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The following exposition is not the most compact or sophisticated treat-
ment, but a completely systematic approach making a minimum of assump-
tions or “clever” tricks.

A very comprehensive presentation of Stokes waves can be found on Wiki-
pedia Stokes wave. As all relevant references can be found on that Wikipedia
page, they are not mentioned here.

Consider monochromatic gravity waves on the water surface. For simpli-
city assume the water is of infinite depth. Neglect surface tension, compres-
sibility and viscosity. Assume the fluid motion is irrotational such that the
velocity can be represented by a potential v = V¢. We furthermore limit to
one horizontal dimension z. The vertical axis z points upward and ¢ is time.
The surface elevation is n and the acceleration of gravity is g. We start with
the governing equations on the form
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We normalize the equations assuming the spatial scale is given by a cha-
racteristic wavenumber k., the temporal scale is given by a characteristic
angular frequency w,, and the amplitude is given by a characteristic ampli-
tude a.. We can then write
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where the primed quantities are non-dimensional. The derivatives will trans-
form as
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https://en.wikipedia.org/wiki/Stokes_wave

After introducing the non-dimensional quantities, the governing equations
take the form
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where € = k.a. is known as the steepness.

In the above normalized equations we recognize two dimensionless groups:
The steepness which we shall assume is small, ¢ < 1, and the combination
gk./w? which will be allowed to have order unity by virtue of relating k. and
w, by the linear dispersion relation.

Having identified the steepness € as the single small non-dimensional pa-
rameter which will allow us to carry out a perturbation analysis, we go back
to the original dimensional equations with the steepness € added as a tag for
ordering purposes.
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We Taylor-expand the surface conditions around the quiescent surface
z = 0 up to cubic nonlinear terms
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We are going to insist on simple-harmonic oscillations in x, then it will
turn out to be necessary to include slow modulation in time balancing cubic
nonlinear terms, therefore we introduce the slow time
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and assume dependencies n(x, t,ts) and ¢(x, z,t,t5). We notice that the time
derivative now becomes
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and the surface conditions therefore become
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Now let us introduce regular perturbation expansions for n and ¢
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First-order problem at order O(e")
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This problem should be familiar to us, and we assume a monochromatic
wave
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where Y = kx—wt and “c.c.” signifies the complex conjugate of the expression
in front of it.

The vertical structure of the solution is e*

, and we may set
h1=A4A and ém — Bek* = —%Aekz (31)
and the linear dispersion relation
w? = gk. (32)

It is natural to call the first-order solution “first-harmonic” because the rapid
phase oscillations are of the kind e*X, R
We employ the notation 1), _, = ﬁ,ﬁw and ¢, _, =

N
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The inhomogeneous terms on the right-hand sides are all quadratic pro-
ducts of the first-order terms, which are first-harmonic terms, therefore we
understand that the forcing has rapid phase oscillations either of the kind
e"X or e*2X, We may therefore anticipate that the second-order solution is a

superposition of zeroth- and second-harmonic terms
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Second-order zeroth-harmonic problem
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We see that solution is
77270 = 0 and ng,() = CI)(ZE, t, tg)

thus allowing an arbitrary horizontal current.
Second-order second-harmonic problem
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We thus find the solution
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It is rather remarkable that the second-order second-harmonic velocity po-
tential vanishes!

Third-order problem at order O(e?)
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The inhomogeneous terms on the right-hand sides are all cubic products
of the first-order terms, or products between first- and second-order terms, in
such a way that we understand the forcing has rapid phase oscillations either
of the kind e™X or e™X, We may therefore anticipate that the third-order
solution is a superposition of first- and third-harmonic terms
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Third-order first-harmonic problem
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This problem is singular, since we already insisted that the linear disper-
sion relation should be satisfied. The Fredholm alternative then tells us that
the inhomogeneous forcing needs to satisfy a constraint. We have previous-
ly derived that constraint by application of Green’s theorem. Alternatively,
we can recognize that as (,5371 must be proportional to e**, the two surface
equations can be combined to —iwF 4+ kG = 0, which leads to
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where a and 0 are two real constants.
Third-order third-harmonic problem
(This is included just for amusement)
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It is rather remarkable that the third-order third-harmonic velocity potential
vanishes!
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Figur 1: Stokes wave with steepness ¢ = 0.25: red, linear wave without
frequency modification; blue, first-order wave with frequency modification;
green, second-order wave; black, third-order wave.

Finally, we summarize what we have found, and with no loss of generality
we may set the solutions to the first-harmonic third-order problem and the
zeroth-harmonic second-order problem both equal to zero, we then get
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where a is the linear amplitude and @ is a constant phase.

A crest occurs for ¢ = 2mn, for which n = a + 3ka® + 2k%a®. A trough
occurs for 1) = 7 4 2mn, for which n = —a + $ka® — £k*a®. The wave height,
the vertical difference between a crest and a trough, is H = 2a + %k2a3.
The second-order wave height is equal to the linear wave height, while the
third-order wave height is slightly larger.

Figure [l{shows the first-, second- and third-order profiles of a Stokes. It is
seen that nonlinearity causes the crest to be higher and thinner, the trough
to be shallower and wider, and the wave period to be reduced. Stokes waves
appear to “point upward”. The nonlinear correction to the phase speed and
the group velocity is that both are faster than for linear waves.

It is remarkable that the velocity potential is unaffected by the nonlinear
corrections at the second and third order. This is only true for Stokes waves
on infinite depth.



