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Apollonius of Perga, 262–200 BC

In his Treatise on Conic Sections, Book V, Apollonius
constructs and studies normals to a conic – he finds these more
interesting than the tangents:1

In the fifth book I have laid down propositions relating to
maximum and minimum straight lines. You must know
that our predecessors and contemporaries have only su-
perficially touched upon this investigation of the shortest
lines, and have only proved what straight lines touch the
sections . . .

He spends 16 pages finding the number of normals through a
given point (the Euclidean distance degree!) and considers the
points “where two normals fall together” – the evolute!

1T. L. Heath, Apollonius of Perga, Cambridge University 1961.



Christian Huygens: Horologium Oscillatorium, 1673

“The evolute of a cycloid is a cycloid.”



An ellipse and its evolute (an astroid)



Envelopes of families of linear spaces

Consider a variety X ⊂ P(V ) ∼= Pn of dimension r.

Given a (n− r + 1)-quotient

VX → F ,

we get a family of linear spaces of dimension n− r

φF : P(F) ⊂ X × P(V ) → X.

The envelope of φ is the branch locus EF ⊂ P(V ) of

ψF : P(F) ⊂ X × P(V ) → P(V ).



A stratification of the envelope

The envelope EF is given by Σ1(ψF ).

Its “cuspidal edge” CF is given by Σ1,1(ψF ).

The cuspidal locus κF of CF is given by Σ1,1,1(ψF ), etc.

Set ci := ci(ψ
∗
FTP(V ) − TP(F)). Then

[EF ] = ψF∗(c1) ∩ [P(V )]

[CF ] = ψF∗(c
2
1 + c2) ∩ [P(V )]

[κF ] = ψF∗(c
3
1 + 3c1c2 + 2c3) ∩ [P(V )]

[λF ] = ψF∗(6c4 + 9c1c3 + 2c22 + 6c21c2 + c41) ∩ [P(V )] . . .



Euclidean geometry

Fix a hyperplane H∞ = P(V ′) ⊂ P(V ) and a quadric
Q∞ ⊂ H∞. The sum of the maps

VX → V ′
X

∼= V ′∨
X → NX/P(V )(−1) and VX → OX(1)

whose fiber at a general point p ∈ X is the Euclidean normal:
set Lp := Tp ∩H∞ and let L⊥

p ⊂ H∞ w.r.t Q∞. Then
Np := ⟨p, L⊥

p ⟩ is the (n− r)-space perpendicular to Tp.

Example: P(V ) = P2
C, H∞ = {z = 0}, and

Q∞ = {x2+y2 = 0} = {(1 : i), (1 : −i)} ⊂ H∞ (the circular points)

gives Euclidean geometry in R2 ⊂ C2 = P2
C \H∞.



The Euclidean normal bundle
The Euclidean normal bundle E is the image of the map

VX → NX/P(V )(−1)⊕OX(1).

The evolutes of X ⊂ P(V ) are

EX := EE , CX := CE , κX := κE , . . .

If X ⊂ P(V ) = P2 is a plane curve, its curve of normals
NX ⊂ P(V ∨) = (P2)∨ is given by the 1-quotient

V ∨
X

∼= ∧2VX → ∧2E .

It is a classical fact that the curve of normals is equal to the
dual curve of the evolute:

NX = E∨
X ⊂ P(V )∨.



Evolutes as centers of curvature
Choose coordinates in P(V ) = P2 such that H∞ = {z = 0} and
Q∞ = {x2 + y2 = 0} ⊂ H∞. Let (x(t), y(t)) be a local
parameterization of X ∩ (P2 \H∞) = X ∩ C2. The curve of
normals {Np}p∈X ⊂ (P2)∨ is given by

V ∨
X

∼=
∧2 VX →

∧2

(
x(t) y(t) 1
y′(t) −x′(t) 0

)
= (x′ : y′ : −xx′− yy′).

The evolute is obtained by taking the dual of the curve of
normals:

VX ∼=
2∧
V ∨
X →

2∧(
x′ y′ −xx′ − yy′

x′′ y′′ −xx′′ − x′2 − yy′′ − y′2

)
,

which gives the center of curvature:(
x− y′(x′2+y′2)

x′y′′−x′′y′ : y + x′(x′2+y′2)
x′y′′−x′′y′ : 1

)
.



