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Resultants and discriminants

Il faut éliminer la théorie de l’élimination.
J. Dieudonné (1969)

Eliminate, eliminate, eliminate
Eliminate the eliminators of elimination theory.

S. S. Abhyankar (1970)

Résultant, discriminant
M. Demazure (2011) – à J.-P. Serre pour son 85-ième anniversaire

Question: For which a0, . . . , am and b0, . . . , bn do

f(x) = amx
m + · · ·+ a0 and g(x) = bnx

n + · · ·+ b0

have a common root?



James Joseph Sylvester (1814–1897)

The Sylvester matrix is the
(m+ n)× (m+ n)-matrix

am am−1 am−2 . . . . . .
0 am am−1 am−2 . . .
...

...
bn bn−1 bn−2 . . . . . .
0 bn bn−1 bn−2 . . .
...

...


The resultant Res(f, g) is the
determinant of this matrix.



A student of Sylvester?

Florence Nightingale
(1820-1910)

“Diagram of the Causes of
Mortality in the Army in the
East”



Arthur Cayley (1821–1895)

Set

h(x, y) := f(x) + yg(x).

If α is a common root of f and
g, then

(α,−fx(α)

gx(α)
)

is a common zero of h, hx, hy.



The Cayley trick

Consider

h(x1, . . . , xn−k, y1, . . . , yk) :=

f0(x1, . . . , xn−k) + y1f1(x1, . . . , xn−k) + ykfk(x1, . . . , xn−k).

The discriminant ∆(h) of h is obtained by eliminating the xi’s
and yj ’s from the n+ 1 equations

h = 0, ∂h/∂xi = 0, ∂h/∂yj = fj = 0.

Hence ∆(h) ∼ Res(f0, . . . , fk).



Convex lattice polytopes

 



Cayley polytopes

Let P0, . . . , Pk ⊂ Rn−k be convex lattice polytopes, and
e0, . . . , ek the vertices of ∆k ⊂ Rk.

The polytope

P = Conv{e0 × P0, . . . , ek × Pk} ⊂ Rk × Rn−k = Rn,

is called a Cayley polytope.

We write
P = P0 ? · · · ? Pk

A Cayley polytope is “hollow”: it has no interior lattice points.



An example

distancelattice
one

P

P2

P1



The codegree and degree of a polytope

codeg(P ) = min{m |mP has interior lattice points}.

deg(P ) = n+ 1− codeg(P )

Example (1)

codeg(∆n) = n+ 1 and codeg(2∆n) = dn+ 1

2
e.

Example (2)

P = P0 ? · · · ? Pk implies codeg(P ) ≥ k + 1.



P2
P3P1

codeg(P1) = 3 codeg(P2) = 2 codeg(P3) = 1



The Cayley polytope conjecture

Question (Batyrev–Nill): Is there an integer N(d) such that any
polytope P of degree d and dimP ≥ N(d) is a Cayley polytope?

Answer (Haase–Nill–Payne): Yes, and N(d) ≤ (d2 + 19d− 4)/2

Question: Is N(d) linear in d?

Answer (Dickenstein–Di Rocco–P.): Yes, N(d) = 2d+ 1
(if P is smooth and Q-normal).

Note that n ≥ 2d+ 1 is equivalent to codeg(P ) ≥ n+3
2 .



Lattice polytopes and toric embeddings
A convex lattice polytope P ⊂ Rm gives a toric embedding

ϕ : (C∗)m → PN ,

where N + 1 is the number of lattice points in P , as follows:

Let a0, . . . , aN ∈ Zm denote the latttice points in P . Then send
t = (t1, . . . , tm) to (ta0 : · · · : taN ).

The closure of the image is a toric variety XP ⊂ PN .

Example
The polytope P ⊂ R: • • •
corresponds to the toric embedding C∗ → P2 given by
t 7→ (1 : t : t2); its closure XP is a plane conic curve.



Defective polytopes
The dual projective space (PN )∨ is the space consisting of all
hyperplanes in PN . A point (ξ0 : · · · : ξN ) ∈ (PN )∨ corresponds
to the hyperplane H : ξ0x0 + · · ·+ ξNxN = 0.

The intersection of XP with the hyperplane is given by
f(t) := ξ0t

a0 + · · · ξNtaN = 0.

The intersection is singular precisely when H is tangent to XP .
The dual variety X∨P is the locus of these hyperplanes. The
equation(s) of X∨P is the discriminant ∆(f).

We say P is defective if X∨P is not a hypersurface.

Example
∆(ξ0 + ξ1t+ ξ2t

2) = ξ21 − 4ξ0ξ2.



Characterizing Cayley polytopes

Theorem (Dickenstein, Di Rocco, P., Nill)
Let P be a smooth lattice polytope of dimension n. The following
are equivalent
(1) codeg(P ) ≥ n+3

2

(2) P = P0 ? · · · ? Pk is a smooth Cayley polytope with
k + 1 = codeg(P ) and k > n

2 .
(3) P is defective, with defect 2k − n > 0.

