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Plane curves

C1 = {(x, y)|y2 − x3 + x = 0},
C2 = {(x, y)|y2 − x3 + x− 1 = 0} ⊂ A2

R.



Plane curves
C1 = {(x : y : z)|y2z − x3 + xz2 = 0},
C2 = {(x : y : z)|y2z − x3 + xz2 − z3 = 0} ⊂ P2

R.

Let H = {z = 0} be the line at infinity. Then

C1 ∩H = C2 ∩H = {(x : y : z)|z = x3 = 0} = {(0 : 1 : 0)}.



Algebraic geometry = study of zeros of polynomials
Let K be a field (R or C or Fp or . . . ).

Affine algebraic n-space: AnK ∼= Kn

Affine algebraic variety:

X = {(c1, . . . , cn)|fα(c1, . . . , cn) = 0, α ∈ I} ⊆ AnK,

where the fα ∈ K[x1, . . . , xn] are polynomials.

Projective algebraic n-space: PnK = AnK ∪H, where H is the
hyperplane “at infinity”.

Projective algebraic variety:

X = {(c0 : c1 : · · · : cn)|Fα(c0, c1, . . . , cn) = 0, α ∈ I} ⊆ PnK,

where the Fα ∈ K[x0, . . . , xn] are homogeneous polynomials.



Differential geometry
Let s : R→ RN be a (parameterized) curve:

t 7→ s(t) = (s1(t), s2(t), . . . , sN (t)),

where the si are differentiable functions.

The tangent to the curve at the point s(t) is the line 〈s(t), s′(t)〉,
the osculating plane is 〈s(t), s′(t), s′′(t)〉, and so on.

Example (The twisted cubic)
Let s : R→ R3 be given by

s(t) = (t, t2, t3).

Then s′(t) = (1, 2t, 3t2) and s′′(t) = (0, 2, 6t).



At s(0) = (0, 0, 0), the tangent line is the x-axis and the
osculating plane is the xy-plane.



Tangent spaces, osculating spaces, . . .
Consider a parameterization s : Cn → PNC ,

t = (t1, . . . , tn) 7→ (s0(t) : · · · : sN (t)).

The rows of

Aks(t) :=



s0(t) s1(t) · · · · · · sN (t)
∂s0(t)/∂t1 ∂s1(t)/∂t1 · · · · · · ∂sN (t)/∂t1
∂s0(t)/∂t2 · · · · · · · · · ∂sN (t)/∂t2
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·

∂ks0(t)/∂t
k
n · · · · · · · · · ∂ksN (t)/∂tkn

 .

considered as points in PNC spans the kth osculating space
Oscks(t) to s(Cn) at s(t).



We have
dim Oscks(t) = rkAks(t)− 1.

We say that s(t) is a kth inflection point if rkAks(t) <
(
n+k
k

)
.

Example
The curve s : C→ P2

C, given by

s(t) = (1 : t : t3),

has

A2
s(t) :=

 1 t t3

0 1 3t2

0 0 6t

 .

Since rkA2
s(0) = 2 < 3, s(0) is an inflection point.



The Veronese
Set N :=

(
n+k
k

)
. The kth Veronese embedding νn,k : Cn → PNC is

given by

(t1, . . . , tn) 7→ (1 : t1 : · · · : tn−1tk−1n : tkn)

(all monomials of degree ≤ k).
Theorem (Fulton–Kleiman–P.–Tai)
Let X ⊂ PNC be a (nonsingular) variety of dimension n, with
N =

(
n+k
k

)
− 1. If X has no inflections, then X = νn,k(Cn) is

the kth Veronese variety.

Example
The only curve C ⊂ PNC with no inflection points is the rational
normal curve t 7→ (1 : t : t2 : · · · : tN ).



Steiner’s Roman surface
A linear projection of the 2nd Veronese surface:

X := {(x1, x2, x3)|x21x22 + x22x
2
3 + x21x

2
3 − x0x1x2x3 = 0} ⊂ P3

R



Toric varieties
Take a set of lattice points

A = {a0, . . . , aN} ⊂ Zn

and define ϕ : (C∗)n → PN by

t = (t1, . . . , tn) 7→ (ta0 : · · · : taN ).

The associated projective toric variety is

XA := ϕ((C∗)n).

The torus Tn := (C∗)n acts on XA, with open dense orbit
ϕ((C∗)n).

E.g., A = P ∩ Zn, for a convex lattice polytope P ⊂ Rn.



