Higher order dual and polar varieties

Ragni Piene

32oㅡ Colóquio Brasileiro de Matemática
IMPA, Rio de Janeiro
July 30, 2019

Osculating spaces

Let $X \subset \mathbb{P}(V) \cong \mathbb{P}^{n}$ be a projective variety of dimension m, and $P \in X$. There is a sequence of osculating spaces to X at P :

$$
\{P\} \subseteq T_{P}=\operatorname{Osc}_{P}^{1} \subseteq \operatorname{Osc}_{P}^{2} \subseteq \operatorname{Osc}_{P}^{3} \subseteq \cdots \subseteq \mathbb{P}^{n}
$$

defined via the sheaves of principal parts: let $m_{k}+1$ denote the generic rank of the k-jet map

$$
j_{k}: V_{X} \rightarrow \mathcal{P}_{X}^{k}(1)
$$

Then $m_{0}=0$ and $m_{1}=m$, and $\operatorname{dim} \operatorname{Osc}_{P}^{k}=\min \left\{n, m_{k}\right\}$.

UiO : University of Oslo

Polar varieties

Let $L_{i} \subset \mathbb{P}^{n}$ be a linear subspace of codimension $m-i+2$.
The i th polar variety of of X (with respect to L_{i}) is

$$
M_{i}:=\overline{\left\{P \in X_{\mathrm{sm}} \mid \operatorname{dim}\left(T_{P} \cap L_{i}\right) \geq i-1\right\}}
$$

The classes $\left[M_{i}\right]$ are projective invariants of X : the i th class of a (general) projection of X is the projection of the i th class of X, and the i th class of a (general) linear section is the linear section of the i th class.

Note that $\operatorname{deg}\left[M_{m}\right]=\operatorname{deg} X^{\vee}$, where $X^{\vee} \subset\left(\mathbb{P}^{n}\right)^{\vee}$ denotes the dual variety of X.

UiO : University of Oslo

Higher order polar varieties

Assume $m_{k}<n$. Let $L_{k, i} \subset \mathbb{P}^{n}$ be a linear subspace of codimension $m_{k}-i+2$.

The i th polar variety of order k of X (with respect to $L_{k, i}$) is

$$
M_{k, i}:=\overline{\left\{P \in X_{k-\mathrm{cst}} \mid \operatorname{dim}\left(\operatorname{Osc}_{P}^{k} \cap L_{i}\right) \geq i-1\right\}}
$$

where $X_{k-\text { cst }} \subseteq X$ denotes the open where the rank of j_{k} is $m_{k}+1$.
The classes $\left[M_{k, i}\right]$ are projective invariants of X, like the usual polar classes, and

$$
\operatorname{deg}\left[M_{k, i}\right]=\operatorname{deg} c_{i}\left(\mathcal{P}^{k}\right)
$$

where \mathcal{P}^{k} denotes the k th osculating bundle of X.

UiO: University of Oslo

Higher order dual varieties

The k th dual variety of X is

$$
X^{(k)}:=\overline{\left\{H \in \mathbb{P}\left(V^{\vee}\right) \mid H \supseteq \operatorname{Osc}_{P}^{k}, P \in X_{k-\mathrm{cst}}\right\}}
$$

Let $\nu^{k}: \widetilde{X}^{k} \rightarrow X$ denote the k th Nash map and $V_{\widetilde{X}^{k}} \rightarrow \mathcal{P}^{k}$ the corresponding $\left(m_{k}+1\right)$-quotient. We call \mathcal{P}^{k} the k th order osculating bundle. Then

$$
\operatorname{deg} X^{(k)}=\operatorname{deg}\left[M_{k, m}\right]=c_{m}\left(\mathcal{P}^{k}\right)
$$

(provided $X^{(k)}$ is of the expected dimension $n+m-m_{k}-1$).

UiO : University of Oslo

k-jet spanned varieties

A variety is k-jet spanned if the k th jet map is surjective, i.e., if $\mathcal{P}^{k}=\mathcal{P}_{X}^{k}(1)$.

Example

(Dickenstein-Di Rocco-P.)
Let

$$
X=\mathbb{P}(\mathcal{O}(a) \oplus \mathcal{O}(b) \oplus \mathcal{O}(c)) \rightarrow \mathbb{P}^{1}
$$

be a \mathbb{P}^{2}-bundle, with $a, b, c \geq 1$, embedded by $\mathcal{O}_{X}(2)$. Then X is 2 -jet spanned, and

$$
\begin{aligned}
\operatorname{deg} X^{\vee} & =6(2(a+b+c)-1) \\
\operatorname{deg} X^{(2)} & =6(8(a+b+c)-7)
\end{aligned}
$$

UiO: University of Oslo

Polarity with respect to a quadratic form

Let V and V^{\prime} be a vector spaces of dimensions $n+1$ and n, and $V \rightarrow V^{\prime}$ a surjection.
Let $H_{\infty}:=\mathbb{P}\left(V^{\prime}\right) \subset \mathbb{P}(V)$ be the hyperplane at infinity, so $\mathbb{P}(V) \backslash H_{\infty} \cong V^{\prime}$ is affine n-space.

