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The following exposition is not the most compact or sophisticated treat-
ment, but a completely systematic approach making a minimum of assump-
tions or �clever� tricks.

A very comprehensive presentation of Stokes waves can be found on Wiki-
pedia Stokes wave. As all relevant references can be found on that Wikipedia
page, they are not mentioned here.

Consider monochromatic gravity waves on the water surface. For simpli-
city assume the water is of in�nite depth. Neglect surface tension, compres-
sibility and viscosity. Assume the �uid motion is irrotational such that the
velocity can be represented by a potential v = ∇φ. We furthermore limit to
one horizontal dimension x. The vertical axis z points upward and t is time.
The surface elevation is η and the acceleration of gravity is g. We start with
the governing equations on the form

∂η

∂t
+
∂φ

∂x

∂η

∂x
− ∂φ

∂z
= 0 at z = η (1)

∂φ

∂t
+ gη +

1

2

[(
∂φ

∂x

)2

+

(
∂φ

∂z

)2
]

= 0 at z = η (2)

∂2φ

∂x2
+
∂2φ

∂z2
= 0 for −∞ < z < η (3)

∂φ

∂z
= 0 at z → −∞ (4)

We normalize the equations assuming the spatial scale is given by a cha-
racteristic wavenumber kc, the temporal scale is given by a characteristic
angular frequency ωc, and the amplitude is given by a characteristic ampli-
tude ac. We can then write

x′ = kcx, z′ = kcz, t′ = ωct, η = acη
′, φ =

acωc
kc

φ′ (5)

where the primed quantities are non-dimensional. The derivatives will trans-
form as

∂

∂x
=
∂x′

∂x

∂

∂x′
= kc

∂

∂x′
,

∂

∂t
=
∂t′

∂t

∂

∂t′
= ωc

∂

∂t′
(6)

etc.
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After introducing the non-dimensional quantities, the governing equations
take the form

∂η′

∂t′
+ ε

∂φ′

∂x′
∂η′

∂x′
− ∂φ′

∂z′
= 0 at z′ = εη′ (7)

∂φ′

∂t′
+
gkc
ω2
c

η′ + ε
1

2

[(
∂φ′

∂x′

)2

+

(
∂φ′

∂z′

)2
]

= 0 at z′ = εη′ (8)

∂2φ′

∂x′2
+
∂2φ′

∂z′2
= 0 for −∞ < z′ < εη′ (9)

∂φ′

∂z′
= 0 at z′ → −∞ (10)

where ε ≡ kcac is known as the steepness.
In the above normalized equations we recognize two dimensionless groups:

The steepness which we shall assume is small, ε � 1, and the combination
gkc/ω

2
c which will be allowed to have order unity by virtue of relating kc and

ωc by the linear dispersion relation.
Having identi�ed the steepness ε as the single small non-dimensional pa-

rameter which will allow us to carry out a perturbation analysis, we go back
to the original dimensional equations with the steepness ε added as a tag for
ordering purposes.

∂η

∂t
+ ε

∂φ

∂x

∂η

∂x
− ∂φ

∂z
= 0 at z = εη (11)

∂φ

∂t
+ gη +

ε

2

[(
∂φ

∂x

)2

+

(
∂φ

∂z

)2
]

= 0 at z = εη (12)

∂2φ

∂x2
+
∂2φ

∂z2
= 0 for −∞ < z < εη (13)

∂φ

∂z
= 0 at z → −∞ (14)

We Taylor-expand the surface conditions around the quiescent surface
z = 0 up to cubic nonlinear terms

∂η

∂t
+ ε

∂φ

∂x

∂η

∂x
+ ε2η

∂2φ

∂x∂z

∂η

∂x
− ∂φ
∂z
− εη∂

2φ

∂z2
− ε

2

2
η2
∂3φ

∂z3
= 0 at z = 0 (15)
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∂φ

∂t
+ εη

∂2φ

∂z∂t
+
ε2

2
η2

∂3φ

∂z2∂t
+ gη +

ε

2

[(
∂φ

∂x

)2

+

(
∂φ

∂z

)2
]

+ ε2η

[
∂φ

∂x

∂2φ

∂x∂z
+
∂φ

∂z

∂2φ

∂z2

]
= 0 at z = 0 (16)

∂2φ

∂x2
+
∂2φ

∂z2
= 0 for −∞ < z < 0 (17)

∂φ

∂z
= 0 at z → −∞ (18)

We are going to insist on simple-harmonic oscillations in x, then it will
turn out to be necessary to include slow modulation in time balancing cubic
nonlinear terms, therefore we introduce the slow time

t2 = ε2t (19)

and assume dependencies η(x, t, t2) and φ(x, z, t, t2). We notice that the time
derivative now becomes

