Singular curves on a moving surface

Ragni Piene

Seminario de Geometría Algebraica CIMAT
Guanajuato, Mexico
March 8, 2021

Plane curves

The space of plane curves of degree d is $\mathbb{P}^{N}, N=\binom{d+2}{2}-1$. Let $n_{r}(d)$ denote the number of plane curves of degree d with r nodes that pass through $N-r$ points. Equivalently, $n_{r}(d)$ is the number of such curves contained in a subspace $\mathbb{P}^{r} \subseteq \mathbb{P}^{N}$.

Classical results:
Steiner (1848): $n_{1}(d)=3 d^{2}-6 d+3=3(d-1)^{2}$
Cayley (1863): $n_{2}(d)=\frac{3}{2}(d-1)(d-2)\left(3 d^{2}-3 d-11\right)$
Roberts (1875): $n_{3}(d)=\frac{9}{2} d^{6}-27 d^{5}+\frac{9}{2} d^{4}+\frac{423}{2} d^{3}-229 d^{2}-\frac{829}{2} d+525$
Itzykson (1994): $n_{4}(d)$
Vainsencher (1995): $n_{r}(d), r \leq 6$

UiO : University of Oslo

Curves on a surface

Let S be a smooth, projective surface, \mathcal{L} a line bundle,

$$
m:=c_{1}(\mathcal{L})^{2}, k:=c_{1}\left(K_{S}\right) \cdot c_{1}(\mathcal{L}), s:=c_{1}\left(K_{S}\right)^{2}, x:=c_{2}(S)
$$

the four Chern numbers.
An r-nodal curve is a curve with precisely r nodes.
Let N_{r} denote the number of r-nodal curves in $|\mathcal{L}|$ passing through $\operatorname{dim}|\mathcal{L}|-r$ points on S.

Zeuthen-Segre-Hirzebruch: $N_{1}=3 m+2 k+x$
Vainsencher $(r \leq 6)$ and Kleiman-P. $(r \leq 8)$ expressed N_{r} as polynomials in m, k, s, x and conjectured that this could be done for all r, and similarly for other singularities than nodes.

UiO : University of Oslo

Göttsche's conjecture

Göttsche (1998) gave a more precise conjecture, for the generating function:

$$
\sum_{r \geq 0} N_{r} q^{r}=A_{1}(q)^{m} A_{2}(q)^{k} A_{3}(q)^{s} A_{4}(q)^{x}=\exp \left(\sum_{i \geq 1} a_{i} q^{i} / i!\right)
$$

where the $A_{i}(q) \in \mathbb{Q}[[q]]$ are universal power series and the a_{i} are linear polynomials in m, k, s, x.
Proved in 2010 by Tzeng and by Kool-Shende-Thomas. For other singularities, existence of universal polynomials by Kazarian, Li-Tzeng, and Rennemo.

Remark

In addition to the existence and shape of the formulas for N_{r}, there is the question under which hypotheses the formulas are valid. I will not discuss this question today.

UiO : University of Oslo

Curves on a family of surfaces - why?

- (Kleiman-P.) Let S be a surface, Y a linear system on S, $D \subset S \times Y \rightarrow Y$ the universal curve. By blowing up a (moving) point in S one gets a family over $S \times Y$, which is not of the form a fixed surface times the base $S \times Y$.
- (Vainsencher, Kleiman-P.) Fix a threefold in \mathbb{P}^{4}. Consider the family of planes in \mathbb{P}^{4} and the family of curves obtained by intersecting each plane with the threefold.
- (Mukherjee et al., Laarakker) Consider the family of planes in \mathbb{P}^{3} and the family of curves of fixed degree in each plane.

UiO: University of Oslo

Partitions of a finite set

Let n be a positive integer.
A partition of $\{1,2, \ldots, n\}$ is a way of writing it as a union of subsets.
$\{1\}=\{1\}$
$\{1,2\}=\{1,2\}=\{1\} \cup\{2\}$
$\{1,2,3\}=\{1,2,3\}=\{1,2\} \cup\{3\}=\{1,3\} \cup\{2\}=$ $\{2,3\} \cup\{1\}=\{1\} \cup\{2\} \cup\{3\}$

The number of blocks in the partition is the number of subsets.

