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Abstract. We give the first examples of O-acyclic smooth projective geomet-

rically connected varieties over the function field of a complex curve, whose

index is not equal to one. More precisely, we construct a family of Enriques

surfaces over P1 such that any multi-section has even degree over the base

P1 and show moreover that we can find such a family defined over Q. This

answers affirmatively a question of Colliot-Thélène and Voisin. Furthermore,

our construction provides counterexamples to: the failure of the Hasse principle

accounted for by the reciprocity obstruction; the integral Hodge conjecture;

and universality of Abel–Jacobi maps.

1. Introduction

In a letter to Grothendieck [11, p. 152], Serre asked whether a smooth projective
geometrically connected variety Y over the function field of a complex curve should
always have a rational point if it is O-acyclic, that is, Hi(Y,OY ) = 0 for all i > 0.
This indeed holds for rationally connected varieties, as proved by Graber–Harris–
Starr [16], generalizing a classical theorem of Tsen. However, Graber–Harris–Mazur–
Starr [15] gave a counterexample for the general case; in fact, they showed that
there exist Enriques surfaces with no rational points over the function field of a
complex curve. Later, more explicit constructions of such Enriques surfaces were
given by Lafon [20] and Starr [27]. It is remarkable that the example of Lafon is
defined over Q(t) and has no rational point over the local field C((t)).

In light of these examples, one might still hope that a weaker statement could be
true. We recall that the index of a proper variety Y over a field F is defined to be

I(Y ) = gcd {degF (α) | α ∈ CH0(Y )} .
One can then ask:

Question 1.1. Does an O-acyclic smooth projective geometrically connected variety
Y over the function field of a complex curve always have I(Y ) = 1?

In other words, we ask whether Serre’s question has a positive answer if we
replace a rational point on Y with a 0-cycle of degree 1.

It is important to note that there is no local obstruction here: the Riemann–Roch
theorem implies that Y as in Question 1.1 always has indices one everywhere locally,
or equivalently, that Y gives a one-parameter family X → C of O-acyclic varieties
with no multiple fiber (see also [10, Proposition 7.3] and [13, Theorem 1]).
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Nevertheless, it was expected by several mathematicians that Question 1.1 would
have a negative answer (see [27] for expectations of Esnault on the indices of the
examples of Graber–Harris–Mazur–Starr and Lafon). In particular, Colliot-Thélène
and Voisin asked [10, Question 7.9] whether one can construct an O-acyclic surface
of index not equal to one. The aim of this paper is to give the first counterexamples
to Question 1.1 and thereby to answer affirmatively the question raised by Colliot-
Thélène and Voisin. Our main result is the following:

Theorem 1.2 (=Theorem 3.1, 4.1). Let X ⊂ P1×P2×P2 be the rank one degeneracy
locus of a map of vector bundles

O⊕3 → O(2, 2, 0)⊕O(2, 0, 2).

If X is very general, then the first projection gives a family X → P1 of Enriques
surfaces such that any multi-section has even degree over the base P1. That is, the
index I(Xη) is even, where Xη is the generic fiber. Moreover, we can find threefolds
with these properties defined over Q.

Remark 1.3. Our construction can be generalized to give a counterexample to
Question 1.1 when dimY = 2n for any positive integer n (besides ones obtained
from Theorem 1.2 by taking the product with a projective space); see Theorem 3.3.

Remark 1.4. It would be natural to ask an analogue of Question 1.1 over the
function field of a curve over the algebraic closure of a finite field. We will prove
some conditional positive results in Proposition 4.4 and Corollary 4.6.

Our construction has consequences for certain questions in number theory. We
say that the Hasse principle holds for 0-cycles of degree 1 on a smooth projective
geometrically connected variety Y over the function field F = C(C) of a complex
curve C if there is a 0-cycle of degree 1 on Y whenever there is such a cycle on
YFp for any point p ∈ C, where Fp ∼= C((t)) is the completion of F at p. The
reciprocity obstruction to the Hasse principle for 0-cycles of degree 1 on a variety
over the function field of a complex curve, which is an analogue of the Brauer-Manin
obstruction for rational points on a variety over a number field, was defined and
pointed out to the authors by Colliot-Thélène (see also [7, Section 5]).

As a consequence of our construction, we prove that the failure of the Hasse
principle for 0-cycles of degree 1 on an Enriques surface over C(P1) cannot always
be accounted for by the reciprocity obstruction.

Theorem 1.5 (=Theorem 5.2). Let Xη be the generic fiber of a very general family
X → P1 of Enriques surfaces as in Theorem 1.2. Then the Hasse principle fails for
0-cycles of degree 1 on Xη, while there is no reciprocity obstruction for Xη.

Question 1.1 is also related to the integral Hodge conjecture. We recall that the
integral Hodge conjecture in degree 2i on a smooth complex projective variety X
is the statement that degree 2i integral Hodge classes on X are algebraic, i.e., the
image H2i

alg(X,Z) ⊆ H2i(X,Z) of the cycle class map cli : CHi(X) → H2i(X,Z)

generates the entire group Hdg2i(X,Z) = Hi,i(X) ∩H2i(X,Z) of integral Hodge
classes. While the statement holds for i = 0, 1,dimX, it is known to fail in general for
2 ≤ i ≤ dimX − 1. The first counterexample was constructed by Atiyah–Hirzebruch
[1] and many others have been found since then [2, 3, 10, 21, 24, 26, 29].
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As pointed out by Colliot-Thélène and Voisin [10, Theorem 7.6], a counterexample
to Question 1.1 gives a one-parameter family X → C of O-acyclic varieties for which
the integral Hodge conjecture fails in degree 2d− 2, where d = dimX. This means
that the defect of the integral Hodge conjecture in degree 2d− 2, defined as

Z2d−2(X) = Hdg2d−2(X,Z)/H2d−2
alg (X,Z),

is non-zero.
It follows that the integral Hodge conjecture fails in degree 4 for the threefold X

in Theorem 1.2, and that the defect Z4(X) is non-zero. In the last part of the paper,
we determine completely the 2-torsion subgroup Z4(X)[2]. In addition, this allows
us to compute explicitly the degree 3 unramified cohomology group H3

nr(X,Z/2),
a stable birational invariant of smooth complex projective varieties defined in the
framework of the Bloch–Ogus theory [5]. A key input is a theorem of Colliot-Thélène
and Voisin [10, Theorem 3.9] together with the fact that we have CH0(X) = Z (this
can be deduced from a result of Bloch–Kas–Lieberman [4]).

Theorem 1.6 (=Theorem 6.1, Corollary 6.2). Let X be the total space of a very
general family of Enriques surfaces as in Theorem 1.2. Then we have

H3
nr(X,Z/2) = Z4(X)[2] = (Z/2)46.

Remark 1.7. Note that there is a 2-torsion element in the Néron-Severi group of
the geometric generic fiber of the family X → P1. In contrast, Colliot-Thélène and
Voisin proved that if X → C is a family of O-acyclic surfaces such that the geometric
generic fiber has torsion free Néron–Severi group, then the degree 3 unramified
cohomology group with torsion coefficients is conjecturally of rank at most one [10,
Theorem 7.7, 8.21, Remark 8.22].

We note that Theorem 1.2 also has an application to universality of the Abel-
Jacobi maps. A classical question of Murre asks whether the Abel-Jacobi map is
universal among all regular homomorphisms (see [21, Section 4] and [28, Section 1]
for more precise statements). Recently, a negative answer to the question was given
by a fourfold constructed by the authors [21]. In fact, the threefold X of Theorem
1.2 can be used to construct another such fourfold. We refer the reader to the papers
[21] and [28] for the details of the argument.

This paper is organized as follows. In Section 2, we introduce certain families of
Enriques surfaces parametrized by P1 and study their basic properties. In Section 3,
we prove the main theorem over C using an explicit geometric construction. The
proof involves a combination of monodromy and specialization arguments, and a
key congruence obtained previously by the authors in [21]. In Section 4, we refine
this construction to get counterexamples defined over Q. In Section 5, we discuss
the failure of the Hasse principle and the reciprocity obstruction on our examples.
In Section 6, we compute the defect of the integral Hodge conjecture in degree 4
on the total space of the family of Enriques surfaces of the main theorem, and in
addition, its degree 3 unramified cohomology group with Z/2 coefficients. Finally,
in the Appendix, Olivier Wittenberg proves that the vanishing of the reciprocity
obstruction obtained in Theorem 5.2 is in fact a completely general phenomenon.

