Reciprocal polar varieties

Ragni Piene

Israel 70
Belo Horizonte
November 7, 2018

$$
\begin{aligned}
& \text { Bull. Soc. math. France, } \\
& 86,1958, \text { p. } 137 \text { aे } 154 .
\end{aligned}
$$

LA THÉORIE DES CLASSES DE CHERN

〔Appendice au Mémoire de A. Borel et J.-P. Serre〕

PAR
Alexander GROTHENDIECK.

Introduction. - Dans cet appendice, nous développons une théorie axiomatique des classes de Chern, qui permet en particulier de définir les classes de Chern d'un fibré vectoriel algébrique E sur une variété algébrique non singulière quasi projective X comme des éléments de l'anneau de Chow $\boldsymbol{A}(\boldsymbol{I})$ de \boldsymbol{X}, i. e. comme des classes de cycles pour l'équivalence rationnelle. Cet exposé est inspiré du livre de Hirzebruch d'une part (où les propriétés formelles essentielles caractérisant une théorie des classes de Chern étaient bien mises en évidence), et d'une idée de Chern [2], qui consiste à utiliser

Polar varieties

Let $X \subset \mathbb{P}(V) \cong \mathbb{P}^{n}$ be a projective variety of dimension m, and $L_{k} \subset \mathbb{P}^{n}$ a linear subspace of codimension $m-k+2$.

The k th polar variety of of X (with respect to L_{k}) is

$$
M_{k}:=\overline{\left\{x \in X_{\mathrm{sm}} \mid \operatorname{dim}\left(T_{X, x} \cap L_{k}\right) \geq k-1\right\}}
$$

The classes $\left[M_{k}\right]$ are projective invariants of X : the k th class of a (general) projection of X is the projection of the k th class of X, and the k th class of a (general) linear section is the linear section of the k th class.

UiO : University of Oslo

Mather Chern classes

Define

$$
c_{k}^{M}(X):=\sum_{i=0}^{k}(-1)^{i}\binom{m-i+1}{m-k+1} h^{k-i} \cap\left[M_{i}\right]
$$

where $h:=c_{1}\left(\mathcal{O}_{X}(1)\right)$ denotes the class of a hyperplane section.
Let $\nu: \bar{X} \rightarrow X$ be the Nash transform of X and Ω the Nash cotangent bundle on \bar{X}. Then

$$
c_{k}^{M}(X)=\nu_{*}\left(c_{k}\left(\Omega^{\vee}\right) \cap[\bar{X}]\right)
$$

The Todd-Eger formula

We have

$$
\left[M_{k}\right]=\sum_{i=0}^{k}(-1)^{i}\binom{m-i+1}{m-k+1} h^{k-i} \cap c_{i}^{M}(X) .
$$

It follows that

$$
\sum_{k=0}^{m} h^{m-k} \cap\left[M_{k}\right]=\sum_{i=0}^{m}(-1)^{i}\left(2^{m-i+1}-1\right) h^{m-i} \cap c_{i}^{M}(X)
$$

hence

$$
\sum_{k=0}^{m} \operatorname{deg} M_{k}=\sum_{i=0}^{m}(-1)^{i}\left(2^{m-i+1}-1\right) \operatorname{deg} c_{i}^{M}(X)
$$

Talbot House, Vermont, 1975 or 1976

UiO : University of Oslo

Reciprocal polar varieties

Define polar varieties using conditions on the normal spaces instead of the tangent spaces? ${ }^{1}$

Problem: We have no normal spaces.
Solution: Pretend we are in Euclidean space.
Need to define a linear space orthogonal to a given linear space at a point, of complementary dimension.

[^0]UiO: University of Oslo

Affine space as Euclidean space

Coxeter:
"Kepler's invention of points at infinity made it possible to regard the projective plane as the affine plane plus the line at infinity. A converse relationship was suggested by Poncelet (1822) and von Staudt (1847): regard the affine plane as the projective plane minus an arbitrary line ℓ, and then regard the Euclidean plane as the affine plane with a special rule for associating pairs of points on ℓ (in "perpendicular directions")."
This way we can consider affine space with an added notion of orthogonality (or perpendicularity) as "Euclidean space" (no distance function).

