Counting problems and generating functions

Ragni Piene

Encontro Brasileiro de Mulheres Matemáticas

IMPA, Rio de Janeiro
July 27, 2019

Ways of counting 1

UiO: University of Oslo

Ways of counting 2

Ways of counting 3

Khipo in the Museo Machu Picchu (Pi3.124, CC BY-SA 4.0)

UiO: University of Oslo

Partitions

Let n be a positive integer.
In how many ways can we write n as a sum of positive integers?
$1=1$
$2=2=1+1$
$3=3=2+1=1+1+1$
$4=4=3+1=2+2=2+1+1=1+1+1+1$

A partition of 7

UiO: University of Oslo

Partitions

Let n be a positive integer.
In how many ways $p(n)$ can we write n as a sum of positive integers?
$1=1$
$2=2=1+1$
$3=3=2+1=1+1+1$
$4=4=3+1=2+2=2+1+1=1+1+1+1$
$p(1)=1$
$p(2)=2$
$p(3)=3$
$p(4)=5$
A closed formula for $p(n)$?

UiO : University of Oslo

The partition function (Euler)

Expand the infinite product

$$
\left(1+q+q^{2}+\cdots\right)\left(1+q^{2}+q^{4}+\cdots\right) \cdots\left(1+q^{m}+q^{2 m}+\cdots\right) \cdots
$$

The coefficient of q^{n} is $p(n)$, the number of ways we can write $n=n_{1}+n_{2}+\ldots$, where $n_{1} \geq n_{2} \geq \cdots>0$.
The generating function: $P(q):=\sum p(n) q^{n}$ is

$$
P(q)=\prod_{m \geq 1}\left(1+q^{m}+q^{2 m}+q^{3 m}+\cdots\right)=\prod_{m \geq 1}\left(1-q^{m}\right)^{-1} .
$$

The function $P(q)$ displays the integer sequence

$$
1,2,3,5,7,11,15,22,30,42,55,77,101, \ldots
$$

A closed formula: $p(n)=\frac{1}{2 \pi i} \int_{C} \frac{P(q)}{q^{n+1}} d q$.

Generating functions

"A generating function is a clothesline on which we hang up a sequence of numbers for display."

Plane partitions

Consider next the number of plane partitions $\pi(n)$:

$$
\begin{aligned}
& 1=1 \Rightarrow \pi(1)=1 \\
& 2=2,1 \mid 1, \frac{1}{1} \Rightarrow \pi(2)=3 \\
& 3=3,2\left|1, \frac{2}{1}, \frac{1}{1}, 1\right| 1\left|1, \frac{1}{1}\right| 1
\end{aligned} \Rightarrow \pi(3)=66 ?
$$

The generating function for $\pi(n)$ is the MacMahon function:

$$
M(q)=\prod_{m \geq 1}\left(1-q^{m}\right)^{-m}
$$

UiO : University of Oslo

$$
\begin{aligned}
M(q) & =\left(1+q+q^{2}+q^{3}+\cdots\right)\left(1+q^{2}+\cdots\right)^{2}\left(1+q^{3}+\cdots\right)^{3} \cdots \\
& =1+q+q^{2}+2 q^{2}+q^{3}+q \cdot 2 q^{2}+3 q^{3}+\cdots \\
q & \leftrightarrow 1 \leftrightarrow\{1\} \\
q^{2} & \leftrightarrow 2 \leftrightarrow\{1, z\} \\
2 q^{2} & \leftrightarrow 1 \mid 1 \text { and } \frac{1}{1} \leftrightarrow\{1, y\} \text { and }\{1, x\} \\
q^{3} & \leftrightarrow 3 \leftrightarrow\left\{1, z, z^{2}\right\} \\
q \cdot 2 q^{2} & \leftrightarrow 2 \mid 1 \text { and } \frac{2}{1} \leftrightarrow\{1, y, z\} \text { and }\{1, x, z\} \\
3 q^{3} & \leftrightarrow 1|1| 1, \frac{1}{1}, \frac{1}{1} \leftrightarrow\left\{1, y, y^{2}\right\},\{1, x, y\},\left\{1, x, x^{2}\right\} \\
\text { Uio } & : \text { University of Oslo }
\end{aligned}
$$

A plane partition of 22

5	4	2	1	1		
3	2					
2	2				\longleftrightarrow	$\left\{1, x, x z, x z^{2}, x^{2}, x^{2} z, x y, x y z, x^{2} y, x^{2} y z\right.$,
:---:						
$\left.y, y z, y z^{2}, y z^{3}, y^{2}, y^{2} z, y^{3}, y^{4}, z, z^{2}, z^{3}, z^{4}\right\}$						

We want to count:

- The number of ways to insert n pairs of parentheses in a word of $n+1$ letters.