Notation. We work over the complex numbers in Section 2, 3, 5, and 6. In Section 4,
we work over Q. We use Grothendieck’s notation for projective bundles: for a vector
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bundle E , P(E) parameterizes one-dimensional quotients of E . We write OP(E)(1) for
the relative hyperplane bundle.

We will let OPr×Ps(a, b) and OPr×Ps×Pt(a, b, c) denote line bundles on products of
projective spaces (i.e., these are pr∗1OPr (a)⊗pr∗2OPs(b) and pr∗1OPr (a)⊗pr∗2OPt(b)⊗
pr∗3OPs(c) respectively). Similarly, we will write OP1×P(E)(a, b) for the line bundle

pr∗1OPr(a)⊗ pr∗2OP(E)(b) on P1 × P(E). To simplify notation we will usually drop
the subscripts when the context is clear.

Acknowledgements. We would like to thank Lawrence Ein, Jørgen Vold Rennemo,
and Burt Totaro for interesting discussions and useful suggestions. We wish to thank
Jean-Louis Colliot-Thélène for many helpful correspondences and for encouraging
us to check whether there is any reciprocity obstruction on our examples, which
led to Theorem 5.2. We are grateful to Olivier Wittenberg for his remarks and for
kindly agreeing to write an appendix for our paper.

2. Families of Enriques surfaces parametrized by P1

We will fix the following notation:

• PA = PP2×P2(O(2, 0)⊕O(0, 2)), E1 = PP2×P2(O(2, 0)), E2 = PP2×P2(O(0, 2))
• PB = PP2×P2(O(1, 0)⊕O(0, 1)), F1 = PP2×P2(O(1, 0)), F2 = PP2×P2(O(0, 1))
• PC = P(H0(PB ,O(1))), P1 = P(H0(P2×P2,O(1, 0))), P2 = P(H0(P2×P2,O(0, 1))).

As is explained in [21], these spaces are related by the following geometric
construction: PC is a 5-dimensional projective space, and P1 and P2 define disjoint
planes in it via the isomorphism

H0(PB ,O(1)) = H0(P2 × P2,O(1, 0))⊕H0(P2 × P2,O(0, 1)).

The projective bundle PB is then identified with the blow-up of PC along the union
of P1 and P2, and F1 and F2 are the corresponding exceptional divisors. Furthermore,
there is an involution ι on PC induced by the involution on H0(PB ,O(1)) with the
(±1)-eigenspaces H0(P2 × P2,O(1, 0)) and H0(P2 × P2,O(0, 1)), respectively. The
involution ι lifts to an involution on the blow-up PB , and we have PA = PB/ι. Thus
there is a double cover PB → PA over P2 × P2, which is ramified along F1 ∪ F2, and
the divisors Fi are mapped isomorphically onto Ei for i = 1, 2.

The varieties PA,PB ,PC were used in [21] to give projective models of Enriques
surfaces. In this paper, we will use them to study the threefolds X in Theorem 1.2;
these are Enriques surface fibrations over P1. We now explain the main construction.

Let X ⊂ P1 × P2 × P2 be the rank one degeneracy locus of a general map of
vector bundles

(1) O⊕3 → O(2, 2, 0)⊕O(2, 0, 2).

Then X is a smooth threefold and the first projection X → P1 defines a family of
Enriques surfaces (see [21, Lemma 2.1]). There is a natural diagram

P1 × PB

��

// P1 × PA

��
P1 × PC P1 × P2 × P2
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in which P1×PA → P1×P2×P2 is the natural projection; P1×PB → P1×PA is the
quotient map by the involution ι (which acts trivially on P1); and P1×PB → P1×PC
is the blow-up along the union of P1 × P1 and P1 × P2.

The above diagram restricts to a diagram

Y

��

// X ′

'
��

Ymin X

where X ′ ⊂ P1 × PA, Y ⊂ P1 × PB , and Ymin ⊂ P1 × PC are respectively defined by
a section of O(2, 1)⊕3 on P1 × PA and ι-invariant sections of O(2, 2)⊕3 on P1 × PB
and P1 × PC induced by the map of vector bundles defining X.

Note that each of the intersections Ymin ∩ (P1 × Pi) is a complete intersection of
three divisors of type (2, 2) on P1 × P2; thus they consist of 24 points yi,1, . . . , yi,24.
Moreover, the map Y → Ymin is the blow-up of Ymin along the 48 points yi,j , with
the corresponding exceptional divisors Fi,j being the components of Y ∩ (P1 × Fi).
The double cover Y → X ′ is ramified exactly along the union of the Fi,j , and each
Fi,j is mapped isomorphically onto Ei,j (the components of X ′ ∩ (P1 ×Ei)). If X is
general, the map P1

A → P1 × P2 × P2 restricts to an isomorphism X ′ → X.

Remark 2.1. The minimal model Xmin of X can be obtained by contracting the
projective planes Ei,j to points; Xmin is singular exactly at the images of Ei,j , and
at each of the singular points the tangent cone is the affine cone over a Veronese
surface.

Lemma 2.2. The threefold X has the following properties:

(1) The degree homomorphism deg : CH0(X)→ Z is an isomorphism.
(2) The canonical divisor of X is of the form

KX = F +
1

2

2∑
i=1

24∑
j=1

Ei,j ,

where F is the class of a fiber of the projection X → P1. Thus X has Kodaira
dimension κ(X) = 1.

(3) The topological Euler characteristic equals χtop(X) = −96 and Hodge dia-
mond is given by

1

0 0

0 50 0

0 99 99 0

0 50 0

0 0

1

(4) X is simply connected and the cohomology groups Hi(X,Z) are torsion-free
for all i.

Proof. The arguments are entirely analogous to those in [21, Section 2], where the
case of the rank one degeneracy locus of a general map of vector bundles

O⊕3 → O(1, 2, 0)⊕O(1, 0, 2)
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is considered. The properties (1) to (4) correspond to the statements of [21, Lemma
2.4, 2.5, 2.6, 2.7] respectively. We note that the property (1) can be deduced from a
result of Bloch–Kas–Lieberman [4] on the Chow group of 0-cycles on an Enriques
surface. �

We will also need the following:

Lemma 2.3. Let X be the threefold defined by (1). Then we have

H2(X,Z) =
Z[F ]⊕ Z[H1]⊕ Z[H2]⊕

⊕2
i=1

⊕24
j=1 Z[Ei,j ]

〈−2[H1] +
∑24
j=1[E1,j ] = −2[H2] +

∑24
j=1[E2,j ]〉)

,

where F is the class of a fiber of the first projection X → P1 and H1 (resp. H2) is

the pullback of the class of a line in P2 via the composition X → P2 × P2 pr1−−→ P2

(resp. X → P2 × P2 pr2−−→ P2).

Proof. Let X◦ = X \
⋃2
i=1

⋃24
j=1Ei,j . The long exact sequence for cohomology with

supports yields

(2) 0→
2⊕
i=1

24⊕
j=1

Z[Ei,j ]→ H2(X,Z)→ H2(X◦,Z)→ 0.

Let Y ◦ = Y \
⋃2
i=1

⋃24
j=1 Fi,j . Since X◦ is the quotient of Y ◦ by the group 〈ι〉 = Z/2,

which acts freely, we can apply the Cartan–Leray spectral sequence

Ep,q2 = Hp(Z/2, Hq(Y ◦,Z))⇒ Hp+q(X◦,Z).

We have H1(Y ◦,Z) = H1(Ymin,Z) = 0 by the Lefschetz hyperplane section theorem,
so we have a short exact sequence

0→ Z/2→ H2(X◦,Z)→ H2(Y ◦,Z)ι → 0.

