The Integral Holge conjecture

Lecture 1

Introduction Chow groups Known results on the IHC Specialization methods Kollár's example

Each lecture will be quite independent from the others

Lecture 2

Lecture 3 Application to avithmetic questions Enviques surface fibrations

Lecture 4

Positive results

Main goals:

- Explain the IHC and why it is interesting / important
 - · Hodge conjecture: How do we detect whither or not a cohomology class is algebraic?
 - · Rationality problem: Birational invariants
 - · Anthurefric questions: Existence of K-valual points
- · Survey the various techniques of puducing counterexamples
 - · Construction publicus in algebraic geometry
 - · topological arguments (Atiyoth Hirzebruch, Totavo, ...)
 - · Degeneration techignes (Kollár, ...)

· Explain some of the positive results (3-folds, cubic 4-folds,...)

Introduction

 $X = a \quad \text{smooth projective variety} \quad (C \quad \text{of } dim n)$ $H^{P}(X, Z) = P - H \quad \text{suigular cohomology group}$ $Hodage \quad decomposition \qquad \qquad (P(q) - forms)$ $H^{k}(X, C) = \bigoplus_{P+q=k} H^{P,q}(X)$

properties

$$H^{P,q}(X) \simeq H^{q}(X, -\Omega^{P}_{X})$$

 $H^{q,P}(X) = H^{P,q}(X)$ (Holge symmetry)
 $H^{n-P,n-q}(X) \simeq H^{P,q}(X)$ (Serve duality)

W.V.D. Hodge (1903-1975)

 $X \subset \mathbb{P}^{5} \operatorname{smoosh} \operatorname{cubac} 4 \operatorname{-fold}$ $H^{0}(X, \mathbb{C}) = H^{2}(X, \mathbb{C}) = H^{6}(X, \mathbb{C}) = H^{8}(X, \mathbb{C}) = \mathbb{C}$ $H^{1}(X, \mathbb{C}) = H^{3}(X, \mathbb{C}) = H^{5}(X, \mathbb{C}) = 0$ $H^{4}(X, \mathbb{C}) = H^{3,1}(X) \oplus H^{2,2}(X) \oplus H^{3,3}(X) = \mathbb{C} \oplus \mathbb{C}^{21} \oplus \mathbb{C}$

Chow groups CH'(X) = r-H Chow group= { free abelian group generated by } (collim r subvarieties ZCX } vational equivalence $CH^{(X)} := CH_{\nu-\lambda}(X)$ ex $CH^{\circ}(X) = \mathbb{Z} \cdot [X]$ CH'(X) = Prc(X)Wei-Liang Chow (1911-1995) X C (P³ Surface of degree > 4 \sim $CH^{l}(X) = 2^{p}$ p = Picard number of X $CH^{2}(X)$ is enormous. (Mumford) Shanghai large dragons: The first issue

of the Shanghai local post Paperback -

January 1, 1996

Paperback \$65.00

Cycle class map

$$Y \subseteq X$$
 a subvourchy of codim r
 M fundamental class [Y] $\in H^{2r}(X, Z)$
 I
 $j \neq 1$ where $j \approx He composition$
 $desing. \tilde{j} = \tilde{j}$
 $Y \subseteq X$

$$\sim$$
 : $CH'(\chi) \longrightarrow H^{2r}(\chi, \mathbb{Z})$

Easy fact: The image of
$$cl$$
 lies in
 $H^{r_{i}r}(X, Z) = H^{2r}(X, Z) \cap H^{r_{i}r}(X, C)$
the subgroup of
integral Holge classes
 $which map to H^{r_{i}r}(X, C)$
 via the map $H^{2r}(X, Z) \longrightarrow H^{2r}(X, C)$

The Integral Holge conjecture (IHC) $CH^{r}(X) \xrightarrow{cl} H^{r_{i}r}(X_{j}Z)$ is surjective Hodge conjecture (HC)

 $CH^{r,r}(X) \otimes \mathbb{Q} \longrightarrow H^{r,r}(X,\mathbb{Q})$ is surjective

The IHC is not really a conjecture: Theren(Atigah - Hirzebruch 1962) I smooth projective I-fild X with a non-algebraic torsion class.

(More on flis later.)

M.F. Atiyah F. Hirzebruch

Known results The IHC holds for r=0 and r=n (trivial).

For r=1:

Lefschetz (1,1)-theorem H^{1/1}(X,Z) is generated by Chem classes of (algebraic) line builles

Solomon Lefschetz

The would profine
Pric(X) =
$$H'(X, O_X^{\times})$$

The power had sequence
 $o \longrightarrow Z \xrightarrow{\cdot 2\pi i} O_X \xrightarrow{exp} O_X^{\times} \longrightarrow O$ (shownes in
 $he analytic
 $he onlytic$)
 $\to H'(O_X) \xrightarrow{-1} H^1(O_X^{\times}) \xrightarrow{-1} H^2(X, Z) \xrightarrow{-1} H^2(X, Q_X)$
 $H^2(X, C) \xrightarrow{-1} H^2(X, Q_X)$
 $H^2(X, C) \xrightarrow{-1} H^{2}(X, Q_X)$
 $H^{2}(X, Q_X)$
 $H^{2}($$

Have Lefschetz Heaven

$$h = [ample divisor] \in H^{2}(X, Z)$$

$$\longrightarrow H^{2}(X, \mathbb{R}) \xrightarrow{h^{n-2}} H^{2n-2}(X, \mathbb{R})$$
is an iso musp hism

This map respects the Hodge decomposition
=> any class in
$$H^{2n-2}(X, \mathbb{R}) \cap H^{n}\hat{r}(X, \mathbb{C})$$
 is
the product of $(n-1)$ clivisors => algebraic.
=> HC holds in degree $2n-2$.

