Tropical degenerations and stable rationality

John Christian Ottem

University of Oslo

November 26, 2020

Joint work with with Johannes Nicaise.

We work over a field of characteristic 0.

Two varieties X and Y are stably birational if $X \times \mathbb{P}^m \sim_{bir} Y \times \mathbb{P}^l$ for some $m, l \ge 0$.

X is stably rational if it is stably birational to \mathbb{P}^n

The paper [NO19] gives a quite general method for the (stable) rationality problem for complete intersections in toric varieties.

Theorem

A very general quartic fivefold $X \subset \mathbb{P}^6$ is not stably rational.

Also: New proofs of hypersurfaces of higher degree or lower dimension (eg quartic fourfolds, quintic fivefolds, ..)

Hypersurfaces in \mathbb{P}^n

d	curves	surfaces	3-folds	4-folds	5-folds	6-folds	7-folds	8-folds	9-folds	10-folds
2					Rational					
3										
4										
5										
6										
7			Stably irrational							
8										
9										

Hypersurfaces in \mathbb{P}^n

d	curves	surfaces	3-folds	4-folds	5-folds	6-folds	7-folds	8-folds	9-folds	10-folds
2					Rational					
3			Clemens-Griffiths							
4			Colliot-Thélène- Pirutka	Totaro						
5				Kollár	Schreieder					
6					Kollár	Kollár	Totaro			
7			Stably irrational			Kollár	Totaro			
8							Kollár	Kollár	Kollár	Totaro
9								Kollár	Kollár	Totaro

Hypersurfaces in \mathbb{P}^n

9-folds	10-folds	11-folds	12-folds	13-folds	14-folds	15-folds	16-folds	17-folds	18-folds	19-folds
				$d \ge \log$	$g_2(n) + 2$	2				
				Schre	eieder					
Kollár	Totaro									
Kollár										

Complete intersections

Theorem

Very general complete intersections of a quadric and a cubic in \mathbb{P}^n are stably irrational for $n \leq 6$.

Our main contribution is stable irrationality for n = 6.

History related to the Lüroth problem:

- Fano (1908): (Incorrect) proof of irrationality for n = 5
- Enriques (1912): Proof of unirationality for n = 5
- Hassett–Tschinkel (2018): Stable irrationality for n = 5.
- Morin (1955), Conte–Murre (1998): Unitationality for n = 6.

The above result settles the rationality problem for all complete intersections of dimension ≤ 4 - except cubic fourfolds.

Other results

Many new classes of complete intersections in \mathbb{P}^n

- Logarithmic bounds à la Schreieder for stable irrationality.
- Complete intersections of r quadrics in \mathbb{P}^n are stably irrational if $r \ge 3$ and $2r \ge n-1$.
- In dimension 5:

(4), (5), (6), (2, 4), (2, 5), (3, 3), (3, 4), (2, 2, 3), (2, 2, 4), (2, 3, 3), (2, 2, 2, 2, 2), (2, 2, 2, 3), (2, 2, 2, 2, 2, 2).

Many new cases for hypersurfaces in $\mathbb{P}^{\ell} \times \mathbb{P}^{m}$. A sample:

Theorem

A very general ample hypersurface X of bidegree (a,b) in $\mathbb{P}^1 \times \mathbb{P}^n$ $(n \leq 4)$ is stably rational if and only if

- a = 1; or
- $b \leq 2$

Ingredients

The proof uses

- Specialization of birational types (Nicaise–Shinder, Kontsevich–Tschinkel)
- Tropical geometry, toric degenerations
- Stable irrationality of known lower-dimensional varieties

Stable birational types

 $SB_F = set$ of stable birational equivalence classes of integral *F*-varieties

 $[X]_{\rm sb}$ = equivalence class of X.

We consider $\mathbb{Z}[SB_F]$.

For any F-scheme X of finite type, we set

$$[X]_{\rm sb} = [X_1]_{\rm sb} + \ldots + [X_r]_{\rm sb} \qquad \text{in } \mathbb{Z}[{\rm SB}_F]$$

where X_1, \ldots, X_r are the irreducible components.

