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LA THEORIE DES CLASSES DE CHERN

[ Appendice au Mémoire de A. Borel et J.-P. Serre|

PAR

Avexaxpen GROTHENDIECK.

— Dans cet appendice, nous développons une théorie axio-
matique des classes de Chern, qui permeten particulier de définir les classes
de Chern d'un fibré vectoriel algébrique £ sur une variété algébrique non
singuliére quasi projective 1" comme des éléments de I'anneau de Chow
A1) de X, i.e. comme des classes de cycles pour I'équivalence rationnelle.
Cet exposé est inspiré du livre de Himzesnucn d’une part (ou les propriétés
Jormelles essentielles caractérisant une théorie des classes de Chern étaient
bien mises en évidence), et d'une idée de Cuery [2], qui consiste a utiliser
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Polar varieties

Let X C P(V) =2 P" be a projective variety of dimension m, and
Lj;, C P" a linear subspace of codimension m — k + 2.

The kth polar variety of of X (with respect to Ly) is

M = {:C € Xem ’ dim(TX,x N L]C) >k — 1}.

The classes [My] are projective invariants of X: the kth class of
a (general) projection of X is the projection of the kth class of
X, and the kth class of a (general) linear section is the linear
section of the kth class.
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Mather Chern classes

Define

k .
00 =30

=0
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where h := ¢1(Ox(1)) denotes the class of a hyperplane section.

Let v : X — X be the Nash transform of X and € the Nash
cotangent bundle on X. Then

e’ (X) = va(e(2") N [X]).
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The Todd-Eger formula
We have

k .
] = -0 (e,

It follows that

SR M =) (-0 - DR 0 (X)),
k=0 i=0
hence

me—z<mm“>m#m.

1=0
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Talbot House, Vermont, 1975 or 1976
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Reciprocal polar varieties

Define polar varieties using conditions on the normal spaces
instead of the tangent spaces?!

Problem: We have no normal spaces.
Solution: Pretend we are in Euclidean space.

Need to define a linear space orthogonal to a given linear space
at a point, of complementary dimension.

!Bank-Giusti-Heintz—Pardo, Mork-P.
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Affine space as Euclidean space

Coxeter:

“Kepler’s invention of points at infinity made it possible to
regard the projective plane as the affine plane plus the line at
mfinity. A converse relationship was suggested by Poncelet
(1822) and von Staudt (1847): regard the affine plane as the
projective plane minus an arbitrary line £, and then regard the
Euclidean plane as the affine plane with a special rule for
associating pairs of points on € (in “perpendicular directions”).”

This way we can consider affine space with an added notion of
orthogonality (or perpendicularity) as “Euclidean space” (no
distance function).
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Polarity w.r.t. a quadratic form

Let V and V' be a vector spaces of dimensions n + 1 and n, and
V — V' a surjection.

Let Hy, :=P(V') C P(V) be the hyperplane at infinity, so
P(V)\ Hx = V' is affine n-space.

A non-degenerate quadratic form on V' gives an isomorphism
V' = (V') and a non-singular quadric Qs C Hoo.

Let L' =P(W) C P(V’) be a linear space, and set
K :=Ker(V)V 2V = W).

Then L'+ :=P(K") C P(V') is the polar of L'.
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Orthogonality

Given a linear space L C P(V), L ¢ Hy, and P € L. The
orthogonal space to L at P is

Lt = (P,(L N Hy)b).

Example

InP? take Hy : 2 =0, Qoo : 2> + 4> =0, L:2 —2y — 42 =0,
P=(2:-1:1).

Then LN Hyo : (2:1:0), (LN Hyo)t = (1:—2:0), and
Ly:2z+y—32=0.
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Porto de Galinho, Easter 1981
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Euclidean normal spaces
Let X C P(V) be a variety, with X ¢ H.