Numerical characters

Let X → P(V ) ∼= P2 be a complex plane curve of degree d.
Given a line H∞ and a quadric Q∞ ⊂ H∞. If p ∈ X ∩Q∞ but
Tp ̸= H∞, then the evolute has an inflectional tangent through
p. If Tq = H∞ for some q ∈ X ∩H∞, then the evolute has an
inflection point on H∞.

Assume the intersections of X with H∞ are transversal or
tangential. Then (as in Salmon 1852)

degNX = d+ d∨ − ιE
(
≤ d2

)
degEX = 3d+ ι− 3ιE = 3d∨ + κ− 3ιE

(
≤ 3d(d− 1)

)
#CX = 6d− 3d∨ + 3ι− 5ιE

(
≤ 3d(2d− 3)

)
where ιE is the number of inflection points on EX .
(Note that #CX ∩H∞ = d. So #CX ∩ (P2 \H∞) = 2d(3d− 5)
is the number of vertices of X.)



Nodes on the normal curve and on the evolute

The normal curve NX has an ordinary d-multiple point
(corresponding to the line at infinity).

The nodes of NX are the diameters of the curve. For a general
curve X the number of diameters of X is

δN =

(
d

2

)
(d2 + d− 4),

and the number of nodes on the evolute is

δE =
1

2
d(3d− 5)(3d2 − d− 6).



Evolutes of space curves

Let X → P(V ) ∼= P3 be a space curve of degree d and genus g.
Fix a plane H∞ and a quadric Q∞ ⊂ H∞, and let E denote the
Euclidean normal bundle to X. The envelope of the normal
planes to X is a surface EX , called the polar developable by
Monge and the polar surface by Darboux. The space evolute of
X is the cuspidal edge CX of EX , called the evolute of the
second type by Blaschke and Lichtweiss and the focal curve by
Uribe-Vargas.

The osculating planes of the space evolute are the normal planes
to X. The space evolute of X is the locus of its centers of
spherical curvature.



Enumerative formulas for a space curve

Assume X → P3 is in general position w.r.t. Q∞ and H∞.

The degree of the polar developable is

degEX = 6(d+ g − 1)− 2k0.

The degree of the space evolute is

degCX = 3(3d+ 4g − 4− k0).

The space evolute has

#κX = 4(3d+ 5g − 5− k0)

cusps.

The first two formulas agree with those found by Salmon (and
with the formulas for a plane curve).



What about real curves?
Theorem (Klein)
If a real algebraic plane curve X of degree d and class d∨ has no
other point or tangent singularities than nodes, cusps,
bitangents, and inflectional tangents, then

d− 2δac − κR = d∨ − 2τac − ιR.

For example, a nonsingular real curve can have no more than
d(d− 2) real inflection points, whereas there are 3d(d− 2)
complex ones.

Some integral formulas based on Euler characteristic (1988)



Diameters and vertices of a plane curve

Notice that a crunode of NΓ (i.e., the real node with two real
branches) corresponds to the diameter of Γ which is a straight
segment connecting pairs of points on Γ and which is
perdendicular to the tangent lines to Γ at these endpoints.

Observe also that a real cusp of EΓ (resp. an inflection point
on NΓ) corresponds to a vertex of Γ which is a critical point of
Γ’s curvature.

Vertices of plane appear, for example, in the classical 4-vertex
theorem and its numerous generalizations.



R-degree

To formulate our problems we need to introduce the following
notion which deserves to be better known.

Definition
Given a closed semi-analytic hypersurface H ⊂ Rn without

boundary, we define its R-degree as the supremum of the
cardinality of H ∩ L taken over all lines L ⊂ Rn such that L
intersects H transversally. (Observe that we count points in
H ∩ L without multiplicity.)

In what follows, we denote the R-degree of H by R deg(H).
For a real-algebraic (or piecewise real-algebraic) hypersurface
H ⊂ Rn, one has R deg(H) ≤ deg(H) where deg(H) is the usual
degree of H (respectively the degree of the Zariski closure of H).

In particular, the R-degree of a real-algebraic hypersurface is
always finite which is in general not the case for real-analytic
hypersurfaces.



R-degree of an astroid is 4



Problems

Problem (1)
For a given positive integer d, what are the maximal possible

R-degrees of the evolute EΓ and of the curve of normals NΓ

where Γ runs over the set of all real-algebraic curves of degree d?

Problem (2)
For a given positive integer d, what its the maximal possible

number of real cusps on EΓ where Γ runs over the set of all
real-algebraic curves of degree d? In other words, what is the
maximal number of vertices a real-algebraic curve Γ of degree d
might have?

