Discriminants and polytopes in toric geometry

Ragni Piene

Caucasian Mathematical Conference III
Rostov-on-Don
August 27, 2019

Resultants and discriminants

Il faut éliminer la théorie de l'élimination.

> J. Dieudonné (1969)

Eliminate, eliminate, eliminate
Eliminate the eliminators of elimination theory.
S. S. Abhyankar (1970)

Résultant, discriminant
M. Demazure (2011) - à J.-P. Serre pour son 85 -ième anniversaire

Question: For which a_{0}, \ldots, a_{m} and b_{0}, \ldots, b_{n} do

$$
f(x)=a_{m} x^{m}+\cdots+a_{0} \text { and } g(x)=b_{n} x^{n}+\cdots+b_{0}
$$

have a common root?

UiO : University of Oslo

James Joseph Sylvester (1814-1897)

The Sylvester matrix is the $(m+n) \times(m+n)$-matrix

$$
\left(\begin{array}{ccccc}
a_{m} & a_{m-1} & a_{m-2} & \ldots & \ldots \\
0 & a_{m} & a_{m-1} & a_{m-2} & \ldots \\
\vdots & & & \vdots & \\
b_{n} & b_{n-1} & b_{n-2} & \ldots & \ldots \\
0 & b_{n} & b_{n-1} & b_{n-2} & \cdots
\end{array}\right)
$$

The resultant $\operatorname{Res}(f, g)$ is the determinant of this matrix.

A student of Sylvester?

Florence Nightingale (1820-1910)

UiO : University of Oslo

"Diagram of the Causes of Mortality in the Army in the East"

Arthur Cayley (1821-1895)

Set

$$
h(x, y):=f(x)+y g(x) .
$$

If α is a common root of f and g, then

$$
\left(\alpha,-\frac{f_{x}(\alpha)}{g_{x}(\alpha)}\right)
$$

is a common zero of h, h_{x}, h_{y}.

The Cayley trick

Consider

$$
\begin{aligned}
& h\left(x_{1}, \ldots, x_{n-k}, y_{1}, \ldots, y_{k}\right):= \\
& \quad f_{0}\left(x_{1}, \ldots, x_{n-k}\right)+y_{1} f_{1}\left(x_{1}, \ldots, x_{n-k}\right)+y_{k} f_{k}\left(x_{1}, \ldots, x_{n-k}\right)
\end{aligned}
$$

The discriminant $\Delta(h)$ of h is obtained by eliminating the x_{i} 's and y_{j} 's from the $n+1$ equations

$$
h=0, \partial h / \partial x_{i}=0, \partial h / \partial y_{j}=f_{j}=0
$$

Hence $\Delta(h) \sim \operatorname{Res}\left(f_{0}, \ldots, f_{k}\right)$.

Convex lattice polytopes

Cayley polytopes

Let $P_{0}, \ldots, P_{k} \subset \mathbb{R}^{n-k}$ be convex lattice polytopes, and e_{0}, \ldots, e_{k} the vertices of $\Delta_{k} \subset \mathbb{R}^{k}$.

The polytope

$$
P=\operatorname{Conv}\left\{e_{0} \times P_{0}, \ldots, e_{k} \times P_{k}\right\} \subset \mathbb{R}^{k} \times \mathbb{R}^{n-k}=\mathbb{R}^{n}
$$

is called a Cayley polytope.
We write

$$
P=P_{0} \star \cdots \star P_{k}
$$

A Cayley polytope is "hollow": it has no interior lattice points.

