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Osculating spaces

Let X ⊂ P(V ) ∼= Pn be a projective variety of dimension m, and
P ∈ X. There is a sequence of osculating spaces to X at P :

{P} ⊆ TP = Osc1P ⊆ Osc2P ⊆ Osc3P ⊆ · · · ⊆ Pn,

defined via the sheaves of principal parts: let mk + 1 denote the
generic rank of the k-jet map

jk : VX → PkX(1).

Then m0 = 0 and m1 = m, and dim OsckP = min{n,mk}.



Polar varieties
Let Li ⊂ Pn be a linear subspace of codimension m− i+ 2.

The ith polar variety of of X (with respect to Li) is

Mi := {P ∈ Xsm | dim(TP ∩ Li) ≥ i− 1}.

The classes [Mi] are projective invariants of X: the ith class of a
(general) projection of X is the projection of the ith class of X,
and the ith class of a (general) linear section is the linear
section of the ith class.

Note that deg[Mm] = degX∨, where X∨ ⊂ (Pn)∨ denotes the
dual variety of X.



Higher order polar varieties
Assume mk < n. Let Lk,i ⊂ Pn be a linear subspace of
codimension mk − i+ 2.

The ith polar variety of order k of X (with respect to Lk,i) is

Mk,i := {P ∈ Xk−cst | dim(OsckP ∩Li) ≥ i− 1},

where Xk−cst ⊆ X denotes the open where the rank of jk is
mk + 1.

The classes [Mk,i] are projective invariants of X, like the usual
polar classes, and

deg[Mk,i] = deg ci(Pk),

where Pk denotes the kth osculating bundle of X.



Higher order dual varieties

The kth dual variety of X is

X(k) := {H ∈ P(V ∨)|H ⊇ OsckP , P ∈ Xk−cst}.

Let νk : X̃k → X denote the kth Nash map and V
X̃k → Pk the

corresponding (mk + 1)-quotient. We call Pk the kth order
osculating bundle. Then

degX(k) = deg[Mk,m] = cm(Pk)

(provided X(k) is of the expected dimension n+m−mk − 1).



k-jet spanned varieties
A variety is k-jet spanned if the kth jet map is surjective, i.e., if
Pk = PkX(1).

Example
(Dickenstein–Di Rocco–P.)
Let

X = P(O(a)⊕O(b)⊕O(c))→ P1

be a P2-bundle, with a, b, c ≥ 1, embedded by OX(2). Then X is
2-jet spanned, and

degX∨ = 6(2(a+ b+ c)− 1)

degX(2) = 6(8(a+ b+ c)− 7).



Polarity with respect to a quadratic form

Let V and V ′ be a vector spaces of dimensions n+ 1 and n, and
V → V ′ a surjection.

Let H∞ := P(V ′) ⊂ P(V ) be the hyperplane at infinity, so
P(V ) rH∞ ∼= V ′ is affine n-space.

A non-degenerate quadratic form on V ′ gives an isomorphism
V ′ ∼= (V ′)∨ and a non-singular quadric Q∞ ⊂ H∞.

Let L′ = P(W ) ⊂ P(V ′) be a linear space, and set

K := Ker((V ′)∨ ∼= V ′ →W ).

Then L′⊥ := P(K∨) ⊂ P(V ′) is the polar of L′.



Orthogonality

Given a linear space L ⊂ P(V ), L * H∞, and P ∈ L. The
orthogonal space to L at P is

L⊥P := 〈P, (L ∩H∞)⊥〉.

Example
In P2, take H∞ : z = 0, Q∞ : x2 + y2 = 0, L : x− 2y − 4z = 0,
P = (2 : −1 : 1).

Then L ∩H∞ : (2 : 1 : 0), (L ∩H∞)⊥ = (1 : −2 : 0), and
L⊥P : 2x+ y − 3z = 0.



Higher order Euclidean normal spaces

Assume X ⊂ P(V ) with X * H∞, and mk < n.

For P ∈ Xk−cst rH∞, define the kth order normal space to X
at P :

Nk
P := (OsckP )⊥P .

Set Kk := Ker(V
X̃k → Pk) so that

0→ Kk → V
X̃k → Pk → 0

is exact.



Higher order Euclidean normal bundle
Consider 0→ V ′′ → V → V ′ → 0 (dimV ′′ = 1).

Assuming H∞ = P(V ′) is general with respect to X, we get

0→ Kk → V ′
X̃k → P

k → 0.

The polarity in H∞ w.r.t. Q∞ gives V ′ ∼= (V ′)∨, so we have

V ′
X̃k
∼= V ′∨

X̃k → (Kk)∨

whose fibers give the spaces polar to the spaces OsckP ∩H∞, and
combining V

X̃k → V ′
X̃k

and V
X̃k → OX̃k(1), we get

V
X̃k → Ek := (Kk)∨ ⊕O

X̃k(1)

whose fibers correspond to the kth order Euclidean normal
spaces Nk

P . We call Ek the kth order Euclidean normal bundle.



Higher order reciprocal polar varieties
Impose conditions on the higher order Euclidean normal spaces
instead of on the osculating spaces :

For i = 0, . . . ,m, let Li ⊂ P(V ), Li * H∞, have codimension
n−mk + i. Define kth order reciprocal polar varieties

Mk,i(L)⊥ := {P ∈ Xk−cst rH∞|Nk
P ∩ Li 6= ∅}.

