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We work over the complex numbers and consider the Grassmannian Gr(2, 5) embedded
in P9 by the Plücker embedding. In this note, we will be interested in the following
instance of the rationality problem:

Theorem 0.1. The intersection of Gr(2, 5) with a very general hypersurface of degree
at least 3 is not stably rational.

The statement is optimal in the sense that hypersurfaces of degree 1 and 2 in Gr(2, 5)
are rational. The cases of degree 3 and 4 gives new classes of Fano 5-folds where
irrationality was not previously known.

For complete intersections, we have

Proposition 0.2. A very general complete intersection of two quadrics in Gr(2, 5) is
stably irrational.

A very general complete intersection of a cubic hypersurface and a hyperplane in
Gr(2, 5) is stably irrational.

While these complete intersections are perhaps not the most studied among Fano
varieties, the interest in Theorem 0.1 lies in the technique rather than the statement
itself. Many important classes in the rationality problem concerns hypersurfaces of
varieties different from projective space. In fact, the motivation for Theorem 0.1 comes
from studying Gushel–Mukai varieties, which are quadric hypersurfaces in a linear
section of the Grassmannian Gr(2, 5).

The paper [5] introduced a technique for proving that hypersurfaces in toric varieties
are irrational, based on the motivic volume formula of Nicaise–Shinder [7]. The main
idea is that given a degeneration X → B, one can deduce stable irrationality of the
geometric generic fiber X

k(B)
from the components in the special fiber Xk and their

intersections. We recall this method in Section 1.
The proof of Theorem 0.1 roughly proceeds in three steps:

(1) Write down a toric degeneration G → A1 with generic fiber being the Grass-
mannian Gr(2, 5) in P9, and a general Cartier divisor X ⊂ G , flat over A1.

(2) Blow-up G in the special fiber so that, G̃ , or rather, the strict transform X̃ ,
gives a family X̃ → A1 which is semistable.

(3) Analyze the special fiber X̃0, and compute the motivic volume. Finally deduce
that the geometric fiber is not stably rational.

While this is a rather general method, which applies to other ambient varieties, it
is limited by the fact that the steps (2) and (3) usually require many computations
(which are best performed using a computer).
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1. The motivic volume of Nicaise–Shinder

Here we recall the main birational obstruction of [5], based on the motivic volume
formula of Nicaise–Shinder [NS].

For a field F , we let SBF denote the set of stable birational equivalence classes of
integral F -varieties. For a variety X, we write [X]sb for its equivalence class. We will
work in Z[SBF ], the free abelian group on the set SBF . Elements of Z[SBF ] are formal
sums of the form

a1[X1]sb + . . .+ ar[Xr]sb

for integers a1, . . . , ar.
We will work over the field of Puiseux series

K = C{{t}} =
⋃
m>0

C((t1/m))

and its valuation ring
R =

⋃
m>0

C[[t1/m]].

We consider families X → SpecR, and want to compare the rationality properties of
the generic fiber XK , to that of the special fiber XC. Note that XC may have several
irreducible components, so it makes most sense to perform this comparison in Z[SBC].
Indeed, the motivic volume is a map Vol : Z[SBK ] → Z[SBC].

It suffices to define the motivic volume on proper R-schemes X which are strictly
semi-stable, i.e., XC is a reduced simple normal crossing divisor on X . In the formula
(1.2) below, X will be a proper strictly semi-stable R-scheme, and we decompose special
fiber into irreducible components

(1.1) XC =
∑
i∈I

Xi.

Theorem (Nicaise–Shinder). There exists a unique ring homomorphism

Vol : Z[SBK ] → Z[SBC]

such that, for any X as above,

(1.2) Vol([XK ]sb) =
∑

∅≠J⊆I

(−1)|J |−1[XJ ]sb

where XJ = Xj1 ∩ . . . ∩Xjr .

Note that Vol sends [SpecK]sb to [SpecC]sb. This simple observation gives an
obstruction to stable rationality:

Obstruction. If X/R is a family such that the alternating sum (1.2) does not cancel
out to [SpecC] in Z[SBC], then the generic fiber XK is not stably rational.

The power of the method comes from the fact that the irrationality of XK can often
be deduced from that of the strata XJ , which are typically of smaller dimension. Thus
the technique is a way to get more milage out of known irrationality results.

To use this obstruction in practice, one therefore needs two main inputs: (i) a source
of interesting degenerations X → R and (ii) irrationality of known lower-dimensional
varieties.
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Example 1.1. Suppose the special fiber XC consists of two components, X0 and X1,
intersecting along X01. The motivic volume takes the form

(1.3) Vol([XK ]sb) = [X0]sb + [X1]sb − [X01]sb.