UiO : University of Oslo

Polarity w.r.t. a quadratic form

Let V and V^{\prime} be a vector spaces of dimensions $n+1$ and n, and $V \rightarrow V^{\prime}$ a surjection.
Let $H_{\infty}:=\mathbb{P}\left(V^{\prime}\right) \subset \mathbb{P}(V)$ be the hyperplane at infinity, so $\mathbb{P}(V) \backslash H_{\infty} \cong V^{\prime}$ is affine n-space.

A non-degenerate quadratic form on V^{\prime} gives an isomorphism $V^{\prime} \cong\left(V^{\prime}\right)^{\vee}$ and a non-singular quadric $Q_{\infty} \subset H_{\infty}$.
Let $L^{\prime}=\mathbb{P}(W) \subset \mathbb{P}\left(V^{\prime}\right)$ be a linear space, and set

$$
K:=\operatorname{Ker}\left(\left(V^{\prime}\right)^{\vee} \cong V^{\prime} \rightarrow W\right)
$$

Then $L^{\prime \perp}:=\mathbb{P}\left(K^{\vee}\right) \subset \mathbb{P}\left(V^{\prime}\right)$ is the polar of L^{\prime}.

UiO : University of Oslo

Orthogonality

Given a linear space $L \subset \mathbb{P}(V), L \nsubseteq H_{\infty}$, and $P \in L$. The orthogonal space to L at P is

$$
L_{P}^{\perp}:=\left\langle P,\left(L \cap H_{\infty}\right)^{\perp}\right\rangle .
$$

Example
In \mathbb{P}^{2}, take $H_{\infty}: z=0, Q_{\infty}: x^{2}+y^{2}=0, L: x-2 y-4 z=0$, $P=(2:-1: 1)$.

Then $L \cap H_{\infty}:(2: 1: 0),\left(L \cap H_{\infty}\right)^{\perp}=(1:-2: 0)$, and $L_{P}^{\perp}: 2 x+y-3 z=0$.

UiO : University of Oslo

Porto de Galinho, Easter 1981

UiO : University of Oslo

Euclidean normal spaces

Let $X \subset \mathbb{P}(V)$ be a variety, with $X \nsubseteq H_{\infty}$.
For $P \in X_{\mathrm{sm}} \backslash H_{\infty}$, let $T_{P} X$ denote the tangent space to X at P, and define ${ }^{2}$ the normal space to X at P :

$$
N_{P} X:=\left(T_{P} X\right)_{P}^{\perp} .
$$

The exact sequence

$$
0 \rightarrow \mathcal{N}_{X_{\mathrm{sm}}}(1) \rightarrow V_{X_{\mathrm{sm}}} \rightarrow \mathcal{P}_{X_{\mathrm{sm}}}^{1}(1) \rightarrow 0
$$

extends on the Nash transform $\nu: \bar{X} \rightarrow X$ to

$$
0 \rightarrow \mathcal{N} \rightarrow V_{\bar{X}} \rightarrow \mathcal{P} \rightarrow 0
$$

[^1]UiO: University of Oslo

Euclidean normal bundle

Consider $0 \rightarrow V^{\prime \prime} \rightarrow V \rightarrow V^{\prime} \rightarrow 0\left(\operatorname{dim} V^{\prime \prime}=1\right)$.
Assuming $H_{\infty}=\mathbb{P}\left(V^{\prime}\right)$ is general with respect to X, we get

$$
0 \rightarrow \mathcal{N} \rightarrow V_{\bar{X}}^{\prime} \rightarrow \overline{\mathcal{P}} \rightarrow 0
$$

The polarity in H_{∞} w.r.t. Q_{∞} gives $V^{\prime} \cong\left(V^{\prime}\right)^{\vee}$, so we have

$$
V_{\bar{X}}^{\prime} \cong V_{\bar{X}}^{\prime \vee} \rightarrow \mathcal{N}^{\vee}
$$

whose fibers give the spaces polar to the spaces $T_{P} X \cap H_{\infty}$, and combining $V_{\bar{X}} \rightarrow V_{\bar{X}}^{\prime}$ and $V_{\bar{X}} \rightarrow \mathcal{O}_{\bar{X}}(1)$, we get

$$
V_{\bar{X}} \rightarrow \mathcal{E}:=\mathcal{N}^{\vee} \oplus \mathcal{O}_{\bar{X}}(1)
$$

whose fibers correspond to the Euclidean normal spaces $N_{P} X$.
We call \mathcal{E} the Euclidean normal bundle of X.
UiO : University of Oslo