UiO: University of Oslo

An example

lattice distance one

UiO : University of Oslo

The codegree and degree of a polytope

$$
\operatorname{codeg}(P)=\min \{m \mid m P \text { has interior lattice points }\}
$$

$$
\operatorname{deg}(P)=n+1-\operatorname{codeg}(P)
$$

Example (1)

$$
\operatorname{codeg}\left(\Delta_{n}\right)=n+1 \text { and } \operatorname{codeg}\left(2 \Delta_{n}\right)=\left\lceil\frac{n+1}{2}\right\rceil
$$

Example (2)

$$
P=P_{0} \star \cdots \star P_{k} \text { implies } \operatorname{codeg}(P) \geq k+1
$$

UiO: University of Oslo

$\operatorname{codeg}\left(P_{1}\right)=3 \quad \operatorname{codeg}\left(P_{2}\right)=2$
$\operatorname{codeg}\left(P_{3}\right)=1$

UiO: University of Oslo

The Cayley polytope conjecture

Question (Batyrev-Nill): Is there an integer $N(d)$ such that any polytope P of degree d and $\operatorname{dim} P \geq N(d)$ is a Cayley polytope?

Answer (Haase-Nill-Payne): Yes, and $N(d) \leq\left(d^{2}+19 d-4\right) / 2$
Question: Is $N(d)$ linear in d ?
Answer (Dickenstein-Di Rocco-P.): Yes, $N(d)=2 d+1$ (if P is smooth and \mathbb{Q}-normal).

Note that $n \geq 2 d+1$ is equivalent to $\operatorname{codeg}(P) \geq \frac{n+3}{2}$.

UiO: University of Oslo

Lattice polytopes and toric embeddings

A convex lattice polytope $P \subset \mathbb{R}^{m}$ gives a toric embedding

$$
\varphi:\left(\mathbb{C}^{*}\right)^{m} \rightarrow \mathbb{P}^{N}
$$

where $N+1$ is the number of lattice points in P, as follows:
Let $a_{0}, \ldots, a_{N} \in \mathbb{Z}^{m}$ denote the latttice points in P. Then send $\mathbf{t}=\left(t_{1}, \ldots, t_{m}\right)$ to $\left(\mathbf{t}^{a_{0}}: \cdots: \mathbf{t}^{a_{N}}\right)$.
The closure of the image is a toric variety $X_{P} \subset \mathbb{P}^{N}$.

Example

The polytope $P \subset \mathbb{R}$:
corresponds to the toric embedding $\mathbb{C}^{*} \rightarrow \mathbb{P}^{2}$ given by $t \mapsto\left(1: t: t^{2}\right)$; its closure X_{P} is a plane conic curve.

UiO : University of Oslo

Defective polytopes

The dual projective space $\left(\mathbb{P}^{N}\right)^{\vee}$ is the space consisting of all hyperplanes in \mathbb{P}^{N}. A point $\left(\xi_{0}: \cdots: \xi_{N}\right) \in\left(\mathbb{P}^{N}\right)^{\vee}$ corresponds to the hyperplane $H: \xi_{0} x_{0}+\cdots+\xi_{N} x_{N}=0$.
The intersection of X_{P} with the hyperplane is given by $f(\mathbf{t}):=\xi_{0} \mathbf{t}^{a_{0}}+\cdots \xi_{N} \mathbf{t}^{a_{N}}=0$.

The intersection is singular precisely when H is tangent to X_{P}. The dual variety X_{P}^{\vee} is the locus of these hyperplanes. The equation(s) of X_{P}^{\vee} is the discriminant $\Delta(f)$.
We say P is defective if X_{P}^{\vee} is not a hypersurface.

Example

$\Delta\left(\xi_{0}+\xi_{1} t+\xi_{2} t^{2}\right)=\xi_{1}^{2}-4 \xi_{0} \xi_{2}$.

UiO : University of Oslo

Characterizing Cayley polytopes

Theorem (Dickenstein, Di Rocco, P., Nill)
Let P be a smooth lattice polytope of dimension n. The following are equivalent
(1) $\operatorname{codeg}(P) \geq \frac{n+3}{2}$
(2) $P=P_{0} \star \cdots \star P_{k}$ is a smooth Cayley polytope with $k+1=\operatorname{codeg}(P)$ and $k>\frac{n}{2}$.
(3) P is defective, with defect $2 k-n>0$.