Ring product: $[X]_{sb} \cdot [Y]_{sb} = [X \times_F Y]_{sb}.$

Larsen–Lunts (2003): There is a natural isomorphism

 $\mathbf{K}(Var/F)/(\mathbb{L}) \simeq \mathbb{Z}[\mathrm{SB}_F].$

induced by $[X] \mapsto [X]_{sb}$ for X smooth and proper.

Field of Puiseux series:

$$K = \mathbb{C}\{\{t\}\} = \bigcup_{m>0} \mathbb{C}((t^{1/m}))$$

Valuation ring:

$$R = \bigcup_{m>0} \mathbb{C}[[t^{1/m}]]$$

An R-scheme is *strictly semi-stable* if, Zariski locally, it admits an étale morphism to a scheme of the form

Spec
$$R[z_1,\ldots,z_s]/(z_1\cdots z_r-t^q)$$

where $s \ge r \ge 0$ and q is a positive rational number.

The limits of rationality

 $\mathcal{X} =$ a proper semi-stable model over R, with special fiber

$$\mathcal{X}_{\mathbb{C}} = \sum_{i \in I} X_i$$

Theorem (Nicaise–Shinder 2019)

There exists a unique ring homomorphism

 $\operatorname{Vol}: \mathbb{Z}[\operatorname{SB}_K] \to \mathbb{Z}[\operatorname{SB}_\mathbb{C}]$

such that

$$\operatorname{Vol}([\mathcal{X}_K]_{\mathrm{sb}}) = \sum_{\emptyset \neq J \subseteq I} (-1)^{|J|-1} [X_J]_{\mathrm{sb}}$$

for any \mathcal{X} as above, where $X_J = X_{j_1} \cap \ldots \cap X_{j_r}$

Basic consequences

• Vol sends $[\operatorname{Spec} K]_{\mathrm{sb}}$ to $[\operatorname{Spec} \mathbb{C}]_{\mathrm{sb}}$ \longrightarrow obstruction to stable rationality of \mathcal{X}_K :

If

$$\sum_{\emptyset \neq J \subseteq I} (-1)^{|J|-1} [X_J]_{\rm sb} \neq [\operatorname{Spec} \mathbb{C}] \qquad \text{in } \mathbb{Z}[\operatorname{SB}_{\mathbb{C}}]$$

then \mathcal{X}_K is stably irrational.

• If \mathcal{X} is a smooth and proper *R*-scheme, then the formula simplifies to

$$\operatorname{Vol}([X_K]_{\mathrm{sb}}) = [\mathcal{X}_{\mathbb{C}}]_{\mathrm{sb}}$$

 \therefore Stable rationality specializes in smooth and proper families in characteristic 0.

Example (Voisin)

A very general double quartic threefold is irrational.

The proof involves degenerating to the Artin–Mumford example.

For our applications, we get better results using degenerations with many components.

Key point: *irrational strata of low dimension may be shown to not cancel out in the alternating sum*

$$\operatorname{Vol}([\mathcal{X}_K]_{\mathrm{sb}}) = \sum_{\emptyset \neq J \subseteq I} (-1)^{|J|-1} [X_J]_{\mathrm{sb}}.$$

To carry this out we need a more powerful way of constructing degenerations.

Tropical degenerations

Consider a lattice polytope $\Delta \subset \mathbb{R}^n$ corresponding to a toric variety Y.

Let \mathscr{P} be a *regular subdivision* of Δ into lattice polytopes.

 ${\mathscr P}$ induces a degeneration of Y into a union of toric varieties

$$\mathcal{Y}_0 = \bigcup_{P \in \mathscr{P}} Y_P$$

If $P_1, P_2 \in \mathscr{P}$ intersect along a common face Q, then

$$Y_{P_1} \cap Y_{P_2} = Y_Q$$

Let f be a general Laurent polynomial with Newton polytope $\Delta \subset \mathbb{R}^{n+1}$.

