Fano varieties with torsion in H^{3}

 (joint work with Jørgen Vold Rennemo)John Christian Ottem

University of Oslo

October 21, 2023
$X=$ smooth projective variety of dimension n / \mathbb{C}
Main object of the talk:

$$
\text { Tors } H^{3}(X, \mathbb{Z})
$$

This is a (stable) birational invariant, introduced by Artin-Mumford in the 1970s.

Michael Artin

David Mumford

Example

$$
H^{*}\left(\mathbb{P}^{n}, \mathbb{Z}\right)=\mathbb{Z}, 0, \mathbb{Z}, 0, \mathbb{Z}, \ldots
$$

Example

Any rational X has no torsion in $H^{3}(X, \mathbb{Z})$.
Reason: If $\widetilde{X} \rightarrow X$ is a blow-up in a smooth center $Z \subset X$, then

$$
H^{3}(\widetilde{X}, \mathbb{Z})=H^{3}(X, \mathbb{Z}) \oplus H^{1}(Z, \mathbb{Z}) \cdot E
$$

No torsion in $H^{1}(Z, \mathbb{Z}) \sim \operatorname{Tors} H^{3}(\widetilde{X}, \mathbb{Z})=\operatorname{Tors} H^{3}(X, \mathbb{Z})$.

Theorem (Artin-Mumford (~1970))

There exist double covers

$$
X \rightarrow \mathbb{P}^{3}
$$

branched along certain singular quartic surfaces $S \subset \mathbb{P}^{3}$, such that a desingularization

$$
\tilde{X} \rightarrow X
$$

has torsion in $H^{3}(\widetilde{X}, \mathbb{Z})$.
These 3 -folds are unirational, but not (stably) rational.

Constructing such examples is difficult.
Relation to Brauer group: For X smooth projective rationally connected, we have

$$
\text { Tors } H^{3}(X, \mathbb{Z})=\operatorname{Br}(X)=\frac{\left\{\mathbb{P}^{n} \text {-fibrations }\right\}}{\{\text { projectivized vector bundles }\}}
$$

Question (Beauville)
Is there a Fano variety with non-trivial torsion in $H^{3}(X, \mathbb{Z})$?

Example ($\operatorname{dim} X=2$)
X is a Del Pezzo surface $\sim \sim$ rational.

Example ($\operatorname{dim} X=3$)
105 families of Fanos.
They all have no torsion in $H^{3}(X, \mathbb{Z})$.

Main Theorem

Theorem (O.-Rennemo)

There are Fano 4-folds with

$$
\operatorname{Tors} H^{3}(X, \mathbb{Z})=\mathbb{Z} / 2
$$

The examples have Picard number 1.
Also examples in higher dimensions.
It is easy to make Fano varieties torsion in other cohomology groups, e.g., using blow-ups, products, etc.
$\mathbb{P}^{14}=\mathbb{P}\left(S^{2} V^{\vee}\right)$ the space of quadrics in $V=\mathbb{C}^{5}$.

Definition

$$
\begin{aligned}
Z_{r} & =\{\text { quadrics of rank } \leq r\} \\
& =\text { zero locus of }(r+1) \times(r+1) \text { minors of }\left(\begin{array}{lllll}
u_{0} & u_{1} & u_{2} & u_{3} & u_{4} \\
u_{1} & u_{5} & u_{6} & u_{7} & u_{8} \\
u_{2} & u_{6} & u_{9} & u_{10} & u_{11} \\
u_{3} & u_{7} & u_{10} & u_{12} & u_{13} \\
u_{4} & u_{8} & u_{11} & u_{13} & u_{14}
\end{array}\right) \text { in } \mathbb{P}^{14}
\end{aligned}
$$

- Z_{4} is a quintic hypersurface (dimension 13)
- Z_{3} is a subvariety of degree 20 (dimension 11)
- $Z_{2}=\operatorname{Sym}^{2}\left(\mathbb{P}^{4}\right)$ (dimension 8)
- Z_{1} is the 2 nd Veronese embedding of \mathbb{P}^{4} (dimension 4)