From this, we deduce that either of the following conditions guarantee that the generic
fiber XK is not stably rational:

i) Exactly one of X0, X1, X01 is stably irrational.
ii) X0 and X1 are both stably irrational.
iii) X0 and X01 are stably irrational, but they are not stably birational to each other.
iv) X0, X1, X01 are all stably irrational.

Proposition 1.2. Let X be a smooth complex projective variety and let M be a base-
point free divisor on X. Suppose that M ∼ D+D′ where D,D′ are two smooth divisors
on X so that also D ∩D′ is smooth. Then if either

i) Exactly one of D, D′ and D ∩D′ is stably irrational.
ii) D and D′ are both stably irrational
iii) D and D ∩D′ are stably irrational, but not stably birational to each other
iv) D, D′ and D ∩D′ are all stably irrational.

Then a general divisor in |M | is not stably rational.

Proof. Let x ∈ H0(X,OX(D)), y ∈ H0(X,OX(D′)) define the two divisors and let
z ∈ H0(X,OX(M)) be a general section. Consider the scheme

X = V (tz − xy) ⊂ X ×C SpecR.

As an R-scheme, X → SpecR is proper, but not strictly semi-stable. However, one
checks using local charts that the blow-up X̃ along the smooth codimension 4 subscheme
Z = V (t, x, y, z) is semistable. In X̃ , the special fiber X̃C consists of three components
E0, E1, E2, so that

• E0 (resp. E1; E2) is birational to D (resp. D′; Z × P2).
• E0 ∩E1 (resp. E0 ∩E2; E1 ∩E2) is isomorphic to D∩D′ (resp. Z×P1; Z×P1)
• E0 ∩ E1 ∩ E2 is isomorphic to Z.

Thus the motivic volume takes the form

Vol(XK) = [E0]sb + [E1]sb + [E2]sb − [E01]sb − [E02]sb − [E12]sb + [E012]sb

= [D]sb + [D′]sb + [Z]sb − [D ∩D′]sb − [Z]sb − [Z]sb + [Z]sb

= [D]sb + [D′]sb − [D ∩D′]sb.

If we are in any of the cases i)–iv), this expression is not equal to [SpecC] in Z[SBC]. □

Proof of Proposition 0.2. For the intersection of two quadrics, we fix very general
polynomials L1, L2, Q1, Q2 of degrees 1,1,2,2 respectively. Now apply the previous
proposition to X = Gr(2, 5) ∩ V (Q1), D = V (L1), D′ = V (L2). Then D and D′ are
Gushel-Mukai 4-folds, while D ∩D′ is a Gushel-Mukai 3-fold. The latter is known to
be stably irrational by [2]. It follows that we are either in case i) or iv) in Proposition
1, and we conclude.

In the second case, we fix very general polynomialsH,L,Q of degrees 1,1,2 respectively.
We apply the proposition to X = V (H), D = V (L), D′ = V (Q). As above, the
intersection D ∩ D′ is a Gushel-Mukai 3-fold (stably irrational); D = V (H,L) is
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rational; and D′ = V (H,Q) is a Gushel-Mukai 4-fold. If D′ is stably rational, we are
done by the previous proposition. If D′ is stably irrational, we need to show that it is
not stably birational to D ∩D′. But this follows because we may vary the quadric Q
and the linear form L, keeping V (Q,L) fixed, so that D′ becomes rational. Indeed, we
may for instance choose X0 to contain a 2-plane of the form P(V1 ∧ V4)∩Gr(2, 5) (this
is a codimension 2 condition in the moduli space of Gushel-Mukai 4-folds), and in that
case it is rational. It follows that there is variation among the stable birational types
of the D′’s that contain the (fixed) D ∩D′ containing it, and hence D′ is not stably
birational to D ∩D′ for generic choices of the coefficients. □

Remark 1.3. In general, producing a semi-stable model often leads to many blow-ups
which which are hard to analyze. An important point is that the formula (1.2) also
applies when X is strictly toroidal (see [6]). This condition is much more flexible, and
reduces the computations substantially.

2. A toric degeneration of the degree 5 Grassmannian

Consider the Grassmannian Gr(2, 5) embedded in P9 by the Plücker embedding. We
choose homogeneous coordinates x0, . . . , x9 on P9 and consider the C∗-action given
by scaling the x0 and the x9 coordinate. This produces a family G → A1 = SpecC[t]
with generic fiber isomorphic to Gr(2, 5) over C(t). Explicitly, G is defined by the five
4× 4-minors of the matrix

M =


0 x0 t x1 x2 x3

−x0 t 0 x4 x5 x6
−x1 −x4 0 x7 x8
−x2 −x5 −x7 0 x9 t
−x3 −x6 −x8 −x9 t 0


The special fiber over 0 ∈ A1 is defined by the Pfaffians defined by setting t = 0 in the
matrix M . Explicitly, the fiber is defined by the ideal