Note: This result is shirtly for R-coefficients. There are 3-folds X where HC holds in degree 4 but IHC does not

Theorem (Kollár ~ 92) het XCPY be a very general hyperwhile of degree p³ where p35 is a prime number. $l \cdot h = 1$ then $H^{Y}(X, \mathbb{Z}) = \mathbb{Z} \cdot \mathbb{C}$ and any curve on X has degree = 0 wed p

i. p³·l is algebraic, but l is not.

János Kollár

very general = outside a countrable union of Zavriski closed subsets.

Defn We define the Voisin group of lequee
$$2r$$
 as
 $Z^{2r}(X) = \frac{H^{r}(X,Z)}{2}$ "HC"

Note: H(=) Z^{2r}(X) is a finite group

Claire Voisin

ex In Kollar's example,

 $Z'(X) \longrightarrow Z'_p \longrightarrow 0 \longrightarrow Z'(X) \neq 0$ (but we don't know whether it is $\frac{7}{p}$, $\frac{3}{p^2}$ or $\frac{7}{p^3}$.)

The two cases
•
$$Z^{4}(X)$$
 (codimension 2)

• $Z^{2n-2}(X)$ (dimension 1)

are the most interesting.

By Weak Factorization, we may factor any birational map f = X - - - X' as

where p,q are compositions of blowaps in Smooth centers

For
$$W \rightarrow X$$
 the blow up 4 a smooth $2CX$
 $H^{4}(W, Z) = H^{4}(X, Z) \oplus H^{2}(Z, Z)[E]$
 $H^{3/2}(W, Z) = H^{3/2}(X, Z) \oplus H^{1/2}(Z, Z) \cdot [E]$
and everything here is algebraic.
Similar argument for $H^{2n-2}(X, Z)$.

There are in fact deeper connections between IHC
and valionality:
X smooth valionally connected 3-fold

$$J^{3}(X) = intermediate jacobrian of X$$

 $= \frac{H^{3}(X, C)}{F'H^{3}(X, C) + H^{3}(X, Z)}$
 $(J^{3}(X), G)$ is a principally polarized abelian variety of dim g

Clemens-Griffiths
X rational
$$\implies J^{3}(X)$$
 is a jacobian of curves
 $\iff \frac{\theta^{g-1}}{(g-1)} = [G_{1} + ... + [C_{r}]]$
C; curves on $J^{3}(X)$

H. Clemens and P. Griffiths

$$\underbrace{\mathcal{D}}_{(g-1)!}^{g-1}$$
 is called the minimal class; if ites in $\operatorname{H}^{2g-2}(J^3, \mathbb{Z})$.

$$f = J^{3}(X) = JC \quad is \quad a jacobian, Hen \quad C \longrightarrow J^{3}(X)$$

with

$$[C] = \frac{\partial g^{-1}}{(g^{-1})}, \quad \subset \text{ Poincaré formula}$$

Voisin (~ 2015)
X stably valional =>
$$\frac{5^{9-1}}{(9-1)!}$$
 is algebraic

C. Gabrousk:

$$Z^{2g-2}(A) = 0$$
 for all abelian $\Longrightarrow \begin{array}{c} \bigcirc g^{g-1} & \text{is algebraic} \\ g - \text{folds } A & \hline (g - 1)! & \text{fos all } (A, \Theta) \end{array}$
The proof uses the Fourier-Mukai transform.

Burt Totaro

Q: Does the IttC hold for all 3-folds
with
$$\kappa = 0$$
?
A. No!
Kolana din O for subjects:
• K3
• abelian
· Envigues

Prop (Benoist - O.) The IHC can fail on products

$$X = S \times E$$

where S is an Enriques surface and E is an elliptic cure.
These have $K = 0$ and $H^{\circ}(K_{\chi}) = 0$

The above results are essentially optimal.

Olivier Benoist

Which classes are non-algebraic on X=SxE?
By Künnethy,

$$H^{4}(X, Z) = H^{4}(S, Z) \otimes H^{0}(E, Z)$$
 pt x E
 $+$
 $H^{3}(S, Z) \otimes H^{1}(E, Z) = 2/2 \otimes Z^{2}$
 $+$
 $H^{2}(S, Z) \otimes H^{2}(E, Z)$ D x pt
Let $x \in H^{1}(S, Z_{0}) = 2/2$ be the class associated
to the K3 cover
 $T = \frac{21}{3}$ S
Topological computation:
The lift halfs \Longrightarrow $\forall \beta \in H^{1}(E, Z/2) \Rightarrow \exists Z \in CH^{2}(E \times S)$
on $X = S \times E$ such that $Z^{*} d = \beta$ (*)
 \therefore every class in $H^{1}(E, Z/2)$
is obtained from a via some
correspondence

)

Puck This many look trivial, but it is a key difference
between algebranic geometry and topslogy:
$$CH^{P}(X) \longrightarrow CH^{P}(U) \longrightarrow o$$
 always
 $Surjective$
 $H^{P}(X) \longrightarrow H^{P}(U) \longrightarrow H^{P+1}(X,U) \longrightarrow --$

Extending cycles from a very general fiber Set - up χ $f \downarrow$ projective family TRelative Hilbert scheme: $H = Hilb(\mathcal{K}_T)$ parametrizes closed subschemes 2 in the fibers χ_t .

