Tropical degenerations and stable rationality

John Christian Ottem

University of Oslo
November 26, 2020

Joint work with with Johannes Nicaise.

We work over a field of characteristic 0 .
Two varieties X and Y are stably birational if $X \times \mathbb{P}^{m} \sim_{b i r} Y \times \mathbb{P}^{l}$ for some $m, l \geq 0$. X is stably rational if it is stably birational to \mathbb{P}^{n}

The paper [NO19] gives a quite general method for the (stable) rationality problem for complete intersections in toric varieties.

Hypersurfaces in \mathbb{P}^{n}

Theorem

A very general quartic fivefold $X \subset \mathbb{P}^{6}$ is not stably rational.

Also: New proofs of hypersurfaces of higher degree or lower dimension (eg quartic fourfolds, quintic fivefolds, ..)

Hypersurfaces in \mathbb{P}^{n}

d	curves	surfaces	3-folds	4-folds	5-folds	6-folds	7-folds	8-folds	9-folds	10-folds
2					Rational					
3										
4										
5										
6										
7										
8										
9										
9										

Hypersurfaces in \mathbb{P}^{n}

d	curves	surfaces	3-folds	4-folds	5-folds	6-folds	7-folds	8-folds	9-folds	10-folds
2					Rational					
3			Clemens-Griffiths							
4			Colliot-ThélènePirutka	Totaro						
5				Kollár	Schreieder					
6					Kollár	Kollár	Totaro			
7			Stably irrational			Kollár	Totaro			
8							Kollár	Kollár	Kollár	Totaro
9								Kollár	Kollár	Totaro

Hypersurfaces in \mathbb{P}^{n}

9-folds	10 -folds	11 -folds	12 -folds	13 -folds	14 -folds	15 -folds	16 -folds	17 -folds	18 -folds	19 -folds

Complete intersections

Theorem

Very general complete intersections of a quadric and a cubic in \mathbb{P}^{n} are stably irrational for $n \leq 6$.

Our main contribution is stable irrationality for $n=6$.
History related to the Lüroth problem:

- Fano (1908): (Incorrect) proof of irrationality for $n=5$
- Enriques (1912): Proof of unirationality for $n=5$
- Hassett-Tschinkel (2018): Stable irrationality for $n=5$.
- Morin (1955), Conte-Murre (1998): Unirationality for $n=6$.

The above result settles the rationality problem for all complete intersections of dimension ≤ 4 - except cubic fourfolds.

Other results

Many new classes of complete intersections in \mathbb{P}^{n}

- Logarithmic bounds à la Schreieder for stable irrationality.
- Complete intersections of r quadrics in \mathbb{P}^{n} are stably irrational if $r \geq 3$ and $2 r \geq n-1$.
- In dimension 5:

$$
\begin{aligned}
& (\mathbf{4}),(5),(6),(\mathbf{2}, \mathbf{4}),(2,5),(\mathbf{3}, \mathbf{3}),(3,4),(\mathbf{2}, \mathbf{2}, \mathbf{3}),(2,2,4),(2,3,3), \\
& (\mathbf{2}, \mathbf{2}, \mathbf{2}, \mathbf{2}),(2,2,2,3),(\mathbf{2}, \mathbf{2}, \mathbf{2}, \mathbf{2}, \mathbf{2}) .
\end{aligned}
$$

Many new cases for hypersurfaces in $\mathbb{P}^{\ell} \times \mathbb{P}^{m}$.
A sample:

Theorem

A very general ample hypersurface X of bidegree (a, b) in $\mathbb{P}^{1} \times \mathbb{P}^{n}(n \leq 4)$ is stably rational if and only if

- $a=1$; or
- $b \leq 2$

Ingredients

The proof uses

- Specialization of birational types (Nicaise-Shinder, Kontsevich-Tschinkel)
- Tropical geometry, toric degenerations
- Stable irrationality of known lower-dimensional varieties

Stable birational types

$\mathrm{SB}_{F}=$ set of stable birational equivalence classes of integral F-varieties $[X]_{\mathrm{sb}}=$ equivalence class of X.