(x6x7 − x5x8, x3x7 − x2x8, x3x5 − x2x6, x3x4 − x1x6, x2x4 − x1x5)

The fiber G0 is irreducible, and toric, as its defining ideal is generated by binomial
equations. Explicitly, G0 can be realized as the Zariski closure of the image of the map

ϕ : (C∗)6 → P9

(w1, . . . , w6) 7→ (w0, w1, w1w4, 1, w4, w5, w6, w4w6, w5w6, w9)

Looking at the monomials defining ϕ, we see that G0 is defined as a projective toric
variety by a polytope P ⊂ R6 given by the convex hull of the colums of the matrix

0 1 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0
0 0 0 1 1 0 0 1 0 0
0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0 1


This means that a general hypersurface of degree n in P9 pulls back to a polynomial

p in the w0, . . . , w6 of degree 2n with Newton polytope nP .
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As in [5], we define a polytope ∆ ⊂ Rn to be stably rational if a very general
polynomial with Newton polytope ∆ defines a stably rational hypersurface of the torus
(C∗)n.

Lemma 2.1. For n ≥ 3, the polytope nP is not stably rational.

Proof. By [5, Theorem 3.14] it suffices to produce a subdivison of nP into smaller
polytopes Pi such that (i) the subdivision is regular, i.e., the subdivision associated
to of a piecewise linear function and (ii) one polytope P0 is stably irrational, and not
contained in the boundary ∂P , while all other polytopes are stably rational.

To find a stably irrational subpolytope, we use the Hassett–Pirutka–Tschinkel quartic

F = xyu2 + xv2 + yw2 + (x2 + y2 + 1− 2(xy + x+ y))

The Newton polytope of F is given by the convex hull of the column of the matrix
1 1 0 2 0 0
1 0 1 0 2 0
2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0


and this is stably irrational by [1]. If we define the linear map ι : R5 → R6 by
(t1, t2, t3, t4, t5) 7→ (t5, t4, t1, t5, t2, t3), one checks that ∆HPT := ι(∆F ) is contained in
3P (and hence all nP for n ≥ 3). The subpolytope ∆HPT ⊂ nP is not contained in the
boundary of 3P .

To produce the desired subdivision of 3P , the easiest choice is to take the regular
subdivision associated to the convex function

ψ(z) = maxv∈∆HPT
∥z − v∥2.

(Compare this with Theorem 6.3 in [5]). Using Macaulay2, one checks that the resulting
subdivision contains 14 maximal polytopes, and all polytopes in P except ∆HPT have
lattice width 1, and hence are rational. □

Remark 2.2. The last step of the proof can be bypassed using the results of [3].
Indeed, [3, Theorem 3.16 ] implies that any polytope of dimension 5 which contains
∆HPT is stably irrational (one needs that ∆HPT satisfies condition (M) in that paper,
but this follows from [3, Example 3.21]).

If the family G → A1 were strictly semistable (or strictly toroidal), we would have
been in position to conclude the proof of Theorem 0.1 here. Indeed, G → A1 induces a
family X → A1 where the generic fiber is a hypersurface in Gr(2, 5), and where the
central fiber X0 is a hypersurface in the toric variety G0. But this hypersurface is stably
irrational, by Lemma 2.1. Thus by [7, Section 4] the generic fiber XK and hence the
very general hypersurface in Gr(2, 5) is stably irrational as well.

Unfortunately, the family G → A1 is not strictly semistable, so a more detailed
analysis of the singularities is required.
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2.1. Singularities. G has a singular locus consisting of three strata

S1 = V (t, x2, x3, x5, x6, x7, x8, x9),

S2 = V (t, x0, x1, x2, x3, x4, x5, x6),

S3 = V (t, x1, x2, x3, x4, x5, x6, x7, x8)

Geometrically, S1 and S2 are two disjoint planes in P9 and S3 is a line intersecting
each of them in a point. Blowing up S3, and then the strict transforms S̃1 and S̃2, one
obtains a new family G̃ → A1. Now the special fiber consists of four components:

(1) The strict transform G̃0.
(2) Exceptional divisors E1, E2, E3 over the centers S1, S2, S3 respectively.

One checks by explicit equations (e.g., by Macaulay2) that:

• Each of the Ei are birational to a product Si × P5−dimSi .
• The total space G̃ has a singular locus which map to the intersections S1 ∩ S3

and S2 ∩ S3.

This means that the family X̃ ⊂ G̃ is strictly semistable. Moreover, the restrictions
ei = X̃ ∩ Ei are in fact disjoint.

