Projective geometry from a toric point of view
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Plane curves

Cr={(z,y)ly* — 2> + z =0},

Co={(z,y)|y? — 23 +2 —1=0} C Al.
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Plane curves
Cr={(z:y:2)|y?z — 23+ 222 = 0},
Co={(z:y:2)|y°z —a® + 22* — 2> = 0} C P,

Let H = {z = 0} be the line at infinity. Then
CiNH=CoNH={(z:y:2)]z=23=0} ={(0:1:0)}.

10/2/\/
SE

y2=x%-x yr=x'-x+1

UiO ¢ University of Oslo




Algebraic geometry = study of zeros of polynomials
Let K be a field (R or Cor Fp or ...).

Affine algebraic n-space: Ag = K"
Affine algebraic variety:

X ={(c1y.-.yen)lfalcry . yen) =0, € I} C Ag,

where the f, € K[z1,...,z,] are polynomials.

Projective algebraic n-space: P = Ag U H, where H is the
hyperplane “at infinity”.

Projective algebraic variety:
X =A(co:c1: - :cn)|Falco,cly .. cn) =0, € I} C Pg,

where the F,, € K[z, ...,x,]| are homogeneous polynomials.
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Differential geometry
Let s : R — RY be a (parameterized) curve:

t— s(t) = (s1(t), s2(t),...,sn(t)),
where the s; are differentiable functions.

The tangent to the curve at the point s(t) is the line (s(t), s'(t)),
the osculating plane is (s(t), s'(t), s”(t)), and so on.

Example (The twisted cubic)
Let s : R — R3 be given by

s(t) = (t,12,%).

Then s'(t) = (1,2t,3t%) and s”(t) = (0, 2, 6t).
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At s(0) = (0,0,0), the tangent line is the z-axis and the
osculating plane is the zy-plane.
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Tangent spaces, osculating spaces, ...
Consider a parameterization s : C™" — Pg ,

= (t1, ) o (s0(t) -t sx(2).
The rows of
so(t) si(t) e e sn(t)
Oso(t)/0tr  Os1(t)/0ty --- -+ Osn(t)/Ot
AR) Bso(t) /Ot e Bsn(1)/0t
Fso)/ots e Pay(t)/ork

considered as points in ]P’g spans the kth osculating space
Osck(t) to s(C™) at s(t).
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We have
dim Osck(t) = rk A% (t) — 1.

We say that s(t) is a kth inflection point if rk A¥(t) < (

Example
The curve s : C — IP’(%, given by

sty =(1:t:13),

has
1 ¢t
A2t):= 0 1 3¢
0 0 6t

Since tk A2(0) = 2 < 3, 5(0) is an inflection point.
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The Veronese
Set N := ("H“) The kth Veronese embedding v, ,: C"* — IP’N
given by

(t1y .o stn) > (Loty oo sty qtF 1o tk)
(all monomials of degree < k).

Theorem (Fulton-Kleiman-P.—Tai)

Let X C IP’N be a (nonsingular) variety of dimension n, with
N = (n+k) 1. If X has no inflections, then X = v, ;(C") is
the kth Veronese variety.

Example
The only curve C C Pg with no inflection points is the rational
normal curve t + (1:¢:¢2 ... V).
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Steiner’s Roman surface
A linear projection of the 2nd Veronese surface:

X = {(x1, x2, :C3)|ac%a:g + x%x% + x%x% — zor1xexs = 0} C IP’%
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Toric varieties
Take a set of lattice points

and define ¢ : (C*)* — PV by
t=(t1,. . tn) = (L9 vt V),

The associated projective toric variety is

Xoa = o((C)m).