The proof is algebro-geometric (adjoints and nef-value maps à la
Beltrametti–Sommese, toric fibrations à la Reid).



An example with n = 3, k = 2

Let P0 = P1 = P2: • • •
and set P := P0 ?P1 ?P2. Then P corresponds to the embedding

(C∗)3 → P8

given by

(x, y) 7→ (1 : x : y : z : xy : y2 : yz : xy2 : y2z);

its closure XP is a rational normal scroll of type (2, 2, 2).

We have codegP = 3 = 3+3
2 = 2 + 1 and 2 > 3

2 .

The polytope P is defective, with defect 2 · 2− 3 = 1.



A geometric interpretation

An ordering of the lattice points in P = P0 ? · · · ? Pk gives toric
embeddings

ϕi : (C∗)n−k → PNi ⊂ PN .

The Cayley trick says that the hyperplanes H ⊂ PN that are
tangent to XP are those that contain the points
ϕ0(t), . . . , ϕk(t), for some t ∈ (C∗)n−k.

Therefore, the dimension of the dual variety X∨P is equal to
n− k +N − 1− k = N − 1− (2k − n), so P is defective with
defect 2k − n iff 2k − n > 0.



Chern classes of toric varieties
Let {Xα}α denote the torus invariants orbits of XP . Each orbit
Xα corresponds to a face Fα of P of the same dimension.

By Ehler’s formula, the Schwartz–MacPherson Chern classes are

cSM(XP ) =
∑
α

[Xα].

It follows that the Mather Chern classes are

cM(XP ) =
∑
α

EuXP (Xα)[Xα],

where EuXP (Xα) denotes the value of the local Euler
obstruction of XP at a point of Xα.



The degree of the dual variety
Theorem (Gel’fand–Kapranov–Zelevinski)
If XP is smooth and non defective,

degX∨P =
∑
α

(−1)codimFα(dimFα + 1)VolZ(Fα).

Proof. degX∨P = cn(P1(LP )) is a polynomial in the Chern
classes of XP and the hyperplane bundle LP .

c1(LP )n = VolZ(P ) = degXP

ci(TXP )c1(LP )n−i =
∑

codimFα=i
VolZ(Fα).

cn(TXP ) = # vertices of P



Theorem (Matsui–Takeuchi)
If XP is non defective,

degX∨P =
∑
α

(−1)codimFα(dimFα + 1) EuXP (Xα)VolZ(Fα).

Example
P = Conv{(0, 0), (3, 0), (0, 2)}.

The weighted projective plane XP = P(1, 2, 3) has

degX∨P = 3 · 6− 2(2 + 3 + 1)− (1 + 0 + 0) = 7.



Higher order dual varieties
Let X ⊂ PN be a projective variety. The kth order dual variety
is

X(k) := {H ∈ (PN )∨ |H is tangent to X to the order k}

= {H ∈ PN∨ |H ⊇ TkX,x for some x ∈ Xsmooth},

where TkX,x = is the kth osculating space to X at x.

Note that dimTkX,x ≤
(
n+k
k

)
− 1, n = dimX, and

X(1) = X∨ and X(k−1) ⊇ X(k)

The expected dimension of X(k) = n+N −
(
n+k
k

)
.

X is k-defective if dimX(k) < n+N −
(
n+k
k

)
.



Toric threefolds
Theorem (Dickenstein–Di Rocco–P.)
(X,P ) = (XP , LP ) smooth, 2-regular toric threefold embedding
is 2-defective if and only if (X,L) = (P3,OP3(2)). Moreover:
(1) degX(2) = 120 if (X,L) = (P3,OP3(3))

(2) degX(2) = 6(8(a+ b+ c)− 7) if
(X,L) = (P(OP1(a)⊕OP1(b)⊕OP1(c)), 2`), where ` denotes
the tautological line bundle,

(3) In all other cases,
degX(2) = 62V − 57F + 28E − 8v + 58V1 + 51F1 + 20E1,
where V , F , E (resp. V1, F1, E1) denote the (lattice)
volume, area of facets, length of edges of P (resp. of the
adjoint polytope Conv(intP )), and v = #{vertices of P}.



Example
If P is a cube with edge lengths 2, then
(XP , LP ) = (P1 × P1 × P1,O(2, 2, 2)).

V = 3!8 = 48, F = 6 · 2 · 4 = 48, E = 12 · 2 = 24, v = 8.

V1 = F1 = E1 = 0 (int(P ) = {(1, 1, 1)} is a point)

degX(2) = 62V − 57F + 28E − 8v = 848.

 



k-selfdual toric varieties (joint with A. Dickenstein)

A = {a0, . . . , aN} ⊂ Zn a lattice point configuration, and
XA ⊂ PN the corresponding toric embedding.