By Porteous’ formula, Mk,i(L)⊥ have classes

[M⊥k,i] = νk∗ (si(Ek) ∩ [X̃k]) = νk∗
(
[s((Kk)∨)s(O

X̃k(1))]i ∩ [X̃k]
)
,

hence, since s((Kk)∨) = c(Pk) and
s(O

X̃k(1)) = 1 + c1(OX̃k(1)) + c1(OX̃k(1))2 + · · · ,

[M⊥k,i] =

i∑
j=0

hi−j ∩ [Mk,j ].



The Euclidean distance degree

Note that
M⊥1,i = M⊥i

and that

deg[M⊥1,m] = deg[M⊥m] =

m∑
j=0

deg[Mj ]

is the Euclidean distance degree.



Curves
Let X ⊂ P(V ) ∼= Pn be a curve. At a general point P ∈ X we
have a complete flag:

{P} ⊆ TP = Osc1P ⊂ Osc2P ⊂ Osc3P ⊂ · · · ⊂ Oscn−1P ⊂ Pn.

In this case X̃k = X̃ is the normalization of X, mk = k,
dimL1 = n− k − 1, and Mk,1 is the set of points which maps to
kth hyperosculating points on the image of X under the linear
projection Pn → Pk. We get

I deg[Mk,1] = c1(Pk) = rk, the kth rank of X, which is also
equal to the degree of the kth associated curve of X.

I deg[M⊥k,1] = deg[Mk,0] + deg[Mk,1] = r0 + rk, where
r0 = degX.



Examples

I If X ⊂ Pn is a rational normal curve,
deg[Mk,1] = rk = (k + 1)(n− k)
deg[M⊥k,1] = r0 + rk = n+ (k + 1)(n− k).

Note that X is (n− 1)-self dual: X(n−1) ⊂ (Pn)∨ is a
rational normal curve.

I Dye’s special curve: a curve of degree 8 and genus 5.

Take X = S1 ∩ S2 ∩ S3 ⊂ P4, with Si Fermat quadrics.
Then r0 = 8, r1 = 24, r2 = 48, and r3 = 40. The curve is
canonical and has 40 Weierstrass points, all of weight 3.



Rational normal scrolls (Dickenstein, P., Sacchiero)
Let X ⊂ Pn be a rational normal scroll of dimension m and
type (d1, . . . , dm), where n+ 1 =

∑m
1 (di + 1).

If k ≤ min{d1, . . . , dm}, then dimX(k) = n+ 1− km and
degX(k) = deg[Mk,m] = kd− k(k − 1)m, where d =

∑m
1 di is

the degree of X.

Example
Take m = 3 and d1 = d2 = d3 = 2, so that n = 8 and d = 6.
Then for k = 2, dimX(2) = 3 and degX(2) = deg[M2,3] = 6.

Indeed, X is 2-self dual: X(2) is a rational normal scroll of the
same type as X. (This holds for any balanced rational normal
scroll.)



Toric varieties (Dickenstein–Di Rocco–P.)
I m = 2: Convex smooth lattice polygon Π ⊂ R2, with

(lattice) area a, edge lengths e, and number of vertices v. If
all edge lengths are ≥ k, then the corresponding projective
toric variety X has

deg[Mk,2] =

(
k + 3

4

)
(3a− 2ke− 1

3
(k2 − 4)v + 4(k2 − 1)).

I m = 3: In a similar situation, we get (setting w to be the
lattice volume of the polytope Π),

deg[M2,3] = 62w − 57a+ 28e− 8v + 58w0 + 51a0 + 20e0,

where w0, a0, e0 are the lattice volumes for the adjoint
polytope Π0 := Conv(int(Π) ∩ Z3).



Singular toric varieties

If X is a projective toric variety (Matsui–Takeuchi),

[Mi] =

i∑
j=0

(−1)j
(
m− j + 1

m− i+ 1

)
hi−j ∩

∑
α

EuX(Xα)[Xα],

where the Xα are the orbits of codimension j and EuX(Xα)
denotes the value of the local Euler obstruction of X at a point
in Xα.

Question: Find similar expressions for the higher order polar
classes [Mk,i].



Toric linear projections and sections

Let A = (a0, . . . , an) ⊂ Zm be a lattice point configuration and
let XA ⊂ Pn denote the corresponding toric embedding. Let A′
be a lattice point configuration obtained from A by removing r
points.Then the toric embedding XA′ ⊂ Pn′ , where n′ = n− r,
is the toric linear projection of XA with center equal to the
linear span of the “removed points”.

A toric hyperplane section of XA is obtained by taking a
hyperplane in Zm and “collapsing” the point configuration A
into this lattice hyperplane in such a way that one point is
“lost”: two points map to the same point.



The degree 6 Del Pezzo surface

I As a hyperplane section:
Let A ⊂ Z3 be the vertices of the unit cube. Collapse the
cube in a plane by identifying the opposite vertices (1, 1, 1)
and (0, 0, 0). This gives a hexagon with one interior point.
So this hyperplane section of (P1)3 ⊂ P7 is the Del Pezzo
surface X ⊂ P6 of degree 6.

I As a projection:
Let A ⊂ Z2 be the lattice points of the square with sides of
length 2. Project XA ⊂ P8 from the points corresponding
to the vertices (2, 0) and (0, 2). The projected surface is the
Del Pezzo surface X ⊂ P6 of degree 6.



Togliatti’s surface

The lattice points defining Togliatti’s surface X ⊂ P5 are those
of the Del Pezzo hexagon, with the interior point deleted. The
2nd order osculating spaces to X all pass through one point,
namely the point corresponding to the interior point of the
hexagon. So the (general) 2nd order osculating spaces of X have
dimension 4, not 5.

The Togliatti surface is 2-self dual, so

deg[M2,2] = degX
(2)

= degX = 6.



Thank you for your attention!