Consider the base change Y → SpecR of X̃ to the valuation ring R, with fraction
field K and residue field C. The motivic volume formula (1.2) is an alternating sum
of terms [X̃0], [ẽi], [X̃0 ∩ ẽi] (the other intersections do not appear, because the ei are
disjoint). Here there are a few cancellations as for each i = 1, 2, 3, e1 and X̃0 ∩ ei are
stably birational (they are both stably birational to X ∩ Si). Thus, in light of these
cancellations, we obtain

Vol(YK) = [X̃0]sb

This is different from [SpecC]sb by Lemma 2.1, and hence XK is geometrically stably
irrational as well. This implies that a very general cubic hypersurface in Gr(2, 5) is
stably irrational.

Remark 2.3. As explained in the introduction, the motivation for proving Theorem
0.1. A hypersurface of degree 3 in Gr(2, 5) degenerates to two components, one linear
section of Gr(2, 5) and one quadric section of Gr(2, 5). Both of these components are
rational. Their intersection however, is a Gushel-Mukai 4-fold. Thus the expected
irrationality of Gushel-Mukai 4-folds would imply that cubics in Gr(2, 5) are irrational.

In fact, the same type of argument gives a quick proof that quartic sections of Gr(2, 5)
are stably irrational: degenerate the quartic to a union of two quadrics. Then the two
components X0 and X1 are Gushel-Mukai 5-folds (hence rational), while X0 ∩X1 is
stably irrational by Proposition 0.2.

Appendix A. A Macaulay2 session

The following code defines the total space of the degeneration.
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kk=QQ
R=kk[x0,x1,x2,x3,x4,x5,x6,x7,x8,x9,t,u0,u1,u2,u3,u4,u5,u6,u7,u8]
B=ideal(x0,x1,x2,x3,x4,x5,x6,x7,x8,x9)
U=ideal(u0,u1,u2,u3,u4,u5,u6,u7,u8)
G=Grassmannian(1,4,R)
e={1, 0, 0, 0, 0, 0, 0, 0, 0, 1}

-- the total space of the C^*-action
scale=map(R,R,{t^(e_0)*x0,t^(e_1)*x1,t^(e_2)*x2,t^(e_3)*x3,t^(e_4)*x4,t^(e_5)*x5,...)
I=scale(G)
I=trim saturate(I,t) -- remove components supported along t=0
lim=trim sub(I,t=>0) -- this defines is the flat limit, the special fiber G_0

ss=trim ideal singularLocus I; -- the singular locus of the total space
ss=saturate(ss,B);
ss=radical ss
S=decompose ss -- this has 3 components

The singular locus of V (I) consists of the three components S0 = V (t, x0, x1, x2, x3, x4, x6, x7)
and S1 = V (t, x1, x2, x3, x4, x5, x6, x7, x8) and S2 = V (t, x3, x4, x5, x6, x7, x8, x9)

Our aim is to show that the blow-up is generically smooth along the exceptional
divisors E0, E1, E2. In other words, we want to show that the image of the singular
locus of the blow-up is contained in V of the following ideal:

intersections=intersect(S_0+S_1,S_0+S_2,S_1+S_2)

X=(random(3,R) % t)+t*(random(3,R) % t) + t*t*(random(3,R) % t); -- a random cubic in P9 x A1
X=X % U;
dim saturate(X+intersections,B) < 0

As the last few lines show, a generic cubic will then avoid the image of the singular
locus of the blow-up and thus the induced total space X̃ will be smooth.

mm=matrix{{t, x7, x6, x4, x3, x2, x1, x0},{u0,u1,u2,u3,u4,u5,u6,u7}}
U=ideal(u0,u1,u2,u3,u4,u5,u6,u7);
J=I+minors(2,mm)
decompose oo
J=oo_1 -- J defines the blow-up in P9xP7

The next bit checks that the blow-up is has singularities that map into the above
intersection. (As we are blowing up a linear space, some of the variables can be
eliminated to speed up the computation.)

JJ=trim sub(J,u0=>1)
JJJ=eliminate({x7, x6, x4, x3, x2, x1, x0},JJ)
ss=trim ideal singularLocus JJJ;
radical trim(JJ+ss+S_0)
imageOfSings=eliminate({u0,u1,u2,u3,u4,u5,u6,u7},oo)
imageOfSings==S_0

The above code is carried out in all the affine charts, and the conclusion is the same
in each case: the blow-up is generically smooth along the exceptional divisor E0.

We finally check that the exceptional divisor E0 itself is rational, and E0 → S0 is
birational to a product.
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E_0=J+S_0
E_0=saturate(E_0,B) -- remove support in V(x0..x9)
E_0=saturate(E_0,U) -- remove support in V(u0..u7)
isPrime E_0 --- So: the exceptional divisor is irreducible
eliminate(u0,E_0)
eliminate(u1,oo) -

The output is V (t, x7, x6, x4, x3, x2, x1, x0, x5u2 − x8u4) which is clearly a rational
variety.

The same procedure is carried out for the blow-up of the other two components.
The Macaulay2 code for the example can be found here:
https://www.mn.uio.no/math/personer/vit/johnco/papers/Gr25.m2
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