The torus 7™ := (C*)™ acts on X 4, with open dense orbit
e((C)").
E.g., A= PNZ", for a convex lattice polytope P C R™.
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Osculating spaces
Set 1:=(1,...,1) € (C*)". The rows of the matrix Af;(l) span
the osculating space Osci(l), and dim OscfZ(l) =rk Af;(l) -1

Example

vao(ti,te) = (1:ty s ta i t3 : tity : t3) € P

111111
010210
001012

2 —
Al’“(l) 1000100
000010
000O0O0T1
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Togliatti’s surface
The lattice point configuration
A={(1,0),(0,1),(2,0),(0,2),(2,1),(1,2)} c Z*
defines the toric embedding
@: (C*? PP

given by
(t1,t2) = (b1 : to s 13 1 t5 : thty « t113).

Then X 4 = ¢((C*)?) is a toric surface.
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Togliatti lattice point configuration

(¢] (¢] e}
[ ] [ ] ¢}
\
[ ] (e] (]
\
(¢] [ ] L]
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Projections and sections

Let A ={ap,...,an} C Z" be a lattice point configuration and
X 4 C PV the corresponding toric variety.

Let A" = A~ {m points}.

Then the toric variety X 4 C PV’ where N’ = N —m, is the
(toric) linear projection of X 4 with center equal to the linear
span of the “removed points”.

A toric hyperplane section X of X 4 is given by B C Z"~!
obtained by taking a hyperplane in Z" and “collapsing” the
point configuration A into this lattice hyperplane in such a way
that one point is “lost”: two points map to the same point.
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Third Veronese surface vy 3 : P? — PY

AN
LN
N

Xp, where P = 3A2
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Del Pezzo: P? -
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Segre—Veronese: P! x P! — P8 via O(2,2)

(¢] (¢] e} (e]
[ ] [ ] L] (¢]
[ ] [ ] L] (¢}
[ ] [ ] (] (e]

_Xp7 where P = 2|:|2

| UiO 2 University of Oslo




Del Pezzo: P! x P ——» P82 = p6
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Del Pezzo as a section of P! x P! x P! — P7

A .
|
/ / ° °
. . | .\
Xp, where P = O o\o
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Polytopes and toric varieties: dictionary

P C R” convex lattice polytope
Xp:= X4 C PV, where A=PNZ".
Lp = Opx(1)]x,
» T orbits of Xp < faces of P
» deg Xp = Volz(P)
» Xp nonsingular iff P smooth (Delzant)

» topological Euler characteristic e(Xp) = # vertices of P
» dim H%(Xp,mLp) = #(mP NZ")
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Lattice points
Let P be a lattice polygon. Count its lattice points:

#(Pnz* =11
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Count the lattice points of the dilated polygons mP.
#(mP N7Z?) =?

Dilated polytopes
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Ehrhart polynomials

The number of lattice points in
the mth dilation of P,

ep(m) :=#mPNZL")

is a polynomial in m of degree
n = dim P.

i
53

£
1G5

Reciprocity: ep(—m) = (—1)"#int(mP NZ")
Why? If (X, L) = (Xp, Lp), then
ep(m) = dim H°(X,mL) = x(mL),
ep(—m) = x(—mL) = (=1)"x(mL — Kx) = (=1)"dim H%(X,mL — Kx),
and (X, mL — Kx) is the toric variety defined by int(mP NZ").
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Ehrhart series (R. Stanley)
The generating function of the Ehrhart polynomials is
_ Yitohit!
Z eP 1 — t)n-i-l ’
where the h; are non-negative integers such that hg = 1 and
> Yoo hi = Volz(P),
» hy =#(PNZ") — (n+1),
> hy, = #int(PNZ").
In the example, we get
1+ 8t + 4t?
(1—-1t)?
which is equivalent to (Pick’s formulal)
ep(m) =#(mPNZ?) =LYm?+Im+1
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Cayley polytopes

The polytope
P = Conv{egxPy,...,e,xP.} CR"

is called a Cayley polytope.

We write
Convex lattice polytopes

PO PTCRTL—T P:Cayley(Po,...,Pr).

Vertices of A, C R”

A Cayley polytope is “hollow”
— it has no interior lattice
points.