The long exact sequence for cohomology with supports yields

0→
2⊕
i=1

24⊕
j=1

Z[Fi,j ]→ H2(Y,Z)→ H2(Y ◦,Z)→ 0.

Applying the Lefschetz hyperplane section theorem to Ymin, it is straightforward to
compute

H2(Y,Z) =
Z[F ]⊕ Z[H1]⊕ Z[H2]⊕

⊕2
i=1

⊕24
j=1 Z[Fi,j ]

〈−[H1] +
∑24
j=1[F1,j ] = −[H2] +

∑24
j=1[F2,j ]〉

.

Thus we obtain

H2(Y ◦,Z) =
Z[F ]⊕ Z[H1]⊕ Z[H2]

〈[H1] = [H2]〉
and H2(Y ◦,Z) is ι-invariant. This, combined with the equality

−2[H1] +

24∑
j=1

[E1,j ] = −2[H2] +

24∑
j=1

[E2,j ]

in H2(X,Z), implies that

H2(X◦,Z) =
Z[F ]⊕ Z[H1]⊕ Z[H2]

〈2[H1] = 2[H2]〉
.

and the claim follows immediately from (2). �
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3. Proof of the main theorem

We will now prove Theorem 1.2 over the complex numbers.

Theorem 3.1. Let X ⊂ P1 × P2 × P2 be the rank one degeneracy locus of a very
general map of vector bundles

O⊕3 → O(2, 2, 0)⊕O(2, 0, 2).

Then the first projection gives a family X → P1 of Enriques surfaces such that any
multi-section has even degree over the base P1. That is, the index I(Xη) is even,
where Xη is the generic fiber.

Proof. The first goal will be to prove that for any 1-cycle α on X and for any
12-tuple of integers 1 ≤ j1 < · · · < j12 ≤ 24, there is a congruence

deg(α/P1) ≡
12∑
k=1

α · E1,jk mod 2.(3)

These congruences will imply the theorem. Indeed, from (3) we obtain

α · E1,1 ≡ · · · ≡ α · E1,24 mod 2,(4)

which in turn implies that deg(α/P1) is even.
To prove the congruence (3), we combine monodromy and specialization ar-

guments. First, we prove that a certain monodromy group acts on the set of 24
planes E1,1, . . . , E1,24 by permutations, and every permutation of the E1,j is realized
by this action. This will allow us to reduce to proving (3) for a fixed 12-tuple
1 ≤ j1 < · · · < j12 ≤ 24.

Consider the universal family

X → G = Gr(3, H0(P1 × PA,O(2, 1)))

of complete intersections in P1 × PA of three divisors of type (2, 1). Let E1 denote
the pullback of the Cartier divisor E1 via the projection map X → PA. The
corresponding family E1 → G is the union of the planes E1,1, . . . , E1,24 in the fibers

of X → G. Let G̃ → G be the Stein factorization of E1 → G, which is a finite

morphism of degree 24, and let U ⊂ G be the largest open set over which G̃→ G is
étale. We will now prove the following:

Lemma 3.2. The monodromy representation

ρ : π1(U)→ S24,

uniquely determined up to the choice of a base point, is surjective.

Proof. Recall from Section 2 that the planes E1,1, . . . , E1,24 are parameterized by
the 24 intersection points of three divisors of type (2, 2) in P1 × P2. To prove the

lemma, we restrict over a certain line l on G defined as follows. Let l̃ ⊂ P1×P2 be a
general complete intersection of two divisors of type (2, 2). Taking a general pencil

in |Ol̃(2, 2)|, we obtain a Lefschetz pencil l̃→ P1 by [12, Theorem XVII. 2.5]. This
defines a line

l ⊂ Gr(3, H0(P1 × P2 × P2,O(2, 2, 0))) ⊂ G
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such that l̃ = l ×G G̃, where the inclusion between the Grassmannians is via the
identification

H0(P1 × PA,O(2, 1)) = H0(P1 × P2 × P2,O(2, 2, 0))⊕H0(P1 × P2 × P2,O(2, 0, 2)).

We let l◦ = l ∩ U ; this is the maximal open set where l̃→ l is étale.
We claim that the induced monodromy representation

ρl◦ : π1(l◦)→ S24

is surjective. Indeed, π1(l◦) is generated by loops around branch points b ∈ B of

l̃→ l, and the image of each such loop is a transposition in S24. The image of ρl◦ is

moreover transitive since l̃ is irreducible. Any transitive subgroup of S24 which is
generated by transpositions must be S24 itself, so it follows that ρ : π1(U)→ S24 is
surjective. �

By the above lemma, we reduce to proving the congruence (3) for a single 12-tuple
1 ≤ j1 < · · · < j12 ≤ 24. Indeed, if g ∈ π1(U) is a lift of a permutation σ ∈ S24,
then it will imply for any 1-cycle α on X, there is a congruence

deg(α/P1) = deg(g∗(α)/P1) ≡
12∑
k=1

g∗(α) · Ejk ≡
12∑
k=1

α · Eσ−1(jk) mod 2.

Here we have used g∗(α)·Eσ(j) = α·Ej for each j, and the fact that g∗(α) is again an

algebraic cycle because X is very general. We also have deg(g∗(α)/P1) = deg(α/P1),
because the degree is obtained by intersecting with the class of a fiber over P1, which
is invariant under monodromy. Letting σ run over all permutations, we see that the
congruence will hold for all 12-tuples.

To finish the proof of the congruence (3), we use a specialization argument. We
consider X as the complete intersection of three divisors D1, D2, D3 in |O(2, 1)| on
P1 × PA. If we degenerate each Di to a union D′i +D′′i , where D′i ∈ |O(1, 1)| and
D′′i ∈ |O(1, 0)| are very general divisors, we obtain a family of threefolds XT → T ,
with special fiber equal to

X0 ∪R1 ∪R2 ∪R3,

where X0 is a very general intersection of three divisors in |O(1, 1)|, and R1, R2, R3

are intersections of two divisors of type O(1, 1) and one of type O(1, 0). In particular,
the Ri are pairwise disjoint and can be regarded as complete intersections of two
relative hyperplane sections in PA. By the geometric construction in Section 2, we
may regard X0 as the rank one degeneracy locus in P1 × P2 × P2 of a very general
map of vector bundles

O⊕3 → O(1, 2, 0)⊕O(1, 0, 2).

By construction, X0 is also the only dominant component with respect to the
projection X0∪R1∪R2∪R3 → P1. Furthermore, again by genericity, we may assume
that X0 ∪ R1 ∪ R2 ∪ R3 is a simple normal crossing variety and the intersection
(X0 ∪R1 ∪R2 ∪R3) ∩ (P1 × E1) is transversal.

This degeneration allows us to specialize cycles on X to cycles on X0∪R1∪R2∪R2.
On the level of divisors, the union of 24 components E1,1, . . . , E1,24 on X specializes

to the union of 12 components E
(0)
1,1 , . . . , E

(0)
1,12 on X0 and 4 components E

(l)
1,1, . . . , E

(l)
1,4

on Rl for l = 1, 2, 3 given by the intersections with P1 × E1. Thus the chosen
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specialization gives a 12-tuple 1 ≤ j1 < · · · < j12 ≤ 24 such that E1,j1 , . . . , E1,j12

specialize to E
(0)
1,1 , . . . , E

(0)
1,12.

By [14, Section 20.3] there is moreover a specialization map of Chow groups

CH1(X)→ CH1(X0 ∪R1 ∪R2 ∪R3)

which is compatible with intersections with divisors. If α0 is the specialization of a

1-cycle α on X, we may write α0 = α
(0)
0 + α

(R)
0 , where α

(0)
0 is a 1-cycle on X0 and

α
(R)
0 is supported in R1 ∪R2 ∪R3.

