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Plane curves
The space of plane curves of degree d is PN , N =

(
d+2

2

)
− 1. Let

nr(d) denote the number of plane curves of degree d with r
nodes that pass through N − r points. Equivalently, nr(d) is the
number of such curves contained in a subspace Pr ⊆ PN .

Classical results:

Steiner (1848): n1(d) = 3d2 − 6d+ 3 = 3(d− 1)2

Cayley (1863): n2(d) = 3
2(d− 1)(d− 2)(3d2 − 3d− 11)

Roberts (1875): n3(d) = 9
2d

6−27d5+9
2d

4+423
2 d3−229d2−829

2 d+525

Itzykson (1994): n4(d)

Vainsencher (1995): nr(d), r ≤ 6



Curves on a surface
Let S be a smooth, projective surface, L a line bundle,

m := c1(L)2, k := c1(KS) · c1(L), s := c1(KS)2, x := c2(S)

the four Chern numbers.

An r-nodal curve is a curve with precisely r nodes.

Let Nr denote the number of r-nodal curves in |L| passing
through dim |L| − r points on S.

Zeuthen–Segre–Hirzebruch: N1 = 3m+ 2k + x

Vainsencher (r ≤ 6) and Kleiman–P. (r ≤ 8) expressed Nr as
polynomials in m, k, s, x and conjectured that this could be done
for all r, and similarly for other singularities than nodes.



Göttsche’s conjecture
Göttsche (1998) gave a more precise conjecture, for the
generating function:∑

r≥0Nrq
r = A1(q)mA2(q)kA3(q)sA4(q)x = exp(

∑
i≥1 aiq

i/i!),

where the Ai(q) ∈ Q[[q]] are universal power series and the ai
are linear polynomials in m, k, s, x.

Proved in 2010 by Tzeng and by Kool–Shende–Thomas. For
other singularities, existence of universal polynomials by
Kazarian, Li–Tzeng, and Rennemo.

Remark
In addition to the existence and shape of the formulas for Nr,
there is the question under which hypotheses the formulas are
valid. I will not discuss this question today.



Curves on a family of surfaces – why?

• (Kleiman–P.) Let S be a surface, Y a linear system on S,
D ⊂ S × Y → Y the universal curve. By blowing up a
(moving) point in S one gets a family over S × Y , which is
not of the form a fixed surface times the base S × Y .
• (Vainsencher, Kleiman–P.) Fix a threefold in P4. Consider

the family of planes in P4 and the family of curves obtained
by intersecting each plane with the threefold.
• (Mukherjee et al., Laarakker) Consider the family of planes

in P3 and the family of curves of fixed degree in each plane.



Partitions of a finite set

Let n be a positive integer.

A partition of {1, 2, . . . , n} is a way of writing it as a union of
subsets.

{1} = {1}
{1, 2} = {1, 2} = {1} ∪ {2}
{1, 2, 3} = {1, 2, 3} = {1, 2} ∪ {3} = {1, 3} ∪ {2} =
{2, 3} ∪ {1} = {1} ∪ {2} ∪ {3}

The number of blocks in the partition is the number of subsets.



Stirling and Bell numbers
The Stirling numbers Sn,k count the number of partitions of a
set with n elements into k blocks.

Example: S4,2 = 7

{1, 2, 3, 4} = {1} ∪ {2, 3, 4} = {2} ∪ {1, 3, 4} = {3} ∪ {1, 2, 4} =
{4} ∪ {1, 2, 3} = {1, 2} ∪ {3, 4} = {1, 3} ∪ {2, 4} = {1, 4} ∪ {2, 3}

The Bell numbers count all partitions:

Bn :=
∑n

k=1 Sn,k.

They satisfy a recursive relation: set B0 := 1, then

Bn+1 =
∑n

i=0

(
n
i

)
Bi.

We get: B1 = 1, B2 = 2, B3 = 5, B4 = 15, . . .



Block partitions
Set Πn := {partitions of {1, . . . , n}}.

Given k = (k1, . . . , kn), ki ≥ 0,
∑n

i=1 iki = n, we say π ∈ Πn has
type k if π has ki blocks of size i.

A partition of type k has k :=
∑n

i=1 ki blocks.

Let βk denote the number of partitions of type k. Then

βk :=
n!

k1! · · · kn!

( 1

1!

)k1 · · · ( 1

n!

)kn .
We have

Sn,k =
∑

k,k βk and Bn =
∑

k βk.



Example
n = 4, k = 2

k = (1, 0, 1, 0):

{1} ∪ {2, 3, 4}; {2} ∪ {1, 3, 4}; {3} ∪ {1, 2, 4}; {4} ∪ {1, 2, 3}

k = (0, 2, 0, 0):

{1, 2} ∪ {3, 4}; {1, 3} ∪ {2, 4}; {1, 4} ∪ {2, 3}.

There are β(1,0,1,0) = 4!
1!1!(

1
1!)

1( 1
3!)

1 = 4 of the first type,

and β(0,2,0,0) = 4!
2!(

1
2!)

2 = 3 of the second type.