Note: $\operatorname{sing}\left(Z_{r}\right)=Z_{r-1}$ for each $r=2,3,4$.
$Z_{4}=$ hypersurface defined by $\operatorname{det}\left(\begin{array}{ccccc}u_{0} & u_{1} & u_{2} & u_{3} & u_{4} \\ u_{1} & u_{5} & u_{6} & u_{7} & u_{8} \\ u_{2} & u_{6} & u_{9} & u_{10} & u_{11} \\ u_{3} & u_{7} & u_{10} & u_{12} & u_{13} \\ u_{4} & u_{8} & u_{11} & u_{13} & u_{14}\end{array}\right)=0$.
Z_{4} parameterizes rank 4 quadrics in \mathbb{P}^{4}, e.g.,

$$
Q=x_{0} x_{3}-x_{1} x_{2}
$$

\sim a quadric of rank 4 in \mathbb{P}^{4} contains two families of 2-planes.
We will use these to define a double cover

$$
W_{4} \longrightarrow Z_{4} .
$$

Define

$$
U=\{\text { pairs }([\Pi],[Q]) \text { where } \mathbb{P}(\Pi) \subset Q \text { is a 2-plane on } Q\} \subset G r(3, V) \times \mathbb{P}\left(S^{2} V^{\vee}\right)
$$

The first projection is a projective bundle over $\operatorname{Gr}(3, V)$. (fibers $=$ projective space of all quadrics containing a given 2-plane.)

If Q is a quadric with $(\Pi, Q) \in U$, then $\operatorname{rank} Q \leq 4$. (because it contains a 2-plane.)
\sim The second projection maps into Z_{4}.
$U=\{$ pairs $([\Pi],[Q])$ where $\mathbb{P}(\Pi) \subset Q$ is a 2-plane on $Q\} \subset G r(3, V) \times \mathbb{P}\left(S^{2} V^{\vee}\right)$.
We define W_{4} via the Stein factorization

$$
U \xrightarrow{\tau} W_{4} \xrightarrow{\sigma} Z_{4}
$$

Then:

- σ is finite of degree 2
- τ is generically a \mathbb{P}^{1}-bundle:

A fiber of $p r_{1}$ over a rank 4 quadric $Q \in Z_{4}$ consists two copies of \mathbb{P}^{1}.

Some facts:

1. W_{4} has canonical singularities, Gorenstein, \mathbb{Q}-factorial, and

$$
\operatorname{Pic}(X)=\mathbb{Z} H
$$

where $H=\tau^{*} \mathcal{O}_{Z_{4}}(1)$.
2. $\tau: W_{4} \rightarrow Z_{4}$ is quasi-etale $\sim W_{4}$ is Fano with

$$
K_{W_{4}}=\tau^{*} K_{Z_{4}}=-10 H
$$

3. "Miracle": W_{4} has a smaller singular locus than Z_{4} :

$$
\operatorname{sing} W_{4}=\tau^{-1}\left(Z_{2}\right)
$$

which has dimension 8 .
4. $U \rightarrow W_{4}$ restricts to a \mathbb{P}^{1}-fibration over $W_{4}^{\circ}=W_{4}-\tau^{-1}\left(Z_{2}\right)$. There is no rational section.

Complete intersections in W_{4}

Definition

Let

$$
X=W_{4} \cap H_{1} \cap \ldots \cap H_{9}
$$

where $H_{i} \in|H|$ are generic divisors.

- X has dimension

$$
13-9=4
$$

- X is Fano:

$$
K_{X}=K_{W_{4}}+9 H=-H
$$

- X avoids $\tau^{-1}\left(Z_{2}\right)$ (which has dimension 8) $\sim X$ is smooth.
- Restricting the \mathbb{P}^{1}-fibration to $X \leadsto$ a non-trivial torsion class $\sigma \in H^{3}(X, \mathbb{Z})$.

Hodge diamond:

				1			
			0		0		
		0		1		0	
	0		0		0		0
0		9		67		9	
0		0					

If we do the same thing with $V=\mathbb{C}^{n}$ for $n \geq 5$, we get a double cover

$$
\sigma: W_{4} \rightarrow Z_{4}
$$

and these varieties have dimension $4 n-7$.
Z_{2} has dimension $2 n-2$.