€0y..-5Ep
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Hollow polytopes
A Cayley polytope is “hollow”: it has no interior lattice points.

Example
n:3, 7“:2, P(): [0,2], P1 :P2: [0,1]

UiO ¢ University of Oslo




The codegree and degree of a polytope

codeg(P) := min{m | mP has interior lattice points}.

deg(P) :=n+ 1 — codeg(P)

Example
» codeg(A,) =n+1

» codeg(d,,) =2
» P = Cayley(Py,...,P,) implies codeg(P) > r + 1.
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Examples

codeg(Py) =3 codeg(P) =2 codeg(P3) =1
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The Cayley polytope conjecture

Question (Batyrev—Nill): Is there an integer N(d) such that any
polytope P of degree d and dim P > N(d) is a Cayley polytope?

Answer (Haase Nill-Payne): Yes, and N(d) < (d? +19d — 4)/2

Question: Is N(d) linear in d?

Answer (Dickenstein-Di Rocco-P.): Yes, N(d) = 2d + 1
(if P is smooth and Q-normal).

Note that n > 2d + 1 is equivalent to codeg(P) > %r?’
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Theorem (Dickenstein, Di Rocco, P., Nill)
Let P be a smooth lattice polytope of dimension n. The following
are equivalent
3
(1) codeg(P) > 52
(2) P = Cayley(Fy, ..., P) is a smooth Cayley polytope with
r+1 = codeg(P) and r > 3.

The proof of this combinatorial result is algebro-geometric
(adjoints and nef-value maps a la Beltrametti-Sommese, toric
fibrations a la Reid).
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Resultants and discriminants

1l faut éliminer la théorie de l’élimination.
J. Dieudonné (1969)

Eliminate, eliminate, eliminate
Eliminate the eliminators of elimination theory.

S. S. Abhyankar (1970)

Résultant, discriminant
M. Demazure (2011) — a J.-P. Serre pour son 85-iéme anniversaire

Question: For which ag,...,an and bg,...,b, do
f(z) =amz™ +---+ag and g(x) = byz™ + -+ by

have a common root?
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James Joseph Sylvester (1814-1897)

b |
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The Sylvester matrix is the
(m +n) X (m + n)-matrix

am Om—1 (am-—2
0 Am Gm—-1 Gm-2

The resultant Res(f,g) is the
determinant of this matrix.




A student of Sylvester: Florence Nightingale (1820-1910)

DIAGRAM v rax CAUSES or MORTALITY %
APRIL 1855 zo MARCH 1856, IN THE ARMY i THE EAST. APRIL 1854 20 MARGH 1855
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Figure: Diagram of the Causes of
Mortality in the Army in the East
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Arthur Cayley (1821-1895)

[
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Set

h(z,y) == f(z) + yg(z).

If « is a common root of f and
g, then

is a common zero of h, hy, hy.




The Cayley trick

Consider

h(z1,y .y Ty Y1y ooy Yp) 1=
fo(xi, . xpn—r) + (@1, ) FYr fr(21, .o Trer).

The discriminant A(h) of h is obtained by eliminating the x;’s
and y;’s from the n 4+ 1 equations
h = 0,8h/8xi = 0, 6h/8yj = fj =0.

Hence A(h) ~ Res(fo,---, fr)-
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Hyperplane sections and discriminants
Let P, CR"™, j=0,...,r, P = Cayley(P, ..., P),
Q. (C*)n—r X ((C*)r — Xp C PN, (2P I ((C*)n—r — ij C Xp.

A hyperplane section of Xp:
h(‘rla"wxn—ﬁyl?“wy’f‘) = f0+y1f1+“'+y7“f'f‘ =0,

where f; = 0 is a hyperplane section of Xp,.

The hyperplane section is singular (i.e., the hyperplane is
tangent to Xp) when A(h) = 0.