UiO : University of Oslo

Stirling and Bell numbers

The Stirling numbers $S_{n, k}$ count the number of partitions of a set with n elements into k blocks.

Example: $S_{4,2}=7$
$\{1,2,3,4\}=\{1\} \cup\{2,3,4\}=\{2\} \cup\{1,3,4\}=\{3\} \cup\{1,2,4\}=$ $\{4\} \cup\{1,2,3\}=\{1,2\} \cup\{3,4\}=\{1,3\} \cup\{2,4\}=\{1,4\} \cup\{2,3\}$

The Bell numbers count all partitions:

$$
B_{n}:=\sum_{k=1}^{n} S_{n, k} .
$$

They satisfy a recursive relation: set $B_{0}:=1$, then

$$
B_{n+1}=\sum_{i=0}^{n}\binom{n}{i} B_{i} .
$$

We get: $B_{1}=1, B_{2}=2, B_{3}=5, B_{4}=15, \ldots$

UiO : University of Oslo

Block partitions

Set $\Pi_{n}:=\{$ partitions of $\{1, \ldots, n\}\}$.
Given $\mathbf{k}=\left(k_{1}, \ldots, k_{n}\right), k_{i} \geq 0, \sum_{i=1}^{n} i k_{i}=n$, we say $\pi \in \Pi_{n}$ has type \mathbf{k} if π has k_{i} blocks of size i.
A partition of type \mathbf{k} has $k:=\sum_{i=1}^{n} k_{i}$ blocks.
Let $\beta_{\mathbf{k}}$ denote the number of partitions of type \mathbf{k}. Then

$$
\beta_{\mathbf{k}}:=\frac{n!}{k_{1}!\cdots k_{n}!}\left(\frac{1}{1!}\right)^{k_{1}} \cdots\left(\frac{1}{n!}\right)^{k_{n}} .
$$

We have

$$
S_{n, k}=\sum_{\mathbf{k}, k} \beta_{\mathbf{k}} \text { and } B_{n}=\sum_{\mathbf{k}} \beta_{\mathbf{k}}
$$

Example
$n=4, k=2$
$\mathbf{k}=(1,0,1,0)$:
$\{1\} \cup\{2,3,4\} ;\{2\} \cup\{1,3,4\} ;\{3\} \cup\{1,2,4\} ;\{4\} \cup\{1,2,3\}$
$\mathbf{k}=(0,2,0,0)$:
$\{1,2\} \cup\{3,4\} ;\{1,3\} \cup\{2,4\} ;\{1,4\} \cup\{2,3\}$.
There are $\beta_{(1,0,1,0)}=\frac{4!}{1!1!}\left(\frac{1}{1!}\right)^{1}\left(\frac{1}{3!}\right)^{1}=4$ of the first type, and $\beta_{(0,2,0,0)}=\frac{4!}{2!}\left(\frac{1}{2!}\right)^{2}=3$ of the second type.
$S_{4,2}=4+3=7$
$\sum_{k=1}^{4} S_{4, k}=1+7+6+1=15=B_{4}$

Polydiagonals

Let X be a space, and consider

$$
X^{n}:=X \times \cdots \times X=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in X\right\}
$$

For $\pi \in \Pi_{n}$, set

$$
\Delta_{\pi}^{(n)}:=\left\{\left(x_{1}, \ldots, x_{n}\right) \in X^{n} \mid x_{i}=x_{j} \text { if } i, j \text { in same block of } \pi\right\} .
$$

If π has type \mathbf{k}, we say that $\Delta_{\pi}^{(n)}$ is a polydiagonal of type \mathbf{k}.
There are $\beta_{\mathbf{k}}$ polydiagonals of type \mathbf{k}, and $\sum_{\mathbf{k}} \beta_{\mathbf{k}}=B_{n}$ polydiagonals.

Example

The small diagonal: $\Delta_{\{1, \ldots, n\}}^{(n)}=\left\{(x, \ldots, x) \in X^{n} \mid x \in X\right\}$.