Funiversal family

$$Z \xrightarrow{i} Z$$

 J^{T}
H
H has countrably many components (only countrably many)
H' = union of components such that for is usef surjective
 $\longrightarrow T' = (for)(Z_{H'}) \xrightarrow{f} T$
is a countrable union of closed subsets.

Remark

If $\int_{T}^{\mathcal{H}} f$ is a smooth family of proj. variebes (C, T)we may identify $H^{k}(\mathcal{X}_{s}, \mathbb{Z}) = H^{k}(\mathcal{X}_{o}, \mathbb{Z}) \quad \forall s \in T$ $\therefore If \sigma_{s} \in H^{k}(\mathcal{X}_{s}, \mathbb{Z})$ is algebraic, then so is $\sigma_{o} \in H^{k}(\mathcal{X}_{o}, \mathbb{Z}).$

Kollar's connecessample

$$X \subseteq P^{4}$$
 a smooth hypersubjece of degree 125 (125 can be
reduced to 48)
Letschetz' hyperplane theorem gives
 $H^{2}(X,Z) = Zh$
 $H^{2}(X,Z) = Zh$
 $H^{1}(X,Z) = Ze$
Suppose now X is very general
 $M = h = h = h$
 $h \cdot L = 1$
 $M = h \cdot L = 1$
 M

Specialization method: If there exists some hypersubsce
$$X_o \subset \mathbb{P}^4$$

such that $b(x)$ holds, then it holds also
on X .

Xo will be a (very) singular hypersurface.

May view Xo as the image of veronese + generic projections.

The morphism $\varphi: |\mathbb{P}^3 \longrightarrow X_0$ is finite; and 2:1 on a surface $S \subset \mathbb{P}^3$ 3:1 on a curve $\Gamma \subset \mathbb{P}^3$ the theory of generic projections 4:1 on a finite set of points

: If $C \subset X_0$ is a curve, then there is a curve $D \subset \mathbb{P}^3$ such that

$$\varphi_* D = G \cdot C$$

Conjecture (Griffiths - Hamis)
For a very general hypersurface
$$X \subset \mathbb{P}^{Y}$$
 of degree $d \ge 6$,
we have
 $deg \subset \equiv 0 \mod d$
for every curve $C \subset X$.

The example of Hasself-Tschinkel and Totaro
Thus Let $X \subset \mathbb{P}' \times \mathbb{P}^3$ be a very general $(3,4)$ - divisor. Then every curve $C \subset X$ has even degree over \mathbb{P}^1 .
X is a K3-fibration over 1P1 X
↓ r IP ¹
Lefschetz: $H^{2}(X, Z) = ZF \oplus ZH$ $H^{4}(X, Z) = Zf \oplus Z\sigma$ $F \cdot \sigma = 1$ $H \cdot f = 1$
n the class σ is not algebraic. $H \cdot \sigma = o$

Brendan Hassett

Yun Tschinkel

Burt Totavo

"On the integral Halga and Tate conjectnues over a number field"

Specialization: Specialize to
$$X_0 \subset \mathbb{P}^1 \times \mathbb{P}^3$$
 given by
 $x_0^3 y_0^4 + x_0^2 x_1 y_1^4 + x_0 x_1^2 y_2^4 + x_1^3 y_3^4 = 0$

Claim Évenz une on Xo has even degrée / p?

Specialization map

$$CH_1(X_{\overline{Q}}) \longrightarrow CH_1(X_{\overline{FP}})$$

Enough to show : every curve in X_Fp has even degree / pl.

Just need the degree of

$$C \longrightarrow \mathbb{P}_{\overline{F}_{p}}^{\prime}$$

restricted to the generic point of $\mathbb{P}_{\overline{F}_{p}}^{\prime}$

Restrict further to
$$\overline{F_p}((t))$$
:
 $E = Laurent savins around [31]$
 $E = Laurent savins [32]$
 E

Suppose such a point exists
=)
$$\exists$$
 Lauvent series in $F_p((s))$
 $t(s)$, $x_o(s)$, --; $x_3(s)$ sabifying (*)

$$X_0^{4} + t X_1^{4} + t^2 X_2^{4} + t^3 X_3^{4} = 0$$

$$\int Valuation \, mod \, y$$

0 r Zr 3r

Topological obstructions Q Given a cohomology cleve de H² (X, Z) ~ how do we prove that a is not algebraic? Holge-Theosetic dostruction: a must be of type (P)P).

Prop (Aliyah - Hirzebruch)
If
$$\alpha \in H^{2P}(X, Z)$$
 is algebraic, then all the odd
Steenvol operations varish:
Sq'($\overline{\alpha}$) = 0 for all $i = 3, 5, 7, ...$
I mod 2 reduction of α

Steennol operations Sqⁱ is a cohomology operation on $H^{m}(-, \mathbb{Z}_{2})$ of degree i Sqⁱ : $H^{m}(X, \mathbb{Z}_{2}) \longrightarrow H^{m+i}(X, \mathbb{Z}_{2})$

properties (i) $Sq^{\circ} = id$ (2) $Sq^{m}(\alpha) = \alpha \lor \alpha$ if $\alpha \in ti^{m}(X, \mathbb{Z}_{2})$ $Sq^{2m}(\alpha) = 0$