Geometric interpretation of the Cayley trick: The hyperplane H
is tangent to Xp iff H D (po(t),...,er(t)), for t € (C*)"7".

| UiO ¢ University of Oslo




Degree of dual varieties

Theorem (Gelfand-Kapranov—Zelevinsky)

If Xp C PV is nonsingular and the dual variety
X} :={H € (P)V is tangent to Xp} is a hypersurface, then

deg X)) =3 p_p(=1)°F(dim F + 1) Volz(F),

where the F'’s are the faces of P.

Example
Let Xp C P® be the Del Pezzo surface. Then

deg Xp = Volz(P) = 6,

deg X}, =3Volz(P)—2-6-1+6=3-6—-2-6+6=12.
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A surface in P3

A= {(O’O)’ (17 0)7 (17 1)7 (0’ 2)}

gives
Xa: (p(tl,tg) = (1 1ty oty t%) € P3

and (compute!)
XA:@ () = (=1:267h s 2675 45%),
so Xy = X_ 4, where
A= {(0,0),(~1,0), (~1,~1), (0, ~2)}

This surface is selfdual: X = X 4.
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The corresponding polygons

(e] [ ] (¢] e} (e] (e]
\
(¢] (¢] [ ] e} (¢] (¢]
(¢] [ ] [ ] L] [ ] o
(¢] o o L] (¢} (¢]
\
(e] (¢] o o} [ ] (e]
A -A
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Higher order dual varieties

The kth dual variety X is defined as:

X% = {H e (PN)V | H D Osc for some regular z}.
In particular, X = XV, X*-1 > X*) and X* is contained
in the singular locus of XV for k > 2.

The expected dimension of XV is N — 1 and that of X*) is
n + N — dim Osck —1.

X is k-selfdual if $(X4) = X§) for some ¢: PV = (PN)V.
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Characterization of k-selfdual configurations

The lattice configuration A = {ag,...,anx} C Z" is knap if no
basis vector e; € RN*! is in the row span of the matrix A*(1).

Theorem (Dickenstein—P.)
1) X4 is k-selfdual if and only if dim X 4 = dim X% and A is
(1) Xa Y A
knap.
(2) If A is knap and dim KerA¥(1) = 1, then X 4 is k-selfdual.

(3) If A is knap and k-selfdual, and dim KerA¥(1) =r > 1,
then A =eqg X AgU...Uer_1 X A,._1 is r-Cayley.
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Chasles—Cayley—-Bacharach

Observation: Any vector in the rowspan of A*(1) is of the form
(Q(ap),...,Q(an)), where @ is a polynomial in n variables of
degree < k. Hence A is not knap iff there is ) such that

Q(ai) # 0 and Q(a;j) = 0 for all j # 1.

Example
Three quadrics Q1, Q2, Q3 € Z[x1, x2, x3] with

QlﬂQgﬂQgZ{ao,...,a7}=ACZ3CRB.

Then X 4 is a 2-selfdual threefold:

By Cayley—Bacharach, A is 2nap, and the rank of the
(10 x 8)-matrix A%(1) is 10 — 3 = 7, so dim Ker A%(1) = 1.
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Polynomials with many integral zeros

Take integers mq,ma, ms and set f(z) = H?:1(33 — mj).
The quadratic polynomial®

f(x) = fy)

Qz,y) = pra—

€ Z[z,y|

vanishes at the 6 lattice points (m;, m;),j # 1.

Then A is 2nap, and rk A%2(1) =6 — 1 = 5, so
dim Ker A%2(1) = 1. Hence A is 2-selfdual.

Lcf. Schaefer, Rodriguez Villegas—Voloch
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Togliatti revisited
For m; =0, mo =1, m3 =2,
Qz,y) = x> + 2y +y* — 3z — 3y + 2,
and A is the Togliatti configuration:

(¢] (¢] e} (¢}
[ ] [ ] ¢} (¢}
\

[ ] (¢] (] (e]

\
(¢] [ ] ° (¢]
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THANK YOU FOR YOUR ATTENTION!
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