UiO : University of Oslo

Bell polynomials

The Bell polynomials are

$$
B_{n}\left(z_{1}, \ldots, z_{n}\right):=\sum_{\mathbf{k}} \beta_{\mathbf{k}} z_{1}^{k_{1}} \cdots z_{n}^{k_{n}}
$$

Note that $B_{n}(1, \ldots, 1)=B_{n}$.

$$
\begin{aligned}
B_{1}\left(z_{1}\right) & =z_{1} \\
B_{2}\left(z_{1}, z_{2}\right) & =z_{1}^{2}+z_{2} \\
B_{3}\left(z_{1}, z_{2}, z_{3}\right) & =z_{1}^{3}+3 z_{1} z_{2}+z_{3} \\
B_{4}\left(z_{1}, z_{2}, z_{3}, z_{4}\right) & =z_{1}^{4}+6 z_{1}^{2} z_{2}+4 z_{1} z_{3}+3 z_{2}^{2}+z_{4}
\end{aligned}
$$

Bell polynomials - other definitions

Recursively defined by $B_{0}=1$ and

$$
B_{n+1}\left(z_{1}, \ldots, z_{n+1}\right)=\sum_{i=0}^{n}\binom{n}{i} B_{n-i}\left(z_{1}, \ldots, z_{n-i}\right) z_{i+1},
$$

or by the formal identity for the (exponential) generating function

$$
\sum_{n \geq 0} \frac{1}{n!} B_{n}\left(z_{1}, \ldots, z_{n}\right) q^{n}=\exp \left(\sum_{j \geq 1} \frac{1}{j!} z_{j} q^{j}\right)
$$

Note binomiality:

$$
B_{n}\left(z_{1}+z_{1}^{\prime}, \ldots, z_{n}+z_{n}^{\prime}\right)=\sum_{i=0}^{n}\binom{n}{i} B_{n-i}\left(z_{1}, \ldots, z_{n-i}\right) B_{i}\left(z_{1}^{\prime}, \ldots, z_{i}^{\prime}\right) .
$$

UiO: University of Oslo

Nodal curves on families of surfaces

Given a family of curves on a family of surfaces $D \subset F \xrightarrow{f} Y$, find an expression N_{r} for the class of curves that have r nodes.
Conjecture (Kleiman-P.): There exist universal polynomials b_{i} of weighted degree $i+2$ in the Chern classes $c_{1}\left(\mathcal{O}_{F}(D)\right), c_{1}\left(\Omega_{f}^{1}\right)$, and $c_{2}\left(\Omega_{f}^{1}\right)$ such that, setting $a_{i}:=f_{*} b_{i}$,

$$
N_{r}=\frac{1}{r!} B_{r}\left(a_{1}, \ldots, a_{r}\right) \cap[Y],
$$

where B_{r} is the r th Bell polynomial.
Proved for $r \leq 8$, and gave an explicit algorithm for the computations, using the recursive property of the Bell polynomials.

UiO : University of Oslo

Existence and shape of the polynomials

T. Laarakker (2018) proved part of our conjecture: there exist universal polynomials U_{r} such that N_{r} is equal to U_{r} evaluated on classes $f_{*} c_{1}\left(\mathcal{O}_{F}(D)\right)^{a} c_{1}\left(\Omega_{f}^{1}\right)^{b} c_{2}\left(\Omega_{f}^{1}\right)^{c}$, with $a+b+2 c \leq r+2$.
He also showed that the polynomials are multiplicative:

$$
U_{r}\left(F \sqcup F^{\prime}\right)=\sum_{i} U_{i}(F) U_{r-i}\left(F^{\prime}\right)
$$

Given the binomiality of the Bell polynomials:

$$
\frac{1}{r!} B_{r}\left(a_{1}+a_{1}^{\prime}, \ldots\right)=\sum_{i} \frac{1}{i!} B_{i}\left(a_{1}, \ldots, a_{i}\right) \frac{1}{(r-i)!} B_{r-i}\left(a_{1}^{\prime}, \ldots, a_{r-i}^{\prime}\right)
$$

this gives evidence for our conjecture that $U_{r}=\frac{1}{r!} B_{r}$, but does not prove it. (However, it does so when $F=S \times Y$ is a trivial family.)