The proof is algebro-geometric (adjoints and nef-value maps à la Beltrametti-Sommese, toric fibrations à la Reid).

UiO : University of Oslo

An example with $n=3, k=2$

Let $P_{0}=P_{1}=P_{2}$:
and set $P:=P_{0} \star P_{1} \star P_{2}$. Then P corresponds to the embedding

$$
\left(\mathbb{C}^{*}\right)^{3} \rightarrow \mathbb{P}^{8}
$$

given by

$$
(x, y) \mapsto\left(1: x: y: z: x y: y^{2}: y z: x y^{2}: y^{2} z\right)
$$

its closure X_{P} is a rational normal scroll of type $(2,2,2)$.
We have codeg $P=3=\frac{3+3}{2}=2+1$ and $2>\frac{3}{2}$.
The polytope P is defective, with defect $2 \cdot 2-3=1$.

UiO : University of Oslo

A geometric interpretation

An ordering of the lattice points in $P=P_{0} \star \cdots \star P_{k}$ gives toric embeddings

$$
\varphi_{i}:\left(\mathbb{C}^{*}\right)^{n-k} \rightarrow \mathbb{P}^{N_{i}} \subset \mathbb{P}^{N}
$$

The Cayley trick says that the hyperplanes $H \subset \mathbb{P}^{N}$ that are tangent to X_{P} are those that contain the points $\varphi_{0}(\mathbf{t}), \ldots, \varphi_{k}(\mathbf{t})$, for some $\mathbf{t} \in\left(\mathbb{C}^{*}\right)^{n-k}$.

Therefore, the dimension of the dual variety X_{P}^{\vee} is equal to $n-k+N-1-k=N-1-(2 k-n)$, so P is defective with defect $2 k-n$ iff $2 k-n>0$.

UiO: University of Oslo

Chern classes of toric varieties

Let $\left\{X_{\alpha}\right\}_{\alpha}$ denote the torus invariants orbits of X_{P}. Each orbit X_{α} corresponds to a face F_{α} of P of the same dimension.

By Ehler's formula, the Schwartz-MacPherson Chern classes are

$$
c^{\mathrm{SM}}\left(X_{P}\right)=\sum_{\alpha}\left[\bar{X}_{\alpha}\right] .
$$

It follows that the Mather Chern classes are

$$
c^{\mathrm{M}}\left(X_{P}\right)=\sum_{\alpha} \operatorname{Eu}_{X_{P}}\left(X_{\alpha}\right)\left[\bar{X}_{\alpha}\right],
$$

where $\mathrm{Eu}_{X_{P}}\left(X_{\alpha}\right)$ denotes the value of the local Euler obstruction of X_{P} at a point of X_{α}.

UiO : University of Oslo

The degree of the dual variety

Theorem (Gel'fand-Kapranov-Zelevinski)
If X_{P} is smooth and non defective,

$$
\operatorname{deg} X_{P}^{\vee}=\sum_{\alpha}(-1)^{\operatorname{codim} F_{\alpha}}\left(\operatorname{dim} F_{\alpha}+1\right) \operatorname{Vol}_{\mathbb{Z}}\left(F_{\alpha}\right) .
$$

Proof. $\operatorname{deg} X_{P}^{\vee}=c_{n}\left(\mathcal{P}^{1}\left(L_{P}\right)\right)$ is a polynomial in the Chern classes of X_{P} and the hyperplane bundle L_{P}.
$c_{1}\left(L_{P}\right)^{n}=\operatorname{Vol}_{\mathbb{Z}}(P)=\operatorname{deg} X_{P}$
$c_{i}\left(T_{X_{P}}\right) c_{1}\left(L_{P}\right)^{n-i}=\sum_{\text {codim } F_{\alpha}=i} \operatorname{Vol}_{\mathbb{Z}}\left(F_{\alpha}\right)$.
$c_{n}\left(T_{X_{P}}\right)=\#$ vertices of P