Bernina Pass, June 1981

UiO : University of Oslo

Reciprocal polar varieties

Instead of imposing conditions on the tangent spaces of a variety, one can similarly impose conditions on the Euclidean normal spaces.
Let $L \subset \mathbb{P}(V), L \nsubseteq H_{\infty}$, have codimension $w, n-m \leq w \leq n$. Set $k=w-(n-m)$ and define reciprocal polar varieties

$$
M_{k}(L)^{\perp}:=\overline{\left\{P \in X_{\mathrm{sm}} \backslash H_{\infty} \mid N_{P} X \cap L \neq \emptyset\right\}}
$$

Then (Porteous' formula) M_{k}^{\perp} have classes

$$
\left[M_{k}^{\perp}\right]=\nu_{*}\left(s_{k}(\mathcal{E}) \cap[\bar{X}]\right)=\nu_{*}\left(\left[s\left(\mathcal{N}^{\vee}\right) s\left(\mathcal{O}_{\bar{X}}(1)\right)\right]_{k} \cap[\bar{X}]\right)
$$

hence, since $s\left(\mathcal{N}^{\vee}\right)=c(\mathcal{P})$,

$$
\left[M_{k}^{\perp}\right]=\sum_{i=0}^{k} h^{k-i} \cap\left[M_{i}\right]
$$

UiO : University of Oslo

Aftermath in Rome: June 21, 1986

UiO: University of Oslo

Toric varieties

The Schwartz-MacPherson Chern class of a toric variety X with orbits $\left\{X_{\alpha}\right\}_{\alpha}$ is equal to (Ehler's formula ${ }^{3}$)

$$
c^{\mathrm{SM}}(X)=\sum_{\alpha}\left[\bar{X}_{\alpha}\right] .
$$

This implies (proof by the definition of $c^{S M}(X)$ and induction on $\operatorname{dim} X)$ that the Mather Chern class of a toric variety X is equal to

$$
c^{\mathrm{M}}(X)=\sum_{\alpha} \operatorname{Eu}_{X}\left(X_{\alpha}\right)\left[\bar{X}_{\alpha}\right]
$$

where $\mathrm{Eu}_{X}\left(X_{\alpha}\right)$ denotes the value of the local Euler obstruction of X at a point in the orbit X_{α}.

[^2]UiO : University of Oslo

Reciprocal polar classes of toric varieties

The polar classes of a toric variety X of dimension m are

$$
\left[M_{k}\right]=\sum_{i=0}^{k}(-1)^{i}\binom{m-i+1}{m-k+1} h^{k-i} \cap \sum_{\alpha} \operatorname{Eu}_{X}\left(X_{\alpha}\right)\left[\bar{X}_{\alpha}\right]
$$

and

$$
\begin{aligned}
{\left[M_{m}^{\perp}\right]=} & \sum_{k=0}^{n} h^{m-k} \sum_{i=0}^{k}(-1)^{i}\binom{m-i+1}{m-k+1} h^{k-i} \cap \sum_{\alpha} \operatorname{Eu}_{X}\left(X_{\alpha}\right)\left[\bar{X}_{\alpha}\right] \\
& =\sum_{i=0}^{n}(-1)^{i}\left(2^{m-i+1}-1\right) h^{m-i} \cap \sum_{\alpha} \operatorname{Eu}_{X}\left(X_{\alpha}\right)\left[\bar{X}_{\alpha}\right]
\end{aligned}
$$

where the second sum in each expression is over α such that $\operatorname{codim} X_{\alpha}=i$.

UiO : University of Oslo

If X is a projective toric variety corresponding to a convex lattice polytope P,

$$
\operatorname{deg} M_{k}=\sum_{i=0}^{k}(-1)^{i}\binom{m-i+1}{m-k+1} \operatorname{Vol}^{i}(P)
$$

(cf. Matsui-Takeuchi) and

$$
\operatorname{deg} M_{m}^{\perp}=\sum_{i=0}^{n}(-1)^{i}\left(2^{m-i+1}-1\right) \operatorname{Vol}^{i}(P)
$$

where $\operatorname{Vol}^{i}(P)$ denotes the sum of the normalized volume of the faces of P of codimension i (cf. Helmer-Sturmfels).

