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These are notes for a talk based on the paper [NO], joint with Johannes Nicaise.
The paper gives a general technique for rationality problems of hypersurfaces and
complete intersections in toric varieties, based on the motivic volume formula of
Nicaise–Shinder [NS19]. One of the main applications is the following:

Theorem 0.1. A very general complex quartic fivefold is not stably rational.

The rationality problem for hypersurfaces is a classical topic in algebraic geometry,
see e.g., [AM72,CG72,IM71] (in dimension 3), and more recently [CTP16,HPT19,Ko95,
Sch19a,To16] (in higher dimensions). In these works, the approaches typically combine
specialization arguments with various types of birational invariants (Brauer groups,
unramified cohomology, differential forms, ..). The proof of Theorem 0.1, however,
seems to be the first instance where one specializes a hypersurface to a union of several
components, and deduces irrationality from that of lower-dimensional varieties. We
will explain this proof in Section 2. In Section 3, we discuss the corresponding toric
picture and further results of the paper [NO].

1. Background

Two varieties X and Y are said to be stably birational if X × Pm and Y × Pn are
birational for some positive integers m,n. A variety X is stably rational if it is stably
birational to a projective space.
Of course, we care about stable rationality mainly because we care about rationality.

However, it turns out to be convenient to work with invariants that obstruct stable
rationality rather than rationality. For instance, the main ingredient in the proof of
Theorem 0.1 is the motivic volume formula of Nicaise and Shinder [NS19] which is
naturally formulated in this setting.
For a field F , we let SBF denote the set of stable birational equivalence classes of

integral F -varieties. For a variety X, we write [X]sb for the equivalence class of X.
We will work in Z[SBF ], the free abelian group on the set SBF . Elements of Z[SBF ]

are formal sums of the form

a1[X1]sb + . . .+ ar[Xr]sb

for integers a1, . . . , ar. In fact, Z[SBF ] is a ring, with multiplication defined by the
fiber product, [X]sb · [Y ]sb = [X ×F Y ]sb.
For any F -scheme X of finite type, we set

[X]sb = [X1]sb + . . .+ [Xr]sb
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where X1, . . . , Xr are the irreducible components. In particular, [Xred]sb = [X]sb in
this group.

1.1. The motivic volume. The aim of this section is to explain the motivic volume
formula of Nicaise and Shinder [NS19]. We work over the field of Puiseux series

K = C{{t}} =
⋃
m>0

C((t1/m))

and its valuation ring

R =
⋃
m>0

C[[t1/m]].

In short, we consider families X → SpecR, and want to compare the rationality
properties of the generic fiber XK , to that of the special fiber, XC. Note however
that XC may have several irreducible components, so it makes most sense to do this
comparison in Z[SBC]. Indeed, the motivic volume will be a map Z[SBK ] → Z[SBC].
It suffices to define the motivic volume on proper R-schemes X which are strictly

semi-stable, i.e., XC is a reduced simple normal crossing divisor on X . In the formula
(1.2) below, X will be a proper strictly semi-stable R-scheme, and we decompose
special fiber into irreducible components

(1.1) XC =
∑
i∈I

Xi.

Theorem 1.1 (Nicaise–Shinder). There exists a unique ring homomorphism

Vol : Z[SBK ] → Z[SBC]

such that

(1.2) Vol([XK ]sb) =
∑

∅≠J⊆I

(−1)|J |−1[XJ ]sb

for any X as above, where XJ = Xj1 ∩ . . . ∩Xjr .

Let us make the following observations:

• Vol sends [SpecK]sb to [SpecC]sb.
• If X → SpecR is smooth and proper, then Vol([XK ]sb) = [XC]sb.

These two in conjunction have an important consequence, namely that if X → SpecR
is smooth and proper, and the generic fiber XK is geometrically stably rational, then so
is the special fiber. In other words, stable rationality specializes in smooth and proper
families. This was a long-standing open question, solved in [NS19] (and in [KT19] with
‘stable rationality’ replaced by ‘rationality’).

Remark 1.2. The condition of strict semi-stability is quite restrictive, and producing
a semi-stable model often leads to many blow-ups which which are hard to analyze.
An important point is that the formula (1.2) also applies when X is strictly toroidal
(see [NO21]). This condition is much more flexible, and reduces the computations
substantially.
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1.2. Obstructions to rationality. In Theorem 0.1, the statement is that the very
general quartic fivefold over the complex numbers is not stably rational. By the
specialization properties of stable rationality due to Nicaise–Shinder, it suffices to
exhibit a single example of a stably irrational smooth quartic fivefold over some
algebraically closed field of characteristic 0. In our set-up, we of course use the generic
fiber XK over the field of Puiseux series.
A key idea in [NO], is to use Theorem 1.1 as an obstruction to stable rationality of

XK . This is formulated in the following criterion:

Proposition 1.3. Let X be a proper, strictly semi-stable (or strictly toroidal) R-
scheme. Assume that for the strata XJ = Xj1 ∩ . . . ∩ Xjr in the special fiber, we
have

(1.3)
∑

∅≠J⊆I

(−1)|J |−1[XJ ]sb ̸= [SpecC]sb

in Z[SBF ]. Then XK is not stably rational.

