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Polar varieties

Let X ⊂ P(V ) ∼= Pn be a projective variety of dimension m, and
Lk ⊂ Pn a linear subspace of codimension m− k + 2.

The kth polar variety of of X (with respect to Lk) is

Mk := {x ∈ Xsm | dim(TX,x ∩ Lk) ≥ k − 1}.

The classes [Mk] are projective invariants of X: the kth class of
a (general) projection of X is the projection of the kth class of
X, and the kth class of a (general) linear section is the linear
section of the kth class.



Mather Chern classes

Define

cMk (X) :=

k∑
i=0

(−1)i
(
m− i+ 1

m− k + 1

)
hk−i ∩ [Mi],

where h := c1(OX(1)) denotes the class of a hyperplane section.

Let ν : X → X be the Nash transform of X and Ω the Nash
cotangent bundle on X. Then

cMk (X) = ν∗(ck(Ω
∨) ∩ [X]).



The Todd–Eger formula
We have

[Mk] =

k∑
i=0

(−1)i
(
m− i+ 1

m− k + 1

)
hk−i ∩ cMi (X).

It follows that
m∑
k=0

hm−k ∩ [Mk] =

m∑
i=0

(−1)i(2m−i+1 − 1)hm−i ∩ cMi (X),

hence
m∑
k=0

degMk =

m∑
i=0

(−1)i(2m−i+1 − 1) deg cMi (X).



Talbot House, Vermont, 1975 or 1976

	



Reciprocal polar varieties

Define polar varieties using conditions on the normal spaces
instead of the tangent spaces?1

Problem: We have no normal spaces.

Solution: Pretend we are in Euclidean space.

Need to define a linear space orthogonal to a given linear space
at a point, of complementary dimension.

1Bank–Giusti–Heintz–Pardo, Mork–P.



Affine space as Euclidean space

Coxeter:

“Kepler’s invention of points at infinity made it possible to
regard the projective plane as the affine plane plus the line at
infinity. A converse relationship was suggested by Poncelet
(1822) and von Staudt (1847): regard the affine plane as the
projective plane minus an arbitrary line `, and then regard the
Euclidean plane as the affine plane with a special rule for
associating pairs of points on ` (in “perpendicular directions”).”

This way we can consider affine space with an added notion of
orthogonality (or perpendicularity) as “Euclidean space” (no
distance function).



Polarity w.r.t. a quadratic form

Let V and V ′ be a vector spaces of dimensions n+ 1 and n, and
V → V ′ a surjection.

Let H∞ := P(V ′) ⊂ P(V ) be the hyperplane at infinity, so
P(V ) \H∞ ∼= V ′ is affine n-space.

A non-degenerate quadratic form on V ′ gives an isomorphism
V ′ ∼= (V ′)∨ and a non-singular quadric Q∞ ⊂ H∞.

Let L′ = P(W ) ⊂ P(V ′) be a linear space, and set

K := Ker((V ′)∨ ∼= V ′ →W ).

Then L′⊥ := P(K∨) ⊂ P(V ′) is the polar of L′.



Orthogonality

Given a linear space L ⊂ P(V ), L * H∞, and P ∈ L. The
orthogonal space to L at P is

L⊥P := 〈P, (L ∩H∞)⊥〉.

Example
In P2, take H∞ : z = 0, Q∞ : x2 + y2 = 0, L : x− 2y − 4z = 0,
P = (2 : −1 : 1).

Then L ∩H∞ : (2 : 1 : 0), (L ∩H∞)⊥ = (1 : −2 : 0), and
L⊥P : 2x+ y − 3z = 0.



Porto de Galinho, Easter 1981

	



Euclidean normal spaces
Let X ⊂ P(V ) be a variety, with X * H∞.

For P ∈ Xsm \H∞, let TPX denote the tangent space to X at
P , and define2 the normal space to X at P :

NPX := (TPX)⊥P .

The exact sequence

0→ NXsm(1)→ VXsm → P1
Xsm

(1)→ 0.

extends on the Nash transform ν : X → X to

0→ N → VX → P → 0.

2Catanese–Trifogli



Euclidean normal bundle
Consider 0→ V ′′ → V → V ′ → 0 (dimV ′′ = 1).