UiO: University of Oslo

Happiness 2011

UiO: University of Oslo

Weighted projective spaces (Nødland)

$\mathbb{P}(1, a, b, c)$ is a threefold with isolated singularities.
$P=\operatorname{Conv}\{(0,0,0),(b c, 0,0),(0, a c, 0),(0,0, a b)\}$.
Volume of $P: \operatorname{Vol}^{0}(P)=a^{2} b^{2} c^{2}$
Area of facets of $P: \operatorname{Vol}^{1}(P)=a b c(1+a+b+c)$
Length of edges of $P: \operatorname{Vol}^{2}(P)=a+b+c+b c+a c+a b$ Number of vertices of $P: \operatorname{Vol}^{3}(P)=4$
Example
$\mathrm{Eu}_{X}(v)=1$ for all vertices of $\mathbb{P}(1,2,3,5)$ (counterexample to a conjecture of Matsui and Takeuchi!).
So the degree of M_{3}^{\perp} is
$a^{2} b^{2} c^{2}+a b c(1+a+b+c)+a+b+c+b c+a c+a b+4=1275$.

UiO : University of Oslo

The Euclidean endpoint map

Consider $\mathbb{P}(\mathcal{E}) \subset \bar{X} \times \mathbb{P}(V)$.
Let $p: \mathbb{P}(\mathcal{E}) \rightarrow \bar{X}$ and $q: \mathbb{P}(\mathcal{E}) \rightarrow \mathbb{P}(V)$ denote the projections on the first and second factor. The map q is called the endpoint map.
Let $A \in \mathbb{P}(V) \backslash H_{\infty}$. Then $p\left(q^{-1}(A)\right)$ is a reciprocal polar variety:

$$
p\left(q^{-1}(A)\right)=\left\{P \in X \mid A \in N_{P} X\right\}=M_{m}(A)^{\perp} .
$$

Hence:

$$
\operatorname{deg} q=\operatorname{deg} M_{m}^{\perp}=\sum_{i=0}^{m} \operatorname{deg} M_{i}
$$

UiO : University of Oslo

Euclidean distance degree

The degree of the endpoint map $q: \mathbb{P}(\mathcal{E}) \rightarrow \mathbb{P}(V)$ is also called the (general) Euclidean distance degree ${ }^{4}$:

$$
\mathrm{E} \operatorname{deg} X=\operatorname{deg} q=\operatorname{deg} M_{m}^{\perp}=\sum_{i=0}^{m} \operatorname{deg} M_{i}
$$

The points in $M_{m}(A)^{\perp}$ are the points $P \in X$ where the line $\langle P, A\rangle$ is orthogonal to the tangent space $T_{P} X$. Hence they are \max / min points for the "distance function" induced by the Euclidean orthogonality defined by the quadric $Q_{\infty} \subset H_{\infty}$.

[^3]UiO : University of Oslo

Rio 2012

UiO : University of Oslo

Hypersurfaces with isolated singularities

If $X \subset \mathbb{P}(V)$ is a smooth hypersurface of degree d, then $\operatorname{deg} M_{k}=d(d-1)^{k}$.

If X has only isolated singularities, then only $\operatorname{deg} M_{n-1}$ is affected, and we get (Teissier, Laumon)

$$
\mathrm{E} \operatorname{deg} X=\frac{d\left((d-1)^{n}-1\right)}{d-2}-\sum_{P \in \operatorname{Sing}(X)}\left(\mu_{P}^{(n)}+\mu_{P}^{(n-1)}\right)
$$

where $\mu_{P}^{(n)}$ is the Milnor number and $\mu_{P}^{(n-1)}$ is the sectional Milnor number of X at P.

UiO : University of Oslo

Surface with ordinary singularities

Assume $X \subset \mathbb{P}(V) \cong \mathbb{P}^{3}$ is a generic projection of a smooth surface of degree d, so that X has ordinary singularities: a double curve of degree ϵ, t triple points, and ν_{2} pinch points. Then (using known formulas for $\operatorname{deg} M_{1}$ and $\operatorname{deg} M_{2}$)
$\mathrm{E} \operatorname{deg} X=\operatorname{deg} X+\operatorname{deg} M_{1}+\operatorname{deg} M_{2}=d^{3}-d^{2}+d-(3 d-2) \epsilon-3 t-2 \nu_{2}$

Example
The Roman Steiner surface: $d=4, \epsilon=3, t=1, \nu_{2}=6$

$$
\mathrm{E} \operatorname{deg} X=7
$$

UiO: University of Oslo

The focal locus

The focal locus Σ_{X} is the branch locus of the map $q: \mathbb{P}(\mathcal{E}) \rightarrow \mathbb{P}(V):$

$$
\Sigma_{X}=\left\{Q \in \mathbb{P}(V) \mid \# q^{-1}(Q)<\operatorname{deg} q\right\}
$$