We consider $\mathbb{Z}\left[\mathrm{SB}_{F}\right]$.
For any F-scheme X of finite type, we set

$$
[X]_{\mathrm{sb}}=\left[X_{1}\right]_{\mathrm{sb}}+\ldots+\left[X_{r}\right]_{\mathrm{sb}} \quad \text { in } \mathbb{Z}\left[\mathrm{SB}_{F}\right]
$$

where X_{1}, \ldots, X_{r} are the irreducible components.
Ring product: $[X]_{\mathrm{sb}} \cdot[Y]_{\mathrm{sb}}=\left[X \times_{F} Y\right]_{\mathrm{sb}}$.
Larsen-Lunts (2003): There is a natural isomorphism

$$
\mathbf{K}(\operatorname{Var} / F) /(\mathbb{L}) \simeq \mathbb{Z}\left[\mathrm{SB}_{F}\right]
$$

induced by $[X] \mapsto[X]_{\text {sb }}$ for X smooth and proper.

Some notation

Field of Puiseux series:

$$
K=\mathbb{C}\{\{t\}\}=\bigcup_{m>0} \mathbb{C}\left(\left(t^{1 / m}\right)\right)
$$

Valuation ring:

$$
R=\bigcup_{m>0} \mathbb{C}\left[\left[t^{1 / m}\right]\right]
$$

An R-scheme is strictly semi-stable if, Zariski locally, it admits an étale morphism to a scheme of the form

$$
\operatorname{Spec} R\left[z_{1}, \ldots, z_{s}\right] /\left(z_{1} \cdots z_{r}-t^{q}\right)
$$

where $s \geq r \geq 0$ and q is a positive rational number.

The limits of rationality

$\mathcal{X}=$ a proper semi-stable model over R, with special fiber

$$
\mathcal{X}_{\mathbb{C}}=\sum_{i \in I} X_{i}
$$

Theorem (Nicaise-Shinder 2019)

There exists a unique ring homomorphism

$$
\mathrm{Vol}: \mathbb{Z}\left[\mathrm{SB}_{K}\right] \rightarrow \mathbb{Z}\left[\mathrm{SB}_{\mathbb{C}}\right]
$$

such that

$$
\operatorname{Vol}\left(\left[\mathcal{X}_{K}\right]_{\mathrm{sb}}\right)=\sum_{\emptyset \neq J \subseteq I}(-1)^{|J|-1}\left[X_{J}\right]_{\mathrm{sb}}
$$

for any \mathcal{X} as above, where $X_{J}=X_{j_{1}} \cap \ldots \cap X_{j_{r}}$

Basic consequences

- Vol sends $[\operatorname{Spec} K]_{\text {sb }}$ to $[\operatorname{Spec} \mathbb{C}]_{\text {sb }}$
\sim obstruction to stable rationality of \mathcal{X}_{K} :
If

$$
\sum_{\emptyset \neq J \subseteq I}(-1)^{|J|-1}\left[X_{J}\right]_{\mathrm{sb}} \neq[\operatorname{Spec} \mathbb{C}] \quad \text { in } \mathbb{Z}\left[\mathrm{SB}_{\mathbb{C}}\right]
$$

then \mathcal{X}_{K} is stably irrational.

- If \mathcal{X} is a smooth and proper R-scheme, then the formula simplifies to

$$
\operatorname{Vol}\left(\left[X_{K}\right]_{\mathrm{sb}}\right)=\left[\mathcal{X}_{\mathbb{C}}\right]_{\mathrm{sb}}
$$

\therefore Stable rationality specializes in smooth and proper families in characteristic 0 .

Example (Voisin)

A very general double quartic threefold is irrational.
The proof involves degenerating to the Artin-Mumford example.

