,

$$Q = x_0 x_3 - x_1 x_2$$

 \longrightarrow a quadric of rank 4 in \mathbb{P}^4 contains two families of 2-planes.

We will use these to define a double cover

$$W_4 \longrightarrow Z_4.$$

Define

$$U = \left\{ \text{ pairs } ([\Pi], [Q]) \text{ where } \mathbb{P}(\Pi) \subset Q \text{ is a 2-plane on } Q \right\} \subset Gr(3, V) \times \mathbb{P}(S^2 V^{\vee}).$$

The first projection is a projective bundle over Gr(3, V). (fibers = projective space of all quadrics containing a given 2-plane.)

```
If Q is a quadric with (\Pi, Q) \in U, then rank Q \leq 4.
(because it contains a 2-plane.)
```

 $\sim \sim >$ The second projection maps into Z_4 .

$$U = \left\{ \text{ pairs } ([\Pi], [Q]) \text{ where } \mathbb{P}(\Pi) \subset Q \text{ is a 2-plane on } Q \right\} \subset Gr(3, V) \times \mathbb{P}(S^2 V^{\vee}).$$

We define W_4 via the Stein factorization

$$U \xrightarrow{\tau} W_4 \xrightarrow{\sigma} Z_4$$

Then:

- σ is finite of degree 2
- τ is generically a \mathbb{P}^1 -bundle: A fiber of pr_1 over a rank 4 quadric $Q \in Z_4$ consists two copies of \mathbb{P}^1 .

Some facts:

1. W_4 has canonical singularities, Gorenstein, Q-factorial, and

 $\operatorname{Pic}(X) = \mathbb{Z}H$

where $H = \tau^* \mathcal{O}_{Z_4}(1)$. 2. $\tau : W_4 \to Z_4$ is quasi-etale $\longrightarrow W_4$ is Fano with $K_{W_4} = \tau^* K_{Z_4} = -10H$

3. "Miracle": W_4 has a smaller singular locus than Z_4 :

$$\operatorname{sing} W_4 = \tau^{-1}(Z_2)$$

which has dimension 8.

4. $U \to W_4$ restricts to a \mathbb{P}^1 -fibration over $W_4^\circ = W_4 - \tau^{-1}(Z_2)$. There is no rational section.

Complete intersections in W_4

Definition

Let

$$X = W_4 \cap H_1 \cap \ldots \cap H_9$$

where $H_i \in |H|$ are generic divisors.

• X has dimension

$$13 - 9 = 4$$

• X is Fano:

$$K_X = K_{W_4} + 9H = -H.$$

- X avoids $\tau^{-1}(Z_2)$ (which has dimension 8) $\sim X$ is smooth.
- Restricting the \mathbb{P}^1 -fibration to $X \longrightarrow$ a non-trivial torsion class $\sigma \in H^3(X, \mathbb{Z})$.

Hodge diamond:

If we do the same thing with $V = \mathbb{C}^n$ for $n \ge 5$, we get a double cover

 $\sigma: W_4 \to Z_4$

and these varieties have dimension 4n - 7.

 Z_2 has dimension 2n-2.

$$X = W_4 \cap H_1 \cap \ldots \cap H_{2n-1}$$

is a smooth Fano manifold of index one of dimension 2n-6 with

 $H^3(X,\mathbb{Z}) = \mathbb{Z}/2.$

Application / Motivation

Two "coniveau" filtrations on $H^{l}(X,\mathbb{Z})$:

 $N^{c}H^{l}(X,\mathbb{Z})$ = classes supported on proper subvarieties $Y \subset X$ of codimension $\geq c$.

 $\widetilde{N}^c H^l(X, \mathbb{Z}) =$ classes $\widetilde{j}_* \beta$ where \widetilde{j} is a composition $\widetilde{Y} \xrightarrow{desing} Y \hookrightarrow X$.

We always have $\widetilde{N}^c H^l(X,\mathbb{Z}) \subset N^c H^l(X,\mathbb{Z})$ and

 $N^1 H^l(X,\mathbb{Z})/\widetilde{N}^1 H^l(X,\mathbb{Z})$

is a stable birational invariant.

Question (Voisin)

Is there a rationally connected variety where these two filtrations are different?

Theorem (O.-Rennemo)

Yes, there are Fano examples in any dimension ≥ 6 .

Proposition (Colliot-Thélène–Voisin, Bloch-Srinivas, Voevodsky,..)

For X rationally connected, we have

$$H^{l}(X,\mathbb{Z}) = N^{1}(X,\mathbb{Z})$$

for all l > 0.

On the other hand:

Proposition (Benoist-O.)

If $\sigma \in H^3(X, \mathbb{Z})$ is a class with

$$\sigma^2 \mod 2 \neq 0 \in H^6(X, \mathbb{Z}/2),$$

then

 $\sigma \not\in \widetilde{N}^1 H^3(X, \mathbb{Z}).$

We check that this indeed happens.

We check that $\sigma^2 \neq 0 \mod 2$ in $H^6(X, \mathbb{Z}/2)$.

$$GO(4) = \text{ orthogonal similtude group} \\ = \left\{ g \in GL(4) \, \Big| \, \langle gx, gy \rangle = \chi(g) \langle x, y \rangle \right\}$$

 $GO(4)^{\circ} =$ connected component of id.

$$\operatorname{Hom}(\mathbb{C}^5, \mathbb{C}^4) \to Sym^2(\mathbb{C}^4)^{\vee}$$
$$M \mapsto q(x, y) = \langle Mx, My \rangle$$

induces

$$\operatorname{Hom}(\mathbb{C}^5, \mathbb{C}^4) /\!\!/ GO(4) \simeq Z_4$$
$$\operatorname{Hom}(\mathbb{C}^5, \mathbb{C}^4) /\!\!/ GO(4)^\circ \simeq W_4$$

 $\longrightarrow W_4$ is an "algebraic approximation" to $BGO(4)^\circ$.

 \therefore Can use topological arguments to compute H^3 .

• The exact sequence

$$1 \to SO(4) \to GO(4)^{\circ} \to \mathbb{C}^* \to 1.$$

gives a fibre bundle $\pi : BSO(4) \to BGO(4)^{\circ}$ with fiber \mathbb{C}^* , and Gysin sequence

$$\cdots \to H^{i}(BGO(4)^{\circ}, \mathbb{Z}) \xrightarrow{\pi^{*}} H^{i}(BSO(4), \mathbb{Z}) \xrightarrow{\pi_{*}} H^{i-1}(BGO(4)^{\circ}, \mathbb{Z}) \to \cdots$$

• The cohomology of BSO(4):

• This gives:

 $H^{1}(BGO(4)^{\circ},\mathbb{Z}) = 0, \ H^{2}(BGO(4)^{\circ},\mathbb{Z}) = \mathbb{Z}, \ H^{3}(BGO(4)^{\circ},\mathbb{Z}) = \mathbb{Z}/2.$

• Lefschetz theorems give the same cohomology groups for X.