To make Problem (2) well-defined we have to assume that Γ
does not have a circle as its irreducible component.



Problems, cont.

Problem (3)
For a given positive integer d, what its the maximal possible

number of crunodes on NΓ where Γ runs over the set of all
real-algebraic curves of degree d? In other words, what is the
maximal number of (real) diameters Γ might have?

Here we again have to assume that Γ does not have a circle as
its irreducible component.

Problem (4)
For a given positive integer d, what its the maximal possible

number of crunodes on EΓ where Γ runs over the set of all
real-algebraic curves of degree d? In other words, what is the
maximal possible number of points in R2 which are the centers
for at least two distinct (real) curvature circles of Γ?



Initial result

Proposition. For any d ≥ 3, the maximal R-degree among the
evolutes of algebraic curves of degree d is not less than d(d− 2).
Remark. Complex answer 3d(d− 1).

Proof. Recall that each real inflection point of a real curve
corresponds to its evolute going to infinity. Notice that from
Klein’s theorem follows that a real-algebraic curve of degree d
has at most one third of its inflection points real and this bound
is achieved. The number of complex inflection points of a
generic curve of degree d equals 3d(d− 2). Thus there exists a
smooth real-algebraic curve of degree d with d(d− 2) real
inflection points. The evolute of such curve hits the line at
infinity (transversally) at d(d− 2) real points. Thus its R-degree
is at least d(d− 2).



Comments

The above lower bound is apparently not sharp. For d = 2 the
sharp bound is 4. For d = 3, taking a small deformation of three
lines creating a compact oval one gets an example with R-degree
of the evolute greater than or equal to 6 while the number of
real inflections is 3. The complex answer is 3d(d− 1) which has
leading coefficient 3 while our bound has leading coefficient 1.
The correct leading coefficient at d2 is unknown at the moment.



Second result

Proposition. There exists a real-algebraic curve Γ of degree d
and a point p ∈ R2 such that all d2 complex normals to Γ
through p are, in fact, real. In other words, the maximal
R-degree of NΓ equals d2 which is the usual degree of NΓ.

Proof. A crunode (which is a transversal intersection of two
smooth real local branches) admits two types of real smoothing.
By theorem of Brusotti any (possibly reducible) plane
real-algebraic curve with only nodes as singularities admits a
small real deformation which realizes independently prescribed
smoothing types of all its crunodes.



Second result, proof

Given a crunode and a point z such that the line L through this
point and through the crunode is not tangent to the real local
branches at the crunode, there exists a smoothing type of the
crunode such that, slightly rotating the line L around z, one
obtains two real normals to this smoothing.

Now take an arrangement A ⊂ R2 of d real lines in general
position and a point z outside these lines. By Brusotti,
smoothing all d(d− 1)/2 nodes in an appropriate way we obtain
d(d− 1) normals close to the lines joining z with the nodes of A.
Additional d normals are obtained by small deformations of the
altitudes connecting z with each of the d given lines. Thus,
there exist d2 real normals through z implying the R-degree of
the curve of normals for the obtained curve is a least d2. But its
usual degree is d2. The result follows.



Illustration

C

Z

Figure: Good deformation of a crunode relative to a point z.



Advances in Problem 2

Theorem. The maximal total number of cusps on evolutes of
real algebraic curves of degree d is at least d(2d− 3) which is
exactly 1/3 of #CΓ = 3d(2d− 3).

Proposition. The number of real cusps for the evolute of an
arbitrary small deformation R of any generic line arrangement
A ⊂ R2 consisting of d lines equals d(d− 1) plus the number of
bounded edges of A respected by R. All bounded edges of A are
respected by R if and only if the small deformation R(A) is a
convex curve.



Advance in Problem 2, cont.

A B A B

Figure: Two types of deformations of a bounded edge of a line
arrangement. The left one respects the edge while the right twists it.



Its proof

Proof: Consider the complement R2 \A. It consists of 2d infinite
convex polygons and

(
d−1
2

)
bounded convex polygons. Now take

any small deformation R of A. Locally near any vertex v of A
the smooth curve R(A) will consists of two convex branches for
each of which the curvature has a local maximum near v. These
local maxima will correspond to two cusps on the evolute of
R(A) which gives totally 2

(
d
2

)
= d(d− 1) cusps corresponding to

local maxima of curvature. Let us now show that every bounded
edge of A respected by R corresponds to the unique point on
R(A) where the curvature attains its minimum.