It is the image of the subscheme R_{X} given by the Fitting ideal $F^{0}\left(\Omega_{\mathbb{P}(\mathcal{E}) / \mathbb{P}(V)}^{1}\right)$, so (if \bar{X} is smooth) its class is

$$
\left[\Sigma_{X}\right]=q_{*}\left(\left(c_{1}\left(\Omega_{\mathbb{P}(\mathcal{E})}^{1}\right)-q^{*} c_{1}\left(\Omega_{\mathbb{P}(V)}^{1}\right)\right) \cap[\mathbb{P}(\mathcal{E})]\right)
$$

UiO : University of Oslo

The focal locus of a hypersurface

Assume $X \subset \mathbb{P}(V)$ and $X^{\vee} \subset \mathbb{P}\left(V^{\vee}\right)$ are hypersurfaces, and Z a common desingularization. Let h_{1} and h_{2} denote the pullbacks of the hyperplane section line bundles to Z. Then $\mathcal{E}=h_{2} \oplus h_{1}$, and $\operatorname{deg} \Sigma_{X}=\left(c_{1}\left(\Omega_{Z}^{1}\right)+c_{1}\left(h_{2}\right)+c_{1}\left(h_{1}\right)\right) s_{n-2}\left(h_{1} \oplus h_{2}\right)+(n-1) s_{n-1}\left(h_{1} \oplus h_{2}\right)$, with $s_{j}\left(h_{1} \oplus h_{2}\right)=\sum_{i=0}^{j} c_{1}\left(h_{1}\right)^{j-i} c_{1}\left(h_{2}\right)^{i}$.

This expression is symmetric in h_{1} and h_{2}, hence

$$
\operatorname{deg} \Sigma_{X}=\operatorname{deg} \Sigma_{X^{\vee}}
$$

UiO: University of Oslo

Example

$X \subset \mathbb{P}(V) \cong \mathbb{P}^{2}$ is a plane curve of degree d. Then the focal locus is the evolute of X, namely the envelope of its normals. Its degree is
$\operatorname{deg}\left(c_{1}\left(\Omega_{Z}^{1}\right)+2 c_{1}\left(h_{1}\right)+2 c_{1}\left(h_{2}\right)\right)=2 g-2+2 \operatorname{deg} X+2 \operatorname{deg} X^{\vee}$
If $X=Z$ is smooth, we get $\operatorname{deg} \Sigma_{X}=3 d(d-1)$.
In the case that X is a "Plücker curve" of degree d having only δ nodes and κ ordinary cusps as singularities, then we obtain the classical formula due to Salmon

$$
\operatorname{deg} \Sigma_{X}=3 d(d-1)-6 \delta-8 \kappa=3 \operatorname{deg} X^{\vee}+\kappa
$$

In fact: $3 \operatorname{deg} X^{\vee}+\kappa=3 \operatorname{deg} X+\iota$, so $\operatorname{deg} \Sigma_{X}=\operatorname{deg} \Sigma_{X^{\vee}}$.

UiO : University of Oslo

Evolutes of parabola and nephroide

UiO : University of Oslo

The focal locus of a smooth hypersurface

Let $X \subset \mathbb{P}(V)$ be a general (smooth) hypersurface ($m=n-1$) of degree d. It is known that in this case $R_{X} \rightarrow \Sigma_{X}$ is birational. We compute

$$
\begin{gathered}
\operatorname{deg} \Sigma_{X}=(n+1) \operatorname{deg} M_{n-1}+2 \sum_{i=1}^{n-2} \operatorname{deg} M_{i} \\
=(n+1) d(d-1)^{n-1}+2 d\left((d-1)^{n-1}-1\right)(d-2)^{-1}
\end{gathered}
$$

which checks with the formula found by Trifogli.

UiO : University of Oslo

[^0]: ${ }^{1}$ Bank-Giusti-Heintz-Pardo, Mork-P.

[^1]: ${ }^{2}$ Catanese-Trifogli

[^2]: ${ }^{3}$ see also Barthel-Brasselet-Fieseler, Maxim-Schürmann, Aluffi

[^3]: ${ }^{4}$ Draisma-Horobet-Ottaviani-Sturmfels-Thomas