(3)
$$Sq = Sq^{\circ} + Sq^{\circ} + Sq^{2} + ...$$
 satisfies
 $Sq(a \cup \beta) = Sq(a) \cup Sq(\beta)$
Cartan's formula: $Sq^{i}(a \cup \beta) = \sum_{j=0}^{i} Sq^{j}a \cup Sq^{i-j}\beta$

$$\begin{array}{c} (4) \quad f: X \longrightarrow Y \\ & \longrightarrow & H^{m}(X_{1}Z_{2}) \xrightarrow{S_{q}i} & H^{m+i}(X_{1}Z_{2}) \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$
Relative Wu formula If f=Y ---) X is a Cas-map of compact manifilds $Sq(f_*a) = f_*(Sq(a) \cup w(N_f))$ Nf = f* TX - Ty virtual wormal bundle $w(N_f) = w(f^*T_X) \cdot w(T_Y)^{-1}$ w = Stiefel - Whitney classIf YCX is a closed complex sub variety, then $[Y] = f_{*} 1$ where e $i \in H^{0}(\tilde{Y}, \mathbb{Z})$ Y desina. and $W_{2k}(N_{f}) = C_{k}(N_{f}) \pmod{2}$ (mod 2) $W_{2R-1}(N_f) = 0$

~~ no terms in odd degree.

$$\sim Sq([Y] \mod Z) = Sq(f_* 1) \qquad |eH^\circ$$
$$= f_*(1 \cup w(N_f))$$

=) $Sq^{i}((Y) \mod 2) = 0$ for all odd i.

:. If
$$\alpha$$
 is algebraic, then
 $Sq^{3}(\bar{\alpha}) = Sq^{5}(\bar{\alpha}) = Sq^{7}(\bar{\alpha}) = \cdots = 0$

Now we just need to find examples where this obstruction actually takes place.

Examples via clanifying spaces

$$G = (finite)$$
 group
 $BG = clanifying$ space of principal G-bundles
 $= \frac{EG}{G}$ $EG = any$ contractible space
on which G acts freely.

$$\longrightarrow$$
 $H^{q}(BG, Z) = H^{q}(G, Z)$ (Group cohonvlyy)

Main example:
$$G = \mathbb{Z}/2 \times \mathbb{Z}/2 \times \mathbb{Z}/2$$
.
Note $H'(\mathbb{Z}/2, \mathbb{Z}/2) = H'(\mathbb{R}|\mathbb{P}^{n}, \mathbb{Z}/2) = \mathbb{Z}/2[\mathbb{X}]$ deg $X = 1$.

Problem BG is not a smooth projective variety (an infinite dimensional stack)

Goleans - Serve vanelies
G a finite group
Sene: Given any
$$r \ge 1$$
, one can find:
• a representation of G on P^N
• smooth G-inversiont complete intersection $Y \subset P^N$
such that
(1) G acts freely on Y
(2) dim_C Y = r
and $X = \frac{Y}{G}$ is a smooth projective variety
and $H^{M}(G, \mathbb{Z}) \longrightarrow H^{M}(X, \mathbb{Z})$ $m \le r$
We have a (torsion) class $d \in H^{Y}(G, \mathbb{Z})$ s.t.
 $Sq^{3}(\mathbb{Z}) \ne 0$ in $H^{7}(G, \mathbb{Z})$.

Pick r = 7 and on X as above. $m H^{\leq 7}(G, Z) \subset H(X, Z)$ $\sim X$ admits a non-algebraic class in $H^{4}(X, Z)$.

Ruck X is a smooth complex
$$7 - fold$$
.
Pushing the proof a little bit ~? to have K_X torsion.
(so $K = 0$)

Application to some arithmetic questions

Let $f: X \to B$ be a morphism of complex projective varieties, where B is a curve

Graber–Harris–Starr theorem: If the general fiber of f is rationally connected, then f has a section.

A variety V is *rationally connected* if any two general points $x, y \in V$ can be joined by a rational curve:

$$\begin{array}{l} e \\ & \begin{array}{l} & \end{array}{} \end{array} \quad \begin{array}{l} P_{0}(t) & P_{0}(t) & P_{1}(t) & S.t. & X_{0} = P_{0}(t) & P_{1}(t) \\ & S_{0}(t) \\ & S_{0}(t) \\ & S_{0}(t) \\ & S_{0}(t) & S_{0}(t) & S_{0}(t) & S_{0}(t) & S_{0}(t) & S_{0}(t) \\ & S_{0}(t) & S_{0}(t) & S_{0}(t) & S_{0}(t) & S_{0}(t) & S_{0}(t) \\ & S_{0}(t) & S_{0}(t) & S_{0}(t) & S_{0}(t) & S_{0}(t) \\ & S_{0}(t) & S_{0}(t) & S_{0}(t) & S_{0}(t) & S_{0}(t) \\ & S_{0}(t) & S_{0}(t) & S_{0}(t) & S_{0}(t) \\ & S_{0}(t) & S_{0}(t) & S_{0}(t) & S_{0}(t) \\ & S_{0}(t) & S_{0}(t) & S_{0}(t) & S_{0}(t) \\ & S_{0}(t) & S_{0}(t) & S_{0}(t) \\ & S_{0}(t) & S_{0}(t) & S_{0}(t) & S_{0}(t) \\ & S_{0}(t) & S_{0}($$

J.P. Serre

$$K = P(B)$$

A. Grothendieck

Serre (1958) (in a letter to Grothendieck): Is the same conclusion true for varieties X/K with $H^i(X, \mathcal{O}_X) = 0$ for i > 0?

Serre adds that it is "sans doute trop optimiste".

Varion consected vouches

Graber-Harris-Mazur-Starr, Lafon, Starr (~ 2002) No: There exist Enriques surface fibrations over curves with no section.

T. Graber

J. Harris

B. Mazur

J. Starr

G. Lafon

A question of Esnault:

If X/K satisfies

$$H^i(X, \mathcal{O}_X) = 0 \quad \text{for } i > 0,$$

does X/K admit a 0-cycle of degree 1?