For our applications, we get better results using degenerations with many components.
Key point: irrational strata of low dimension may be shown to not cancel out in the alternating sum

$$
\operatorname{Vol}\left(\left[\mathcal{X}_{K}\right]_{\mathrm{sb}}\right)=\sum_{\emptyset \neq J \subseteq I}(-1)^{|J|-1}\left[X_{J}\right]_{\mathrm{sb}}
$$

To carry this out we need a more powerful way of constructing degenerations.

Tropical degenerations

Consider a lattice polytope $\Delta \subset \mathbb{R}^{n}$ corresponding to a toric variety Y.

$$
\left(\mathbb{P}^{3},(x)\right)
$$

Let \mathscr{P} be a regular subdivision of Δ into lattice polytopes.

\mathscr{P} induces a degeneration of Y into a union of toric varieties

$$
\mathcal{Y}_{0}=\bigcup_{P \in \mathscr{P}} Y_{P}
$$

If $P_{1}, P_{2} \in \mathscr{P}$ intersect along a common face Q, then

$$
Y_{P_{1}} \cap Y_{P_{2}}=Y_{Q}
$$

Ex

$\left(\mathbb{P}^{2}, \sigma(1)\right) \cup\left(\mathbb{P}^{2}, O(1)\right)$
intersecting along a $\left.\left(\mathbb{P}^{\prime}, O_{1}\right)\right)$.

\leadsto union of two toxic 3 folds undessecting along $\mathbb{P}^{\prime} \times \mathbb{P}^{\prime}$.

Let f be a general Laurent polynomial with Newton polytope $\Delta \subset \mathbb{R}^{n+1}$.
For every face δ of \mathscr{P}, set

$$
f_{\delta}=\sum_{\mathbb{Z}^{n+1} \cap \delta} c_{m} x^{m}
$$

Non-degeneracy: We assume that $Z\left(f_{\delta}\right)$ is smooth for all δ.

Theorem

If

$$
\sum_{\delta \subsetneq \partial \Delta}(-1)^{\operatorname{dim} \delta}\left[Z\left(f_{\delta}\right)\right]_{\mathrm{sb}} \neq(-1)^{n}[\operatorname{Spec} \mathbb{C}]_{\mathrm{sb}}
$$

in $\mathbb{Z}\left[\mathrm{SB}_{\mathbb{C}}\right]$, then a very general hypersurface in $\left(\mathbb{C}^{*}\right)^{n+1}$ with Newton polytope Δ is not stably rational.

The Quartic fivefold is stably irrational

Newton polytope: $\Delta=\left\{\left(x_{1}, \ldots, x_{6}\right) \in \mathbb{R}_{\geq 0}^{6} \mid \sum_{i} x_{i} \leq 4\right\}$
Subdivision below $\sim \sim$ degeneration with special fiber $X_{1} \cup X_{2} \cup X_{3} \cup X_{4}$.

Red polytope $=(2,2)$-divisor in $\mathbb{P}^{2} \times \mathbb{P}^{3}$
\sim stably irrational by [Hassett-Pirutka-Tschinkel 2016].
All other polytopes have lattice width one, hence rational.
Thus

$$
\sum_{\delta \subsetneq \partial \Delta}(-1)^{\operatorname{dim} \delta}\left[Z\left(f_{\delta}\right)\right]_{\mathrm{sb}} \neq(-1)^{n}[\operatorname{Spec} \mathbb{C}]_{\mathrm{sb}}
$$

Products of projective spaces

Theorem

A very general $(2,3)$-divisor $X \subset \mathbb{P}^{1} \times \mathbb{P}^{4}$ is not stably rational.