A non-degenerate quadratic form on V^{\prime} gives an isomorphism $V^{\prime} \cong\left(V^{\prime}\right)^{\vee}$ and a non-singular quadric $Q_{\infty} \subset H_{\infty}$.
Let $L^{\prime}=\mathbb{P}(W) \subset \mathbb{P}\left(V^{\prime}\right)$ be a linear space, and set

$$
K:=\operatorname{Ker}\left(\left(V^{\prime}\right)^{\vee} \cong V^{\prime} \rightarrow W\right)
$$

Then $L^{\prime \perp}:=\mathbb{P}\left(K^{\vee}\right) \subset \mathbb{P}\left(V^{\prime}\right)$ is the polar of L^{\prime}.

UiO: University of Oslo

Orthogonality

Given a linear space $L \subset \mathbb{P}(V), L \nsubseteq H_{\infty}$, and $P \in L$. The orthogonal space to L at P is

$$
L_{P}^{\perp}:=\left\langle P,\left(L \cap H_{\infty}\right)^{\perp}\right\rangle .
$$

Example
In \mathbb{P}^{2}, take $H_{\infty}: z=0, Q_{\infty}: x^{2}+y^{2}=0, L: x-2 y-4 z=0$, $P=(2:-1: 1)$.

Then $L \cap H_{\infty}:(2: 1: 0),\left(L \cap H_{\infty}\right)^{\perp}=(1:-2: 0)$, and $L_{P}^{\perp}: 2 x+y-3 z=0$.

UiO : University of Oslo

Higher order Euclidean normal spaces

Assume $X \subset \mathbb{P}(V)$ with $X \nsubseteq H_{\infty}$, and $m_{k}<n$.
For $P \in X_{k-\mathrm{cst}} \backslash H_{\infty}$, define the k th order normal space to X at P :

$$
N_{P}^{k}:=\left(\operatorname{Osc}_{P}^{k}\right) \frac{1}{P}
$$

Set $\mathcal{K}^{k}:=\operatorname{Ker}\left(V_{\widetilde{X}^{k}} \rightarrow \mathcal{P}^{k}\right)$ so that

$$
0 \rightarrow \mathcal{K}^{k} \rightarrow V_{\widetilde{X}^{k}} \rightarrow \mathcal{P}^{k} \rightarrow 0
$$

is exact.

UiO : University of Oslo

Higher order Euclidean normal bundle

Consider $0 \rightarrow V^{\prime \prime} \rightarrow V \rightarrow V^{\prime} \rightarrow 0\left(\operatorname{dim} V^{\prime \prime}=1\right)$.
Assuming $H_{\infty}=\mathbb{P}\left(V^{\prime}\right)$ is general with respect to X, we get

$$
0 \rightarrow \mathcal{K}^{k} \rightarrow V_{\widetilde{X}^{k}}^{\prime} \rightarrow \overline{\mathcal{P}}^{k} \rightarrow 0
$$

The polarity in H_{∞} w.r.t. Q_{∞} gives $V^{\prime} \cong\left(V^{\prime}\right)^{\vee}$, so we have

$$
V_{\tilde{X}^{k}}^{\prime} \cong V_{\tilde{X}^{k}}^{\prime V} \rightarrow\left(\mathcal{K}^{k}\right)^{\vee}
$$

whose fibers give the spaces polar to the spaces $\operatorname{Osc}_{P}^{k} \cap H_{\infty}$, and combining $V_{\widetilde{X}^{k}} \rightarrow V_{\widetilde{X}^{k}}^{\prime}$ and $V_{\widetilde{X}^{k}} \rightarrow \mathcal{O}_{\widetilde{X}^{k}}(1)$, we get

$$
V_{\widetilde{X}^{k}} \rightarrow \mathcal{E}^{k}:=\left(\mathcal{K}^{k}\right)^{\vee} \oplus \mathcal{O}_{\widetilde{X}^{k}}(1)
$$

whose fibers correspond to the k th order Euclidean normal spaces N_{P}^{k}. We call \mathcal{E}^{k} the k th order Euclidean normal bundle.