More geometrically: If $f: X \to B$ is a fibration with general fiber X_b satisfying $H^i(X_b, \mathcal{O}_{B_b}) = 0$ for i > 0: Do we have

$$gcd\left(deg(C/B) \mid C \subset X \text{ a curve} \right) = 1?$$

H. Esnault

Main result of today:

Theorem (O.-Suzuki)

There exists an Enriques surface fibration

 $X\to \mathbb{P}^1$

such that every curve $C \subset X$ has even degree over \mathbb{P}^1 .

Relation to the Integral Hodge Conjecture

Colliot-Thélène–Voisin: For $f: X \to B$ with \mathcal{O} -acyclic fibers:

 $f_*: H_2(X, \mathbb{Z}) \to H_2(B, \mathbb{Z})$

is surjective.

Thus there is a homology class $\sigma \in H_2(X, \mathbb{Z})$ which has degree 1 on a fiber. .: "there is no topological obstruction to the existence of sections"

J-L. Colliot - Thélène

C. Voisin

The class σ is automatically Hodge, so we obtain a new counterexample to the Integral Hodge conjecture.

In the example, 4σ is algebraic, but σ is not.

Enriques surfaces

Surfaces ${\cal S}$ with

- $\pi_1(S) = \mathbb{Z}/2$
- $2K_S = 0$

There is a universal cover $\pi:Z\to S$ where Z is a K3 surface

Example

Let $S \subset \mathbb{P}^2 \times \mathbb{P}^2$ be the surface defined by the 2×2 minors of a generic matrix

$$\begin{pmatrix} p_0 & p_1 & p_2 \\ q_0 & q_1 & q_2 \end{pmatrix} \qquad p_i = p_i(x_0, x_1, x_2) \\ q_i = q_i(y_0, y_1, y_2)$$

where deg $p_i = (2, 0)$ and deg $q_i = (0, 2)$. Then S is an Enriques surface.

Here is the K3 cover: On $\mathbb{P}^5 = \operatorname{Proj} k[x_0, x_1, x_2, y_0, y_1, y_2]$, there is an involution

$$\iota: \mathbb{P}^5 \to \mathbb{P}^5$$

defined by $\iota^*(x_i) = x_i$, $\iota(y_i) = -y_i$. Consider the quadrics

$$F_i = p_i + q_i$$

$$p_i = p_i(x_0, x_1, x_2)$$

$$q_i = q_i(y_0, y_1, y_2)$$
invariant under L

These define a K3 surface

$$Z = \{F_0 = F_1 = F_2 = 0\} \subset \mathbb{P}^5$$

 ι acts freely on Z, as Z is disjoint from

$$\operatorname{Fix}(\iota) = P_1 \cup P_2 \qquad \qquad \begin{array}{rcl} P_1 &=& V(x_0, x_1, x_2) \simeq \mathbb{P}^2 \\ P_2 &=& V(y_0, y_1, y_2) \simeq \mathbb{P}^2 \end{array}$$

Hence $S = Z/\iota$ is a smooth Enriques surface.

An Enriques surface fibration

Let $Y \subset \mathbb{P}^1 \times \mathbb{P}^2 \times \mathbb{P}^2$ be the threefold defined by the 2×2 minors of a generic matrix

$$\begin{pmatrix} p_0 & p_1 & p_2 \\ q_0 & q_1 & q_2 \end{pmatrix} \qquad \qquad p_i = sA_i + tB \\ q_i = sC_i + tD$$

where deg $p_i = (1, 2, 0)$ and deg $q_i = (1, 0, 2)$.

Then Y is a smooth threefold, and the first projection defines an Enriques surface fibration

$$p: \Upsilon \to \mathbb{P}^1.$$

Properties of Y

- Y has Kodaira dimension 1
- Y is simply connected and $H^*(X, \mathbb{Z})$ has no torsion.
- Hodge diamond

1

The geometry of Y

Let $F_i = p_i + q_i$, considered as a (1, 2) form on $\mathbb{P}^1 \times \mathbb{P}^5$.

$$Z = Bl_{\mathbb{P}^1 \times (P_1 \cup P_2)} Z_0$$

$$\pi$$

$$Z_0 = \{F_0 = F_1 = F_2 = 0\} \subset \mathbb{P}^1 \times \mathbb{P}^5$$

$$Y \subset \mathbb{P}^1 \times \mathbb{P}^2 \times \mathbb{P}^2$$

$$F \in \mathcal{F}_3 \quad \text{fibrily}$$

 π is the blow-up of the fixed points of ι :

- $(\mathbb{P}^1 \times P_1) \cap Z_0$ (= 12 points $p_{1,1}, \dots, p_{1,12}$); and $(\mathbb{P}^1 \times P_2) \cap Z_0$ (= 12 points $p_{2,1}, \dots, p_{2,12}$)

 ~ 24 exceptional divisors

$$E_{1,1}, \ldots E_{1,12}$$

 $E_{2,1}, \ldots E_{2,12}$

p is a double cover, ramified along the $E_{i,j}$.

Out of the 24 $E_{i,j}$'s, we single out $E_{1,1}, \ldots, E_{1,12}$ (from the fixed points on P_1).

If Y is defined by
$$\begin{pmatrix} p_0 & p_1 & p_2 \\ q_0 & q_1 & q_2 \end{pmatrix}$$
, the $E_{1,i}$ are the components of

$$E_1 = \{ p_0 = p_1 = p_2 = 0 \} \subset Y.$$

Claim

For a curve $C \subset Y$ we have

$$\deg(C/\mathbb{P}^1) \equiv C \cdot \left(\sum_{j=1}^{12} E_{1,j}\right) \mod 2.$$

 \therefore If $C \subset Y$ is a section of $Y \to \mathbb{P}^1$, then C has to intersect at least one of the $E_{1,j}$'s (!).