Osculating spaces
Set 1 := (1, . . . , 1) ∈ (C∗)n. The rows of the matrix Akϕ(1) span
the osculating space Osckϕ(1), and dim Osckϕ(1) = rkAkϕ(1)− 1.

Example

ν2,2(t1, t2) = (1 : t1 : t2 : t21 : t1t2 : t22) ∈ P5

A2
ν2,2(1) :=



1 1 1 1 1 1
0 1 0 2 1 0
0 0 1 0 1 2
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .



Togliatti’s surface

The lattice point configuration

A = {(1, 0), (0, 1), (2, 0), (0, 2), (2, 1), (1, 2)} ⊂ Z2

defines the toric embedding

ϕ : (C∗)2 → P5

given by
(t1, t2) 7→ (t1 : t2 : t21 : t22 : t21t2 : t1t

2
2).

Then XA = ϕ((C∗)2) is a toric surface.



Togliatti lattice point configuration

◦ ◦ ◦ ◦

• • ◦ ◦

• ◦ • ◦

◦ • • ◦



Projections and sections

Let A = {a0, . . . , aN} ⊂ Zn be a lattice point configuration and
XA ⊂ PN the corresponding toric variety.

Let A′ = Ar {m points}.

Then the toric variety XA′ ⊂ PN ′ , where N ′ = N −m, is the
(toric) linear projection of XA with center equal to the linear
span of the “removed points”.

A toric hyperplane section XB of XA is given by B ⊂ Zn−1
obtained by taking a hyperplane in Zn and “collapsing” the
point configuration A into this lattice hyperplane in such a way
that one point is “lost”: two points map to the same point.



Third Veronese surface ν2,3 : P2 → P9

• ◦ ◦ ◦

• • ◦ ◦

• • • ◦

• • • •

XP , where P = 3∆2



Del Pezzo: P2 99K P9−3 = P6

• ◦ ◦ ◦

• • ◦ ◦

• • • ◦

• • • •



Segre–Veronese: P1 × P1 → P8 via O(2, 2)

◦ ◦ ◦ ◦

• • • ◦

• • • ◦

• • • ◦

XP , where P = 2�2



Del Pezzo: P1 × P1 99K P8−2 = P6

◦ ◦ ◦ ◦

• • • ◦

• • • ◦

• • • ◦



Del Pezzo as a section of P1 × P1 × P1 → P7

• •

• •

• •

• •

XP , where P = �3

◦ ◦ ◦ ◦

• • ◦ ◦

• • • ◦

◦ • • ◦



Polytopes and toric varieties: dictionary

P ⊂ Rn convex lattice polytope

XP := XA ⊂ PN , where A = P ∩ Zn.

LP := OPN (1)|XP

I Tn-orbits of XP ↔ faces of P
I degXP = VolZ(P )

I XP nonsingular iff P smooth (Delzant)
I topological Euler characteristic e(XP ) = # vertices of P
I dimH0(XP ,mLP ) = #(mP ∩ Zn)



Lattice points
Let P be a lattice polygon. Count its lattice points:

#(P ∩ Z2) = 11

 



Dilated polytopes
Count the lattice points of the dilated polygons mP .

#(mP ∩ Z2) =?

 



Ehrhart polynomials

The number of lattice points in
the mth dilation of P ,

eP (m) := #(mP ∩ Zn)

is a polynomial in m of degree
n = dimP .

Reciprocity: eP (−m) = (−1)n#int(mP ∩ Zn)

Why? If (X,L) = (XP , LP ), then
eP (m) = dimH0(X,mL) = χ(mL),

eP (−m) = χ(−mL) = (−1)nχ(mL−KX) = (−1)n dimH0(X,mL−KX),

and (X,mL−KX) is the toric variety defined by int(mP ∩ Zn).



Ehrhart series (R. Stanley)
The generating function of the Ehrhart polynomials is

EP (t) :=
∑

eP (m)tm =

∑n
i=0 hit

i

(1− t)n+1
,

where the hi are non-negative integers such that h0 = 1 and
I
∑n

i=0 hi = VolZ(P ),
I h1 = #(P ∩ Zn)− (n+ 1),
I hn = #int(P ∩ Zn).

In the example, we get

EP (t) =
1 + 8t+ 4t2

(1− t)3

which is equivalent to (Pick’s formula!)

eP (m) = #(mP ∩ Z2) = 13
2 m

2 + 7
2m+ 1.