Subdivisions of the polytope $a \Delta_{1} \times b \Delta_{n}$ allows us to raise degree/dimension:
(a, b) in $\mathbb{P}^{m} \times \mathbb{P}^{n}$ stably irrational $\Longrightarrow(a, b+1)$ and $(a+1, b)$ also stably irrational in $\mathbb{P}^{m} \times \mathbb{P}^{n}$ and $\mathbb{P}^{m} \times \mathbb{P}^{n+1}$.
\therefore we get all bidegrees corresponding to rational/irrational hypersurfaces.

The Hassett-Pirutka-Tschinkel quartic

Consider $Y \subset \mathbb{P}^{2} \times \mathbb{P}^{3}$, bidegree $(2,2)$, defined by

$$
x y U^{2}+x z V^{2}+y z W^{2}+\left(x^{2}+y^{2}+z^{2}-2(x y+x z+y z)\right) T^{2}=0
$$

Hassett-Pirutka-Tschinkel/Schreieder: Anything that specializes to Y does not admit a decomposition of the diagonal (hence is stably irrational).

$(2,3)$-divisors in $\mathbb{P}^{1} \times \mathbb{P}^{4}$

$P=$ the Newton polytope of the HPT quartic.

$$
=\text { convex hull of column vectors of }\left(\begin{array}{cccccc}
0 & 2 & 0 & 1 & 0 & 1 \\
0 & 0 & 2 & 1 & 1 & 0 \\
0 & 0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 2
\end{array}\right)
$$

Starting observation: P is contained in the Newton polytope of a general (2, 3)-divisor:

$$
2 \Delta_{1} \times 3 \Delta_{4}=\left\{(u, v) \in \mathbb{R}_{\geq 0}^{1+4} \mid u \leq 2, v_{1}+\ldots+v_{4} \leq 3\right\}
$$

In concrete terms, the following bidegree $(2,3)$ polynomial

$$
\begin{aligned}
& x_{0}^{2} y_{0}^{3}-2 x_{0} x_{1} y_{0}^{3}+x_{1}^{2} y_{0}^{3}-2 x_{0}^{2} y_{0}^{2} y_{1}-2 x_{0} x_{1} y_{0}^{2} y_{1} \\
& \quad+x_{0}^{2} y_{0} y_{1}^{2}+x_{0} x_{1} y_{1} y_{2}^{2}+x_{0}^{2} y_{1} y_{3}^{2}+x_{0} x_{1} y_{0} y_{4}^{2}
\end{aligned}
$$

dehomogenizes to the HPT quartic.

Let \mathscr{P} denote the regular subdivision of the polytope $2 \Delta_{1} \times 3 \Delta_{4}$ induced by the convex function

$$
f: \mathbb{R}^{5} \rightarrow \mathbb{R}, x \mapsto \min _{z \in P}\|x-z\|^{2}
$$

The cells in \mathscr{P} :

$\operatorname{dim} \delta$	0	1	2	3	4	5
number	43	192	353	323	146	26

\sim degeneration of $\mathbb{P}^{1} \times \mathbb{P}^{4}$ into a union of 26 toric varieties.

Going through the cells of dimension 2 and 4 reveals that any face δ of even dimension either

- has lattice width one (rational, as the equation is linear with respect to a variable)
- corresponds to a quadric bundle over \mathbb{P}_{k}^{1} (rational).
- defines a conic bundle over \mathbb{A}^{3} with a section (rational)

In $\mathbb{Z}\left[\mathrm{SB}_{\mathbb{C}}\right]$ we have

$$
\operatorname{Vol}\left([\mathcal{X}]_{\mathrm{sb}}\right)=[H P T]+\sum_{\# I \text { odd }}\left[X_{I}\right]+a[\operatorname{Spec} \mathbb{C}] \quad \text { for some } a \in \mathbb{Z}
$$

As this is $\neq[\operatorname{Spec} \mathbb{C}]$, a very general X is stably irrational.

End remarks

General strategy: Construct subdivisions \mathscr{P} so that all but one lower-dimensional polytope is stably rational (or make sure that the various intersections do not cancel out).