UiO: University of Oslo

Why Bell polynomials? The recursion

Blow up the surfaces to get rid of one node in each curve, then use the formula for $(r-1)$-nodal curves on the blown up surfaces and push it down. This creates a "derivation formula" of the form

$$
\begin{gathered}
r u_{r}=u_{r-1} u_{1}+\partial\left(u_{r-1}\right) \\
r!u_{r}=(r-1)!u_{r-1} u_{1}+\partial\left((r-1)!u_{r-1}\right)
\end{gathered}
$$

Set $a_{1}:=u_{1}$ and $a_{i}:=\partial\left(a_{i-1}\right)$. Then $u_{1}=B_{1}\left(a_{1}\right)$ and

$$
2!u_{2}=a_{1}^{2}+a_{2}=B_{2}\left(a_{1}, a_{2}\right)
$$

and, pretendig ∂ is a derivation: $\partial\left(2!u_{2}\right)=2 a_{1} a_{2}+a_{3}$,
$3!u_{3}=\left(a_{1}^{2}+a_{2}\right) a_{1}+\partial\left(a_{1}^{2}+a_{2}\right)=a_{1}^{3}+3 a_{1} a_{2}+a_{3}=B_{3}\left(a_{1}, a_{2}, a_{3}\right)$.

UiO : University of Oslo

Intersection theory (Fulton)

Recall the definition of intersection product:
Let $U \subset W$ be regularly embedded, of codimension c and normal bundle \mathcal{N}. If $V \subset W$ is of pure dimension k, then

$$
U \cdot V:=\left\{c\left(\left.\mathcal{N}\right|_{U \cap V}\right) \cap s(U \cap V, V)\right\}_{k-c} \in A_{k-c}(U \cap V)
$$

We can write

$$
U \cdot V=\sum_{i=1}^{s} m_{i} \alpha_{i}
$$

where α_{i} is supported on the i th distinguished variety Z_{i} of the intersection product. If Z is a distinguished variety, then the sum of the $m_{i} \alpha_{i}$ such that $Z_{i}=Z$ is called the equivalence of Z for the intersection product.

UiO : University of Oslo

The configuration space of singular points

Let $D \subset F \xrightarrow{f} Y$ be a family of curves on surfaces, and set

$$
X:=\left\{x \in D \mid x \in D_{f(x)} \text { is singular }\right\} .
$$

Let $\Delta \subset X^{r}=X \times_{Y} \cdots \times_{Y} X$ be the union of all diagonals: $X^{r} \backslash \Delta$ is the r th configuration space of X. Set $f^{r}: F^{r} \rightarrow Y$. Then

$$
f_{*}^{r}\left[\overline{X^{r} \backslash \Delta}\right]=r!N_{r}
$$

Let $p_{j}: F^{r} \rightarrow F$ be the projection maps. Then

$$
N_{r}=\frac{1}{r!} f_{*}^{r}\left[\overline{X^{r} \backslash \Delta}\right]=\frac{1}{r!} f_{*}^{r}\left(\prod_{j=1}^{r} p_{j}^{*}[X]-\left(p_{1}^{*} X \cdots p_{r}^{*} X\right)^{\Delta}\right),
$$

where the last term is the sum of the equivalences of all distinguished irreducible varieties in Δ.

UiO : University of Oslo

Why Bell polynomials? Polydiagonals

Following N. Qviller:

$$
\prod_{j=1}^{r} p_{j}^{*}[X]-\left(p_{1}^{*} X \cdots p_{r}^{*} X\right)^{\Delta}=\sum_{\pi \in \Pi_{r}} n_{\pi}^{(r)}\left(p_{1}^{*} X \cdots p_{r}^{*} X\right)^{\Delta_{\pi}^{(r)}}
$$

where

$$
n_{\pi}^{(r)}:=\prod_{i=1}^{r}\left((-1)^{i-1}(i-1)!\right)^{k_{i}}
$$

and $\mathbf{k}=\left(k_{1}, \ldots, k_{r}\right)$ is the type of π.
Set $b_{i}:=(-1)^{i-1}(i-1)!\left(p_{1}^{*} X \cdots p_{i}^{*} X\right)^{\Delta_{\{1, \ldots, i\}}^{(i)}}$ and $a_{i}:=f_{*}^{i} b_{i}$.
Then

$$
n_{\pi}^{(r)} f_{*}^{r}\left(p_{1}^{*} X \cdots p_{r}^{*} X\right)^{\Delta_{\pi}^{(r)}}=a_{1}^{k_{1}} \cdots a_{r}^{k_{r}}
$$

and

$$
N_{r}=\frac{1}{r!} \sum_{\pi} a_{1}^{k_{1}} \cdots a_{r}^{k_{r}}=\frac{1}{r!} \sum_{\mathbf{k}} \beta_{\mathbf{k}} a_{1}^{k_{1}} \cdots a_{r}^{k_{r}}=\frac{1}{r!} B_{r}\left(a_{1}, \ldots, a_{r}\right) .
$$