∂

∂t
→ ∂

∂t
+
∂t2
∂t

∂

∂t2
=

∂

∂t
+ ε2

∂

∂t2
(20)

and the surface conditions therefore become

∂η

∂t
+ε2

∂η

∂t2
+ε

∂φ

∂x

∂η

∂x
+ε2η

∂2φ

∂x∂z

∂η

∂x
− ∂φ
∂z
−εη∂

2φ

∂z2
− ε

2

2
η2
∂3φ

∂z3
= 0 at z = 0

(21)

∂φ

∂t
+ ε2

∂φ

∂t2
+ εη

∂2φ

∂z∂t
+
ε2

2
η2

∂3φ

∂z2∂t
+ gη +

ε

2

[(
∂φ

∂x

)2

+

(
∂φ

∂z

)2
]

+ ε2η

[
∂φ

∂x

∂2φ

∂x∂z
+
∂φ

∂z

∂2φ

∂z2

]
= 0 at z = 0 (22)

Now let us introduce regular perturbation expansions for η and φ

η = η1 + εη2 + ε2η3 + . . . (23)

φ = φ1 + εφ2 + ε2φ3 + . . . (24)

First-order problem at order O(ε0)

∂η1
∂t
− ∂φ1

∂z
= 0 at z = 0 (25)
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∂φ1

∂t
+ gη1 = 0 at z = 0 (26)

∂2φ1

∂x2
+
∂2φ1

∂z2
= 0 for −∞ < z < 0 (27)

∂φ1

∂z
= 0 at z → −∞ (28)

This problem should be familiar to us, and we assume a monochromatic
wave

η1 =
1

2

(
η̂1,1e

iχ + c.c.
)

(29)

φ1 =
1

2

(
φ̂1,1e

iχ + c.c.
)

(30)

where χ = kx−ωt and �c.c.� signi�es the complex conjugate of the expression
in front of it.

The vertical structure of the solution is ekz, and we may set

η̂1,1 = A and φ̂1,1 = Bekz = − ig

ω
Aekz (31)

and the linear dispersion relation

ω2 = gk. (32)

It is natural to call the �rst-order solution ��rst-harmonic� because the rapid
phase oscillations are of the kind e±iχ.

We employ the notation η̂m,−n = η̂∗m,n and φ̂m,−n = φ̂∗m,n.
Second-order problem at order O(ε1)

∂η2
∂t
− ∂φ2

∂z
= −∂φ1

∂x

∂η1
∂x

+ η1
∂2φ1

∂z2
at z = 0 (33)

∂φ2

∂t
+ gη2 = −η1

∂2φ1

∂z∂t
− 1

2

[(
∂φ1

∂x

)2

+

(
∂φ1

∂z

)2
]

at z = 0 (34)

∂2φ2

∂x2
+
∂2φ2

∂z2
= 0 for −∞ < z < 0 (35)

∂φ2

∂z
= 0 at z → −∞ (36)
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The inhomogeneous terms on the right-hand sides are all quadratic pro-
ducts of the �rst-order terms, which are �rst-harmonic terms, therefore we
understand that the forcing has rapid phase oscillations either of the kind
e0iχ or e±2iχ. We may therefore anticipate that the second-order solution is a
superposition of zeroth- and second-harmonic terms

η2 = η̂2,0 +
1

2

(
η̂2,2e

2iχ + c.c.
)

(37)

φ2 = φ̂2,0 +
1

2

(
φ̂2,2e

2iχ + c.c.
)

(38)

Second-order zeroth-harmonic problem

∂φ̂2,0

∂z
= 0 at z = 0 (39)

η̂2,0 = 0 at z = 0 (40)

∂2φ̂2,0

∂z2
= 0 for −∞ < z < 0 (41)

∂φ̂2,0

∂z
= 0 at z → −∞ (42)

We see that solution is

η̂2,0 = 0 and φ̂2,0 = Φ(x, t, t2) (43)

thus allowing an arbitrary horizontal current.
Second-order second-harmonic problem

−2iωη̂2,2 −
∂φ̂2,2

∂z
= − igk2

ω
A2 at z = 0 (44)

−2iωφ̂2,2 + gη̂2,2 =
gk

2
A2 at z = 0 (45)

∂2φ̂2,2

∂z2
− 4k2φ̂2,2 = 0 for −∞ < z < 0 (46)

∂φ̂2,2

∂z
= 0 at z → −∞ (47)
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We thus �nd the solution

η̂2,2 =
k

2
A2 and φ̂2,2 = 0. (48)

It is rather remarkable that the second-order second-harmonic velocity po-
tential vanishes!