Assuming H∞ = P(V ′) is general with respect to X, we get

0→ N → V ′
X
→ P → 0.

The polarity in H∞ w.r.t. Q∞ gives V ′ ∼= (V ′)∨, so we have

V ′
X
∼= V ′∨

X
→ N∨

whose fibers give the spaces polar to the spaces TPX ∩H∞, and
combining VX → V ′

X
and VX → OX(1), we get

VX → E := N∨ ⊕OX(1)

whose fibers correspond to the Euclidean normal spaces NPX.

We call E the Euclidean normal bundle of X.



Bernina Pass, June 1981

			 	



Reciprocal polar varieties
Instead of imposing conditions on the tangent spaces of a
variety, one can similarly impose conditions on the Euclidean
normal spaces.

Let L ⊂ P(V ), L * H∞, have codimension w, n−m ≤ w ≤ n.
Set k = w − (n−m) and define reciprocal polar varieties

Mk(L)⊥ := {P ∈ Xsm \H∞|NPX ∩ L 6= ∅}.
Then (Porteous’ formula) M⊥k have classes

[M⊥k ] = ν∗(sk(E) ∩ [X]) = ν∗
(
[s(N∨)s(OX(1))]k ∩ [X]

)
,

hence, since s(N∨) = c(P),

[M⊥k ] =

k∑
i=0

hk−i ∩ [Mi].



Aftermath in Rome: June 21, 1986

	



Toric varieties

The Schwartz–MacPherson Chern class of a toric variety X with
orbits {Xα}α is equal to (Ehler’s formula3)

cSM(X) =
∑

α[Xα].

This implies (proof by the definition of cSM (X) and induction
on dimX) that the Mather Chern class of a toric variety X is
equal to

cM(X) =
∑

α EuX(Xα)[Xα],

where EuX(Xα) denotes the value of the local Euler obstruction
of X at a point in the orbit Xα.

3see also Barthel–Brasselet–Fieseler, Maxim–Schürmann, Aluffi



Reciprocal polar classes of toric varieties
The polar classes of a toric variety X of dimension m are

[Mk] =

k∑
i=0

(−1)i
(
m− i+ 1

m− k + 1

)
hk−i ∩

∑
α

EuX(Xα)[Xα],

and

[M⊥m] =

n∑
k=0

hm−k
k∑
i=0

(−1)i
(
m− i+ 1

m− k + 1

)
hk−i∩

∑
α

EuX(Xα)[Xα],

=

n∑
i=0

(−1)i(2m−i+1 − 1)hm−i ∩
∑
α

EuX(Xα)[Xα],

where the second sum in each expression is over α such that
codimXα = i.



If X is a projective toric variety corresponding to a convex
lattice polytope P ,

degMk =

k∑
i=0

(−1)i
(
m− i+ 1

m− k + 1

)
Voli(P ),

(cf. Matsui–Takeuchi) and

degM⊥m =

n∑
i=0

(−1)i(2m−i+1 − 1)Voli(P ),

where Voli(P ) denotes the sum of the normalized volume of the
faces of P of codimension i (cf. Helmer–Sturmfels).



Happiness 2011



Weighted projective spaces (Nødland)
P(1, a, b, c) is a threefold with isolated singularities.

P = Conv{(0, 0, 0), (bc, 0, 0), (0, ac, 0), (0, 0, ab)}.
Volume of P : Vol0(P ) = a2b2c2

Area of facets of P : Vol1(P ) = abc(1 + a+ b+ c)
Length of edges of P : Vol2(P ) = a+ b+ c+ bc+ ac+ ab
Number of vertices of P : Vol3(P ) = 4

Example
EuX(v) = 1 for all vertices of P(1, 2, 3, 5) (counterexample to a
conjecture of Matsui and Takeuchi!).
So the degree of M⊥3 is

a2b2c2 + abc(1 + a+ b+ c) + a+ b+ c+ bc+ ac+ ab+ 4 = 1275.



The Euclidean endpoint map
Consider P(E) ⊂ X × P(V ).

Let p : P(E)→ X and q : P(E)→ P(V ) denote the projections on
the first and second factor. The map q is called the endpoint
map.