UiO : University of Oslo

What is proved and what remains

Define

$$
y(a, b, c):=f_{*} c_{1}\left(\mathcal{O}_{F}(D)\right)^{a} c_{1}\left(\Omega_{f}^{1}\right)^{b} c_{2}\left(\Omega_{f}^{1}\right)^{c} .
$$

By Laarakker, the N_{r} are universal polynomials in the classes $y(a, b, c)$, with $a+b+2 c \leq r+2$. By the above argument, the N_{r} are Bell polynomials in the classes a_{i}. By Kleiman-P., the a_{i} are linear polynomials in the $y(a, b, c)$, with $a+b+2 c=i+2$ for $i \leq 8$.

Conjecture
For all i, the classes a_{i} are linear polynomials in the classes $y(a, b, c)$, with $a+b+2 c=i+2$.

UiO : University of Oslo

The codimension of a singularity

The codimension of a planar curve singularity is the codimension of the equisinguar locus in the miniversal deformation space of the singularity.

It can also be defined using the Enriques diagram of the singularity.

Example

- A node has codimension 1 , an ordinary cusp has codimension 2: an A_{k}-singularity has codimension k.
- An ordinary triple point has codimension 4: an ordinary m-uple point has codimension $\binom{m+1}{2}-2$.

UiO: University of Oslo

The contributions from the distinguished varieties

From the intersection product $p_{1}^{*}[X] \cdots p_{r}^{*}[X]$ we subtracted the equivalences of the distinguished varieties. Some of these varieties are the polydiagonals, which have "excess" dimension, whereas others are subvarieties of the polydiagonals, representing embedded components of the intersection $p_{1}^{*} X \cap \cdots \cap p_{r}^{*} X$. The latter correspond to singularities other than r nodes, but with the same codimension r.

Example

For $r=2$, in $p_{1}^{*}[X] p_{2}^{*}[X]=X \times_{Y} X$ we have:

- pairs of distinct points ($=$ two nodes on fibers of D)
- the diagonal ($=$ one node on fibers of D)
- points in the diagonal that are cusps on the fibers of D.

UiO : University of Oslo

The equivalence of the small diagonal

Let $e_{i}:=\left(p_{1}^{*} X \cdots p_{i}^{*} X\right)_{0}^{\Delta}$ denote the equivalence of $\Delta:=\Delta_{\{1, \ldots, i\}}^{(i)}$ without including the other distinguished varieties $Z \subsetneq \Delta$.

We have

$$
e_{i}=\left(\prod_{j=1}^{i} c\left(\left.p_{j}^{*} \mathcal{P}_{f}^{1}(D)\right|_{\Delta}\right) \cap s\left(\Delta, F^{i}\right)\right)_{\operatorname{dim} Y-i}
$$

and, since $X \cong \Delta, c\left(\left.p_{j}^{*} \mathcal{P}_{f}^{1}(D)\right|_{\Delta}\right)=c\left(\left.\mathcal{P}_{f}^{1}(D)\right|_{X}\right)$ and

$$
s\left(\Delta, F^{i}\right)=c\left(\left.\mathcal{P}_{f}^{1}(D)\right|_{X}\right)^{-1}\left(c\left(\left.T_{f}\right|_{X}\right)^{\oplus i-1}\right)^{-1} \cap[X] .
$$

Note that $e_{i} \in A_{\operatorname{dim} Y-i}(F)$ and is a (computable!) polynomial in $c_{1}\left(\mathcal{O}_{F}(D)\right), c_{1}\left(\Omega_{f}^{1}\right), c_{2}\left(\Omega_{f}^{1}\right)$ capped with the class $[X]$, which is also a polynomial in these Chern classes.