This is enough to show that Y fails the IHC:

Lefschetz hyperplane theorem $\longrightarrow H_2(Z_0, \mathbb{Z}) = \mathbb{Z}f_1 \oplus \mathbb{Z}f_2$ $\longrightarrow H_2(Z_0, \mathbb{Z}) \to H_2(\mathbb{P}^1, \mathbb{Z})$ surjective $\longrightarrow H_2(Z, \mathbb{Z}) \to H_2(\mathbb{P}^1, \mathbb{Z})$ surjective $\longrightarrow Y$ admits a class $\gamma \in H_2(Y, \mathbb{Z})$ such that

$$\deg(\gamma/\mathbb{P}^1) = 1$$
 $\gamma \cdot E_{i,j} = 0$ $\forall ij$

 $\sim \gamma$ is Hodge, but not algebraic.

We consider a degeneration $\mathcal{Y} \to T$ with special fiber \mathcal{Y}_0 .

If $Y = \mathcal{Y}_t$ is a very general fiber, then there is a specialization map

$$CH_1(Y) \to CH_1(\mathcal{Y}_0)$$

compatible with intersection products.

So it suffices to prove the congruence

$$\deg(C/\mathbb{P}^1) \equiv C \cdot \left(\sum_{j=1}^{12} E_{1,j}\right) \mod 2.$$

on \mathcal{Y}_0 .

The degeneration: $\mathcal{Y} \subset \mathbb{P}^1 \times \mathbb{P}^2 \times \mathbb{P}^2 \to \operatorname{Spec} k[\epsilon]$ defined by the minors of

$$M_{\epsilon} = \begin{pmatrix} p_0 & p_1 & p_2 \\ sy_0^2 + \epsilon r_0 & sy_1^2 + \epsilon r_1 & sy_2^2 + \epsilon r_2 \end{pmatrix}$$

Special fiber over $\epsilon = 0$: $\mathcal{Y}_0 = Y_0 \cup Y'_0$

- $Y_0 \cap Y'_0 = \{s = 0\}$ an Enriques surface
- $V(p_0, p_1, p_2) = E_{1,1} \cup \cdots \cup E_{1,12}$ does not intersect Y'_0 (hence lies in $(\mathcal{Y}_0)_{\text{reg}}$).

$$\deg(C/\mathbb{P}^1) \equiv C \cdot \left(\sum_{j=1}^{12} E_{1,j}\right) \mod 2$$

 Y_0 is defined by the matrix

$$egin{pmatrix} p_0 & p_1 & p_2 \ y_0^2 & y_1^2 & y_2^2 \end{pmatrix}$$

Let $D_1 = \{p_0 = 0\}$; this is a divisor of type (1, 2, 0). For $C \subset Y_0$ a curve, $\downarrow C \cdot (1_1 o_1 o) = C \cdot pr_1 \circ O$ $\deg(C/\mathbb{P}^1) \equiv D_1 \cdot C \mod 2$

On the other hand,

$$D_1 = 2 \cdot V(y_0) + \sum_{j=1}^{12} E_{1,j}$$

This gives the desired congruence.

Main point: some Cartier divisor becomes double on the degeneration Y_0 .

The threefold X and proof of the main theorem

Let $X \subset \mathbb{P}^1 \times \mathbb{P}^2 \times \mathbb{P}^2$ be the threefold defined by the 2×2 minors of a generic matrix

$$\begin{pmatrix} p_0 & p_1 & p_2 \\ q_0 & q_1 & q_2 \end{pmatrix} \qquad p_i = s^2 A_i + st B_i + t^2 C_i \\ q_i = s^2 D_i + st E_i + t^2 F_i$$

where deg $p_i = (2, 2, 0)$ and deg $q_i = (2, 0, 2)$.

Theorem

Any curve $C \subset X \to \mathbb{P}^1$ has even degree over \mathbb{P}^1 .

Properties of X

- X has Kodaira dimension 1
- X is simply connected and $H^*(X,\mathbb{Z})$ has no torsion.
- Hodge diamond

1

On $X \subset \mathbb{P}^1 \times \mathbb{P}^2 \times \mathbb{P}^2$ there are now 24 + 24 = 48 exceptional divisors

$$E_{1,1}, \ldots E_{1,24}$$

 $E_{2,1}, \ldots E_{2,24}$

We focus on $E_{1,1}, \ldots, E_{1,24}$; the components of

$$E_1 = \{ p_0 = p_1 = p_2 = 0 \}.$$

Basic strategy: Prove the following key congruence:

$$\deg(C/\mathbb{P}^1) \equiv C \cdot \left(\sum_{k=1}^{12} E_{1,j_k}\right) \mod 2$$

for any **12-tuple** $1 \le j_1 < \ldots < j_{12} \le 24$.

This will imply the theorem: We would get that

$$C \cdot E_{1,1} \equiv \cdots \equiv C \cdot E_{1,24} \mod 2,$$

and hence that $\deg(C/\mathbb{P}^1)$ is even.

(1)

We want to prove that

$$\deg(C/\mathbb{P}^1) \equiv C \cdot \left(\sum_{j=1}^{12} E_{1,j_k}\right) \mod 2 \tag{2}$$

- 1. Monodromy argument: Reduce to proving (2) for some 12-tuple $j_1 < \ldots < j_{12}$.
- 2. Specialization argument: Prove (2) for some (j_1, \ldots, j_{12}) by analyzing a certain degeneration of X.