UiO : University of Oslo

Higher order reciprocal polar varieties

Impose conditions on the higher order Euclidean normal spaces instead of on the osculating spaces :
For $i=0, \ldots, m$, let $L_{i} \subset \mathbb{P}(V), L_{i} \nsubseteq H_{\infty}$, have codimension $n-m_{k}+i$. Define k th order reciprocal polar varieties

$$
M_{k, i}(L)^{\perp}:=\overline{\left\{P \in X_{k-\mathrm{cst}} \backslash H_{\infty} \mid N_{P}^{k} \cap L_{i} \neq \emptyset\right\}} .
$$

By Porteous' formula, $M_{k, i}(L)^{\perp}$ have classes

$$
\left[M_{k, i}^{\perp}\right]=\nu_{*}^{k}\left(s_{i}\left(\mathcal{E}^{k}\right) \cap\left[\widetilde{X}^{k}\right]\right)=\nu_{*}^{k}\left(\left[s\left(\left(\mathcal{K}^{k}\right)^{\vee}\right) s\left(\mathcal{O}_{\widetilde{X}^{k}}(1)\right)\right]_{i} \cap\left[\widetilde{X}^{k}\right]\right)
$$

hence, since $s\left(\left(\mathcal{K}^{k}\right)^{\vee}\right)=c\left(\mathcal{P}^{k}\right)$ and
$s\left(\mathcal{O}_{\widetilde{X}^{k}}(1)\right)=1+c_{1}\left(\mathcal{O}_{\widetilde{X}^{k}}(1)\right)+c_{1}\left(\mathcal{O}_{\widetilde{X}^{k}}(1)\right)^{2}+\cdots$,

$$
\left[M_{k, i}^{\perp}\right]=\sum_{j=0}^{i} h^{i-j} \cap\left[M_{k, j}\right]
$$

UiO: University of Oslo

The Euclidean distance degree

Note that

$$
M_{1, i}^{\perp}=M_{i}^{\perp}
$$

and that

$$
\operatorname{deg}\left[M_{1, m}^{\perp}\right]=\operatorname{deg}\left[M_{m}^{\perp}\right]=\sum_{j=0}^{m} \operatorname{deg}\left[M_{j}\right]
$$

is the Euclidean distance degree.

Curves

Let $X \subset \mathbb{P}(V) \cong \mathbb{P}^{n}$ be a curve. At a general point $P \in X$ we have a complete flag:

$$
\{P\} \subseteq T_{P}=\operatorname{Osc}_{P}^{1} \subset \operatorname{Osc}_{P}^{2} \subset \operatorname{Osc}_{P}^{3} \subset \cdots \subset \operatorname{Osc}_{P}^{n-1} \subset \mathbb{P}^{n}
$$

In this case $\widetilde{X}^{k}=\widetilde{X}$ is the normalization of $X, m_{k}=k$, $\operatorname{dim} L_{1}=n-k-1$, and $M_{k, 1}$ is the set of points which maps to k th hyperosculating points on the image of X under the linear projection $\mathbb{P}^{n} \rightarrow \mathbb{P}^{k}$. We get

- $\operatorname{deg}\left[M_{k, 1}\right]=c_{1}\left(\mathcal{P}^{k}\right)=r_{k}$, the k th rank of X, which is also equal to the degree of the k th associated curve of X.
- $\operatorname{deg}\left[M_{k, 1}^{\perp}\right]=\operatorname{deg}\left[M_{k, 0}\right]+\operatorname{deg}\left[M_{k, 1}\right]=r_{0}+r_{k}$, where $r_{0}=\operatorname{deg} X$.

UiO : University of Oslo

Examples

- If $X \subset \mathbb{P}^{n}$ is a rational normal curve, $\operatorname{deg}\left[M_{k, 1}\right]=r_{k}=(k+1)(n-k)$ $\operatorname{deg}\left[M_{k, 1}^{\perp}\right]=r_{0}+r_{k}=n+(k+1)(n-k)$.
Note that X is $(n-1)$-self dual: $X^{(n-1)} \subset\left(\mathbb{P}^{n}\right)^{\vee}$ is a rational normal curve.
- Dye's special curve: a curve of degree 8 and genus 5 .

Take $X=S_{1} \cap S_{2} \cap S_{3} \subset \mathbb{P}^{4}$, with S_{i} Fermat quadrics. Then $r_{0}=8, r_{1}=24, r_{2}=48$, and $r_{3}=40$. The curve is canonical and has 40 Weierstrass points, all of weight 3.

Rational normal scrolls (Dickenstein, P., Sacchiero)

Let $X \subset \mathbb{P}^{n}$ be a rational normal scroll of dimension m and type $\left(d_{1}, \ldots, d_{m}\right)$, where $n+1=\sum_{1}^{m}\left(d_{i}+1\right)$.
If $k \leq \min \left\{d_{1}, \ldots, d_{m}\right\}$, then $\operatorname{dim} X^{(k)}=n+1-k m$ and $\operatorname{deg} X^{(k)}=\operatorname{deg}\left[M_{k, m}\right]=k d-k(k-1) m$, where $d=\sum_{1}^{m} d_{i}$ is the degree of X.

