
Envelopes of plane curves:
return of the evolute

Ragni Piene
(joint work with C. Riener and B. Shapiro)

MEGA 2021
Tromsø, Norway
June 7, 2021



An ellipse and its evolute (an astroid)



Apollonius of Perga, 262–200 BC
In his Treatise on Conic Sections, Book V, Apollonius
constructs and studies normals to a conic – he finds these more
interesting than the tangents:

In the fifth book I have laid down propositions relating
to maximum and minimum straight lines. You must
know that our predecessors and contemporaries have
only superficially touched upon this investigation of the
shortest lines, and have only proved what straight lines
touch the sections . . .

He spends 16 pages finding the number of normals through a
given point (the Euclidean distance degree!) and considers the
points “where two normals fall together” – the evolute!



Christian Huygens: Horologium Oscillatorium, 1673

“The evolute of a cycloid is a cycloid.”



Erasmus Darwin 1791: The Loves of the Plants



George Canning, the Anti-Jacobin 1798



Footnotes



Envelopes of families of lines
Consider a plane curve C0 ⊂ P(V ) ∼= P2 of degree d, with
normalization ν : C → C0. Given a 2-quotient

VC → F ,

we get a family of lines

ϕ : P(F) ⊂ C × P(V )→ C.

The envelope of ϕ is the branch locus (discriminant) of

ψ : P(F) ⊂ C × P(V )→ P(V ).



The envelope of the tangents
The set of tangents to C is a family of lines, parameterized by
the curve, with total space

Z = P(P) ⊂ C × P2,

where VC → ν∗P1
C0

(1)→ P is the Nash quotient.

Let ϕ : Z → C and ψ : Z → P2 denote the projections.
Then ψ(ϕ−1(p)) is the tangent to C at p ∈ C.
The map ψ is a finite cover of P2 of degree

d∨ = #ψ−1(q) = #{p ∈ C | q ∈ TC,p}.

If q ∈ C, then #ψ−1(q) = d∨ − 1.

Hence C is (part of) the branch locus of the map ψ.



The Euclidean normal bundle
Fix a line L∞ = P(V ′) ⊂ P(V ) and a quadric Q∞ ⊂ L∞.

Set K := Ker(VC → P). The sum of the maps

VC → V ′C
∼= V ′∨C → K∨ and VC → OC(1)

whose fiber at a general point p ∈ C is the Euclidean normal:
let Tp ∩ L∞ = {q} and let q⊥ ∈ L∞ w.r.t Q∞. Then (by
definition), Np := 〈p, q⊥〉 is the line perpendicular to Tp.

The Euclidean normal bundle is the image of the map

VC → E ⊆ K∨ ⊕OC(1).

Example: P(V ) = P2
C, L∞ = {z = 0}, and

Q∞ = {(1 : i : 0), (1 : −i : 0)} (the circular points)

gives Euclidean geometry in R2 ⊂ C2 = P2
C \ L∞.



Evolutes
The evolute EC of C is the envelope of the family of normals
P(E)→ C (cf. Apollonius).

The evolute is a caustic.

The curve of normals NC ⊂ P(V )∨ is the image of the
morphism C → P(V )∨ given by the one-quotient

V ∨C
∼= ∧2VC → ∧2E .

The normals to C are the tangents to EC :

Proposition
The curve of normals is equal to the dual curve of the evolute:

NC = E∨C ⊂ P(V )∨.



Evolutes as centers of curvature
Choose coordinates in P(V ) such that L∞ = {z = 0} and
Q∞ = {x2 + y2 = 0}. Let (x(t), y(t)) be a local parameterization
of C0 ∩ (P(V ) \ L∞ = C2. The curve of normals:

V ∨C
∼=
∧2 VC →

∧2

(
x(t) y(t) 1
y′(t) −x′(t) 0

)
= (x′ : y′ : −xx′ − yy′).

The evolute is obtained by taking the dual of the curve of
normals:

VC ∼=
2∧
V ∨C →

2∧(
x′ y′ −xx′ − yy′
x′′ y′′ −xx′′ − x′2 − yy′′ − y′2

)
,

which gives the center of curvature:(
x− y′(x′2+y′2)

x′y′′−x′′y′ : y + x′(x′2+y′2)
x′y′′−x′′y′ : 1

)
.



Numerical characters
Let C → C0 ⊂ P(V ) be a complex plane curve. Given a line L∞
and a quadric Q∞ ⊂ L∞. If p ∈ C0 ∩Q∞ but Tp 6= L∞, then
the evolute has an inflectional tangent through p. If Tq = L∞
for some q ∈ C ∩L∞, then the evolute has an inflection point on
L∞. Assume the intersections of C with L∞ are transversal or
tangential. Then (as in Salmon 1852)

degNC = d+ d∨ − ιE

degEC = 3d+ ι− 3ιE = 3d∨ + κ− 3ιE

κE = 6d− 3d∨ + 3ι− 5ιE

where ιE is the number of inflection points on EC . The formulas
can be adjusted to more special situations.



Brusotti’s theorem (1921)
Let us now turn to the discussion of real algebraic curves and
their evolutes and curves of normals. We will need some tools.

Theorem
Any real-algebraic curve Γ ⊂ R2 with only nodes as singularities
admits a small real deformation of the same degree which realizes
any independently prescribed smoothing types of all its crunodes.