Here is the degeneration:

$$M = \begin{pmatrix} sp_0 + \epsilon r_0 & (s-t)p_1 + \epsilon r_1 & (s+t)p_2 + \epsilon r_2 \\ stq_0 + \epsilon s_0 & t(s-t)q_1 + \epsilon s_1 & t(s+t)q_2 + \epsilon s_2 \end{pmatrix}$$

The special fiber over $\epsilon = 0$ is a union

 $Y \cup R_1 \cup R_2 \cup R_3$

Y is the previous Enriques surface fibration with 12 planes E_{1,j1},..., E_{1,j12}
On Y, we know that

$$\deg(C/\mathbb{P}^1) \equiv C \cdot \left(\sum_{k=1}^{12} E_{1,j_k}\right) \mod 2 \tag{3}$$

The main congruence (2) follows from this.

Some positive results

Recall:

$$Z'(X) = H^{32}(X,Z)/(calog)$$
 are birethional inversionts
 $Z_{2}(X) = H^{n-1,n-1}(X,Z)/(calog)$ (and = 0 for valional variables)

Thu (Voisin, Totavo) The IHC holds for

• unimled 3-filds

• 3-fills satisfying either
-
$$K_x = O_x$$
 and $H^2(O_x) = 0$
- $K = 0$ and $H^0(K_x) \neq 0$.

Basic idea: Let $S \in [mH]$ be smooth + generic H ample Lefschetz hyperplane theorem: $i_X \cdot H_2(SZ) \longrightarrow H_2(X,Z)$ is surjective Variation of HS-argument \Longrightarrow \exists enough defonations of S such that every class in $H_2(X,Z)$ is i_X of a (I_1I) -class on S_{\pm} which is algebraic!

Q: What about 4-folds?
The IHC already fails on unimbed 4-folds:

$$X = P' \times Y$$

where Y is Kollár's example.

Schreieder:
$$\exists$$
 univational 4-fold X S.t., $Z'(X) \neq 0$
It is not known whether $Z^{6}(X)$ can be $\neq 0$
for univational / vationally connected 4-folds.
 $Z'(X) \neq 0$

S. Schneieder

23 known proofs:
(1) Via Normal functions (Voisin)
(2) Via the variety of lines (Mongaveli - 0.)
(3) Via derived categories (BLMNP/Perny)

The IHC holds for Calabi-Yan 3-folds.
Q Does the IHC hold on Calabi-Yan vanieties
in dimension
$$n \ge 4$$
?
Z $2^{n-2}(X)$
The answer is probably "No" for $K_X = 0$ in general:
The cubic 3-fold is stably invahional $\Longrightarrow \frac{\Phi^4}{4!}$ not algebraic
on $J^3(X)$, which

is an abelian 5-fold
Theorem (Skauli)

$$Y = smooth toric vaniety$$

 $X \subset Y$ smooth complete intersection of ample divisors
 $X = H_1 \cap \dots \cap H_R$
of dimension ≥ 3 , such that $-K_X$ is nof.
Then the IHC holds on X in degree $2n-2$.
In fact $H_2(X, Z)$ is generaled by valional curves.

Here
$$H_2(X,Z) \xrightarrow{\sim} H_2(Y,Z)$$
 by Lefschetz HT

Caragrande: H₂(Y,Z) is generated by degres of contractible classes

 $\chi \in H_1(Y, Z) \implies \exists traic morphism T: Y \longrightarrow Z$ with connected fibers is contractible $s, t. = \pi(c) = pt \iff [c] \in \mathbb{R}_{>0}, Y.$

Claim I X contains a curve with class e

The
$$\mathbb{P}^2$$
-bundle $p: Y \longrightarrow \mathbb{P}^2$ restricts to
an elliptic fibration
 $p|_{\chi} : \chi \longrightarrow \mathbb{P}^2$

Ampleness aregument =>
$$Pl_X$$
 is non-isotrivial
=> some fibers split as
(mic
line

This line has class h-e -> DONE.

B. Skauli

Wedneible Symplechic varieties

Theorem hat X be a projective involucible holomorphic symplectic (IHS) varietary of $\pm 3^{n}$ or generalized Kummer type. Then the integral brodge conjecture for 1-cycles holds on X, i.e. $Z_2(X) = 0$. In fact: The semigroup of effective curve classes is generated lover Z) by classes of intimal curves. **Corollary**, The IHC holds for a smooth culoic 4-fold.

In fact, the proof shows that $CH^2(X) = H^{3/2}(X,\mathbb{Z})$ is generated by classes of valional surfaces.

G. Mongardi

$$\begin{array}{ccc} p & \longrightarrow & X & CIP^{5} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ F & & & \\ & & & \\ & & & \\ & & F & C & Gr(26) \end{array} \end{array}$$

Beauville - Donagi (~1985) The Abel - Jacobi map

$$\alpha = q_{*} p^{*} : H^{6}(F,Z) \longrightarrow H^{\gamma}(X,Z)$$

is an isomorphism.

A. Beanville

R. Donagi

~> any integral Hodge class
$$\in H^{2/2}(X, \mathbb{Z})$$
 is of
the form $f_{X} p^{X}(\Gamma) \rightarrow a$ sum of rational
for some class $\Gamma \in H^{3/3}(F, \mathbb{Z})$
~> if is algebraic

Rule If T is a radional curve on F, then

$$p^* T \subset P$$
 is a P' -bundle over T
 $\longrightarrow q^* p^* T$ is a radional surface on X.