Cayley polytopes

Convex lattice polytopes

P0, . . . , Pr ⊂ Rn−r

Vertices of ∆r ⊂ Rr

e0, . . . , er

The polytope

P = Conv{e0×P0, . . . , er×Pr} ⊂ Rn

is called a Cayley polytope.

We write

P = Cayley(P0, . . . , Pr).

A Cayley polytope is “hollow”
– it has no interior lattice
points.



Hollow polytopes
A Cayley polytope is “hollow”: it has no interior lattice points.

Example
n = 3, r = 2, P0 = [0, 2], P1 = P2 = [0, 1]

•

• •

•

• •

•



The codegree and degree of a polytope

codeg(P ) := min{m |mP has interior lattice points}.

deg(P ) := n+ 1− codeg(P )

Example

I codeg(∆n) = n+ 1

I codeg(�n) = 2

I P = Cayley(P0, . . . , Pr) implies codeg(P ) ≥ r + 1.



Examples

P2
P3P1

codeg(P1) = 3 codeg(P2) = 2 codeg(P3) = 1



The Cayley polytope conjecture

Question (Batyrev–Nill): Is there an integer N(d) such that any
polytope P of degree d and dimP ≥ N(d) is a Cayley polytope?

Answer (Haase–Nill–Payne): Yes, and N(d) ≤ (d2 + 19d− 4)/2

Question: Is N(d) linear in d?

Answer (Dickenstein–Di Rocco–P.): Yes, N(d) = 2d+ 1
(if P is smooth and Q-normal).

Note that n ≥ 2d+ 1 is equivalent to codeg(P ) ≥ n+3
2 .



Theorem (Dickenstein, Di Rocco, P., Nill)
Let P be a smooth lattice polytope of dimension n. The following
are equivalent
(1) codeg(P ) ≥ n+3

2

(2) P = Cayley(P0, . . . , Pr) is a smooth Cayley polytope with
r + 1 = codeg(P ) and r > n

2 .

The proof of this combinatorial result is algebro-geometric
(adjoints and nef-value maps à la Beltrametti–Sommese, toric
fibrations à la Reid).



Resultants and discriminants

Il faut éliminer la théorie de l’élimination.
J. Dieudonné (1969)

Eliminate, eliminate, eliminate
Eliminate the eliminators of elimination theory.

S. S. Abhyankar (1970)

Résultant, discriminant
M. Demazure (2011) – à J.-P. Serre pour son 85-ième anniversaire

Question: For which a0, . . . , am and b0, . . . , bn do

f(x) = amx
m + · · ·+ a0 and g(x) = bnx

n + · · ·+ b0

have a common root?



James Joseph Sylvester (1814–1897)

The Sylvester matrix is the
(m+ n)× (m+ n)-matrix

am am−1 am−2 . . . . . .
0 am am−1 am−2 . . .
...

...
bn bn−1 bn−2 . . . . . .
0 bn bn−1 bn−2 . . .
...

...


The resultant Res(f, g) is the
determinant of this matrix.



A student of Sylvester: Florence Nightingale (1820-1910)

Figure: Diagram of the Causes of
Mortality in the Army in the East



Arthur Cayley (1821–1895)

Set

h(x, y) := f(x) + yg(x).

If α is a common root of f and
g, then

(α,−fx(α)

gx(α)
)

is a common zero of h, hx, hy.



The Cayley trick

Consider

h(x1, . . . , xn−r, y1, . . . , yr) :=

f0(x1, . . . , xn−r) + y1f1(x1, . . . , xn−r) + yrfr(x1, . . . , xn−r).

The discriminant ∆(h) of h is obtained by eliminating the xi’s
and yi’s from the n+ 1 equations

h = 0, ∂h/∂xi = 0, ∂h/∂yj = fj = 0.

Hence ∆(h) ∼ Res(f0, . . . , fr).



Hyperplane sections and discriminants

Let Pj ⊂ Rn−r, j = 0, . . . , r, P = Cayley(P0, . . . , Pr),
ϕ : (C∗)n−r × (C∗)r → XP ⊆ PN , ϕj : (C∗)n−r → XPj ⊂ XP .

A hyperplane section of XP :

h(x1, . . . , xn−r, y1, . . . , yr) := f0 + y1f1 + · · ·+ yrfr = 0,

where fi = 0 is a hyperplane section of XPi .