Now we recall a key congruence obtained in the course of the proof of [21, Theorem

3.1]: we have, for any 1-cycle α
(0)
0 on X0, a congruence

deg(α
(0)
0 /P1) ≡

12∑
j=1

α
(0)
0 · E

(0)
1,j mod 2.(5)

Note that deg(α/P1) = deg(α
(0)
0 /P1) and α · E1,jk = α0 · E(0)

1,k = α
(0)
0 · E(0)

1,k since

E
(0)
1,k is disjoint from R1, R2 and R3. Thus from the congruence (5), we deduce the

congruence (3) for 1 ≤ j1 < · · · < j12 ≤ 24. This completes the proof. �

Theorem 3.1 can be generalized to higher dimensions:

Theorem 3.3. For a positive integer n, we let X ⊂ P1×P2n×P2n be the rank one
degeneracy locus of a very general map of vector bundles

O⊕(2n+1) → O(2, 2, 0)⊕O(2, 0, 2).

Then the first projection gives a family X → P1 of O-acyclic 2n-folds such that any
multi-section has even degree over the base P1. That is, the index I(Xη) is even,
where Xη is the generic fiber.

Proof. The geometry of the family of O-acyclic 2n-folds is similar to that of Lemma
2.2. An alternative projective model of X is given by a complete intersection in

P1 × PP2n×P2n(O(2, 0)⊕O(0, 2))

of (2n+ 1) divisors of type (2, 1), and the intersection

X ∩ (P1 × PP2n×P2n(O(2, 0)))

consists of (2n+ 1)22n+1 components E1,1, . . . , E1,(2n+1)22n+1 . The theorem follows
from a congruence

deg(α/P1) ≡
(2n+1)22n∑

k=1

α · E1,jk mod 2

for any 1-cycle α on X and for any (2n+ 1)22n-tuple 1 ≤ j1 < · · · < j(2n+1)22n ≤
(2n+ 1)22n+1. We leave the details of the proof to the reader. �

4. Degenerations and examples over Q

We now explain how to give examples as in Theorem 1.2 defined over the rational
numbers. The construction is similar to the one used in the previous section, but the
degeneration argument now uses Enriques fibrations defined in terms 2× 3-minors,
rather than complete intersections of three divisors.
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We will work over Q and set

P1 × P2 × P2 = ProjQ[s, t]× ProjQ[x0, x1, x2]× ProjQ[y0, y1, y2].

The goal is to prove the following:

Theorem 4.1. Let pi, qi, ri, si (i = 0, 1, 2) be general homogeneous polynomials
of tridegree (1, 2, 0), (0, 0, 2), (2, 2, 0), (2, 0, 2) in variables s, t, xi, yi defined over Q.
Then there exists a prime number p such that, if X ⊂ P1 × P2 × P2 is the rank one
degeneracy locus of a map of vector bundles

O⊕3 → O(2, 2, 0)⊕O(2, 0, 2)

given by the matrix

M =

(
sp0 + pr0 (s− t)p1 + pr1 (s+ t)p2 + pr2

stq0 + ps0 t(s− t)q1 + ps1 t(s+ t)q2 + ps2

)
,(6)

then the first projection gives a family X → P1 of Enriques surfaces such that any
multi-section has even degree over the base P1. That is, the index I(Xη) is even,
where Xη is the generic fiber.

Note that for general pi, qi, ri, si defined over Q and large p, the threefold X is
smooth and irreducible.

In order to prove Theorem 4.1, it will be convenient to introduce the following
1-dimensional family of degeneracy loci of vector bundles

O⊕3 → O(2, 2, 0)⊕O(2, 0, 2)

on P1 × P2 × P2. We set B = ProjQ[λ, µ] and define the total space X as the
subvariety of B × P1 × P2 × P2 defined by the maximal minors of the matrix

M(λ,µ) =

(
λsp0 + µr0 λ(s− t)p1 + µr1 λ(s+ t)p2 + µr2

λstq0 + µs0 λt(s− t)q1 + µs1 λt(s+ t)q2 + µs2

)
,(7)

where the pi, qi, ri, si have tridegrees (1, 2, 0), (0, 0, 2), (2,2,0) and (2, 0, 2) respec-
tively.

Let X → B denote the natural projection map onto the first factor. By construc-
tion, the generic fiber XηB is a smooth threefold with an Enriques surface fibration
XηB → P1

ηB . The morphism X → B is flat outside of the fiber (λ, µ) = (1, 0); we

will compute the flat closure of XηB in B×P1×P2×P2 below. In any case, in order
to prove Theorem 4.1, we will mainly be interested in the fiber over (λ, µ) = (1, p).

For now, let E1 ⊂ X denote the codimension 1 subscheme defined by the top row
of M(λ,µ), i.e.,

λsp0 + µr0 = λ(s− t)p1 + µr1 = λ(s+ t)p2 + µr2 = 0.(8)

By Bertini, E1 is smooth and irreducible for general pi, ri. Let E1 → B̃ → B denote

the Stein factorization of E1 → B. The morphism B̃ → B is finite of degree 24; over
a general point b ∈ B the fiber corresponds to the 24 distinct planes E1,1, . . . , E1,24

in Xb. We let B◦ ⊂ B denote the maximal open set over which B̃ → B is étale.
There is an associated monodromy representation

ρ : πét
1 (B◦)→ S24.

Lemma 4.2. For general pi, ri as above, the map ρ is surjective.
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Proof. Note that B̃ is defined by (8) inside B × P1 × P2. It is straightforward to

check that the cover B̃ → B is Lefschetz for general pi, ri. Now the assertion follows
from an argument similar to that in the proof of Theorem 3.1. We note that πét

1 (B◦)

is generated by loops around the branch points of B̃ → B [17, XIII, Corollaire 2.12]
and the image of each loop is a transposition in S24. �

The parameter space for the families of threefolds given by (7) is a certain rational
variety, hence has a Zariski dense set of Q-rational points. As a consequence, we
can choose pi, qi, ri, si defined over Q such that ρ is surjective. We will therefore
in the following choose pi, qi, ri, si satisfying the above conditions: thus for the
family X → B over Q, the generic fiber is smooth and irreducible; E1 is smooth and
irreducible; and the monodromy map

ρ : πét
1 (B◦)→ S24

is surjective.

Lemma 4.3. There are infinitely many prime numbers p such that if x ∈ B is
given by (λ, µ) = (1, p), then the induced map

ρx : πét
1 (x, x) = Gal(Q/Q)→ S24

is surjective.

Proof. By Hilbert’s irreducibility theorem, the set {x ∈ B◦(Q) | ρx is surjective} is
the complement of a thin set in B(Q) = P1(Q). Moreover, the complement of a
thin set in P1(Q) contains infinitely many points with (λ, µ) = (1, p) for some prime
number p (see [25, Section 9.6, Theorem]), which gives us the desired conclusion. �

To conclude the proof of Theorem 4.1, we again use a specialization argument as
in Theorem 3.1. We begin by computing the flat limit of the family X → B over
(λ, µ) = (1, 0).

Note that X contains {µ = t = 0} as a component. Removing this component
reveals that the flat closure of XηB in B×P1×P2×P2 is defined by the 3×3-minors
of the matrixλsp0 + µr0 λ(s− t)p1 + µr1 λ(s+ t)p2 + µr2 0

λsq0 λ(s− t)q1 λ(s+ t)q2 µ
s0 s1 s2 −t


The corresponding family X → B is flat and has special fiber X 0 over (λ, µ) =

(1, 0) given by a union X̃0 ∪R0 ∪R1 ∪R2 ∪R3, where X̃0 is given by the minors of
the matrix

N =

(
p0 p1 p2

q0 q1 q2

)
,

R0 is given by

t = det

p0 p1 p2

q0 q1 q2

s0 s1 s2

 = 0,

and R1, R2, R3 are respectively given by

s = p2q1 − p1q2 = 0, s− t = p2q0 − p0q2 = 0, s+ t = p1q0 − p0q1 = 0.

Note that the Ri are pairwise disjoint, and X̃0 is regular if the pi, qi are general.
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Similarly, the subfamily E1 → B, given by (7), has a special fiber over (λ, µ) =

(1, 0) which consists of the union of 12 components E
(0)
1,1 , . . . , E

(0)
1,12 supported on X0

given by

p0 = p1 = p2 = 0

and the unions of 4 components E
(l)
1,1, . . . , E

(l)
1,4 supported on Rl for l = 1, 2, 3

respectively given by

s = p1 = p2 = 0, s− t = p0 = p2 = 0, s+ t = p0 = p1 = 0.