S4,2 = 4 + 3 = 7∑4
k=1 S4,k = 1 + 7 + 6 + 1 = 15 = B4



Polydiagonals
Let X be a space, and consider

Xn := X × · · · ×X = {(x1, . . . , xn) |xi ∈ X}.

For π ∈ Πn, set

∆(n)
π := {(x1, . . . , xn) ∈ Xn|xi = xj if i, j in same block of π}.

If π has type k, we say that ∆
(n)
π is a polydiagonal of type k.

There are βk polydiagonals of type k, and
∑

k βk = Bn
polydiagonals.

Example
The small diagonal: ∆

(n)
{1,...,n} = {(x, . . . , x) ∈ Xn|x ∈ X}.



Bell polynomials
The Bell polynomials are

Bn(z1, . . . , zn) :=
∑

k βkz
k1
1 · · · zknn .

Note that Bn(1, . . . , 1) = Bn.

B1(z1) = z1,

B2(z1, z2) = z2
1 + z2,

B3(z1, z2, z3) = z3
1 + 3z1z2 + z3

B4(z1, z2, z3, z4) = z4
1 + 6z2

1z2 + 4z1z3 + 3z2
2 + z4



Bell polynomials – other definitions
Recursively defined by B0 = 1 and

Bn+1(z1, . . . , zn+1) =
∑n

i=0

(
n
i

)
Bn−i(z1, . . . , zn−i)zi+1,

or by the formal identity for the (exponential) generating
function ∑

n≥0
1
n!Bn(z1, . . . , zn)qn = exp

(∑
j≥1

1
j!zjq

j
)
,

Note binomiality:

Bn(z1+z′1, . . . , zn+z′n) =
∑n

i=0

(
n
i

)
Bn−i(z1, . . . , zn−i)Bi(z

′
1, . . . , z

′
i).



Nodal curves on families of surfaces
Given a family of curves on a family of surfaces D ⊂ F f→ Y ,
find an expression Nr for the class of curves that have r nodes.

Conjecture (Kleiman–P.): There exist universal polynomials bi
of weighted degree i+ 2 in the Chern classes c1(OF (D)), c1(Ω1

f ),
and c2(Ω1

f ) such that, setting ai := f∗bi,

Nr = 1
r!Br(a1, . . . , ar) ∩ [Y ],

where Br is the rth Bell polynomial.

Proved for r ≤ 8, and gave an explicit algorithm for the
computations, using the recursive property of the Bell
polynomials.



Existence and shape of the polynomials
T. Laarakker (2018) proved part of our conjecture: there exist
universal polynomials Ur such that Nr is equal to Ur evaluated
on classes f∗c1(OF (D))ac1(Ω1

f )bc2(Ω1
f )c, with a+ b+ 2c ≤ r+ 2.

He also showed that the polynomials are multiplicative:

Ur(F t F ′) =
∑

i Ui(F )Ur−i(F
′).

Given the binomiality of the Bell polynomials:

1
r!Br(a1 + a′1, . . . ) =

∑
i

1
i!Bi(a1, . . . , ai)

1
(r−i)!Br−i(a

′
1, . . . , a

′
r−i),

this gives evidence for our conjecture that Ur = 1
r!Br, but does

not prove it. (However, it does so when F = S × Y is a trivial
family.)



Why Bell polynomials? The recursion
Blow up the surfaces to get rid of one node in each curve, then
use the formula for (r− 1)-nodal curves on the blown up surfaces
and push it down.This creates a “derivation formula” of the form

rur = ur−1u1 + ∂(ur−1)

r!ur = (r − 1)!ur−1u1 + ∂((r − 1)!ur−1)

Set a1 := u1 and ai := ∂(ai−1). Then u1 = B1(a1) and

2!u2 = a2
1 + a2 = B2(a1, a2),

and, pretendig ∂ is a derivation: ∂(2!u2) = 2a1a2 + a3,

3!u3 = (a2
1 +a2)a1 +∂(a2

1 +a2) = a3
1 +3a1a2 +a3 = B3(a1, a2, a3).



Intersection theory (Fulton)
Recall the definition of intersection product:

Let U ⊂W be regularly embedded, of codimension c and
normal bundle N . If V ⊂W is of pure dimension k, then

U · V := {c(N|U∩V ) ∩ s(U ∩ V, V )}k−c ∈ Ak−c(U ∩ V ).

We can write
U · V =

∑s
i=1miαi,

where αi is supported on the ith distinguished variety Zi of the
intersection product. If Z is a distinguished variety, then the
sum of the miαi such that Zi = Z is called the equivalence of Z
for the intersection product.



The configuration space of singular points
Let D ⊂ F f→ Y be a family of curves on surfaces, and set

X := {x ∈ D|x ∈ Df(x) is singular}.

Let ∆ ⊂ Xr = X ×Y · · · ×Y X be the union of all diagonals:
Xr \∆ is the rth configuration space of X. Set f r : F r → Y .
Then

f r∗ [X
r \∆] = r!Nr

Let pj : F r → F be the projection maps. Then

Nr = 1
r!f

r
∗ [X

r \∆] = 1
r!f

r
∗
(∏r

j=1 p
∗
j [X]− (p∗1X · · · p∗rX)∆

)
,

where the last term is the sum of the equivalences of all
distinguished irreducible varieties in ∆.