For $n=3$ there are 5 ways: $((\mathrm{ab})(\mathrm{cd})),(((\mathrm{ab}) \mathrm{c}) \mathrm{d}),((\mathrm{a}(\mathrm{bc})) \mathrm{d}),(\mathrm{a}((\mathrm{bc}) \mathrm{d})),(\mathrm{a}(\mathrm{b}(\mathrm{cd})))$.

- The number of ways to join $2 n$ points on a circle to form n nonintersecting chords.

UiO: University of Oslo

Properties of chords of circles, in the Sumerian sexagesimal system. Babylonia, ca. 17 th c. BC
UiO : University of Oslo

We want to count:

- The number of ways to insert n pairs of parentheses in a word of $n+1$ letters.

For $n=3$ there are 5 ways: $((\mathrm{ab})(\mathrm{cd})),(((\mathrm{ab}) \mathrm{c}) \mathrm{d}),((\mathrm{a}(\mathrm{bc})) \mathrm{d}),(\mathrm{a}((\mathrm{bc}) \mathrm{d})),(\mathrm{a}(\mathrm{b}(\mathrm{cd})))$.

- The number of ways to join $2 n$ points on a circle to form n nonintersecting chords.
- The number of ways to triangulate a regular $(n+2)$-gon. For $n=4$ there are 14 ways:

UiO: University of Oslo

The answer: the Catalan numbers

The nth Catalan number is

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

They satisfy the convolution formula

$$
C_{n+1}=\sum_{i=0}^{n} C_{i} C_{n-i}
$$

From this one deduces the equation $q C(q)^{2}-C(q)+1=0$ for the generating function:

$$
C(q):=\sum_{n=0}^{\infty} C_{n} q^{n}=\frac{1-\sqrt{1-4 q}}{2 q}
$$

UiO: University of Oslo

Schubert calculus

- How many lines intersect four given lines in \mathbb{P}^{3} ?

Degenerate the four lines to two pairs of intersecting lines. Then the line through the two points of intersection, and the line which is the intersection of the two planes are the lines meeting all four lines - the answer is 2 .

- How many lines meet six given planes in \mathbb{P}^{4} ?

The answer is 5 .

- How many lines meet $2 n$ given $(n-1)$-planes in \mathbb{P}^{n+1} ?

The answer is the Catalan number $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$.
The function $C(q)=\frac{1-\sqrt{1-4 q}}{2 q}$ displays the sequence

$$
1,2,5,14,42,132,429,1430,4862,16796, \ldots
$$

UiO : University of Oslo

Apollonius's 8 circles

Melchoir, CC BY-SA 3.0

Plane curves

A plane curve of degree d is given as the set of zeros of a (homogeneous) polynomial $F\left(x_{0}, x_{1}, x_{2}\right)$ in three variables of degree d.
The curve on the left is a conic $(d=2)$. It is a rational curve (it has genus 0$)$. The one to the right is a cubic $(d=3)$. It is elliptic (it has genus 1).

UiO : University of Oslo

Plane curves

A plane curve of degree d is given as the set of zeros of a (homogeneous) polynomial $F\left(x_{0}, x_{1}, x_{2}\right)$ in three variables of degree d.
The curve on the left is a conic $(d=2)$. It is a rational curve (it has genus 0$)$. The one to the right is a cubic $(d=3)$ with a node. It is rational.

UiO: University of Oslo

Counting rational plane curves ("Gromov-Witten")

The space of all curves of degree d in \mathbb{P}^{2} is a projective space of dimension $\binom{d+2}{2}-1$.
The rational curves are those which have $\binom{d-1}{2}$ singular points. They form a sub-"space" of dimension $3 d-1$.

Problem: Find the number N_{d} of plane rational curves of degree d passing through $3 d-1$ points.

Kontsevich's recursion formula:

$$
N_{d}=\sum_{d_{1}+d_{2}=d} N_{d_{1}} N_{d_{2}}\left(d_{1}^{2} d_{2}^{2}\binom{3 d-4}{3 d_{1}-2}-d_{1}^{3} d_{2}\binom{3 d-4}{3 d_{1}-1}\right)
$$

What is the generating function $\sum N_{d} q^{d}=? ?$

UiO: University of Oslo

A better generating function?

