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Osculating spaces

Let X C P(V) = P™ be a projective variety of dimension m, and
P € X. There is a sequence of osculating spaces to X at P:

{P}CTp= Osc}; - OSC%: C Osc?j; c...cp,

defined via the sheaves of principal parts: let my + 1 denote the
generic rank of the k-jet map

Je: Vx = PE(1).

Then mg = 0 and my = m, and dim Osck = min{n,m;}.
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Polar varieties

Let L; C P™ be a linear subspace of codimension m — i + 2.

The ith polar variety of of X (with respect to L;) is

M; = {P € Xem | dlm(TP N Ll) > — 1}

The classes [M;] are projective invariants of X: the ith class of a
(general) projection of X is the projection of the ith class of X,
and the ith class of a (general) linear section is the linear
section of the ith class.

Note that deg[M,,] = deg XV, where XV C (P")V denotes the
dual variety of X.
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Higher order polar varieties

Assume my, < n. Let Ly ; C P" be a linear subspace of
codimension my — i + 2.

The ith polar variety of order k of X (with respect to Ly ;) is

My = {P € Xp_cst | dim(Osch, NL;) > i — 1},

where Xj_ st € X denotes the open where the rank of j is
my + 1.

The classes [M}, ;] are projective invariants of X, like the usual
polar classes, and

deg[My,;] = deg c;(P*),

where P* denotes the kth osculating bundle of X.
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Higher order dual varieties

The kth dual variety of X is

X% .= {H e P(VV)|H 2 Osclh, P € Xp_est}-

Let v*: X* — X denote the kth Nash map and Vg, — PF the
corresponding (my, + 1)-quotient. We call P* the kth order
osculating bundle. Then

deg XM = deg[Mj,n] = cm(P")

(provided X ®) is of the expected dimension n 4 m — my, — 1).
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k-jet spanned varieties

A variety is k-jet spanned if the kth jet map is surjective, i.e., if
P =PL(1).

Example

(Dickenstein-Di Rocco-P.)
Let
X =P(O(a) ® O(b) ® O(c)) — P*

be a P2-bundle, with a,b,c > 1, embedded by Ox(2). Then X is
2-jet spanned, and

deg XV =6(2(a+b+c)—1)

deg X = 6(8(a+b+c) — 7).
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Polarity with respect to a quadratic form

Let V and V' be a vector spaces of dimensions n + 1 and n, and
V — V' a surjection.

Let Hy, :=P(V') C P(V) be the hyperplane at infinity, so
P(V) N\ Hoo = V' is affine n-space.

A non-degenerate quadratic form on V' gives an isomorphism
V' = (V') and a non-singular quadric Qs C Hoo.

Let L' =P(W) C P(V’) be a linear space, and set
K :=Ker(V)V 2V = W).

Then L'+ :=P(K") C P(V') is the polar of L'.
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Orthogonality

Given a linear space L C P(V), L ¢ Hy, and P € L. The
orthogonal space to L at P is

Lt = (P,(L N Hy)b).

Example

InP? take Hy : 2 =0, Qoo : 2> + 4> =0, L:2 —2y — 42 =0,
P=(2:-1:1).

Then LN Hyo : (2:1:0), (LN Hyo)t = (1:—2:0), and
Ly:2z+y—32=0.
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Higher order Fuclidean normal spaces

Assume X C P(V) with X ¢ H, and my, < n.

For P € X;_ .t ™ Hy, define the kth order normal space to X
at P:
N§ = (Osch)p.

Set KF := Ker(V, — P*) so that
0 KF 5 Ve - PF =0

is exact.
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Higher order Fuclidean normal bundle
Consider 0 > V" -V - V' - 0 (dim V" =1).

Assuming Ho, = P(V’) is general with respect to X, we get
k =k
0= K" =V =P —0.
The polarity in Hoo w.r.t. Qoo gives V' 2 (V)Y so we have

Vi, =2 Ve — (KF)Y

whose fibers give the spaces polar to the spaces Osc’fg NHs, and

combining Vg, — V)’?k and Vg, — O (1), we get

Ve = EF = (K")Y @ 05, (1)

whose fibers correspond to the kth order Euclidean normal
spaces N}%. We call £F the kth order Euclidean normal bundle.
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Higher order reciprocal polar varieties

Impose conditions on the higher order Euclidean normal spaces
instead of on the osculating spaces :

Fori=0,...,m,let L; CP(V), L; € Hu, have codimension
n —my + 1. Define kth order reciprocal polar varieties

My i(L)F := {P € Xg_cst ~ Hoo| NEN L; # 0}.
By Porteous’ formula, M,ym-(L)L have classes
(M) = vE(si(EF) N [XF) = v ([s((KF)Y)s(O i (1)) 0 [XH]),

hence, since s((K¥)) = ¢(P*) and
$(05:(1)) =14 c1(05, (1) + 1O (1)2 + -+,

%
1 .
[Miz] =D W7 0 [My).
7=0
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The Euclidean distance degree

