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We work over a field of characteristic 0.

Two varieties X and Y are stably birational if X × Pm ∼bir Y × Pl for some m, l ≥ 0.

X is stably rational if it is stably birational to Pn

The paper [NO19] gives a quite general method for the (stable) rationality problem for
complete intersections in toric varieties.



Hypersurfaces in Pn

Theorem

A very general quartic fivefold X ⊂ P6 is not stably rational.

Also: New proofs of hypersurfaces of higher degree or lower dimension (eg quartic
fourfolds, quintic fivefolds, ..)
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Complete intersections

Theorem

Very general complete intersections of a quadric and a cubic in Pn are stably irrational
for n ≤ 6.

Our main contribution is stable irrationality for n = 6.

History related to the Lüroth problem:

• Fano (1908): (Incorrect) proof of irrationality for n = 5

• Enriques (1912): Proof of unirationality for n = 5

• Hassett–Tschinkel (2018): Stable irrationality for n = 5.

• Morin (1955), Conte–Murre (1998): Unirationality for n = 6.

The above result settles the rationality problem for all complete intersections of
dimension ≤ 4 - except cubic fourfolds.



Other results

Many new classes of complete intersections in Pn

• Logarithmic bounds à la Schreieder for stable irrationality.

• Complete intersections of r quadrics in Pn are stably irrational if r ≥ 3 and
2r ≥ n− 1.

• In dimension 5:

(4), (5), (6), (2,4), (2, 5), (3,3), (3, 4), (2,2,3), (2, 2, 4), (2, 3, 3),
(2,2,2,2), (2, 2, 2, 3), (2,2,2,2,2).

Many new cases for hypersurfaces in P` × Pm.
A sample:

Theorem

A very general ample hypersurface X of bidegree (a, b) in P1 × Pn (n ≤ 4) is stably
rational if and only if

• a = 1; or

• b ≤ 2



Ingredients

The proof uses

• Specialization of birational types (Nicaise–Shinder, Kontsevich–Tschinkel)

• Tropical geometry, toric degenerations

• Stable irrationality of known lower-dimensional varieties



Stable birational types

SBF = set of stable birational equivalence classes of integral F -varieties

[X]sb = equivalence class of X.

We consider Z[SBF ].

For any F -scheme X of finite type, we set

[X]sb = [X1]sb + . . .+ [Xr]sb in Z[SBF ]

where X1, . . . , Xr are the irreducible components.

Ring product: [X]sb · [Y ]sb = [X ×F Y ]sb.

Larsen–Lunts (2003): There is a natural isomorphism

K(V ar/F )/(L) ' Z[SBF ].

induced by [X] 7→ [X]sb for X smooth and proper.



Some notation

Field of Puiseux series:

K = C{{t}} =
⋃
m>0 C((t1/m))

Valuation ring:

R =
⋃
m>0 C[[t1/m]]



An R-scheme is strictly semi-stable if, Zariski locally, it admits an étale morphism to a
scheme of the form

SpecR[z1, . . . , zs]/(z1 · · · zr − tq)

where s ≥ r ≥ 0 and q is a positive rational number.



The limits of rationality

X = a proper semi-stable model over R, with special fiber

XC =
∑
i∈I

Xi

Theorem (Nicaise–Shinder 2019)

There exists a unique ring homomorphism

Vol : Z[SBK ]→ Z[SBC]

such that
Vol([XK ]sb) =

∑
∅6=J⊆I

(−1)|J |−1[XJ ]sb

for any X as above, where XJ = Xj1 ∩ . . . ∩Xjr



Basic consequences

• Vol sends [SpecK]sb to [SpecC]sb
// obstruction to stable rationality of XK :

If ∑
∅6=J⊆I

(−1)|J |−1[XJ ]sb 6= [SpecC] in Z[SBC]

then XK is stably irrational.

• If X is a smooth and proper R-scheme, then the formula simplifies to

Vol([XK ]sb) = [XC]sb

∴ Stable rationality specializes in smooth and proper families in characteristic 0.



Example (Voisin)

A very general double quartic threefold is irrational.

The proof involves degenerating to the Artin–Mumford example.

For our applications, we get better results using degenerations with many components.

Key point: irrational strata of low dimension may be shown to not cancel out in the
alternating sum

Vol([XK ]sb) =
∑
∅6=J⊆I

(−1)|J |−1[XJ ]sb.

To carry this out we need a more powerful way of constructing degenerations.



Tropical degenerations
Consider a lattice polytope ∆ ⊂ Rn corresponding to a toric variety Y .

Let P be a regular subdivision of ∆ into lattice polytopes.



P induces a degeneration of Y into a union of toric varieties

Y0 =
⋃
P∈P

YP

If P1, P2 ∈P intersect along a common face Q, then

YP1 ∩ YP2 = YQ





Let f be a general Laurent polynomial with Newton polytope ∆ ⊂ Rn+1.

For every face δ of P, set

fδ =
∑

Zn+1∩δ

cmx
m

Non-degeneracy: We assume that Z(fδ) is smooth for all δ.

Theorem

If ∑
δ(∂∆

(−1)dim δ[Z(fδ)]sb 6= (−1)n[SpecC]sb

in Z[SBC], then a very general hypersurface in (C∗)n+1 with Newton polytope ∆ is not
stably rational.