If time permits: $(2,3)$-complete intersections

Let $\mathbb{P}^{6}=\operatorname{Proj} k\left[x_{0}, \ldots, x_{6}\right]$ and let $P=\left\{x_{0}=\ldots=x_{3}=0\right\} \simeq \mathbb{P}^{2}$.

$$
Y=\{q=c=0\} \subset \mathbb{P}^{6}
$$

for q and c very general of degree 2 and 3 . We assume X contains P.
Blow-up:

$$
\begin{aligned}
& X \subset \\
& \underset{\substack{ \\
\mathbb{P}^{3}}}{B l_{P} \mathbb{P}^{6}} \xrightarrow{\pi} \mathbb{P}^{6} \\
&
\end{aligned}
$$

$X=Q \cap C$ where $Q \in|2 H-E|$ and $C \in|3 H-E|$.

It suffices to show that generic intersections

$$
X=Q \cap C \subset B l_{P} \mathbb{P}^{6}
$$

where $Q \in|2 H-E|$ and $C \in|3 H-E|$ are stably irrational.
Now degenerate Q to $Q_{0}+E$ where $Q_{0} \in|2 H-2 E|=\left|2 p^{*} h\right|$.
This induces a degeneration of $\mathcal{X} \rightarrow \mathbb{A}^{1}$ with special fiber $\mathcal{X}_{0}=X_{1} \cup X_{2}$:

There are three strata:

- $X_{1}=Q_{0} \cap C$
- $X_{2}=E \cap C$
- $X_{12}=Q_{0} \cap E \cap C$

The stratum $X_{1}=Q_{0} \cap C$:

$$
\begin{gathered}
Q_{0}=\mathbb{P}_{\mathbb{P}^{1} \times \mathbb{P}^{1}}\left(\mathcal{O}^{3} \oplus \mathcal{O}(1,1)\right) \longrightarrow \mathbb{P}\left(\mathcal{O}^{3} \oplus \mathcal{O}(1)\right) \xrightarrow{\pi} \mathbb{P}^{6} \\
\underset{\mathbb{P}^{1} \times \mathbb{P}^{1}}{\downarrow} \underset{\downarrow}{\downarrow} \mathbb{P}^{3}
\end{gathered}
$$

$\left.C\right|_{Q_{0}}$ is a very general divisor in $\left|\mathcal{O}(2) \otimes p^{*} \mathcal{O}(1,1)\right|$ in $\mathbb{P}_{\mathbb{P}^{1} \times \mathbb{P}^{1}}\left(\mathcal{O}^{3} \oplus \mathcal{O}(1,1)\right)$.
$\leadsto X_{1}$ is stably irrational by [Schreieder 2017].

The strata $X_{2}=E \cap C$ and $X_{12}=E \cap Q_{0} \cap C$
C restricts to a (1,2)-divisor on $E \simeq \mathbb{P}^{2} \times \mathbb{P}^{3}$
Q_{0} restricts to a (0,2)-divisor on $E \simeq \mathbb{P}^{2} \times \mathbb{P}^{3}$.
$\leadsto X_{2}$ and X_{12} are both rational.
By the motivic volume formula:

$$
\begin{aligned}
\operatorname{Vol}\left([\mathcal{X}]_{\mathrm{sb}}\right) & =\left[X_{1}\right]_{\mathrm{sb}}+\left[X_{2}\right]_{\mathrm{sb}}-\left[X_{12}\right]_{\mathrm{sb}} \\
& =\left[X_{1}\right]_{\mathrm{sb}}+[\operatorname{Spec} \mathbb{C}]_{\mathrm{sb}}-[\operatorname{Spec} \mathbb{C}]_{\mathrm{sb}} \\
& \neq[\operatorname{Spec} \mathbb{C}]_{\mathrm{sb}}
\end{aligned}
$$

This implies that a very general X is stably irrational.