For every face δ of \mathscr{P} , set

$$f_{\delta} = \sum_{\mathbb{Z}^{n+1} \cap \delta} c_m x^m$$

Non-degeneracy: We assume that $Z(f_{\delta})$ is smooth for all δ .

Theorem

If

$$\sum_{\delta \subseteq \partial \Delta} (-1)^{\dim \delta} [Z(f_{\delta})]_{\rm sb} \neq (-1)^n [\operatorname{Spec} \mathbb{C}]_{\rm sb}$$

in $\mathbb{Z}[SB_{\mathbb{C}}]$, then a very general hypersurface in $(\mathbb{C}^*)^{n+1}$ with Newton polytope Δ is not stably rational.

The Quartic fivefold is stably irrational

Newton polytope: $\Delta = \{(x_1, \ldots, x_6) \in \mathbb{R}^6_{\geq 0} | \sum_i x_i \leq 4\}$ Subdivision below \longrightarrow degeneration with special fiber $X_1 \cup X_2 \cup X_3 \cup X_4$.

Red polytope = (2, 2)-divisor in $\mathbb{P}^2 \times \mathbb{P}^3$ \longrightarrow stably irrational by [Hassett–Pirutka–Tschinkel 2016]. All other polytopes have *lattice width one*, hence rational. Thus

$$\sum_{\delta \subsetneq \partial \Delta} (-1)^{\dim \delta} [Z(f_{\delta})]_{\rm sb} \neq (-1)^n [\operatorname{Spec} \mathbb{C}]_{\rm sb}$$

Products of projective spaces

Theorem

A very general (2,3)-divisor $X \subset \mathbb{P}^1 \times \mathbb{P}^4$ is not stably rational.

Subdivisions of the polytope $a\Delta_1 \times b\Delta_n$ allows us to raise degree/dimension:

(a,b) in $\mathbb{P}^m \times \mathbb{P}^n$ stably irrational $\implies (a,b+1)$ and (a+1,b) also stably irrational in $\mathbb{P}^m \times \mathbb{P}^n$ and $\mathbb{P}^m \times \mathbb{P}^{n+1}$.

 \therefore we get all bidegrees corresponding to rational/irrational hypersurfaces.

The Hassett–Pirutka–Tschinkel quartic

Consider $Y \subset \mathbb{P}^2 \times \mathbb{P}^3$, bidegree (2, 2), defined by

$$xyU^{2} + xzV^{2} + yzW^{2} + (x^{2} + y^{2} + z^{2} - 2(xy + xz + yz))T^{2} = 0$$

Hassett–Pirutka–Tschinkel/Schreieder: Anything that specializes to Y does not admit a decomposition of the diagonal (hence is stably irrational).

(2,3)-divisors in $\mathbb{P}^1 \times \mathbb{P}^4$

P

$$= \text{ the Newton polytope of the HPT quartic.}$$

$$= \text{ convex hull of column vectors of} \begin{pmatrix} 0 & 2 & 0 & 1 & 0 & 1 \\ 0 & 0 & 2 & 1 & 1 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 \end{pmatrix}$$

Starting observation: P is contained in the Newton polytope of a general (2,3)-divisor:

$$2\Delta_1 \times 3\Delta_4 = \{(u, v) \in \mathbb{R}^{1+4}_{>0} | u \le 2, v_1 + \ldots + v_4 \le 3\}.$$

In concrete terms, the following bidegree (2,3) polynomial

$$\begin{array}{l} x_0^2 y_0^3 - 2 x_0 x_1 y_0^3 + x_1^2 y_0^3 - 2 x_0^2 y_0^2 y_1 - 2 x_0 x_1 y_0^2 y_1 \\ + x_0^2 y_0 y_1^2 + x_0 x_1 y_1 y_2^2 + x_0^2 y_1 y_3^2 + x_0 x_1 y_0 y_4^2 \end{array}$$

dehomogenizes to the HPT quartic.