For P € Xgn \ Hx, let TpX denote the tangent space to X at
P, and define? the normal space to X at P:

NpX = (TpX)5.
The exact sequence
0 — Nx..(1) = Vx.,, = Px,. (1) = 0.
extends on the Nash transform v : X — X to

0N =V —P—0.

2Catanese-Trifogli
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Euclidean normal bundle
Consider 0 > V" -V - V' - 0 (dim V" =1).

Assuming Ho, = P(V’) is general with respect to X, we get
0N —=Ve—=P 0.

The polarity in Hy w.r.t. Qs gives V' = (V')V] so we have
SR v
VeV = N
whose fibers give the spaces polar to the spaces Tp X N Hy, and
combining Vi — V- and Vi — Ox(1), we get
whose fibers correspond to the Euclidean normal spaces NpX.

We call € the Fuclidean normal bundle of X.
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Bernina Pass, June 1981
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Reciprocal polar varieties

Instead of imposing conditions on the tangent spaces of a
variety, one can similarly impose conditions on the Euclidean
normal spaces.

Let L C P(V), L € Hy, have codimension w, n —m < w < n.
Set k = w — (n — m) and define reciprocal polar varieties

My(L)t :={P € Xgn \ Hoo|NpX N L # 0}.
Then (Porteous’ formula) M;- have classes
(M) = v (54(8) 1 (X)) = v (S5O (1)1 1 (X)),
hence, since s(NY) = ¢(P),

k
(M) =) K n[My).
i=0
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Aftermath in Rome: June 21, 1986
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Toric varieties

The Schwartz—MacPherson Chern class of a toric variety X with
orbits {X,}« is equal to (Ehler’s formula?®)

SM(X) = Y o[Xal-

This implies (proof by the definition of ¢ (X) and induction
on dim X)) that the Mather Chern class of a toric variety X is
equal to

MX) =3, Bux(Xa)[Xal,

where Eux (X,) denotes the value of the local Euler obstruction
of X at a point in the orbit X,.

3

see also Barthel-Brasselet—Fieseler, Maxim—Schiirmann, Aluffi

iO ¢ University of Oslo




Reciprocal polar classes of toric varieties
The polar classes of a toric variety X of dimension m are

k

fm—1i+1 i —
LRSS (AR il DIHE NG 31
and
n k .
M5 =3 R RS () (Z:;i) R0 Bux (Xa)[Xal,
k=0 =0 a

= i(—l)i(QmiJrl — 1)hm7i N Z EUX(XOJ[Ya]a

where the second sum in each expression is over a such that
codimX, = 1.

UiO ¢ University of Oslo




If X is a projective toric variety corresponding to a convex
lattice polytope P,

doe M _i(_l)i m—1i+1
°8 k_izo m—k+1

)Voli(P),

(cf. Matsui-Takeuchi) and

deg My, = " (=1)/ (2™ "1 — 1)Vol'(P),
=0

where Vol’(P) denotes the sum of the normalized volume of the
faces of P of codimension i (cf. Helmer—Sturmfels).
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Happiness 2011
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Weighted projective spaces (Nodland)
P(1,a,b,c) is a threefold with isolated singularities.
P = Conv{(0,0,0), (bc,0,0), (0,ac,0), (0,0,ad)}.
Volume of P: Vol®(P) = a?b*c?
Area of facets of P: Vol'(P) = abe(1 +a+ b+ c)
Length of edges of P: Vol?(P) = a + b+ ¢+ bc + ac + ab
Number of vertices of P: Vol?(P) = 4
Example

Eux(v) =1 for all vertices of P(1,2,3,5) (counterexample to a
conjecture of Matsui and Takeuchi!).
So the degree of M?f is

a?b*ct 4 abc(14+a+b+c)+a+b+c+bc+ ac+ab+4 = 1275.
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The Euclidean endpoint map
Consider P(€) C X x P(V).