Set $n_{d}:=\frac{N_{d}}{(3 d-1)!}$. Then

$$
n_{d}=\sum_{d_{1}+d_{2}=d} n_{d_{1}} n_{d_{2}} \frac{d_{1} d_{2}\left(\left(3 d_{1}-2\right)\left(3 d_{2}-2\right)(d+2)+8(d-1)\right)}{6(3 d-1)(3 d-2)(3 d-3)}
$$

gives a generating function (in two variables)

$$
\Gamma\left(y_{1}, y_{2}\right):=\sum_{d} n_{d} e^{y_{1} d} y_{2}^{3 d-1}
$$

which satisfies the differential equation

$$
\partial^{3} \Gamma / \partial y_{2}^{3}=\left(\partial^{3} \Gamma / \partial y_{1}^{2} \partial y_{2}\right)^{2}-\left(\partial^{3} \Gamma / \partial y_{1}^{3}\right)\left(\partial^{3} \Gamma / \partial y_{1} \partial y_{2}^{2}\right)
$$

UiO : University of Oslo

To display on the clothesline:

... this sequence of numbers:

$$
\begin{aligned}
N_{1} & =1 \\
N_{2} & =1 \\
N_{3} & =12 \\
N_{4} & =620 \\
N_{5} & =87304 \\
N_{6} & =26312976 \\
N_{7} & =14616808192 \\
N_{8} & =13525751027392 \\
N_{9} & =19385778269260800 \\
N_{10} & =40739017561997799680
\end{aligned}
$$

Rational curves on a quartic surface

Let $S \subset \mathbb{P}^{3}$ be a quartic surface. If $H \subset \mathbb{P}^{3}$ is a plane, then $C:=H \cap S \subset H \cong \mathbb{P}^{2}$ is a plane quartic curve.

Problem: How many H are such that C has three nodes? Or, how many H are triply tangent to S ?

Answer 1: Set $d=4$ in the formula

$$
t(d)=\frac{1}{6} d(d-2)\left(d^{7}-4 d^{6}+7 d^{5}-45 d^{4}+111 d^{2}+548 d-960\right)
$$

to get $t(4)=3200$.
Answer 2: $P(q)^{24}=1+24 q+324 q^{2}+3200 q^{3}+\cdots$

K3 and the partition function

Let S be a K3 surface (e.g., $S \subset \mathbb{P}^{3}$ is a quartic surface) and \mathcal{L} a line bundle. The rational (genus 0) curves in the linear system $|\mathcal{L}|$ are the curves with $r:=\left(\mathcal{L}^{2}+2\right) / 2$ singularities. Their number, N_{r}, is independent of S and \mathcal{L}.
Yau-Zaslow Conjecture: The generating function is

$$
\sum_{r=0}^{\infty} N_{r} q^{r}=\prod_{m \geq 1}\left(1-q^{m}\right)^{-24}=\left(\sum p(n) q^{n}\right)^{24}=P(n)^{24}
$$

Geometric reason (Bryan-Leung): The Euler number $c_{2}(S)$ is 24 , and S can be degenerated (in symplectic geometry) to an elliptic fibration over \mathbb{P}^{1} with 24 singular (hence rational) fibers. There are $p\left(j_{i}\right)$ degree j_{i} maps from a stable rational curve (a bunch of \mathbb{P}^{1} 's) to a singular fiber, hence
$N_{r}=\sum_{j_{1}+\cdots+j_{24}=r} p\left(j_{1}\right) \cdots p\left(j_{24}\right)$.
UiO: University of Oslo

Bell numbers

The Stirling numbers $S_{n, k}$ count the number of partitions of a set with n elements into k blocks. The Bell numbers count all partitions: $B_{n}=\sum_{k=1}^{n} S_{n, k}$. They can be defined recursively:

$$
B_{0}=1 \text { and } B_{n+1}=\sum_{i=0}^{n}\binom{n}{i} B_{i}
$$

Their exponential generating function

$$
B(q):=\sum_{n=0}^{\infty} \frac{1}{n!} B_{n} q^{n}
$$

satisfies the differential equation

$$
\frac{B^{\prime}(q)}{B(q)}=e^{q}
$$

and hence

$$
B(q)=e^{e^{q}-1}
$$

UiO : University of Oslo

Polydiagonals

Let X be a space, and consider

$$
X^{n}=X \times \cdots \times X=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in X\right\}
$$

For each $k \leq n$ and each partition \mathbf{i}_{k} of $\{1,2, \ldots, n\}$ into k disjoint subsets $\left\{i_{1}^{j}, i_{2}^{j}, \ldots, i_{l(j)}^{j}\right\}, j=1, \ldots, k, \sum l(j)=n$, the corresponding polydiagonal is defined as

$$
\Delta\left(\mathbf{i}_{k}\right)=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i_{r}^{j}}=x_{i_{s}^{j}} \text { for all } r, s, j\right\}
$$

Then $\#\left\{\Delta\left(\mathbf{i}_{k}\right)\right\}=S_{n, k}$, and $B_{n}=\# \cup_{k=1}^{n}\left\{\Delta\left(\mathbf{i}_{k}\right)\right\}$ is the number of all polydiagonals in X^{n}, and there are

$$
\frac{n!}{j_{1}!\cdots j_{n}!}\left(\frac{1}{1!}\right)^{j_{1}} \cdots\left(\frac{1}{n!}\right)^{j_{n}}
$$

polydiagonals of each type ($j_{i}=$ \#blocks of i elements $)$.