It is important to note that E
(0)
1,1 , . . . , E

(0)
1,12 are Cartier divisors on X 0 since they

are supported on X 0 \ (R0 ∪R1 ∪R2 ∪R3) which is regular.
Let p and x ∈ B be as in Lemma 4.3. For any valuation ring R ⊂ Q whose

maximal ideal contains p, we have the following diagram of restrictions:

Xx = X x

��

// (XR)(λ,µ)=(1,p)

��

// XR

��

X

��

oo

x // SpecR
(λ,µ)=(1,p) // BR Boo

SpecFp

OO

// SpecR

(λ,µ)=(1,0)

OO

.

Proof of Theorem 4.1. Let pi, qi, ri, si be general and defined over Q. Let p be a
sufficiently large prime number which satisfies Lemma 4.3 and let X = Xx. We
prove that any multi-section of X → P1 has even degree over the base P1. As in the
proof of Theorem 3.1, it is enough to prove, for any 1-cycle α on X and for any
12-tuple 1 ≤ j1 < · · · < j12 ≤ 24, a congruence

deg(α/P1) ≡
12∑
k=1

α · E1,jk mod 2.

By Lemma 4.3, it suffices to verify this congruence for some 12-tuple 1 ≤ j1 < · · · <
j12 ≤ 24. To establish this, we use the above family over SpecR, which allows us to
specialize cycles from X to cycles on ((XR)(λ,µ)=(1,p))Fp .

For a sufficiently large valuation ring R ⊂ Q whose maximal ideal contains p, the
specialization ((E1)R)(λ,µ)=(1,p) ⊂ (XR)(λ,µ)=(1,p) is a disjoint union of 24 compo-

nents E1,1, . . . , E1,24, each of which is isomorphic to P2
R. Let E1,j1 , . . . , E1,j12 be the

components which restrict to E
(0)
1,1 , · · · , E

(0)
1,12 on the special fiber ((XR)(λ,µ)=(1,p))Fp .

Then E1,j1 , . . . , E1,j12 ⊂ (XR)(λ,µ)=(1,p) are Cartier divisors since they are supported

on (XR)(λ,µ)=(1,p) \ (R0 ∪R1 ∪R2 ∪R3) which is regular.
Now by the specialization homomorphism for Chow groups [14, Ex. 20.3.5], the

desired congruence follows from a congruence in the proof of [21, Theorem 3.1]: we

have, for any 1-cycle α̃0 on X̃0, a congruence

deg(α̃0/P1) ≡
12∑
j=1

α̃0 · E(0)
1,j mod 2.

The proof is complete. �
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The above proof uses a specialization argument which does not extend in general
to other fields. One natural question is whether one can find such examples defined
over the algebraic closure of a finite field. In contrast to the examples above, we
prove some positive results in this situation, conditional on the Tate conjecture. We
recall that the Tate conjecture in degree 2i on a smooth projective variety V over a
finite field k of characteristic p asserts that the image of the cycle class map

cli⊗Ql : CHi(Vk)⊗Ql → H2i
ét (Vk,Ql(i))

generates the subspace of classes in H2i
ét (Vk,Ql(i)) fixed by some open subgroup of

Gal(k/k) for any prime number l 6= p. The integral Tate conjecture is an integral
analogue of the Tate conjecture (with Zl instead of Ql).

Proposition 4.4. Let X be a smooth projective variety over Fp with fibration
X → C over a smooth projective curve C. Assume that

(1) the generic fiber Xη is smooth with χ(OXη ) = 1;
(2) b2 = ρ on X, where b2 is the second Betti number and ρ is the Neron-Severi

rank;
(3) the Tate conjecture holds in degree 2 on surfaces over finite fields of charac-

teristic p.

Then the fibration X → C admits multi-sections whose degrees over the base C add
up to a power of p. That is, the index I(Xη) is a power of p, where Xη is the generic
fiber.

Remark 4.5. A similar assertion was proved by Colliot-Thélène and Szamuely [9,
Theorem 6.1], where, among other things, the torsion-freeness of the Picard group
Pic(Xη) of the geometric generic fiber Xη is assumed.

Proof of Proposition 4.4. Let X → C be a fibration as in the statement and d =
dimX. Under the assumption (1), the Riemann-Roch formula together with the
Poincaré duality shows that the push-forward homomorphism

H2d−2(X,Zl(d− 1))→ H0(C,Zl) = Zl
is surjective for any prime l 6= p (see [10, Proposition 7.3]).

On the other hand, if the Tate conjecture holds in degree 2 on surfaces over finite
fields of characteristic p, then the integral Tate conjecture holds in degree 2d− 2 on
X (viewed as the base extension of a smooth projective variety over a finite field of
characteristic p), according to a theorem of Schoen [23, Theorem 0.5]. If we further
assume b2 = ρ on X, then the cycle class map

cl2d−2⊗Zl : CH2d−2(X)⊗ Zl → H2d−2(X,Zl(d− 1))

is surjective for any prime l 6= p, as proved by Colliot-Thélène and Scavia [8, Corollary
5.9]. Combined with the argument in the previous paragraph, the statement now
follows. �

Corollary 4.6. Let X → C be a one-parameter family of O-acyclic varieties over
Q. Assume that the Tate conjecture holds in degree 2 on surfaces over finite fields.
Then the reduction Xp → Cp over Fp admits multi-sections with coprime degrees
over the base Cp for any large prime number p. That is, I((Xp)η) = 1, where (Xp)η
is the generic fiber.



14 JOHN CHRISTIAN OTTEM AND FUMIAKI SUZUKI

Proof. We note that the O-acyclicity of fibers of the family X → C implies b2 = ρ
on X by [10, Proposition 7.3], thus we also have b2 = ρ on the good reductions
of X by specialization. Now the statement is immediate from Proposition 4.4 by
observing that there exist 1-cycles on Xp obtained by spreading out 1-cycles on X

over valuations rings inside Q, whose degrees over the base Cp do not depend on
p. �

5. Failure of the Hasse principle and the reciprocity obstruction

The reciprocity obstruction to the Hasse principle for 0-cycles of degree 1 on a
smooth projective geometrically connected variety Z over the function field F = C(C)
of a complex curve C was defined and pointed out to the authors by Colliot-Thélène
(see also [7, Section 5]). We explain the construction in the following. We will assume
that H1

ét(ZF ,Z/2) = Z/2 for simplicity.
The Leray spectral sequence for the étale sheaf Z/2 and the morphism Z → SpecF

yields a short exact sequence

0→ H1
ét(F,Z/2)→ H1

ét(Z,Z/2)→ H1
ét(ZF ,Z/2)→ 0.

Note that the Galois group Gal(F/F ) acts trivially on H1
ét(ZF ,Z/2) = Z/2. We

then choose a lift ξ ∈ H1
ét(Z,Z/2) of the non-trivial class in H1

ét(ZF ,Z/2) = Z/2.
The evaluation paring

Z(F )×H1
ét(Z,Z/2)→ H1

ét(F,Z/2)

extends to an evaluation pairing on the Chow group of 0-cycles

CH0(Z)×H1
ét(Z,Z/2)→ H1

ét(F,Z/2).

Thus we get the evaluation map of ξ

CH0(Z)→ H1
ét(F,Z/2).

Similarly, we get the local evaluation map of ξ

CH0(ZFp)→ H1
ét(Fp, Z/2) = Z/2

for any p ∈ C, where Fp ∼= C((t)) is the completion of F at p. The local evaluation
maps are identically zero for all but finitely many p ∈ C by an argument of good
reduction.

The diagonal embedding

F ↪→
∏
p∈C

Fp

yields a complex

H1
ét(F,Z/2)→

⊕
p∈C

H1
ét(Fp,Z/2)→ Z/2

that is

F ∗/F ∗2 →
⊕
p∈C

Z/2→ Z/2,

where the first map is induced by the divisor map and the second map is the
summation map. Then it follows that the image of the diagonal map

CH0(Z)→
∏
p∈C

CH0(ZFp)
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is contained in the kernel of the sum of the local evaluations

θ :
∏
p∈C

CH0(ZFp)→ Z/2.