Why Bell polynomials? Polydiagonals
Following N. Qviller:∏r

j=1 p
∗
j [X]− (p∗1X · · · p∗rX)∆ =

∑
π∈Πr

n
(r)
π (p∗1X · · · p∗rX)∆

(r)
π ,

where
n

(r)
π :=

∏r
i=1((−1)i−1(i− 1)!)ki

and k = (k1, . . . , kr) is the type of π.

Set bi := (−1)i−1(i− 1)!(p∗1X · · · p∗iX)
∆

(i)
{1,...,i} and ai := f i∗bi.

Then
n(r)
π f r∗ (p

∗
1X · · · p∗rX)∆

(r)
π = ak11 · · · a

kr
r

and

Nr = 1
r!

∑
π a

k1
1 · · · akrr = 1

r!

∑
k βka

k1
1 · · · akrr = 1

r!Br(a1, . . . , ar).



What is proved and what remains
Define

y(a, b, c) := f∗c1(OF (D))ac1(Ω1
f )bc2(Ω1

f )c.

By Laarakker, the Nr are universal polynomials in the classes
y(a, b, c), with a+ b+ 2c ≤ r + 2. By the above argument, the
Nr are Bell polynomials in the classes ai. By Kleiman–P., the ai
are linear polynomials in the y(a, b, c), with a+ b+ 2c = i+ 2
for i ≤ 8.

Conjecture
For all i, the classes ai are linear polynomials in the classes
y(a, b, c), with a+ b+ 2c = i+ 2.



The codimension of a singularity
The codimension of a planar curve singularity is the
codimension of the equisinguar locus in the miniversal
deformation space of the singularity.

It can also be defined using the Enriques diagram of the
singularity.

Example

• A node has codimension 1, an ordinary cusp has
codimension 2: an Ak-singularity has codimension k.
• An ordinary triple point has codimension 4: an ordinary
m-uple point has codimension

(
m+1

2

)
− 2.



The contributions from the distinguished varieties
From the intersection product p∗1[X] · · · · p∗r [X] we subtracted
the equivalences of the distinguished varieties. Some of these
varieties are the polydiagonals, which have “excess” dimension,
whereas others are subvarieties of the polydiagonals,
representing embedded components of the intersection
p∗1X ∩ · · · ∩ p∗rX. The latter correspond to singularities other
than r nodes, but with the same codimension r.

Example
For r = 2, in p∗1[X]p∗2[X] = X ×Y X we have:
• pairs of distinct points (= two nodes on fibers of D)
• the diagonal (= one node on fibers of D)
• points in the diagonal that are cusps on the fibers of D.



The equivalence of the small diagonal
Let ei := (p∗1X · · · p∗iX)∆

0 denote the equivalence of ∆ := ∆
(i)
{1,...,i}

without including the other distinguished varieties Z ( ∆.

We have

ei =
(∏i

j=1 c(p
∗
jP1

f (D)|∆) ∩ s(∆, F i)
)

dimY−i,

and, since X ∼= ∆, c(p∗jP1
f (D)|∆) = c(P1

f (D)|X) and

s(∆, F i) = c(P1
f (D)|X)−1(c(Tf |X)⊕i−1)−1 ∩ [X].

Note that ei ∈ AdimY−i(F ) and is a (computable!) polynomial
in c1(OF (D)), c1(Ω1

f ), c2(Ω1
f ) capped with the class [X], which

is also a polynomial in these Chern classes.



The linearity of the ai

It follows from Laarakker’s result that each ai is a universal
polynomial in the classes y(a, b, c) with a+ b+ 2c ≤ i+ 2.

Set b̃i := (−1)i−1(i− 1)!ei and ãi := f i∗ b̃i. From what we have
seen, ãi is a universal, linear polynomial in the classes y(a, b, c)
with a+ b+ 2c = i+ 2.

Remains to show:

ai − ãi = (−1)i−1(i− 1)!
∑

Z(∆(p∗1X · · · p∗iX)Z

is linear in the y(a, b, c) with a+ b+ 2c = i+ 2.



Codimension r singularities

Do the polynomials

Ñr := 1
r!Br(ã1, . . . , ãr)

give the codimension r multisingularities of the fibers of D?

Example
Ñ1 = ã1 = a1 = N1

Ñ2 = 1
2(ã2

1 + ã2) = 1
2(a2

1 + a2 + (ã2 − a2)) = N2 +NA2

Ñ3 = N3 +NA1+A2 +NA3 ???



Speculation – based on Kazarian and Qviller
We have seen:

Ñ3 = 1
3!(ã

3
1 + 3ã1ã2 + ã3) = N3 +N1NA2 + 1

3!(ã3 − a3)

According to Kazarian and Qviller,

1
3!(ã3 − a3) = SA1A2 +NA3

where SA1A2 is supported on the small diagonal, as is also NA3 ,
and

NA1+A2 = N1NA2 + SA1A2 ,

Hence

Ñ3 = N3 +NA1+A2 +NA3 .
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Thank you for your attention!