$$
X=W_{4} \cap H_{1} \cap \ldots \cap H_{2 n-1}
$$

is a smooth Fano manifold of index one of dimension $2 n-6$ with

$$
H^{3}(X, \mathbb{Z})=\mathbb{Z} / 2
$$

Application / Motivation

Two "coniveau" filtrations on $H^{l}(X, \mathbb{Z})$:
$N^{c} H^{l}(X, \mathbb{Z})=$ classes supported on proper subvarieties $Y \subset X$ of codimension $\geq c$.
$\widetilde{N}^{c} H^{l}(X, \mathbb{Z})=$ classes $\widetilde{j}_{*} \beta$ where \widetilde{j} is a composition $\widetilde{Y} \xrightarrow{\text { desing }} Y \hookrightarrow X$.
We always have $\tilde{N}^{c} H^{l}(X, \mathbb{Z}) \subset N^{c} H^{l}(X, \mathbb{Z})$ and

$$
N^{1} H^{l}(X, \mathbb{Z}) / \widetilde{N}^{1} H^{l}(X, \mathbb{Z})
$$

is a stable birational invariant.

Question (Voisin)

Is there a rationally connected variety where these two filtrations are different?

Theorem (O.-Rennemo)

Yes, there are Fano examples in any dimension ≥ 6.

Proposition (Colliot-Thélène-Voisin, Bloch-Srinivas, Voevodsky,...)

For X rationally connected, we have

$$
H^{l}(X, \mathbb{Z})=N^{1}(X, \mathbb{Z})
$$

for all $l>0$.
On the other hand:

Proposition (Benoist-O.)

If $\sigma \in H^{3}(X, \mathbb{Z})$ is a class with

$$
\sigma^{2} \quad \bmod 2 \neq 0 \in H^{6}(X, \mathbb{Z} / 2),
$$

then

$$
\sigma \notin \widetilde{N}^{1} H^{3}(X, \mathbb{Z}) .
$$

We check that this indeed happens.

We check that $\sigma^{2} \neq 0 \bmod 2$ in $H^{6}(X, \mathbb{Z} / 2)$.

$$
\begin{aligned}
G O(4) & =\text { orthogonal similtude group } \\
& =\{g \in G L(4) \mid\langle g x, g y\rangle=\chi(g)\langle x, y\rangle\}
\end{aligned}
$$

$G O(4)^{\circ}=$ connected component of id.

$$
\begin{aligned}
\operatorname{Hom}\left(\mathbb{C}^{5}, \mathbb{C}^{4}\right) & \rightarrow \operatorname{Sym}^{2}\left(\mathbb{C}^{4}\right)^{\vee} \\
M & \mapsto q(x, y)=\langle M x, M y\rangle
\end{aligned}
$$

induces

$$
\begin{aligned}
\operatorname{Hom}\left(\mathbb{C}^{5}, \mathbb{C}^{4}\right) / / G O(4) & \simeq Z_{4} \\
\operatorname{Hom}\left(\mathbb{C}^{5}, \mathbb{C}^{4}\right) / / G O(4)^{\circ} & \simeq W_{4}
\end{aligned}
$$

$\leadsto W_{4}$ is an "algebraic approximation" to $B G O(4)^{\circ}$.
\therefore Can use topological arguments to compute H^{3}.

- The exact sequence

$$
1 \rightarrow S O(4) \rightarrow G O(4)^{\circ} \rightarrow \mathbb{C}^{*} \rightarrow 1
$$

gives a fibre bundle $\pi: B S O(4) \rightarrow B G O(4)^{\circ}$ with fiber \mathbb{C}^{*}, and Gysin sequence

$$
\cdots \rightarrow H^{i}\left(B G O(4)^{\circ}, \mathbb{Z}\right) \xrightarrow{\pi^{*}} H^{i}(B S O(4), \mathbb{Z}) \xrightarrow{\pi_{*}} H^{i-1}\left(B G O(4)^{\circ}, \mathbb{Z}\right) \rightarrow \cdots
$$

- The cohomology of $B S O(4)$:

H^{0}	H^{1}	H^{2}	H^{3}	H^{4}	H^{5}	H^{6}
\mathbb{Z}	0	0	$\mathbb{Z} / 2 \cdot \nu$	$\mathbb{Z} p \oplus \mathbb{Z} e$	0	$\mathbb{Z} / 2 \cdot \nu^{2}$

- This gives:

$$
H^{1}\left(B G O(4)^{\circ}, \mathbb{Z}\right)=0, H^{2}\left(B G O(4)^{\circ}, \mathbb{Z}\right)=\mathbb{Z}, H^{3}\left(B G O(4)^{\circ}, \mathbb{Z}\right)=\mathbb{Z} / 2
$$

- Lefschetz theorems give the same cohomology groups for X.