Klein and Klein–Schuh
Theorem (Klein)
If a real algebraic plane curve C of degree d and class d∨ has no
other point or tangent singularities than nodes, cusps,
bitangents, and inflectional tangents, then

d+ 2τac + iR = d∨ + 2δac + κR.

Theorem (Klein–Schuh)
Let C ⊂ P2

C be a curve of degree d and class d∨. Then

d−d∨ =
∑

p∈C(R)(mp(C)−rp(C))−
∑

q∈C∨(R)(mq(C
∨)−rq(C∨)),

where mp is the multiplicity and rp the number of real branches.



The R-degree of a curve

The R-degree of a curve D ⊂ R2 is

R deg(D) := supL # (D ∩ L)

where L ⊂ R2 are all lines intersecting D transversally.

Problem 1: What are

e(d) := maxΓ R deg(EΓ) and n(d) := maxΓ R deg(NΓ),

where the maximum is taken over all curves Γ ⊂ R2 of degree d.

Answer: e(d) ≥ d(d− 2) and n(d) = d2



Proof for the R-degree of the evolute
By Klein’s theorem, a (smooth) curve of degree d has ≤ d(d− 2)
real inflection points, and the bound is sharp. Take Γ of degree
d with d(d− 2) real inflection points. Each inflection point gives
a point of the evolute on the line at infinity. By a small
deformation, we get a real line in R2 intersecting the evolute
transversally in d(d− 2) points.



Proof for the R-degree of the curve of normals
Consider an arrangement A ⊂ R2 of d lines in general position
and a point z /∈ A. By Brusotti, we can smoothen all d(d− 1)/2
nodes of A as in the figure. For each node, we get two normals
(in black) through z. Additionally, d normals are obtained by
deforming each altitude from z to a line in A. This give d2

normals through z to the smooth curve.



Vertices

A vertex of a plane curve plane curve Γ ⊂ R2 is a critical point
of the curvature function, i.e., a cusp of the evolute EΓ ∩ R2.

Problem 2: What is

v(d) := maxΓ κR(EΓ),

where the maximum is taken over all curves Γ ⊂ R2 of degree d.

Answer: v(d) ≥ d(2d− 3)

For complex cusps: 2d(3d− 5).



Diameters
A diameter of a plane curve Γ ⊂ R2 is a line L which is the
normal to Γ at two distinct points. The diameters are double
points of the curve of normals NΓ.

Problem 3: What is

δN (d) := maxΓ δ
cru(NΓ),

where the maximum is taken over all curves Γ ⊂ R2 of degree d?

Answer: δN (d) ≥ 1
2d

4 − d3 + 1
2d and conjecturally (for d ≥ 3),

δN (d) ≤ 1
2d

4 − 3d2 + 5
2d.

For complex nodes: 1
2d

4− 5
2d

2 + 2d – the number of bottle necks!



An ellipse, its evolute and its curve of normals

Vertices: κR(EΓ) = 4 Diameters: δcru(NΓ) = 2



Crunodes of the evolute
For a given curve Γ ⊂ R2, how many points in the plane are the
centers of more than one circle of curvature, i.e., how many
crunodes does the evolute have?

Problem 4: What is

c(d) := maxΓ δ
cru(EΓ),

where the maximum is taken over all curves Γ ⊂ R2 of degree d?

Answer: c(d) ≥
(
d(d−3)+1

2

)
= 1

2d
4 − 3d3 + 5d2 − 3

2d

For complex nodes: 9
2d

4 − 9d3 − 13
2 d

2 + 15d



The cubic y2 + x(x− 2)(x+ 1) = 0

deg Γ = 3, deg Γ∨ = 6, degEΓ = 3 · 6− 3 · 2 = 12,
degNΓ = 3 + 6− 2 = 7



The nodal cubic 5(x2 − y2)(x− 1) + (x2 + y2) = 0

deg Γ = 3, deg Γ∨ = 4,
degEΓ = 3 · 4 = 12,
degNΓ = 3 + 4 = 7



The ampersand, its evolute & its curve of normals

deg Γ = 4, deg Γ∨ = 6, degEΓ = 3 · 6 = 18, degNΓ = 4 + 6 = 10



Ivy (κισσóς)



The cissoid of Diocles (x2 + y2)x− 4y2 = 0

deg Γ = 3, deg Γ∨ = 3, degEΓ = 3 · 3 + 1− 3 · 2 = 4,
degNΓ = 3 + 3− 2 = 4



Trifolium pratense



The trifolium (x2 + y2)2 − x3 + 3xy2 = 0

deg Γ = 4, deg Γ∨ = 6, degEΓ = 10, degNΓ = 6



The fourleafed clover



The quadrifolium (x2 + y2)3 − 4x2y2 = 0

deg Γ = 6, degEΓ = 14, degNΓ = 8



Nephrology
“The nephron is the minute or microscopic structural and
functional unit of the kidney.”



The nephroid 4(x2 + y2 − 1)3 − 27y2 = 0

deg Γ = 6, degEΓ = 6, degNΓ = 4



Ranunculus



The ranunculoid x12 + 6x10y2 + 15x8y4 + 20x6y6 + · · · = 0

deg Γ = 12, degEΓ = 12, degNΓ = 7



Thank you for your attention!