Example

Take $m=3$ and $d_{1}=d_{2}=d_{3}=2$, so that $n=8$ and $d=6$. Then for $k=2, \operatorname{dim} X^{(2)}=3$ and $\operatorname{deg} X^{(2)}=\operatorname{deg}\left[M_{2,3}\right]=6$. Indeed, X is 2-self dual: $X^{(2)}$ is a rational normal scroll of the same type as X. (This holds for any balanced rational normal scroll.)

UiO : University of Oslo

Toric varieties (Dickenstein-Di Rocco-P.)

- $m=2$: Convex smooth lattice polygon $\Pi \subset \mathbb{R}^{2}$, with (lattice) area a, edge lengths e, and number of vertices v. If all edge lengths are $\geq k$, then the corresponding projective toric variety X has

$$
\operatorname{deg}\left[M_{k, 2}\right]=\binom{k+3}{4}\left(3 a-2 k e-\frac{1}{3}\left(k^{2}-4\right) v+4\left(k^{2}-1\right)\right) .
$$

- $m=3$: In a similar situation, we get (setting w to be the lattice volume of the polytope Π),

$$
\operatorname{deg}\left[M_{2,3}\right]=62 w-57 a+28 e-8 v+58 w_{0}+51 a_{0}+20 e_{0}
$$

where w_{0}, a_{0}, e_{0} are the lattice volumes for the adjoint polytope $\Pi_{0}:=\operatorname{Conv}\left(\operatorname{int}(\Pi) \cap \mathbb{Z}^{3}\right)$.

UiO : University of Oslo

Singular toric varieties

If X is a projective toric variety (Matsui-Takeuchi),

$$
\left[M_{i}\right]=\sum_{j=0}^{i}(-1)^{j}\binom{m-j+1}{m-i+1} h^{i-j} \cap \sum_{\alpha} \operatorname{Eu}_{X}\left(X_{\alpha}\right)\left[\bar{X}_{\alpha}\right]
$$

where the X_{α} are the orbits of codimension j and $\mathrm{Eu}_{X}\left(X_{\alpha}\right)$ denotes the value of the local Euler obstruction of X at a point in X_{α}.

Question: Find similar expressions for the higher order polar classes $\left[M_{k, i}\right]$.

UiO: University of Oslo

Toric linear projections and sections

Let $\mathcal{A}=\left(a_{0}, \ldots, a_{n}\right) \subset \mathbb{Z}^{m}$ be a lattice point configuration and let $X_{\mathcal{A}} \subset \mathbb{P}^{n}$ denote the corresponding toric embedding. Let \mathcal{A}^{\prime} be a lattice point configuration obtained from \mathcal{A} by removing r points. Then the toric embedding $X_{\mathcal{A}^{\prime}} \subset \mathbb{P}^{n^{\prime}}$, where $n^{\prime}=n-r$, is the toric linear projection of $X_{\mathcal{A}}$ with center equal to the linear span of the "removed points".

A toric hyperplane section of $X_{\mathcal{A}}$ is obtained by taking a hyperplane in \mathbb{Z}^{m} and "collapsing" the point configuration \mathcal{A} into this lattice hyperplane in such a way that one point is "lost": two points map to the same point.

UiO : University of Oslo

The degree 6 Del Pezzo surface

- As a hyperplane section:

Let $\mathcal{A} \subset \mathbb{Z}^{3}$ be the vertices of the unit cube. Collapse the cube in a plane by identifying the opposite vertices $(1,1,1)$ and $(0,0,0)$. This gives a hexagon with one interior point. So this hyperplane section of $\left(\mathbb{P}^{1}\right)^{3} \subset \mathbb{P}^{7}$ is the Del Pezzo surface $X \subset \mathbb{P}^{6}$ of degree 6 .

- As a projection:

Let $\mathcal{A} \subset \mathbb{Z}^{2}$ be the lattice points of the square with sides of length 2. Project $X_{\mathcal{A}} \subset \mathbb{P}^{8}$ from the points corresponding to the vertices $(2,0)$ and $(0,2)$. The projected surface is the Del Pezzo surface $X \subset \mathbb{P}^{6}$ of degree 6 .

UiO : University of Oslo

Togliatti's surface

The lattice points defining Togliatti's surface $\bar{X} \subset \mathbb{P}^{5}$ are those of the Del Pezzo hexagon, with the interior point deleted. The 2nd order osculating spaces to X all pass through one point, namely the point corresponding to the interior point of the hexagon. So the (general) 2nd order osculating spaces of \bar{X} have dimension 4, not 5 .

The Togliatti surface is 2 -self dual, so

$$
\operatorname{deg}\left[M_{2,2}\right]=\operatorname{deg} \bar{X}^{(2)}=\operatorname{deg} \bar{X}=6 .
$$

UiO: University of Oslo

Thank you for your attention!