Note that
Mi; = M;-

and that
deg[Ml ] = deg[ML] = Z deg[M

is the Euclidean distance degree.
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Curves
Let X C P(V) = P"™ be a curve. At a general point P € X we
have a complete flag:

{P} C Tp = Oscp C Osch C Oscp C -+~ C Osclp b C P

In this case X*¥ = X is the normalization of X, mp =k,
dim Ly =n —k — 1, and M}, ; is the set of points which maps to
kth hyperosculating points on the image of X under the linear
projection P* — P*. We get
> deg[My 1] = c1(P¥) = ry, the kth rank of X, which is also
equal to the degree of the kth associated curve of X.
> deg[M,ﬂ:l] = deg[Mj; o] + deg[M}, 1] = ro + ), where
ro = deg X.
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Examples

> If X C P"is a rational normal curve,
deg[My 1] =1, = (k+1)(n —k)
deg[M\] =ro + 7 =n+ (k+1)(n — k).

Note that X is (n — 1)-self dual: X1 c (P")Y is a
rational normal curve.

» Dye’s special curve: a curve of degree 8 and genus 5.
Take X = S1 N Sy N S3 C P4, with S; Fermat quadrics.
Then rg = 8, r1 = 24, ro = 48, and r3 = 40. The curve is
canonical and has 40 Weierstrass points, all of weight 3.
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Rational normal scrolls (Dickenstein, P., Sacchiero)

Let X C P” be a rational normal scroll of dimension m and
type (di,...,dn), where n+1=3"71"(d; + 1).

If K <min{dy,...,dy}, then dim X*) =n + 1 — km and
deg X*) = deg[My, ] = kd — k(k — 1)m, where d = 7" d; is
the degree of X.

Example

Take m = 3 and dy = dy = d3 = 2, so that n = 8 and d = 6.
Then for k = 2, dim X?) = 3 and deg X® = deg[M> 3] = 6.

Indeed, X is 2-self dual: X@ is a rational normal scroll of the
same type as X. (This holds for any balanced rational normal
scroll.)
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Toric varieties (Dickenstein-Di Rocco—P.)

» m = 2: Convex smooth lattice polygon II C R?, with
(lattice) area a, edge lengths e, and number of vertices v. If
all edge lengths are > k, then the corresponding projective
toric variety X has

E+3

deg[M}, o] = ( 4

)(3@ — 2ke — é(/f2 — 4w+ 4(k* - 1)).

» m = 3: In a similar situation, we get (setting w to be the
lattice volume of the polytope II),

deg[Mgg,] = 62w — 57a + 28e — 8v + 58wy + Hlag + 20¢,

where wy, ag, eg are the lattice volumes for the adjoint
polytope Iy := Conv(int(IT) N Z3).
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Singular toric varieties

If X is a projective toric variety (Matsui—Takeuchi),

0] = 3 (-1 (m —it 1>h,._j 1Y Buy (X)X,

= m—1+1

where the X, are the orbits of codimension j and Eux(X4)
denotes the value of the local Euler obstruction of X at a point
in X,.

Question: Find similar expressions for the higher order polar
classes [M}, ;).
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Toric linear projections and sections

Let A = (ag,...,a,) C Z™ be a lattice point configuration and
let X4 C P denote the corresponding toric embedding. Let A’
be a lattice point configuration obtained from 4 by removing r
points. Then the toric embedding X 4, C ]P’"/, where n/ =n —r,
is the toric linear projection of X 4 with center equal to the
linear span of the “removed points”.

A toric hyperplane section of X 4 is obtained by taking a
hyperplane in Z™ and “collapsing” the point configuration A
into this lattice hyperplane in such a way that one point is
“lost”: two points map to the same point.
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The degree 6 Del Pezzo surface

> As a hyperplane section:
Let A C Z? be the vertices of the unit cube. Collapse the
cube in a plane by identifying the opposite vertices (1,1, 1)
and (0,0,0). This gives a hexagon with one interior point.
So this hyperplane section of (P1)? C P7 is the Del Pezzo
surface X C PS of degree 6.

» As a projection:
Let A C Z? be the lattice points of the square with sides of
length 2. Project X4 C P® from the points corresponding
to the vertices (2,0) and (0,2). The projected surface is the
Del Pezzo surface X C PS of degree 6.
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Togliatti’s surface

The lattice points defining Togliatti’s surface X C P® are those
of the Del Pezzo hexagon, with the interior point deleted. The
2nd order osculating spaces to X all pass through one point,
namely the point corresponding to the interior point of the
hexagon. So the (general) 2nd order osculating spaces of X have
dimension 4, not 5.

The Togliatti surface is 2-self dual, so

deg[Ms ] = dng(Q) =deg X = 6.
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