Vanchies of K3^{EnJ} - type S K3 surface X=s^[n] = Hilbert scheme of n points on S The Hilbert - Chow morphism $HC: S^{[n]} \longrightarrow S^{(n)}$ induces decompositions $H^{2}(X, \mathbb{Z}) = H^{2}(S, \mathbb{Z}) \oplus \mathbb{Z}B$ $H_2(X, \mathbb{Z}) = H_2(S, \mathbb{Z}) \oplus \mathbb{Z} \subset$ $B = \frac{1}{2} [E], E = exc. divisor of HC$

T = vational curre in a fiber of HClE

$$q: H^2(X, Z) \longrightarrow Z$$
 Beauville-Bogsmolov-Fujiki form
 \sim the decompositions above are orthogonal wrt q .

Rule This show, that the IHC holds for 1-cycles for IHS verifies of the form S^{Cry}.

Deforming variable curves

$$X = [HS vanishy of dim 2n]$$

 $f: P' \longrightarrow X$ won-constant
 $R = f(P') \subset X$
 $Det(X, [R]) \subset Def(X) = deformation space of X$
 $II = Hodge locus$
 Z deformations for which [R] skys Holge type $(n-1, n-1)$ Z

$$\overline{M}_{o}(X, \beta) = Kontsevich moduli space of stable maps f: p' \longrightarrow Xwith fx [p'] = $\beta$$$

Z. Ran

If J component of Mo(X, B) of dim 2n-2

The curve R deforms in the fibers of T where [R] shys Hodge.

 $C \in [H] \text{ is o genus } 2 \text{ curve } m \text{ admits a } g_2^{l_2}$ $\longrightarrow \text{ valional curve } R_c \subset S^{[2]}$ via the incidence correspondence $I = \{P, [3]\} \in S \times S^{[2]} \} P \in Supp \neq \{g\}$ $\int P_{T_1} P_{T_2} \} S^{[2]}$

The class is given by
$$R_{C} = H - bT \qquad b \in \mathbb{Z} \qquad (R_{C}] = aH - bB$$

$$R_{C} = H - bT \qquad b \in \mathbb{Z} \qquad (R_{C}] \cdot H = aH^{2} = 2a$$

$$\sim if is primi hive in H_{2}(X, \mathbb{Z}). \qquad 2 = \# subsidents in the g'z incident to another H'$$

Removes in a family of dimension exactly 2:

$$T$$
 gives a plane PC 5 containing all of the
curves Rc.
P can be contracted by a biretional map
 \implies Rc deforms in a family of dimension
exactly = 2. = 2n-2

. For any IHS (X, D) deformation equivalent to $(S_1^{G2}M)$, the IHC holds.

Set-Up (S, H) K3 of layree 2p-2 $C \in |H|$ a curve with S roles Given a g_n^{l} on C (= nonalization of C) m varional curve R_c on $S^{(n)}$ m varional curve R_c on $S^{(n)}$ p'

If things the sufficiently generic, we have

$$\begin{bmatrix} R_{c} \end{bmatrix} = H - (P - S + n - 1) T$$

$$\sim R_{c}$$
 is privile in $H_{z}(X_{1}Z).$

$$V_{1H1,S}^{n} =$$
 Seveni variety of curves in [H]
= $\begin{cases} C \in [H] \\ C \in [H] \\ + \\ \\ admits a g_{n}^{1} \end{cases}$

Theorem 2.1. [CK, Thm 0.1] Let (S, H) be a very general primitively polarized K3 of genus $p := p_a(H) \ge 2$. Let δ and n be integers satisfying $0 \le \delta \le p$ and $n \ge 2$. Then the following statements hold:

(i) $V^n_{|H|,\delta}$ is non-empty if and only if

automatic if P-SE2n-Z

$$\delta \ge \alpha \left(p - \delta - (n-1)(\alpha+1) \right), \text{ where } \alpha = \left\lfloor \frac{p - \delta}{2n - 2} \right\rfloor.$$
 (6)

(ii) Whenever non-empty, $V^n_{|H|,\delta}$ is equidimensional of the expected dimension $\min\{2n-2, p-\delta\}$, and a general point on each component corresponds to an irreducible curve with normalization \widetilde{C} of genus $g = p - \delta$, such that the set of \mathfrak{g}^1_n 's on \widetilde{C} is of dimension $\max\{0, 2n - 2 - g\}$.

C. Ciliberto

A.L. Knutsen

Consequences
If
$$p-S \ge 2n-2 \implies V_{1H1,S}^n$$
 has dim $2n-2$
and the set of g'_n 's on
a general curve is O -dimensioned

If
$$p-5 \leq 2n-2 = 2$$
 $V_{1HI,S}^n$ has dim $p-5$
and the set of g_n^1 's have
dim $(2n-2-p+5)$

One then shows that for any Itts variety
$$X$$

of $K3^{[n_j]}$ -type, $H_{1,1}(X,\mathbb{Z})$ is generaled by
classes [C], where C comes from a defonction
 $(5^{[n_j]}, H)$ of X .

Schoen: Yes, if the Tate conjecture holds for divisors on all SM. proj. surfaces

2) Abelian variefies

Let
$$(A, G)$$
 be an abelian g -fold
 $\Theta = primitive polarization.$
 Q is the minimal cohomology class
 $\frac{G^{g-1}}{(g-1)!} \in H_2(A, Z) \longrightarrow$ relates to
relates to
problems
algebraic?

3) A question of Diaz Is there a simply connected 3-fold X s. that X admits a non-adgebraic torsion class ?

4) Griffiths - Hamis conjecture Does the IHC hold for very general hypersulpaces $X \subseteq |P^{4}|$ of degree $d \ge 6$?