Form the matrix A by adding a row of 1’s to the matrix
(a0| · · · |aN ). Denote by v0 = (1, . . . , 1), v1, . . . ,vn ∈ ZN+1 the
row vectors of A.

For any α ∈ Nn+1, denote by vα ∈ ZN+1 the vector obtained as
the coordinatewise product of α0 times the row vector v0 times
. . . times αn times the row vector vn.

Order the vectors {vα : |α| ≤ k}. Let A(k) be the(
n+k
k

)
× (N + 1) integer matrix with these rows.



Rational normal curve
Take A = {0, . . . , d}. Then

A =

(
1 1 1 1 · · · 1
0 1 2 3 · · · d

)
,

and

A(3) =


1 1 1 1 · · · 1
0 1 2 3 · · · d
0 1 4 9 · · · d2

0 1 8 27 · · · d3

 .

Note that

A(3) ∼=


1 1 1 1 · · · 1
0 1 2 3 · · · d

0 0 1 3 · · ·
(
d
2

)
0 0 0 1 · · ·

(
d
3

)
 .



Non-pyramidal configurations
The configuration A is non-pyramidal (nap) if the configuration
of columns in A is not a pyramid (i.e., no basis vector ei of
RN+1 lies in the rowspan of the matrix).

The configuration A is knap if the configuration of columns in
A(k) is not a pyramid.

Example
A is a pyramid:

A =

 1 1 1 1 1
0 1 2 3 4
0 0 5 0 0





Characterization of k-self dual configurations

XA is k-selfdual if φ(XA) = X
(k)
A for some φ : PN ∼= (PN )∨.

Theorem (Dickenstein–P.)

(1) XA is k-selfdual if and only if dimXA = dimX
(k)
A and A is

knap.
(2) If A is knap and dim KerA(k) = 1, then XA is k-selfdual.
(3) If A is knap and k-selfdual, and dim KerA(k) = r > 1, then
A = e0 ×A0 ∪ . . . ∪ er−1 ×Ar−1 is r-Cayley.

The proof generalizes [Bourel–Dickenstein–Rittatore] (k = 1).



A surface in P3

A = {(0, 0), (1, 0), (1, 1), (0, 2)}

gives
XA : (x, y) 7→ (1 : x : xy : y2)

and

X∨A
∼= XA∨ : (x, y) 7→ (−y2 : 2x−1y2 : −2x−1y : 1),

with
A∨ = {(0, 2), (−1, 2), (−1, 1), (0, 0)}.

This surface is self dual.



The corresponding polygons

◦ • ◦

◦ ◦ •

◦ • •

A

• • ◦

• ◦ ◦

◦ • ◦

A∨



Toric linear projections and sections

Let A = (a0, . . . , aN ) ⊂ Zn be a lattice point configuration and
let XA ⊂ PN denote the corresponding toric embedding. Let A′
be a lattice point configuration obtained from A by removing r
points.Then the toric embedding XA′ ⊂ PN ′ , where N ′ = N − r,
is the toric linear projection of XA with center equal to the
linear span of the “removed points”.

A toric hyperplane section of XA is obtained by taking a
hyperplane in Zn and “collapsing” the point configuration A into
this lattice hyperplane in such a way that one point is “lost”:
two points map to the same point.



The degree 6 Del Pezzo surface

I As a hyperplane section:
Let A ⊂ Z3 be the vertices of the unit cube. Collapse the
cube in a plane by identifying the opposite vertices (1, 1, 1)
and (0, 0, 0). This gives a hexagon with one interior point.
This hyperplane section of (P1)3 ⊂ P7 is the Del Pezzo
surface X ⊂ P6 of degree 6.



• •

• •

• •

• •

• •

• • •

• •



The degree 6 Del Pezzo surface

I As a hyperplane section:
Let A ⊂ Z3 be the vertices of the unit cube. Collapse the
cube in a plane by identifying the opposite vertices (1, 1, 1)
and (0, 0, 0). This gives a hexagon with one interior point.
This hyperplane section of (P1)3 ⊂ P7 is the Del Pezzo
surface X ⊂ P6 of degree 6.

I As a projection:
Let A ⊂ Z2 be the lattice points of the square with sides of
length 2. Project XA ⊂ P8 from the points corresponding
to the vertices (2, 0) and (0, 2). The projected surface is the
Del Pezzo surface X ⊂ P6 of degree 6.



• • •

• • •

• • •

◦ • •

• • •

• • ◦



Togliatti’s surface

The lattice points defining Togliatti’s surface X ⊂ P5 are those
of the Del Pezzo hexagon, with the interior point deleted. The
2nd order osculating spaces to X all pass through one point,
namely the point corresponding to the interior point of the
hexagon. So the (general) 2nd order osculating spaces of X have
dimension 4, not 5.

The Togliatti surface is 2-self dual, so

degX
(2)

= degX = 6.



Thank you for your attention!
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