The strategy for Theorem 0.1 is therefore to look for suitable degenerations X →
SpecR with XK a quartic hypersurface in P6

K , with the property that the special fiber
XC is a union of several components, and ensure that the corresponding strata do not
cancel out to [SpecC]sb in the alternating sum (1.3).
A point we would like to emphasise is that with this technique one typically encounters

special fibers with several components, and deduces irrationality of XK from that of
varieties of lower dimension. In our main application, we deduce the irrationality of a
quartic fivefold using a stably irrational fourfold.

Example 1.4. Suppose the special fiber XC consists of two components, X0 and X1,
intersecting along X01. The motivic volume takes the form

(1.4) Vol(XK) = [X0]sb + [X1]sb − [X01]sb

From this, we deduce that either of the following conditions guarantee that the generic
fiber XK is not stably rational:

i) Exactly one of X0, X1, X01 is stably irrational.
ii) X0 and X1 are both stably irrational.
iii) X0 and X01 are stably irrational, but they are not stably birational to each other.
iv) X0, X1, X01 are all stably irrational.

In the paper [NO21], there are examples illustrating each case i)-iv). While iii) seems
like the hardest to check, it is remarkably effective when combined with “variation of
birational type”-arguments à la Shinder [Sh19]

2. Quartic fivefolds

We are now in position to prove Theorem 0.1. Let F ∈ C[x0, . . . , x6] be a very general
homogeneous polynomial of degree 4. Consider the following R-scheme

(2.1) X = ProjR[x0, . . . , x6, y]/(x5x6 − ty, y2 − F )
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where the variable y has weight 2. Note that the generic fiber XK is isomorphic to a
smooth quartic hypersurface in P6

K (inverting t allows us to eliminate y using the first
equation). Moreover, X is strictly toroidal.
The special fiber has two components:

X0 = ProjC[x0, . . . , x6, y]/(x5, y2 − F )

X1 = ProjC[x0, . . . , x6, y]/(x6, y2 − F ).

Note that these are both very general quartic double fivefolds. We do not know whether
these are stably rational or not. However, their intersection,

X01 = ProjC[x0, . . . , x4, y]/(y2 − F )

is a very general quartic double fourfold, and thus stably irrational by Hassett–Pirutka–
Tschinkel [HPT19]. In any event we are in either case i) or iv) in Example 1.4, so we
conclude also that XK , and hence the also the very general quartic fivefold, is stably
irrational.

3. The paper [NO]

Proposition 1.3 gives a method to approach rationality problems of hypersurfaces
and complete intersections in general. While the main idea is simple, the challenge
is now to write down suitable degenerations where one can apply the obstruction
(1.3). In fact, while the family (2.1) is completely explicit, most of the applications
in [NO] require degenerations which are much more involved and harder to write down
concretely.
These constructions use the theory of tropical (or toric) degenerations. This theory

has the advantage that degenerations can be found and studied using combinatorial
methods, i.e., finding regular subdivisions of polytopes. For instance, the combinatorial
picture for the 2-dimensional analogue of the above family is shown in Figure 1.

Figure 1. Degenerating a quartic surface into a union of two quartic
double surfaces intersecting along a quartic double curve.

The figure shows the Newton polytope of a general quartic surface in P3, that is, the
3-simplex dilated by a factor of 4. It is subdivided into two smaller polytopes ∆1,∆2

which intersect along the red polytope ∆1 ∩∆2. Each polytope gives rise to a toric
variety Yi, and the subdivision gives rise to a degeneration of P3 into a union Y1 ∪ Y2.
Moreover, these components intersect according to the polytopes in the subdivision:
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Y1 ∩ Y2 is the toric variety corresponding to the red polytope ∆1 ∩∆2 (i.e., P(1, 1, 2)
polarized by O(4)). From this, we obtain a degeneration of a quartic surface into a
union of two surfaces X1 ∪X2 which intersect along a quartic double curve.
Other regular subdivisions of the polytope, give rise to different degenerations. To

illustrate the flexibility of the method, let us try to construct a family X → SpecR
with the property that exactly one stratum XJ in the special fiber is stably irrational.
The subdivision we will use is shown below:

Figure 2. Degenerating a quartic fivefold into a union of four rational
fivefolds, with one stably irrational stratum.

In this case, the dilated simplex is subdivided into four smaller polytopes ∆1, . . . ,∆4,
and we obtain a degeneration of a quartic fivefold into a union of four components
X1, X2, X3, X4. The red polytope corresponds to the stratum X23 = X2 ∩X3, which
is a very general (2, 2)-divisor in P2 × P3 (which is also known to be stably irrational
[HPT19]). All of the other strata are represented by polytopes of lattice width one; in
suitable coordinates they are therefore given as hypersurfaces which are linear in one
variable, hence they are rational. Thus we have the desired degeneration.
The motivic volume takes the following form

Vol(XK) =
∑

1≤i≤4

[Xi]sb −
∑

1≤i<j≤4

[Xij ]sb +
∑

1≤i<j<k≤4

[Xijk]sb − [X1234]sb

= 4[SpecC]sb − 2[SpecC]sb − [X23]sb

̸= [SpecC]sb
because [X23]sb ̸= [SpecC]. Hence the quartic fivefold XK is not stably rational.
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