Proposition 5.1 (Reciprocity obstruction). If for each family {αp}p∈C of 0-cycles

of degree 1, we have θ({αp}) = 1 ∈ Z/2, then there is no 0-cycle of degree 1 on Z.

As a consequence of our construction in Section 3, we prove that the failure of the
Hasse principle for 0-cycles of degree 1 on an Enriques surface over C(P1) cannot
always be accounted for by the reciprocity obstruction.

Theorem 5.2. Let Xη be the generic fiber of the family X → P1 of Enriques
surfaces of Theorem 3.1. Then the Hasse principle fails for 0-cycles of degree 1 on
Xη, while the assumption of Proposition 5.1 is not satisfied.

Remark 5.3. In fact, a direct computation shows that Xη has rational points
everywhere locally. Hence the Hasse principle already fails for rational points on Xη.
The proof in the following also shows that there is no reciprocity obstruction to the
Hasse principle for rational points on Xη. Therefore it follows that the reciprocity
obstruction to the Hasse principle for rational points on an Enriques surface over
C(P1) is not the only obstruction.

Proof of Theorem 5.2. Let F = C(P1). Theorem 3.1 shows that there is no 0-cycle
of degree 1 on XF . On the other hand, it is automatic from the O-acyclicity of
Enriques surfaces and the Riemann-Roch that the family X → P1 has no multiple
fiber (in fact this is easy to see directly from the defining equations). It follows that
there is a 0-cycle of degree 1 on XFp for any p ∈ P1. Therefore the Hasse principle
fails for 0-cycles of degree 1 on XF .

By choosing a lift ξ ∈ H1
ét(XF ,Z/2) of the non-zero class in H1

ét(XF ,Z/2) = Z/2,
we obtain the map θ in Proposition 5.1. To see that XF does not satisfy the
assumption of Proposition 5.1, it is enough to verify the following: for each i and j,
if pi,j ∈ P1 is the image of Ei,j , then the local evaluation map

CH0(XFpi,j
)→ H1

ét(Fpi,j ,Z/2) = Z/2

restricts to a surjection on 0-cycles of degree 1; this will then provide a family
{αp}p∈C of 0-cycles of degree 1 such that θ({αp}) = 0 ∈ Z/2.

Recall that by construction in Section 2, X admits a natural double cover Y → X
over P1 and the cover is ramified along

⋃
Fi,j and branched over

⋃
Ei,j . Then

one can in fact assume that ξ is given by the étale double cover Y ◦ → X◦, where
X◦ = X \

⋃
Ei,j and Y ◦ = Y \

⋃
Fi,j , since evaluation maps only differ by classes

in H1
ét(F,Z/2).

For each i and j, working locally around pi,j , we consider the base change of the
Enriques fibration X → P1

X ×P1 Spec ÔP1,pi,j → Spec ÔP1,pi,j ,

where ÔP1,pi,j is the completion of the local ring OP1,pi,j . One can compute that the
special fiber is reduced and consists of Ei,j and a residual component Ri,j . Then,
by Hensel’s lemma, there is a section S1 (resp. S2) which intersects transversally
with Ei,j (resp. Ri,j) at one point. Now we consider the double cover

Y ×P1 Spec ÔP1,pi,j → X ×P1 Spec ÔP1,pi,j ,
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whose branched locus is Ei,j . Then it is straightforward to see that the inverse image
of S1 gives degree 2 integral multi-section, while that of S2 splits into two disjoint
sections. Therefore the Fpi,j -rational points of XFpi,j

corresponding to the sections

S1 and S2 take values 1 and 0 in Z/2 respectively under the local evaluation map.
This concludes that XF does not satisfy the assumption of Proposition 5.1, hence
the proof of the theorem. �

6. Defect of the integral Hodge conjecture in degree 4 and degree 3
unramified cohomology with Z/2 coefficients

Theorem 6.1. Let X be the total space of the family of Enriques surfaces of
Theorem 3.1. Then we have Z4(X)[2] = (Z/2)46.

Proof. By Lemma 2.2, the Hodge structure of H4(X,Z) is trivial and H4(X,Z) is
free of rank 50. By the Tor long exact sequence, we have

Z4(X)[2] = Ker(H4
alg(X,Z)/2→ H4(X,Z/2)).

We define

H4
alg(X,Z/2) = Im

(
cl2⊗Z/2: CH2(X)/2→ H4(X,Z/2)

)
.

Since H4
alg(X,Z)/2 = (Z/2)50, we are reduced to proving that H4

alg(X,Z/2) =

(Z/2)4.
We first prove that

Im

(
CH2(X)/2

cl⊗Z/2−−−−−→ H4(X,Z/2)
(iX)∗−−−→ H10(P1 × PA,Z/2)

)
= (Z/2)2,

where iX : X → P1 × PA is the inclusion map. The rank of the image is ≤ 2 as a
result of Theorem 3.1 and the congruence (4) in the proof. Thus it suffices to find
two linearly independent classes in the image. It is easy to see that lines l1 ⊂ E1,1

and l2 ⊂ E2,1 give such classes.
We define

H4
van(X,Z/2) = Ker

(
(iX)∗ : H4(X,Z/2)→ H10(P1 × PA,Z/2)

)
.

We have rankH4
van(X,Z/2) = 46. Indeed, it is enough to observe that the push-

forward homomorphism

(iX)∗ : H4(X,Z)→ H10(P1 × PA,Z)

is surjective, which follows from the fact that the pullback homomorphism

(iX)∗ : H2(P1 × PA,Z)→ H2(X,Z)

is injective with torsion-free cokernel by Lemma 2.3. We prove that H4
van(X,Z/2) is

generated by classes ci,j1,j2 ∈ H4(X,Z) (i = 1, 2, 1 ≤ j1 < j2 ≤ 24) with intersection
properties

ci,j1,j2 · Ei′,j′ = δi,i′ · (δj1,j′ − δj2,j′),
ci,j1,j2 · F = ci,j1,j2 ·H1 = ci,j1,j2 ·H2 = 0.

It is enough to show that

H4
van(X,Z) = Ker

(
(iX)∗ : H4(X,Z)→ H10(P1 × PA,Z)

)
,
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which is of rank 46, is generated by the above classes. Let iY : Y → P1 × PB be the
inclusion map and let

H4
van(Y,Z) = Ker

(
(iY )∗ : H4(Y,Z)→ H10(P1 × PB ,Z)

)
.

The group H4
van(Y,Z) has rank 46. Using Lemma 2.3, it is straightforward to see

that

Coker
(
f∗ : H4

van(Y,Z)→ H4
van(X,Z)

)
= (Z/2)46,

where f : Y → X is the natural map, thus the push-forward homomorphism
f∗ : H4

van(Y,Z) → H4
van(X,Z) can be identified with the multiplication homomor-

phism Z46 ×2−−→ Z46. Now it is enough to observe that H4
van(Y,Z) is generated by

classes di,j1,j2 ∈ H4(Y,Z) (i = 1, 2, 1 ≤ j1 < j2 ≤ 24) with intersection properties

di,j1,j2 · Fi′,j′ = δi,i′ · (δj1,j′ − δj2,j′),
di,j1,j2 · F = di,j1,j2 ·H1 = di,j1,j2 ·H2 = 0,

which is immediate.
We prove that H4

alg(X,Z/2) ∩H4
van(X,Z/2) = (Z/2)2. We note that we have the

congruence (4) in the proof of Theorem 3.1, and moreover, we may also assume a
congruence

α · E2,1 ≡ · · · ≡ α · E2,24 mod 2(9)

for any 1-cycle α on X. Then the congruences (4) and (9) imply

rank
(
H4

alg(X,Z/2) ∩H4
van(X,Z/2)

)
≤ 2.

Now it is enough to find two linearly independent classes inH4
alg(X,Z/2)∩H4

van(X,Z/2).

It is a simple matter to check that C1 = (H1)2 and C2 = (H2)2 indeed give such
classes.

