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Resultants and discriminants

1l faut éliminer la théorie de l’élimination.
J. Dieudonné (1969)

Eliminate, eliminate, eliminate
Eliminate the eliminators of elimination theory.

S. S. Abhyankar (1970)

Résultant, discriminant
M. Demazure (2011) — a J.-P. Serre pour son 85-iéme anniversaire

Question: For which ag,...,an and bg,...,b, do
f(z) =amz™ +---+ag and g(x) = byz™ + -+ by

have a common root?
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James Joseph Sylvester (1814-1897)

b |
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The Sylvester matrix is the
(m +n) X (m + n)-matrix

am Om—1 (am-—2
0 Am Gm—-1 Gm-2

The resultant Res(f,g) is the
determinant of this matrix.




A student of Sylvester?

Florence Nightingale

(1820-1910)
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Arthur Cayley (1821-1895)

[
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Set

h(z,y) == f(z) + yg(z).

If « is a common root of f and
g, then

is a common zero of h, hy, hy.




The Cayley trick

Consider

h(xla sy Tn—ks Y1, - - - 7yk) =
f0($15 “e. ,CCn_k) +ylf1(x17 cee ax’n—k) +ykfk(x17 cee ax’n—k)’

The discriminant A(h) of h is obtained by eliminating the x;’s
and y;’s from the n + 1 equations
h = 0,8h/8xi = 0, 6h/8yj = fj =0.

Hence A(h) ~ Res(fo, .-, fx)-

UiO ¢ University of Oslo




Convex lattice polytopes
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Cayley polytopes

Let Py, ..., P, C R** be convex lattice polytopes, and
€o, . .., e the vertices of A, C RF.

The polytope
P = Conv{ey x Py,...,ep x P} C RF x R"™F = R™,

is called a Cayley polytope.

We write
P:P()*---*Pk

A Cayley polytope is “hollow™: it has no interior lattice points.
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An example

fSSce
one
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The codegree and degree of a polytope
codeg(P) = min{m | mP has interior lattice points}.
deg(P) =n + 1 — codeg(P)

Example (1)

n+1
2 I

codeg(A,) =n+ 1 and codeg(2A,) = |

Example (2)

P = Py* - P implies codeg(P) >k + 1.
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The Cayley polytope conjecture

Question (Batyrev—Nill): Is there an integer N(d) such that any
polytope P of degree d and dim P > N(d) is a Cayley polytope?

Answer (Haase Nill-Payne): Yes, and N(d) < (d? +19d — 4)/2

Question: Is N(d) linear in d?

Answer (Dickenstein-Di Rocco-P.): Yes, N(d) = 2d + 1
(if P is smooth and Q-normal).

Note that n > 2d + 1 is equivalent to codeg(P) > %r?’
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Lattice polytopes and toric embeddings
A convex lattice polytope P C R™ gives a toric embedding
p: (C)™ — PV,
where N + 1 is the number of lattice points in P, as follows:

Let ag,...,an € Z™ denote the latttice points in P. Then send
t = (t1,... ,tm) to (£90 ;- £ON),

The closure of the image is a toric variety Xp C PV.

Example
The polytope P C R: 4

[ ] [ ]
corresponds to the toric embedding C* — P? given by

t s (1:t:t?); its closure Xp is a plane conic curve.
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Defective polytopes
The dual projective space (PV)V is the space consisting of all
hyperplanes in PV. A point (§: ---: &x) € (PY)Y corresponds
to the hyperplane H : &yzg + -+ Enzy = 0.
The intersection of Xp with the hyperplane is given by
F(6) = €t + - Exter =0,

The intersection is singular precisely when H is tangent to Xp.
The dual variety X}, is the locus of these hyperplanes. The
equation(s) of X} is the discriminant A(f).

We say P is defective if X}, is not a hypersurface.

Example
A& + &it 4 6t?) = £ — 4&obo.
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Characterizing Cayley polytopes

Theorem (Dickenstein, Di Rocco, P., Nill)

Let P be a smooth lattice polytope of dimension n. The following
are equivalent

n+3
(1) codeg(P) > 252
(2) P = Py*---* Py is a smooth Cayley polytope with
k+1 = codeg(P) and k > 3.
(3) P is defective, with defect 2k —n > 0.