Let p: P(£) — X and q: P(€) — P(V) denote the projections on
the first and second factor. The map q is called the endpoint

map.
Let A€ P(V)\ Hwo. Then p(qg~!(A)) is a reciprocal polar
variety:

p(g ' (A)) ={P e X|A€ NpX}=M,y,(A)"
Hence:

m
degq = deg M,# = ZdegMi.
i=0
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Euclidean distance degree

The degree of the endpoint map ¢: P(€) — P(V) is also called
the (general) Euclidean distance degree*:

m
Edeg X =degq = degMT# = ZdegMi.
i=0

The points in M,,(A)* are the points P € X where the line
(P, A) is orthogonal to the tangent space TpX. Hence they are
max/min points for the “distance function” induced by the
Euclidean orthogonality defined by the quadric Qs C Hoo.

4Draisma—Horobet—Ottaviani-Sturmfels-Thomas
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Rio 2012
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Hypersurfaces with isolated singularities

If X C P(V) is a smooth hypersurface of degree d, then
deg M, = d(d — 1)*.

If X has only isolated singularities, then only deg M,,_1 is
affected, and we get (Teissier, Laumon)

di(d—1"—1 n n—
EdegX=W— S +uiY),
PeSing(X)

(n) (n—1)

where pp” is the Milnor number and pp, is the sectional
Milnor number of X at P.
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Surface with ordinary singularities

Assume X C P(V) = P3 is a generic projection of a smooth
surface of degree d, so that X has ordinary singularities: a
double curve of degree ¢, t triple points, and v, pinch points.
Then (using known formulas for deg M; and deg My)

Edeg X = deg X+deg M;+deg My = d®>—d*+d—(3d—2)e—3t—2uy

Example

The Roman Steiner surface: d =4, ¢ =3, t=1,15 =06

Edeg X =7

UiO ¢ University of Oslo




The focal locus

The focal locus Y x is the branch locus of the map
q:P(E) = P(V):

Sx ={Q € P(V)|#¢ '(Q) < degq}

It is the image of the subscheme Rx given by the Fitting ideal
FO(QHlD(g)/P(V)), so (if X is smooth) its class is

[Ex] = ae((e1(Dpe)) — a*e1(Qpyry)) NP(E)])
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The focal locus of a hypersurface

Assume X C P(V) and XV C P(VV) are hypersurfaces, and Z a
common desingularization. Let hi and hs denote the pullbacks
of the hyperplane section line bundles to Z. Then €& = hs @ hq,
and

deg Xx = (c1(Q)+c1(ha)+e1(h1))sn—2(h1®he)+(n—1)su-1(h1®ha),

with sj(h1 @ he) = {:0 c1(h)? " er(he)".

This expression is symmetric in h; and he, hence

degdx = degXxv.
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Example

X Cc P(V) = P? is a plane curve of degree d. Then the focal
locus is the evolute of X, namely the envelope of its normals. Its
degree is

deg(c1(2y) + 2c1(h1) + 2c1(h2)) =29 — 2+ 2deg X +2deg XV

If X = Z is smooth, we get degXx = 3d(d — 1).

In the case that X is a “Pliicker curve” of degree d having only ¢
nodes and k ordinary cusps as singularities, then we obtain the
classical formula due to Salmon

deg¥x =3d(d—1) — 66 — 8k = 3deg X" + k.

In fact: 3deg XV + x = 3deg X + ¢, so deg X x = deg X xv.
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Evolutes of parabola and nephroide
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The focal locus of a smooth hypersurface

Let X C P(V) be a general (smooth) hypersurface (m =n — 1)
of degree d. It is known that in this case Rx — Yx is
birational. We compute

n—2
deg¥Xx = (n+1)deg M,,—1 + 2 Z deg M;
i=1

=(m+1)dd-1)"""+2d((d- 1" —1)(d-2)""
which checks with the formula found by Trifogli.
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HAPPY BIRTHDAY, ISRAEL!
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