Let A ∈ P(V ) \H∞. Then p(q−1(A)) is a reciprocal polar
variety:

p(q−1(A)) = {P ∈ X |A ∈ NPX} = Mm(A)⊥.

Hence:

deg q = degM⊥m =
m∑
i=0

degMi.



Euclidean distance degree

The degree of the endpoint map q : P(E)→ P(V ) is also called
the (general) Euclidean distance degree4:

E degX = deg q = degM⊥m =

m∑
i=0

degMi.

The points in Mm(A)⊥ are the points P ∈ X where the line
〈P,A〉 is orthogonal to the tangent space TPX. Hence they are
max/min points for the “distance function” induced by the
Euclidean orthogonality defined by the quadric Q∞ ⊂ H∞.

4Draisma–Horobet–Ottaviani–Sturmfels–Thomas



Rio 2012



Hypersurfaces with isolated singularities

If X ⊂ P(V ) is a smooth hypersurface of degree d, then
degMk = d(d− 1)k.

If X has only isolated singularities, then only degMn−1 is
affected, and we get (Teissier, Laumon)

E degX =
d((d− 1)n − 1)

d− 2
−

∑
P∈Sing(X)

(µ
(n)
P + µ

(n−1)
P ),

where µ(n)P is the Milnor number and µ(n−1)P is the sectional
Milnor number of X at P .



Surface with ordinary singularities
Assume X ⊂ P(V ) ∼= P3 is a generic projection of a smooth
surface of degree d, so that X has ordinary singularities: a
double curve of degree ε, t triple points, and ν2 pinch points.
Then (using known formulas for degM1 and degM2)

E degX = degX+degM1+degM2 = d3−d2+d−(3d−2)ε−3t−2ν2

Example
The Roman Steiner surface: d = 4, ε = 3, t = 1, ν2 = 6

E degX = 7



The focal locus

The focal locus ΣX is the branch locus of the map
q : P(E)→ P(V ):

ΣX = {Q ∈ P(V ) |#q−1(Q) < deg q}

It is the image of the subscheme RX given by the Fitting ideal
F 0(Ω1

P(E)/P(V )), so (if X is smooth) its class is

[ΣX ] = q∗((c1(Ω
1
P(E))− q

∗c1(Ω
1
P(V ))

)
∩ [P(E)])



The focal locus of a hypersurface

Assume X ⊂ P(V ) and X∨ ⊂ P(V ∨) are hypersurfaces, and Z a
common desingularization. Let h1 and h2 denote the pullbacks
of the hyperplane section line bundles to Z. Then E = h2 ⊕ h1,
and

deg ΣX = (c1(Ω
1
Z)+c1(h2)+c1(h1))sn−2(h1⊕h2)+(n−1)sn−1(h1⊕h2),

with sj(h1 ⊕ h2) =
∑j

i=0 c1(h1)
j−ic1(h2)

i.

This expression is symmetric in h1 and h2, hence

deg ΣX = deg ΣX∨ .



Example
X ⊂ P(V ) ∼= P2 is a plane curve of degree d. Then the focal
locus is the evolute of X, namely the envelope of its normals. Its
degree is

deg
(
c1(Ω

1
Z) + 2c1(h1) + 2c1(h2)

)
= 2g − 2 + 2 degX + 2 degX∨

If X = Z is smooth, we get deg ΣX = 3d(d− 1).

In the case that X is a “Plücker curve” of degree d having only δ
nodes and κ ordinary cusps as singularities, then we obtain the
classical formula due to Salmon

deg ΣX = 3d(d− 1)− 6δ − 8κ = 3 degX∨ + κ.

In fact: 3 degX∨ + κ = 3 degX + ι, so deg ΣX = deg ΣX∨ .



Evolutes of parabola and nephroide



The focal locus of a smooth hypersurface

Let X ⊂ P(V ) be a general (smooth) hypersurface (m = n− 1)
of degree d. It is known that in this case RX → ΣX is
birational. We compute

deg ΣX = (n+ 1) degMn−1 + 2

n−2∑
i=1

degMi

= (n+ 1)d(d− 1)n−1 + 2d
(
(d− 1)n−1 − 1

)
(d− 2)−1

which checks with the formula found by Trifogli.



Happy birthday, Israel!