The proof is algebro-geometric (adjoints and nef-value maps a la
Beltrametti-Sommese, toric fibrations a la Reid).
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An example withn =3, k = 2
Let PO = P1 = PQZ °
and set P := Pyx Py x P,. Then P corresponds to the embedding

(C*)? — P8
given by
()~ (L:z:y:z:ay:y?:yz: 2y’ y?2);
its closure Xp is a rational normal scroll of type (2,2,2).

WehavecodengSz%:2+1and2> %
The polytope P is defective, with defect 2-2 — 3 = 1.
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A geometric interpretation

An ordering of the lattice points in P = Py x - - - x P}, gives toric
embeddings
@i: (CH)"F — PN C PV,

The Cayley trick says that the hyperplanes H C PV that are
tangent to Xp are those that contain the points
©o(t),...,or(t), for some t € (C*)"F,

Therefore, the dimension of the dual variety X} is equal to
n—k+N—-1—k=N—-1—(2k—n), so P is defective with
defect 2k — n iff 2k — n > 0.

| UiO ¢ University of Oslo




Chern classes of toric varieties

Let {X,}o denote the torus invariants orbits of Xp. Each orbit
X, corresponds to a face F, of P of the same dimension.

By Ehler’s formula, the Schwartz—MacPherson Chern classes are

MXp) = 3 [Kal

«

It follows that the Mather Chern classes are

M(Xp) = 3 Bux, (Xo) [Xal,

where Eux, (X4) denotes the value of the local Euler
obstruction of Xp at a point of X,.
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The degree of the dual variety

Theorem (Gel’'fand-Kapranov—Zelevinski)

If Xp is smooth and non defective,

deg Xpp = ) _(—1)°%™ ¥ (dim F, + 1)Volz(Fo).

[e%

Proof. deg X)) = ¢, (PY(Lp)) is a polynomial in the Chern
classes of Xp and the hyperplane bundle Lp.

c1(Lp)" = Volgz(P) = deg Xp

ci(Txp)er(Lp)" ™ = Y eodim po—i YOlz(Fa)-
cn(T'xp) = # vertices of P
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Theorem (Matsui-Takeuchi)
If Xp is non defective,

deg Xp =) (—=1)°dmFa(dim F, + 1) Buy, (Xa)Volz(Fy).
P P

«

Example
P = Conv{(0,0),(3,0), (0,2)}.

The weighted projective plane Xp = P(1,2,3) has

deg X} =3-6-22+3+1)—(1+0+0)=T1.
P
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Higher order dual varieties

Let X C PV be a projective variety. The kth order dual variety
is

X® .= {H e (PN)V | H is tangent to X to the order k}

={H ¢ PNY |H D ']I";(’x for some = € Xgmooth }»

where ’]I"kx = is the kth osculating space to X at x.
Note that dim T’;(,x < ("+k) —1,n=dim X, and
XM = XV and X*-1 > x*)

The expected dimension of X*) =n+ N — ("Zk)
X is k-defective if dim X*) < n+ N — ("+k)
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Toric threefolds

Theorem (Dickenstein-Di Rocco—P.)

(X, P) = (Xp,Lp) smooth, 2-reqular toric threefold embedding

is 2-defective if and only if (X, L) = (P3,Ops(2)). Moreover:

(1) deg X =120 if (X, L) = (P3, Ops(3))

(2) deg X@ =6(8(a+b+c)—7) if
(X, L) = (P(Op1(a) ® Op1(b) ® Op1(c)), 2¢), where £ denotes
the tautological line bundle,

(3) In all other cases,
deg X@) = 62V — 57F + 28F — 8v + 58V} + 51F, + 20E},
where V., F, E (resp. Vi, F1, E1) denote the (lattice)

volume, area of facets, length of edges of P (resp. of the
adjoint polytope Conv(intP)), and v = # {vertices of P }.
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Example

If P is a cube with edge lengths 2, then
(Xp,Lp) = (P* x P! x P}, 0(2,2,2)).

V=318=48 F=6-2-4=48 F=12-2=24, v =28,
Vi =F = E; =0 (int(P) = {(1,1,1)} is a point)

deg X® = 62V — 57F + 28E — 8v = 848.
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k-selfdual toric varieties (joint with A. Dickenstein)

A ={ag,...,an} C Z" alattice point configuration, and
X 4 C PV the corresponding toric embedding.