UiO : University of Oslo

Theorem (Matsui-Takeuchi)

If X_{P} is non defective,

$$
\operatorname{deg} X_{P}^{\vee}=\sum_{\alpha}(-1)^{\operatorname{codim} F_{\alpha}}\left(\operatorname{dim} F_{\alpha}+1\right) \mathrm{Eu}_{X_{P}}\left(X_{\alpha}\right) \operatorname{Vol}_{\mathbb{Z}}\left(F_{\alpha}\right)
$$

Example
$P=\operatorname{Conv}\{(0,0),(3,0),(0,2)\}$.
The weighted projective plane $X_{P}=\mathbb{P}(1,2,3)$ has

$$
\operatorname{deg} X_{P}^{\vee}=3 \cdot 6-2(2+3+1)-(1+0+0)=7
$$

Higher order dual varieties

Let $X \subset \mathbb{P}^{N}$ be a projective variety. The k th order dual variety is

$$
\begin{aligned}
X^{(k)}:=\overline{\{H} & \left.\in\left(\mathbb{P}^{N}\right)^{\vee} \mid H \text { is tangent to } X \text { to the order } k\right\} \\
& =\overline{\left\{H \in \mathbb{P}^{N^{\vee}} \mid H \supseteq \mathbb{T}_{X, x}^{k} \text { for some } x \in X_{\text {smooth }}\right\}}
\end{aligned}
$$

where $\mathbb{T}_{X, x}^{k}=$ is the k th osculating space to X at x.
Note that $\operatorname{dim} \mathbb{T}_{X, x}^{k} \leq\binom{ n+k}{k}-1, n=\operatorname{dim} X$, and
$X^{(1)}=X^{\vee}$ and $X^{(k-1)} \supseteq X^{(k)}$
The expected dimension of $X^{(k)}=n+N-\binom{n+k}{k}$.
X is k-defective if $\operatorname{dim} X^{(k)}<n+N-\binom{n+k}{k}$.

UiO : University of Oslo

Toric threefolds

Theorem (Dickenstein-Di Rocco-P.)

$(X, P)=\left(X_{P}, L_{P}\right)$ smooth, 2-regular toric threefold embedding is 2-defective if and only if $(X, L)=\left(\mathbb{P}^{3}, \mathcal{O}_{\mathbb{P}^{3}}(2)\right)$. Moreover:
(1) $\operatorname{deg} X^{(2)}=120$ if $(X, L)=\left(\mathbb{P}^{3}, \mathcal{O}_{\mathbb{P}^{3}}(3)\right)$
(2) $\operatorname{deg} X^{(2)}=6(8(a+b+c)-7)$ if
$(X, L)=\left(\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{1}}(a) \oplus \mathcal{O}_{\mathbb{P}^{1}}(b) \oplus \mathcal{O}_{\mathbb{P}^{1}}(c)\right), 2 \ell\right)$, where ℓ denotes the tautological line bundle,
(3) In all other cases, $\operatorname{deg} X^{(2)}=62 V-57 F+28 E-8 v+58 V_{1}+51 F_{1}+20 E_{1}$, where V, F, E (resp. V_{1}, F_{1}, E_{1}) denote the (lattice) volume, area of facets, length of edges of P (resp. of the adjoint polytope $\operatorname{Conv}(\operatorname{int} P))$, and $v=\#\{$ vertices of $P\}$.

Example

If P is a cube with edge lengths 2 , then
$\left(X_{P}, L_{P}\right)=\left(\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}, \mathcal{O}(2,2,2)\right)$.
$V=3!8=48, F=6 \cdot 2 \cdot 4=48, E=12 \cdot 2=24, v=8$.
$V_{1}=F_{1}=E_{1}=0(\operatorname{int}(P)=\{(1,1,1)\}$ is a point $)$

$$
\operatorname{deg} X^{(2)}=62 V-57 F+28 E-8 v=848
$$

UiO: University of Oslo

k-selfdual toric varieties (joint with A. Dickenstein)

$\mathcal{A}=\left\{a_{0}, \ldots, a_{N}\right\} \subset \mathbb{Z}^{n}$ a lattice point configuration, and $X_{\mathcal{A}} \subset \mathbb{P}^{N}$ the corresponding toric embedding.