It follows that

H4
alg(X,Z/2) = Z/2[l1]⊕ Z/2[l2]⊕ Z/2[C1]⊕ Z/2[C2] = (Z/2)4.

The proof is complete. �

Let n be a positive integer. We recall that the degree 3 unramified cohomology
group H3

nr(X,Z/n) for a smooth projective variety X is defined to be

H3
nr(X,Z/n) = H0(XZar,H3(Z/n)),

where H3(Z/n) is the Zariski sheaf associated to the presheaf U 7→ H3(U,Z/n)
[5]. The group H3

nr(X,Z/n) is a stable birational invariant of smooth projective
varieties [5, Theorem 4.2]. As an application of the Bloch-Kato conjecture settled
by Voevodsky, it was proved by Colliot-Thélène and Voisin [10, Theorem 3.9] that
we have

H3
nr(X,Z/n) = Z4(X)[n]

if CH0(X) is supported on a surface. This theorem, together with Lemma 2.2 (1)
and Theorem 6.1, implies:

Corollary 6.2. Let X be the total space of the family of Enriques surfaces of
Theorem 3.1. Then we have H3

nr(X,Z/2) = (Z/2)46.
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Appendix A. Vanishing of the reciprocity obstruction

by Olivier Wittenberg

In this appendix, we prove that the vanishing of the reciprocity obstruction to
the existence of a 0-cycle of degree 1 is a general fact that holds for all O-acyclic
varieties over the function field F of a complex curve, and, in fact, for all smooth
proper varieties Y over F such that χ(Y,OY ) = 1. We actually prove the following
slightly more general statement, in the spirit of [13].

Theorem A.1. Let F = C(C) be the function field of a smooth proper irreducible
complex curve C. Let Y be a smooth proper variety over F and E be a coherent
sheaf on Y . Then there exists a collection (αp)p∈C(C) ∈

∏
p∈C(C) CH0(YFp) of local

0-cycle classes of degree χ(Y,E) that belongs to the left kernel of the natural pairing( ∏
p∈C(C)

CH0(YFp)

)
×H1

ét(Y,Q/Z(1))→ Q/Z.(10)

In other words, there is no reciprocity obstruction to the existence of a 0-cycle of
degree χ(Y,E) on Y .

Theorem A.1 builds on a purely cohomological reinterpretation of the reciprocity
obstruction (presented in §§A.1–A.4) and on a variant of an argument of Colliot-
Thélène and Voisin itself based on the Riemann–Roch theorem (see §A.5).

In the situation of Theorem A.1, local 0-cycles of degree χ(Y,E) had previously
been shown to exist in [13, Theorem 1]. It may seem surprising that the existence of
a collection of local 0-cycles that globally survives the reciprocity obstruction comes
“for free”, without having to make any additional assumption on Y , especially in
view of the negative answer to Question 1.1 now provided by Ottem and Suzuki.

A.1. Recollections on the reciprocity obstruction. Let us first recall how the
pairing (10), introduced by Colliot-Thélène and Gille in [7, §5], is defined.

For p ∈ C(C), the Galois cohomology group H1(Fp,Q/Z(1)), where Q/Z(1)
denotes the torsion subgroup of C∗, is canonically isomorphic to Q/Z. We denote
this canonical isomorphism by invp : H1(Fp,Q/Z(1)) ∼−→ Q/Z. Mapping a closed
point q ∈ YFp and a class β ∈ H1

ét(YFp ,Q/Z(1)) to invp CoresFp(q)/Fp β(q) ∈ Q/Z,
where Cores denotes the corestriction map in Galois cohomology, uniquely extends
to a bilinear pairing

CH0(YFp)×H1
ét(YFp ,Q/Z(1))→ Q/Z.(11)

Denoting the latter by angle brackets, the pairing (10) is then defined as the sum

((αp)p∈C(C), β) 7→
∑

p∈C(C)

〈αp, β〉,(12)

which can be checked to have only finitely many non-zero terms.
The “reciprocity law”, in this context, is the equality∑

p∈C(C)

invp γ = 0,(13)

valid for any global class γ ∈ H1(F,Q/Z(1)), and which amounts to the assertion
that any principal divisor on C has degree 0. Applied to γ = CoresF (q)/F β(q) for a
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closed point q ∈ Y , it implies that the diagonal map CH0(Y )→
∏
p∈C(C) CH0(YFp)

takes values in the left kernel of (10). Equivalently, an element of
∏
p∈C(C) CH0(YFp)

that does not belong to the left kernel of (10) cannot come from CH0(Y ); in this
situation one says that there is a “reciprocity obstruction”.

A.2. From Chow groups to cohomology. Let us fix a smooth and proper
variety X over C and a morphism f : X → C with generic fibre Y . Let Xp denote
the fibre of X above p ∈ C. For any scheme Z of finite type over C, over Fp or

over ÔC,p, and all integers q, j, we set Hq
ét(Z, Ẑ(j)) = lim←−n≥1

Hq
ét(Z,Z/nZ(j)). Let

d = dim(Y ) and Z(d) = (
√
−1)dZ. Combining the inverse of the isomorphism

H2d
ét (X ×C Spec(ÔC,p), Ẑ(d)) ∼−→ H2d

ét (Xp, Ẑ(d)) given by the proper base change
theorem with the canonical identification between singular and étale cohomology
H2d(Xp(C),Z(d))⊗Z Ẑ = H2d

ét (Xp, Ẑ(d)), we obtain a canonical injection

H2d(Xp(C),Z(d)) ↪→ H2d
ét (X ×C Spec(ÔC,p), Ẑ(d)).(14)

We shall consider the pull-back map

H2d
ét (X ×C Spec(ÔC,p), Ẑ(d))→ H2d

ét (YFp , Ẑ(d))(15)

and its composition

H2d(Xp(C),Z(d))→ H2d
ét (YFp , Ẑ(d))(16)

with this injection.

Proposition A.2. For any p ∈ C(C), the image of the cycle class map to étale

cohomology cl : CH0(YFp)→ H2d
ét (YFp , Ẑ(d)) is equal to the image of (16).

Proof. Let Xp,1, . . . , Xp,n denote the irreducible components of Xp, endowed with
the reduced subscheme structure. Let Zh1 be the group of horizontal 1-cycles on the

scheme X ×C Spec(ÔC,p), that is, the group of those 1-cycles whose support is flat

over ÔC,p. Given z ∈ Zh1 , let (z · Xp,i) denote the intersection number of z with
the Cartier divisor Xp,i ⊂ Xp. The map Zh1 → Zn, z 7→ ((z ·Xp,1), . . . , (z ·Xp,n)) is
surjective as a consequence of [6, 9.1/9], and fits into a commutative diagram

Zn Zh1oooo

��

// // CH0(YFp)

cl
��

H2d(Xp(C),Z(d)) H2d
ét (X ×C Spec(ÔC,p), Ẑ(d))//� � // H2d

ét (YFp , Ẑ(d)),

(17)

whose middle vertical arrow is the cycle class map (see [22, (1.12)] for its defi-
nition), whose lower horizontal arrows are the injection (14) and the pull-back
map (15), and whose leftmost vertical map comes from the canonical isomor-
phisms H2d(Xp,i(C),Z(d)) = Z for i ∈ {1, . . . , n} and from the decomposition
H2d(Xp(C),Z(d)) =

⊕n
i=1H

2d(Xp,i(C),Z(d)). The desired statement now follows
from the diagram. �

A.3. Extension to a pairing between cohomology classes. Let us denote by∏′
p∈C(C)H

2d
ét (YFp , Ẑ(d)) the subgroup of

∏
p∈C(C)H

2d
ét (YFp , Ẑ(d)) consisting of those

families (αp)p∈C(C) such that for all but finitely many p ∈ C(C), the class αp belongs
to the image of the pull-back map (15). Letting f also stand for the morphisms
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Y → Spec(F ) and YFp → Spec(Fp) obtained from f : X → C by base change, we
consider the pairing( ∏

p∈C(C)

′
H2d

ét (YFp , Ẑ(d))

)
×H1

ét(Y,Q/Z(1))→ Q/Z(18)

defined by ((αp)p∈C(C), β) 7→
∑
p∈C(C) invp f∗(αp ^ β), where

f∗ : H2d+1
ét (YFp ,Q/Z(d+ 1))→ H1(Fp,Q/Z(1))(19)

is induced by the trace morphism associated with f (see [18, XVIII, (2.13.2)]). This
pairing is well-defined as αp ^ β vanishes for any p such that both αp and the

image of β in H1
ét(YFp ,Q/Z(1)) come from the cohomology of X ×C Spec(ÔC,p), by

the proper base change theorem.