The hyperplane section is singular (i.e., the hyperplane is
tangent to XP ) when ∆(h) = 0.

Geometric interpretation of the Cayley trick: The hyperplane H
is tangent to XP iff H ⊇ 〈ϕ0(t), . . . , ϕr(t)〉, for t ∈ (C∗)n−r.



Degree of dual varieties
Theorem (Gelfand–Kapranov–Zelevinsky)
If XP ⊂ PN is nonsingular and the dual variety
X∨P := {H ∈ (PN )∨ is tangent to XP } is a hypersurface, then

degX∨P =
∑

F≺P (−1)codF (dimF + 1) VolZ(F ),

where the F ’s are the faces of P .

Example
Let XP ⊂ P6 be the Del Pezzo surface. Then

degXP = VolZ(P ) = 6,

degX∨P = 3 VolZ(P )− 2 · 6 · 1 + 6 = 3 · 6− 2 · 6 + 6 = 12.



A surface in P3

A = {(0, 0), (1, 0), (1, 1), (0, 2)}

gives
XA : ϕ(t1, t2) = (1 : t1 : t2t2 : t22) ∈ P3

and (compute!)

X∨A : ϕ∨(t1, t2) = (−1 : 2t−11 : −2t−11 t−12 : t−22 ),

so X∨A ∼= X−A, where

−A = {(0, 0), (−1, 0), (−1,−1), (0,−2)}

This surface is selfdual: X∨A ∼= XA.



The corresponding polygons

◦ • ◦

◦ ◦ •

◦ • •

◦ ◦ ◦

◦ ◦ ◦

A

◦ ◦ ◦

◦ ◦ ◦

• • ◦

• ◦ ◦

◦ • ◦

−A



Higher order dual varieties

The kth dual variety X(k) is defined as:

X(k) = {H ∈ (PN )∨ |H ⊇ Osckx for some regular x}.

In particular, X(1) = X∨, X(k−1) ⊇ X(k), and X(k) is contained
in the singular locus of X∨ for k ≥ 2.

The expected dimension of X∨ is N − 1 and that of X(k) is
n+N − dim Osckx−1.

XA is k-selfdual if φ(XA) = X
(k)
A for some φ : PN ∼= (PN )∨.



Characterization of k-selfdual configurations

The lattice configuration A = {a0, . . . , aN} ⊂ Zn is knap if no
basis vector ei ∈ RN+1 is in the row span of the matrix Ak(1).

Theorem (Dickenstein–P.)

(1) XA is k-selfdual if and only if dimXA = dimX
(k)
A and A is

knap.
(2) If A is knap and dim KerAk(1) = 1, then XA is k-selfdual.
(3) If A is knap and k-selfdual, and dim KerAk(1) = r > 1,

then A = e0 ×A0 ∪ . . . ∪ er−1 ×Ar−1 is r-Cayley.



Chasles–Cayley–Bacharach
Observation: Any vector in the rowspan of Ak(1) is of the form
(Q(a0), . . . , Q(aN )), where Q is a polynomial in n variables of
degree ≤ k. Hence A is not knap iff there is Q such that
Q(ai) 6= 0 and Q(aj) = 0 for all j 6= i.

Example
Three quadrics Q1, Q2, Q3 ∈ Z[x1, x2, x3] with

Q1 ∩Q2 ∩Q3 = {a0, . . . , a7} = A ⊂ Z3 ⊂ R3.

Then XA is a 2-selfdual threefold:

By Cayley–Bacharach, A is 2nap, and the rank of the
(10× 8)-matrix A2(1) is 10− 3 = 7, so dim KerA2(1) = 1.



Polynomials with many integral zeros

Take integers m1,m2,m3 and set f(x) =
∏3
i=1(x−mi).

The quadratic polynomial1

Q(x, y) =
f(x)− f(y)

x− y
∈ Z[x, y]

vanishes at the 6 lattice points (mi,mj), j 6= i.

Then A is 2nap, and rkA2(1) = 6− 1 = 5, so
dim KerA2(1) = 1. Hence A is 2-selfdual.

1cf. Schaefer, Rodriguez Villegas–Voloch



Togliatti revisited
For m1 = 0, m2 = 1, m3 = 2,

Q(x, y) = x2 + xy + y2 − 3x− 3y + 2,

and A is the Togliatti configuration:

◦ ◦ ◦ ◦

• • ◦ ◦

• ◦ • ◦

◦ • • ◦



Thank you for your attention!


