Juvenal Murwanashyaka

English version of this page
E-post
juvenalm@math.uio.no
Rom
808
Brukernavn
Besøksadresse
Moltke Moes vei 35
Niels Henrik Abels hus
0851 Oslo
Postadresse
Postboks 1053 Blindern
0316 Oslo
Andre tilknytninger
Det matematisk-naturvitenskapelige fakultet
(Student)
Faglige interesser
Logikk
Publikasjoner
-
Murwanashyaka, Juvenal (2022). Hilbert’s Tenth Problem for Term Algebras with a Substitution Operator. Lecture Notes in Computer Science (LNCS). ISSN 0302-9743. 13359, s. 196–207. doi: 10.1007/978-3-031-08740-0_17. Fulltekst i vitenarkiv Vis sammendrag
-
Murwanashyaka, Juvenal (2022). Weak Sequential Theories of Finite Full Binary Trees. Lecture Notes in Computer Science (LNCS). ISSN 0302-9743. 13359, s. 208–219. doi: 10.1007/978-3-031-08740-0_18. Fulltekst i vitenarkiv Vis sammendrag
-
Murwanashyaka, Juvenal (2022). Weak Essentially Undecidable Theories of Concatenation. Archive for Mathematical Logic. ISSN 0933-5846. doi: 10.1007/s00153-022-00820-y. Fulltekst i vitenarkiv
-
Kristiansen, Lars & Murwanashyaka, Juvenal (2020). On Interpretability between some weak essentially undecidable theories. Lecture Notes in Computer Science (LNCS). ISSN 0302-9743. 12098, s. 63–74. doi: 10.1007/978-3-030-51466-2_6. Fulltekst i vitenarkiv
-
Kristiansen, Lars & Murwanashyaka, Juvenal (2020). First-Order Concatenation Theory with Bounded Quantifiers (Preprint). arXiv.org. ISSN 2331-8422. doi: 10.1007/s00153-020-00735-6.
-
Kristiansen, Lars & Murwanashyaka, Juvenal (2020). First-Order Concatenation Theory with Bounded Quantifiers. Archive for Mathematical Logic. ISSN 0933-5846. 60(1-2), s. 77–104. doi: 10.1007/s00153-020-00735-6. Fulltekst i vitenarkiv
-
Kristiansen, Lars & Murwanashyaka, Juvenal (2018). Decidable and Undecidable Fragments of First-Order Concatenation Theory. I Manea, Florin; Miller, Russel G. & Nowotka, Dirk (Red.), Sailing Routes in the World of Computation. Springer Nature. ISSN 978-3-319-94417-3. s. 244–253. doi: 10.1007/978-3-319-94418-0_25. Fulltekst i vitenarkiv
-
Murwanashyaka, Juvenal (2019). On First-Order Bit Theory.
Publisert 13. aug. 2019 14:11
- Sist endret 22. aug. 2019 20:21