Form the matrix A by adding a row of 1’s to the matrix
(a0| e |aN) Denote by vy = (]_’ R 1)’ Vi,...,Vn c ZN+1 the
row vectors of A.

For any a € N**1 denote by v, € ZN*+! the vector obtained as

the coordinatewise product of o times the row vector vy times
... times «,, times the row vector v,,.

Order the vectors {v, : |a| < k}. Let A®) be the
(”zk) X (N + 1) integer matrix with these rows.
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Rational normal curve
Take A ={0,...,d}. Then

1111
A_<0123

and
1 11 1
01 2 3
(3) —
4 014 9
0 1 8 27
Note that
1 11 1
01 2 3
(3)
A 0 01 3
00 01
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Non-pyramidal configurations

The configuration A is non-pyramidal (nap) if the configuration
of columns in A is not a pyramid (i.e., no basis vector e; of
RN*1 lies in the rowspan of the matrix).

The configuration A is knap if the configuration of columns in

A®) is not a pyramid.

Example
A is a pyramid:

11111
A=101 2 3 4
005 00
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Characterization of k-self dual configurations

X 4 is k-selfdual if $(X4) = X'§) for some ¢: PN = (PN)V.
Theorem (Dickenstein—P.)

(1) X 4 is k-selfdual if and only if dim X 4 = dim Xff) and A is
knap.

(2) If A is knap and dim KerA®) =1, then X4 is k-selfdual.

(3) If A is knap and k-selfdual, and dimKerA®) = > 1, then
A=¢eyx AgU...Uer_1 X Ar_1 1s 7-Cayley.

The proof generalizes |[Bourel-Dickenstein—Rittatore| (k = 1).
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A surface in P3

A= {(07 O)’ (17 0)7 (17 1)’ (Oa 2)}
gives
Xa:(z,y)—= 1:z:zy:y?)
and
XN =X v (2,y) = (=% 20 1y s =227 1y 0 1),
with
AV ={(0,2),(-1,2),(-1,1),(0,0)}.

This surface is self dual.
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The corresponding polygons

(¢] [ ] (¢]
(¢] O\.
(e] [ ] [ ]

A
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Toric linear projections and sections

Let A = (ag,...,an) C Z™ be a lattice point configuration and
let X4 C PV denote the corresponding toric embedding. Let A’
be a lattice point configuration obtained from 4 by removing r
points. Then the toric embedding X 4o C IP’N/, where N/ = N —r,
is the toric linear projection of X 4 with center equal to the
linear span of the “removed points”.

A toric hyperplane section of X 4 is obtained by taking a
hyperplane in Z™ and “collapsing” the point configuration A into
this lattice hyperplane in such a way that one point is “lost”:
two points map to the same point.
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The degree 6 Del Pezzo surface

> As a hyperplane section:
Let A C Z? be the vertices of the unit cube. Collapse the
cube in a plane by identifying the opposite vertices (1,1,1)
and (0,0,0). This gives a hexagon with one interior point.
This hyperplane section of (P')3 C P is the Del Pezzo
surface X C PS of degree 6.
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The degree 6 Del Pezzo surface

> As a hyperplane section:
Let A C Z? be the vertices of the unit cube. Collapse the
cube in a plane by identifying the opposite vertices (1,1, 1)
and (0,0,0). This gives a hexagon with one interior point.
This hyperplane section of (P')3 C P7 is the Del Pezzo
surface X C PS of degree 6.

» As a projection:
Let A C Z? be the lattice points of the square with sides of
length 2. Project X4 C P® from the points corresponding
to the vertices (2,0) and (0,2). The projected surface is the
Del Pezzo surface X C PS of degree 6.
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Togliatti’s surface

The lattice points defining Togliatti’s surface X C P° are those
of the Del Pezzo hexagon, with the interior point deleted. The
2nd order osculating spaces to X all pass through one point,
namely the point corresponding to the interior point of the
hexagon. So the (general) 2nd order osculating spaces of X have
dimension 4, not 5.

The Togliatti surface is 2-self dual, so

dng@) =deg X = 6.
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THANK YOU FOR YOUR ATTENTION!
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