The Quartic fivefold is stably irrational

Newton polytope: ∆ =
{

(x1, . . . , x6) ∈ R6
≥0|
∑

i xi ≤ 4
}

Subdivision below // degeneration with special fiber X1 ∪X2 ∪X3 ∪X4.

Red polytope = (2, 2)-divisor in P2 × P3

// stably irrational by [Hassett–Pirutka–Tschinkel 2016].
All other polytopes have lattice width one, hence rational.
Thus ∑

δ(∂∆

(−1)dim δ[Z(fδ)]sb 6= (−1)n[SpecC]sb

�



Products of projective spaces

Theorem

A very general (2, 3)-divisor X ⊂ P1 × P4 is not stably rational.

Subdivisions of the polytope a∆1 × b∆n allows us to raise degree/dimension:

(a, b) in Pm × Pn stably irrational =⇒ (a, b+ 1) and (a+ 1, b) also stably irra-
tional in Pm × Pn and Pm × Pn+1.

∴ we get all bidegrees corresponding to rational/irrational hypersurfaces.



The Hassett–Pirutka–Tschinkel quartic

Consider Y ⊂ P2 × P3, bidegree (2, 2), defined by

xyU2 + xzV 2 + yzW 2 + (x2 + y2 + z2 − 2(xy + xz + yz))T 2 = 0

Hassett–Pirutka–Tschinkel/Schreieder: Anything that specializes to Y does not
admit a decomposition of the diagonal (hence is stably irrational).



(2, 3)-divisors in P1 × P4

P = the Newton polytope of the HPT quartic.

= convex hull of column vectors of


0 2 0 1 0 1
0 0 2 1 1 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2


Starting observation: P is contained in the Newton polytope of a general (2, 3)-divisor:

2∆1 × 3∆4 = {(u, v) ∈ R1+4
≥0 |u ≤ 2, v1 + . . .+ v4 ≤ 3}.

In concrete terms, the following bidegree (2, 3) polynomial

x2
0y

3
0 − 2x0x1y

3
0 + x2

1y
3
0 − 2x2

0y
2
0y1 − 2x0x1y

2
0y1

+ x2
0y0y

2
1 + x0x1y1y

2
2 + x2

0y1y
2
3 + x0x1y0y

2
4

dehomogenizes to the HPT quartic.



Let P denote the regular subdivision of the polytope 2∆1 × 3∆4 induced by the convex
function

f :R5 → R, x 7→ minz∈P ‖x− z‖2

The cells in P:

dim δ 0 1 2 3 4 5

number 43 192 353 323 146 26

// degeneration of P1 × P4 into a union of 26 toric varieties.



Going through the cells of dimension 2 and 4 reveals that any face δ of even dimension
either

• has lattice width one (rational, as the equation is linear with respect to a variable)

• corresponds to a quadric bundle over P1
k (rational).

• defines a conic bundle over A3 with a section (rational)

In Z[SBC] we have

Vol([X ]sb) = [HPT ] +
∑

#I odd

[XI ] + a[SpecC] for some a ∈ Z

As this is 6= [SpecC], a very general X is stably irrational. �



End remarks

General strategy: Construct subdivisions P so that all but one lower-dimensional
polytope is stably rational (or make sure that the various intersections do not cancel
out).



If time permits: (2, 3)-complete intersections

Let P6 = Proj k[x0, . . . , x6] and let P = {x0 = . . . = x3 = 0} ' P2.

Y = {q = c = 0} ⊂ P6

for q and c very general of degree 2 and 3. We assume X contains P .

Blow-up:

X ⊂ BlPP6 P6

P3

π

p

X = Q ∩ C where Q ∈ |2H − E| and C ∈ |3H − E|.



It suffices to show that generic intersections

X = Q ∩ C ⊂ BlPP6

where Q ∈ |2H − E| and C ∈ |3H − E| are stably irrational.

Now degenerate Q to Q0 + E where Q0 ∈ |2H − 2E|= |2p∗h|.

This induces a degeneration of X → A1 with special fiber X0 = X1 ∪X2:

There are three strata:

• X1 = Q0 ∩ C
• X2 = E ∩ C
• X12 = Q0 ∩ E ∩ C



The stratum X1 = Q0 ∩ C:

Q0 = PP1×P1(O3 ⊕O(1, 1)) P(O3 ⊕O(1)) P6

P1 × P1 P3

π

p

C|Q0 is a very general divisor in |O(2)⊗ p∗O(1, 1)| in PP1×P1(O3 ⊕O(1, 1)).

// X1 is stably irrational by [Schreieder 2017].



The strata X2 = E ∩ C and X12 = E ∩Q0 ∩ C

C restricts to a (1, 2)-divisor on E ' P2 × P3

Q0 restricts to a (0, 2)-divisor on E ' P2 × P3.

// X2 and X12 are both rational.

By the motivic volume formula:

Vol([X ]sb) = [X1]sb + [X2]sb − [X12]sb

= [X1]sb + [SpecC]sb − [SpecC]sb

6= [SpecC]sb

This implies that a very general X is stably irrational. �
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