Form the matrix A by adding a row of 1's to the matrix $\left(a_{0}|\cdots| a_{N}\right)$. Denote by $\mathbf{v}_{0}=(1, \ldots, 1), \mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in \mathbb{Z}^{N+1}$ the row vectors of A.
For any $\alpha \in \mathbb{N}^{n+1}$, denote by $\mathbf{v}_{\alpha} \in \mathbb{Z}^{N+1}$ the vector obtained as the coordinatewise product of α_{0} times the row vector \mathbf{v}_{0} times
\ldots times α_{n} times the row vector \mathbf{v}_{n}.
Order the vectors $\left\{\mathbf{v}_{\alpha}:|\alpha| \leq k\right\}$. Let $A^{(k)}$ be the $\binom{n+k}{k} \times(N+1)$ integer matrix with these rows.

Rational normal curve

Take $\mathcal{A}=\{0, \ldots, d\}$. Then

$$
A=\left(\begin{array}{llllll}
1 & 1 & 1 & 1 & \cdots & 1 \\
0 & 1 & 2 & 3 & \cdots & d
\end{array}\right)
$$

and

$$
A^{(3)}=\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & \cdots & 1 \\
0 & 1 & 2 & 3 & \cdots & d \\
0 & 1 & 4 & 9 & \cdots & d^{2} \\
0 & 1 & 8 & 27 & \cdots & d^{3}
\end{array}\right)
$$

Note that

$$
A^{(3)} \cong\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & \cdots & 1 \\
0 & 1 & 2 & 3 & \cdots & d \\
0 & 0 & 1 & 3 & \cdots & \left(\begin{array}{c}
d \\
2 \\
2
\end{array}\right) ~ . ~ \\
0 & 0 & 0 & 1 & \cdots & \binom{d}{3}
\end{array}\right)
$$

UiO : University of Oslo

Non-pyramidal configurations

The configuration \mathcal{A} is non-pyramidal (nap) if the configuration of columns in A is not a pyramid (i.e., no basis vector e_{i} of \mathbb{R}^{N+1} lies in the rowspan of the matrix).

The configuration \mathcal{A} is k nap if the configuration of columns in $A^{(k)}$ is not a pyramid.

Example
A is a pyramid:

$$
A=\left(\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3 & 4 \\
0 & 0 & 5 & 0 & 0
\end{array}\right)
$$

UiO : University of Oslo

Characterization of k-self dual configurations

$X_{\mathcal{A}}$ is k-selfdual if $\phi\left(X_{\mathcal{A}}\right)=X_{\mathcal{A}}^{(k)}$ for some $\phi: \mathbb{P}^{N} \cong\left(\mathbb{P}^{N}\right)^{\vee}$.
Theorem (Dickenstein-P.)
(1) $X_{\mathcal{A}}$ is k-selfdual if and only if $\operatorname{dim} X_{\mathcal{A}}=\operatorname{dim} X_{\mathcal{A}}^{(k)}$ and \mathcal{A} is knap.
(2) If \mathcal{A} is $k n a p$ and $\operatorname{dim} \operatorname{Ker} A^{(k)}=1$, then $X_{\mathcal{A}}$ is k-selfdual.
(3) If \mathcal{A} is knap and k-selfdual, and $\operatorname{dim} \operatorname{Ker} A^{(k)}=r>1$, then $\mathcal{A}=e_{0} \times \mathcal{A}_{0} \cup \ldots \cup e_{r-1} \times \mathcal{A}_{r-1}$ is r-Cayley.

The proof generalizes [Bourel-Dickenstein-Rittatore] $(k=1)$.