Proof, cont.

Moreover all extremal points of the curvature belong either to
the first or to the second types. On the other hand, every
twisted edge corresponds to an inflection point on R(A) which
means that the evolute goes to infinity. The total number of
bounded edges of any generic arrangement with d lines equals
d(d− 2). Easy to show that there exist exactly two small
deformations for which all bounded edges will be respected and
in such case we get d(d− 1) + d(d− 2) = d(2d− 3) extrema of
curvature on R(A).



Comment

Remark. It is not clear that Klein’s bound 1/3 is valid for
evolutes which are highly singular curves. We tried to apply
Klein’s equation to the evolute, but have not got any definite
conclusion yet. Thus it is unclear at the moment whether our
lower bound is optimal.



Problem 3

Proposition. One has the following lower bound for RDiam(d),

RDiam(d) ≥ d4

2
− d3 +

d

2
. (1)

The complex answer is

δN =

(
d

2

)
(d2 + d− 4).



Some notions

Notation: - A line arrangement A ⊂ R2 is called strongly
generic if in addition to the requirements that no two lines are
parallel and no three lines intersect at the same point we require
that no two lines are perpendicular.

By an altitude of a given line arrangement A ⊂ R2 we call a
straight segment connecting a vertex of A with a point on a line
belonging to A and which is perpendicular to this line. (Notice
that if A ⊂ R2 is strongly generic then no altitude of A connects
its two vertices.)



Important notion

For a given strongly generic A, its two vertices v1 and v2 and
any resolution R, we say that v1 and v2 have each other in sight
w.r.t. R if v2 ∈ C⊥

v1(R) and v1 ∈ C⊥
v2(R).

V Z

Figure: Two vertices having each other in sight w.r.t R.



Illustration

V

Z

Figure: An altitude creating two diameters after an admissible
deformation



Key technical result

Lemma. Given a strongly generic line arrangement A, the
following holds:
(i) Any small resolution of a vertex of A creates one diameter;
(ii) If an altitude al is admissible w.r.t. a small deformation R

then R creates two diameters close to al;
(iii) If v1 and v2 have each other in sight w.r.t. a small

deformation R then R creates four diameters close to the
segment (v1, v2).



Main statement

Proposition. Given any small resolution R of a strongly generic
arrangement A consisting of d lines, the number of diameters of
the obtained smooth curve R(A) equals

#diam(R(A)) = #ver + 2#adm.alt + 4#pairs of vert. s. each other,

where #ver =
(
d
2

)
is the number of vertices of A,

#adm.alt is the number of admissible altitudes w.r.t. R,
#pairs of vert. s. each other is the number of vertices seeing each
other.



Illustration
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Figure: Simple line arrangement and its deformation creating 21
diameters.

The complex answer is 24.



Sketch of proof

To settle the Proposition we need to introduce some class of
arrangements. We say that an arrangement A is oblate if the
slopes of all lines in A are close to each other.

Take a small resolution of an oblate arrangement for which we
make narrow cones at each vertex. Then every pair of vertices
will see each other.On the other hand, all altitudes will be
non-admissible. Thus we get 4

((d2)
2

)
+
(
d
2

)
= d4

2 − d3 + d
2

diameters for this resolution.



Problem 4

Recall that the number of nodes of the evolute of a generic
curve of degree d is given by

δE(d) =
d

2
(3d− 5)(3d2 − d− 6).

Denote by δcruE (d) the maximal number of crunodes for the
evolutes of real-algebraic curves of degree d.
We have the following lower bound for this number of crunodes.

Proposition

δcruE (d) ≥
([

d− 1

2

]
+ d− 2

)4

− 1

2
.



Improvements wanted...

There is apparently a lot of space for improvement of the
suggested bounds (which are very naive) as well as for other
real-algebraic problems related to the evolutes, curves of
normals and their high-dimensional analogs!



Our small zoo, cage 1
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Figure: The Weierstrass cubic in blue and its evolute in red.



Our small zoo, cage 2
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Figure: The nodal cubic 5(x2 − y2)(x− 1) + (x2 + y2) = 0 in blue and
its evolute in red.



Our small zoo, cage 3
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Figure: A non-singular cubic in blue and its evolute in red.



Our small zoo, cage 4
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Figure: The ampersand curve in blue and its evolute in red



Grand finale

Figure: Many happy returns to the Wonderful Wizard of Math!
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