Let $\mathscr P$ denote the regular subdivision of the polytope $2\Delta_1\times 3\Delta_4$ induced by the convex function

$$f: \mathbb{R}^5 \to \mathbb{R}, x \mapsto \min_{z \in P} ||x - z||^2$$

The cells in \mathscr{P} :

 \longrightarrow degeneration of $\mathbb{P}^1 \times \mathbb{P}^4$ into a union of 26 toric varieties.

Going through the cells of dimension 2 and 4 reveals that any face δ of even dimension either

- has lattice width one (rational, as the equation is linear with respect to a variable)
- corresponds to a quadric bundle over \mathbb{P}^1_k (rational).
- defines a conic bundle over \mathbb{A}^3 with a section (rational)

In $\mathbb{Z}[SB_{\mathbb{C}}]$ we have

$$\operatorname{Vol}([\mathcal{X}]_{\mathrm{sb}}) = [HPT] + \sum_{\#I \text{ odd}} [X_I] + a[\operatorname{Spec} \mathbb{C}] \quad \text{for some } a \in \mathbb{Z}$$

As this is \neq [Spec \mathbb{C}], a very general X is stably irrational.

End remarks

General strategy: Construct subdivisions \mathscr{P} so that all but one lower-dimensional polytope is stably rational (or make sure that the various intersections do not cancel out).

If time permits: (2,3)-complete intersections

Let
$$\mathbb{P}^6 = \text{Proj } k[x_0, \dots, x_6]$$
 and let $P = \{x_0 = \dots = x_3 = 0\} \simeq \mathbb{P}^2$.

$$Y = \{q = c = 0\} \subset \mathbb{P}^6$$

for q and c very general of degree 2 and 3. We assume X contains P. Blow-up:

$$X \subset Bl_P \mathbb{P}^6 \xrightarrow{\pi} \mathbb{P}^6$$

$$\downarrow^p \\ \mathbb{P}^3$$

$$X = Q \cap C \text{ where } Q \in |2H - E| \text{ and } C \in |3H - E|.$$

It suffices to show that generic intersections

$$X = Q \cap C \subset Bl_P \mathbb{P}^6$$

where $Q \in |2H - E|$ and $C \in |3H - E|$ are stably irrational.

Now degenerate Q to $Q_0 + E$ where $Q_0 \in |2H - 2E| = |2p^*h|$.

This induces a degeneration of $\mathcal{X} \to \mathbb{A}^1$ with special fiber $\mathcal{X}_0 = X_1 \cup X_2$:

There are three strata:

- $X_1 = Q_0 \cap C$
- $X_2 = E \cap C$
- $X_{12} = Q_0 \cap E \cap C$

The stratum $X_1 = Q_0 \cap C$:

 $C|_{Q_0}$ is a very general divisor in $|\mathcal{O}(2) \otimes p^*\mathcal{O}(1,1)|$ in $\mathbb{P}_{\mathbb{P}^1 \times \mathbb{P}^1}(\mathcal{O}^3 \oplus \mathcal{O}(1,1)).$

 $\longrightarrow X_1$ is stably irrational by [Schreieder 2017].

The strata $X_2 = E \cap C$ and $X_{12} = E \cap Q_0 \cap C$

C restricts to a (1,2)-divisor on $E \simeq \mathbb{P}^2 \times \mathbb{P}^3$

 Q_0 restricts to a (0,2)-divisor on $E \simeq \mathbb{P}^2 \times \mathbb{P}^3$.

 $\longrightarrow X_2$ and X_{12} are both rational.

By the motivic volume formula:

$$Vol([\mathcal{X}]_{sb}) = [X_1]_{sb} + [X_2]_{sb} - [X_{12}]_{sb}$$
$$= [X_1]_{sb} + [Spec \mathbb{C}]_{sb} - [Spec \mathbb{C}]_{sb}$$
$$\neq [Spec \mathbb{C}]_{sb}$$

This implies that a very general X is stably irrational.