UiO : University of Oslo

A surface in \mathbb{P}^{3}

$$
\mathcal{A}=\{(0,0),(1,0),(1,1),(0,2)\}
$$

gives

$$
X_{\mathcal{A}}:(x, y) \mapsto\left(1: x: x y: y^{2}\right)
$$

and

$$
X_{\mathcal{A}}^{\vee} \cong X_{\mathcal{A} \vee}:(x, y) \mapsto\left(-y^{2}: 2 x^{-1} y^{2}:-2 x^{-1} y: 1\right)
$$

with

$$
\mathcal{A}^{\vee}=\{(0,2),(-1,2),(-1,1),(0,0)\}
$$

This surface is self dual.

UiO : University of Oslo

The corresponding polygons

Toric linear projections and sections

Let $\mathcal{A}=\left(a_{0}, \ldots, a_{N}\right) \subset \mathbb{Z}^{n}$ be a lattice point configuration and let $X_{\mathcal{A}} \subset \mathbb{P}^{N}$ denote the corresponding toric embedding. Let \mathcal{A}^{\prime} be a lattice point configuration obtained from \mathcal{A} by removing r points. Then the toric embedding $X_{\mathcal{A}^{\prime}} \subset \mathbb{P}^{N^{\prime}}$, where $N^{\prime}=N-r$, is the toric linear projection of $X_{\mathcal{A}}$ with center equal to the linear span of the "removed points".

A toric hyperplane section of $X_{\mathcal{A}}$ is obtained by taking a hyperplane in \mathbb{Z}^{n} and "collapsing" the point configuration \mathcal{A} into this lattice hyperplane in such a way that one point is "lost": two points map to the same point.

UiO: University of Oslo

The degree 6 Del Pezzo surface

- As a hyperplane section:

Let $\mathcal{A} \subset \mathbb{Z}^{3}$ be the vertices of the unit cube. Collapse the cube in a plane by identifying the opposite vertices $(1,1,1)$ and $(0,0,0)$. This gives a hexagon with one interior point. This hyperplane section of $\left(\mathbb{P}^{1}\right)^{3} \subset \mathbb{P}^{7}$ is the Del Pezzo surface $X \subset \mathbb{P}^{6}$ of degree 6 .

UiO : University of Oslo

UiO: University of Oslo

The degree 6 Del Pezzo surface

- As a hyperplane section:

Let $\mathcal{A} \subset \mathbb{Z}^{3}$ be the vertices of the unit cube. Collapse the cube in a plane by identifying the opposite vertices $(1,1,1)$ and $(0,0,0)$. This gives a hexagon with one interior point. This hyperplane section of $\left(\mathbb{P}^{1}\right)^{3} \subset \mathbb{P}^{7}$ is the Del Pezzo surface $X \subset \mathbb{P}^{6}$ of degree 6 .

- As a projection:

Let $\mathcal{A} \subset \mathbb{Z}^{2}$ be the lattice points of the square with sides of length 2. Project $X_{\mathcal{A}} \subset \mathbb{P}^{8}$ from the points corresponding to the vertices $(2,0)$ and $(0,2)$. The projected surface is the Del Pezzo surface $X \subset \mathbb{P}^{6}$ of degree 6 .

UiO : University of Oslo

UiO : University of Oslo

Togliatti's surface

The lattice points defining Togliatti's surface $\bar{X} \subset \mathbb{P}^{5}$ are those of the Del Pezzo hexagon, with the interior point deleted. The 2nd order osculating spaces to X all pass through one point, namely the point corresponding to the interior point of the hexagon. So the (general) 2nd order osculating spaces of \bar{X} have dimension 4 , not 5 .

The Togliatti surface is 2-self dual, so

$$
\operatorname{deg} \bar{X}^{(2)}=\operatorname{deg} \bar{X}=6
$$

UiO: University of Oslo

Thank you for your attention!

UiO: University of Oslo