Third-order problem at order O(ε2)

∂η3
∂t
− ∂φ3

∂z
= −∂η1

∂t2
− ∂φ1

∂x

∂η2
∂x
− ∂φ2

∂x

∂η1
∂x
− η1

∂2φ1

∂x∂z

∂η1
∂x

+η1
∂2φ2

∂z2
+ η2

∂2φ1

∂z2
+

1

2
η21
∂3φ1

∂z3
at z = 0 (49)

∂φ3

∂t
+ gη3 = −∂φ1

∂t2
− η1

∂2φ2

∂z∂t
− η2

∂2φ1

∂z∂t
− 1

2
η21
∂3φ1

∂z2∂t
− ∂φ1

∂x

∂φ2

∂x
− ∂φ1

∂z

∂φ2

∂z

− η1
[
∂φ1

∂x

∂2φ1

∂x∂z
+
∂φ1

∂z

∂2φ1

∂z2

]
at z = 0 (50)

∂2φ3

∂x2
+
∂2φ3

∂z2
= 0 for −∞ < z < 0 (51)

∂φ3

∂z
= 0 at z → −∞ (52)

The inhomogeneous terms on the right-hand sides are all cubic products
of the �rst-order terms, or products between �rst- and second-order terms, in
such a way that we understand the forcing has rapid phase oscillations either
of the kind e±iχ or e±3iχ. We may therefore anticipate that the third-order
solution is a superposition of �rst- and third-harmonic terms

η3 =
1

2

(
η̂3,1e

iχ + η̂3,3e
3iχ + c.c.

)
(53)

φ3 =
1

2

(
φ̂3,1e

iχ + φ̂3,3e
3iχ + c.c.

)
(54)

Third-order �rst-harmonic problem

−iωη̂3,1 −
∂φ̂3,1

∂z
= −∂A

∂t2
− 5igk3

8ω
|A|2A ≡ F at z = 0 (55)

−iωφ̂3,1 + gη̂3,1 =
ig

ω

∂A

∂t2
− 3gk2

8
|A|2A ≡ G at z = 0 (56)
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∂2φ̂3,1

∂z2
− k2φ̂3,1 = 0 for −∞ < z < 0 (57)

∂φ̂3,1

∂z
= 0 at z → −∞ (58)

This problem is singular, since we already insisted that the linear disper-
sion relation should be satis�ed. The Fredholm alternative then tells us that
the inhomogeneous forcing needs to satisfy a constraint. We have previous-
ly derived that constraint by application of Green's theorem. Alternatively,
we can recognize that as φ̂3,1 must be proportional to ekz, the two surface
equations can be combined to −iωF + kG = 0, which leads to

∂A

∂t2
+

iωk2

2
|A|2A = 0 (59)

which has solution
A = aei(θ−

1
2
ωk2a2t2) (60)

where a and θ are two real constants.
Third-order third-harmonic problem

(This is included just for amusement)

−3iωη̂3,3 −
∂φ̂3,3

∂z
= −9igk3

8ω
A3 at z = 0 (61)

−3iωφ̂3,3 + gη̂3,3 =
3gk2

8
A3 at z = 0 (62)

∂2φ̂3,3

∂z2
− k2φ̂3,3 = 0 for −∞ < z < 0 (63)

∂φ̂3,3

∂z
= 0 at z → −∞ (64)

We thus �nd the solution

η̂3,3 =
3k2

8
A3 and φ̂3,3 = 0. (65)

It is rather remarkable that the third-order third-harmonic velocity potential
vanishes!
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Figur 1: Stokes wave with steepness ε = 0.25: red, linear wave without
frequency modi�cation; blue, �rst-order wave with frequency modi�cation;
green, second-order wave; black, third-order wave.

Finally, we summarize what we have found, and with no loss of generality
we may set the solutions to the �rst-harmonic third-order problem and the
zeroth-harmonic second-order problem both equal to zero, we then get

η = a cosψ +
1

2
ka2 cos 2ψ +

3

8
k2a3 cos 3ψ (66)

φ =
ga

ω
ekz sinψ (67)

where

ψ = kx− ω
(

1 +
1

2
(ka)2

)
t+ θ (68)

where a is the linear amplitude and θ is a constant phase.
A crest occurs for ψ = 2πn, for which η = a + 1

2
ka2 + 3

8
k2a3. A trough

occurs for ψ = π + 2πn, for which η = −a+ 1
2
ka2 − 3

8
k2a3. The wave height,

the vertical di�erence between a crest and a trough, is H = 2a + 3
4
k2a3.

The second-order wave height is equal to the linear wave height, while the
third-order wave height is slightly larger.

Figure 1 shows the �rst-, second- and third-order pro�les of a Stokes. It is
seen that nonlinearity causes the crest to be higher and thinner, the trough
to be shallower and wider, and the wave period to be reduced. Stokes waves
appear to �point upward�. The nonlinear correction to the phase speed and
the group velocity is that both are faster than for linear waves.

It is remarkable that the velocity potential is una�ected by the nonlinear
corrections at the second and third order. This is only true for Stokes waves
on in�nite depth.
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