Proposition A.3. The pairing
( ∏

p∈C(C) CH0(YFp)
)
× H1

ét(Y,Q/Z(1)) → Q/Z
induced by (18) via the maps cl : CH0(YFp)→ H2d

ét (YFp , Ẑ(d)) (whose product takes

values in
∏′
p∈C(C)H

2d
ét (YFp , Ẑ(d)) by Proposition A.2) is equal to the pairing (10).

Proof. Letting i : Spec(Fp(q))→ YFp denote the inclusion of a closed point q of YFp
and 1 the unit of H0(Fp(q), Ẑ), we have cl(q) = i∗1. For β ∈ H1(Y,Q/Z(1)), the
equality CoresFp(q)/Fp β(q) = (f ◦ i)∗β(q) = f∗i∗i

∗β and the projection formula
i∗i
∗β = i∗1 ^ β therefore yield the desired compatibility. �

A.4. Cohomological reinterpretation. We are now in a position to reformulate
the conclusion of Theorem A.1 in purely cohomological terms.

Proposition A.4. For m ∈ Z, the following conditions are equivalent:

(1) There exists a collection (αp)p∈C(C) ∈
∏
p∈C(C) CH0(YFp) belonging to the

left kernel of the pairing (10), with deg(αp) = m for all p ∈ C(C).
(2) There exists α ∈ H2d(X(C),Z(d)) with f∗α = m in H0(C(C),Z) = Z.

Proof. Let us consider the following variants of (2):

(2′) There exists α ∈ H2d
ét (X, Ẑ(d)) with f∗α = m in H0

ét(C, Ẑ) = Ẑ.
(2′′) Same as (2′), except that we impose, in addition, that the image of α in

H2d
ét (YFp , Ẑ(d)) lies in the image of (16) for all p ∈ C(C).

It is clear that (2)⇒ (2′′)⇒ (2′). On the other hand, we have (2′)⇒ (2) as the maps

f∗ : H2d
ét (X, Ẑ(d))→ H0

ét(C, Ẑ) and f∗ : H2d(X(C),Z(d))→ H0(C(C),Z) share the
same cokernel, by the comparison between singular and étale cohomology. Hence
(2), (2′) and (2′′) are equivalent. Now (2′′) is in turn equivalent to the existence of

α ∈ lim−→H2d
ét (XU , Ẑ(d)), where U ranges over the dense open subsets of C and XU

denotes the inverse image of U in X, whose image αp in H2d
ét (YFp , Ẑ(d)), for all

p ∈ C(C), belongs to the image of (16) and satisfies f∗αp = m ∈ Ẑ. Finally, this
condition is equivalent to (1) in view of the next lemma, of Proposition A.2 and of
Proposition A.3. �

Lemma A.5. The left kernel of the pairing (18) coincides with the image of the

diagonal map lim−→H2d
ét (XU , Ẑ(d))→

∏′
p∈C(C)H

2d
ét (YFp , Ẑ(d)), where U ranges over

the dense open subsets of C.
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Proof. For any bounded complex C of constructible étale sheaves of abelian groups
on C and for any small enough dense open subset U of C, one obtains, by proceeding
exactly as in the proof of [19, Proposition 2.6], an exact sequence

H0
ét(U, C)→

∏
p∈C(C)\U(C)

H0
ét(Fp, C)×

∏
p∈U(C)

H0
ét(ÔC,p, C)→ H1

ét(F, C′)D,(20)

where C′ = RHom(C,Q/Z(1)), where D denotes the Pontrjagin dual, and where
we still denote by C (resp. C′) the pull-back of C (resp. C′) to any of U , Spec(F ),

Spec(ÔC,p), Spec(Fp). The lemma now follows by considering the exact sequences
associated in this way with C = Rf∗Z/nZ(d)[2d] for n ≥ 1 and applying lim−→U

lim←−n
to these sequences, in view of the canonical isomorphism C′ = Rf∗Z/nZ(1) given by
Poincaré duality. �

A.5. Applying the Riemann–Roch theorem. The next statement and its proof
are a variation on a result of Colliot-Thélène and Voisin [10, Proposition 7.3 (ii)], in
the style of [13]. When E = OY , its formulation is parallel to [13, Proposition 2.4].

Proposition A.6. Let E be a coherent sheaf on Y and n ≥ 1 be an integer. If the
class of the fibres of f : X → C in NS(X)/(torsion) is divisible by n, then χ(Y,E)
is divisible by n.

Proof. As E is the restriction of a coherent sheaf on X and as any coherent sheaf
on X admits a finite resolution by locally free sheaves, we may assume that E is
the restriction of a locally free sheaf V on X, which we henceforth fix.

Let F be a fibre of f . By assumption, there exist divisors H and M on X such
that the equality

n[H] = [M ] + [F ](21)

holds in NS(X) and such that [M ] belongs to the torsion subgroup of NS(X). By
the last condition, the divisor M is numerically trivial. Hence so is the cycle class
H2 ∈ CH2(X), in view of (21) and of the equality F 2 = 0 ∈ CH2(X).

The Hirzebruch–Riemann–Roch theorem applied to the locally free sheaves V
and V ⊗OX OX(H) on X therefore gives us the equality

χ(X,V ⊗OX OX(H))− χ(X,V ) = deg(ch(V ) · (H +H2/2 + · · · ) · Td(TX))

= deg(H · Z) =
1

n
deg(F · Z),

where Z ∈ CH1(X)⊗Z Q denotes the 1-dimensional component of ch(V ) · Td(TX).
By the Hirzebruch–Riemann–Roch theorem applied to the locally free sheaf E on Y ,
we also have the equality χ(Y,E) = deg(ch(E) ·Td(TY )), which can be rewritten as
χ(Y,E) = deg(F · Z) since Td(TX)|Y = Td(TY ) and ch(V )|Y = ch(E). Hence

χ(X,V ⊗OX OX(H))− χ(X,V ) =
1

n
χ(Y,E)(22)

and we conclude that n divides χ(Y,E) since the left-hand side is an integer. �

Corollary A.7. For any coherent sheaf E on Y , there exists α ∈ H2d(X(C),Z(d))
such that f∗α = χ(Y,E) in H0(C(C),Z) = Z.
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Proof. According to Proposition A.6, the integer χ(Y,E) annihilates the kernel of
f∗ : NS(C)⊗ZQ/Z→ NS(X)⊗ZQ/Z. As NS(C)⊗ZQ/Z = H2(C(C),Q/Z(1)) and
NS(X)⊗Z Q/Z ⊂ H2(X(C),Q/Z(1)), the latter kernel coincides with the kernel of
f∗ : H2(C(C),Q/Z(1))→ H2(X(C),Q/Z(1)). Thus, Poincaré duality implies that
χ(Y,E) also annihilates the cokernel of f∗ : H2d(X(C),Z(d))→ H0(C(C),Z). �

Combining Proposition A.4 with Corollary A.7 now yields Theorem A.1.
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Mathematics, Vol. 340, Springer-Verlag, Berlin, 1973.

[13] Esnault, H., Levine, M., Wittenberg, O.: Index of varieties over Henselian fields and Euler

characteristic of coherent sheaves, J. Algebraic Geom. 24 (2015), no. 4, 693–718.

[14] Fulton, W.: Intersection theory, second edition, Ergebnisse der Mathematik und ihrer Gren-

zgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 2, Springer, Berlin, 1998.

[15] Graber, T., Harris, J., Mazur, B., Starr, J.: Rational connectivity and sections of families
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