UiO : University of Oslo

The linearity of the a_{i}

It follows from Laarakker's result that each a_{i} is a universal polynomial in the classes $y(a, b, c)$ with $a+b+2 c \leq i+2$.
Set $\widetilde{b}_{i}:=(-1)^{i-1}(i-1)!e_{i}$ and $\widetilde{a}_{i}:=f_{*}^{i} \widetilde{b}_{i}$. From what we have seen, \widetilde{a}_{i} is a universal, linear polynomial in the classes $y(a, b, c)$ with $a+b+2 c=i+2$.

Remains to show:

$$
a_{i}-\widetilde{a}_{i}=(-1)^{i-1}(i-1)!\sum_{Z \subsetneq \Delta}\left(p_{1}^{*} X \cdots p_{i}^{*} X\right)^{Z}
$$

is linear in the $y(a, b, c)$ with $a+b+2 c=i+2$.

UiO : University of Oslo

Codimension r singularities

Do the polynomials

$$
\widetilde{N}_{r}:=\frac{1}{r!} B_{r}\left(\widetilde{a}_{1}, \ldots, \widetilde{a}_{r}\right)
$$

give the codimension r multisingularities of the fibers of D ?
Example
$\widetilde{N}_{1}=\widetilde{a}_{1}=a_{1}=N_{1}$
$\widetilde{N}_{2}=\frac{1}{2}\left(\widetilde{a}_{1}^{2}+\widetilde{a}_{2}\right)=\frac{1}{2}\left(a_{1}^{2}+a_{2}+\left(\widetilde{a}_{2}-a_{2}\right)\right)=N_{2}+N_{A_{2}}$
$\widetilde{N}_{3}=N_{3}+N_{A_{1}+A_{2}}+N_{A_{3}} ? ? ?$

UiO : University of Oslo

Speculation - based on Kazarian and Qviller

We have seen:

$$
\widetilde{N}_{3}=\frac{1}{3!}\left(\widetilde{a}_{1}^{3}+3 \widetilde{a}_{1} \widetilde{a}_{2}+\widetilde{a}_{3}\right)=N_{3}+N_{1} N_{A_{2}}+\frac{1}{3!}\left(\widetilde{a}_{3}-a_{3}\right)
$$

According to Kazarian and Qviller,

$$
\frac{1}{3!}\left(\widetilde{a}_{3}-a_{3}\right)=S_{A_{1} A_{2}}+N_{A_{3}}
$$

where $S_{A_{1} A_{2}}$ is supported on the small diagonal, as is also $N_{A_{3}}$, and

$$
N_{A_{1}+A_{2}}=N_{1} N_{A_{2}}+S_{A_{1} A_{2}}
$$

Hence

$$
\widetilde{N}_{3}=N_{3}+N_{A_{1}+A_{2}}+N_{A_{3}}
$$

UiO : University of Oslo

References

[1] M. È. Kazaryan, Multisingularities, cobordisms, and enumerative geometry, Uspekhi Mat. Nauk 58 (2003), no. 4(352), 29-88 (Russian, with Russian summary); English transl., Russian Math. Surveys 58 (2003), no. 4, 665-724.
[2] Steven Kleiman and Ragni Piene, Enumerating singular curves on surfaces, Algebraic geometry: Hirzebruch 70 (Warsaw, 1998), Contemp. Math., vol. 241, Amer. Math. Soc., Providence, RI, 1999, pp. 209-238. (Corrections and revision in math.AG/9903192).
[3] Steven L. Kleiman and Ragni Piene, Node polynomials for families: methods and applications, Math. Nachr. 271 (2004), 69-90.
[4] Ties Laarakker, The Kleiman-Piene conjecture and node polynomials for plane curves in \mathbb{P}^{3}, Selecta Math. (N.S.) 24 (2018), no. 5, 4917-4959.
[5] Nikolay Qviller, Structure of node polynomials for curves on surfaces, Math. Nachr. 287 (2014), no. 11-12, 1394-1420.
[6] Israel Vainsencher, Enumeration of n-fold tangent hyperplanes to a surface, J. Algebraic Geom. 4 (1995), no. 3, 503-526.

UiO : University of Oslo

Thank you for your attention!