UiO : University of Oslo

Example
$n=4: X^{4}=X \times X \times X \times X$
$k=2$
i_{2} :
$\{1\},\{2,3,4\} ;\{2\},\{1,3,4\} ;\{3\},\{1,2,4\} ;\{4\},\{1,2,3\}$;
$\{1,2\},\{3,4\} ;\{1,3\},\{2,4\} ;\{1,4\},\{2,3\}$.
There are $\frac{4!}{1!1!}\left(\frac{1}{1!}\right)^{1}\left(\frac{1}{3!}\right)^{1}=4$ of the first type, and $\frac{4!}{2!}\left(\frac{1}{2!}\right)^{2}=3$ of the second type.
$\#\left\{\Delta\left(\mathbf{i}_{2}\right)\right\}=S_{4,2}=4+3=7$
$\sum_{k} \#\left\{\Delta\left(\mathbf{i}_{k}\right)\right\}=\sum_{k} S_{4, k}=1+7+6+1=15=B_{4}$

UiO : University of Oslo

Bell polynomials

The partial Bell polynomials are

$$
B_{n, k}\left(a_{1}, \ldots, a_{n-k+1}\right)=\sum\binom{n}{j_{1} \cdots j_{n-k+1}}\left(\frac{a_{1}}{1!}\right)^{j_{1}} \cdots\left(\frac{a_{n-k+1}}{(n-k+1)!}\right)^{j_{n-k+1}}
$$

summing over $j \vdash n, \sum j_{i}=k$.
The complete (exponential) Bell polynomials are

$$
\begin{aligned}
B_{n}\left(a_{1}, \ldots, a_{n}\right) & =\sum_{k=1}^{n} B_{n, k}\left(a_{1}, \ldots, a_{n-k+1}\right) \\
B_{1}\left(a_{1}\right) & =a_{1}, \\
B_{2}\left(a_{1}, a_{2}\right) & =a_{1}^{2}+a_{2}, \\
B_{3}\left(a_{1}, a_{2}, a_{3}\right) & =a_{1}^{3}+3 a_{1} a_{2}+a_{3} \\
B_{4}\left(a_{1}, a_{2}, a_{3}, a_{4}\right) & =a_{1}^{4}+6 a_{1}^{2} a_{2}+4 a_{1} a_{3}+3 a_{2}^{2}+a_{4}
\end{aligned}
$$

Bell polynomials - other definitions

Recursively defined by $B_{0}=1$ and

$$
B_{n+1}\left(a_{1}, \ldots, a_{n+1}\right)=\sum_{i=0}^{n}\binom{n}{i} B_{n-i}\left(a_{1}, \ldots, a_{n-i}\right) a_{i+1},
$$

or by the formal identity

$$
\sum_{i \geq 0} \frac{1}{i!} B_{i}\left(a_{1}, \ldots, a_{i}\right) q^{i}=\exp \left(\sum_{j \geq 1} \frac{1}{j!} a_{j} q^{j}\right) .
$$

Note that $S_{n, k}=B_{n, k}(1, \ldots, 1)$ and $B_{n}=B_{n}(1, \ldots, 1)$.

UiO : University of Oslo

Faà di Bruno's formula

Let $h(t)=f(g(t))$ be a composed function.
Differentiate once: $h^{\prime}(t)=f^{\prime}(g(t)) g^{\prime}(t)$
and twice: $h^{\prime \prime}(t)=f^{\prime \prime}(g(t)) g^{\prime}(t)^{2}+f^{\prime}(t) g^{\prime \prime}(t)$.
Set $h_{i}:=h^{(i)}(t), f_{i}:=f^{(i)}(g(t)), g_{i}:=g^{(i)}(t)$. Then

$$
\begin{aligned}
h_{1} & =f_{1} g_{1} \\
h_{2} & =f_{1} g_{2}+f_{2} g_{1}^{2} \\
h_{3} & =f_{1} g_{3}+3 f_{2} g_{1} g_{2}+f_{3} g_{1}^{3}
\end{aligned}
$$

and indeed

$$
h_{n}=\sum_{k=1}^{n} f_{k} B_{n, k}\left(g_{1}, \ldots, g_{n-k+1}\right)
$$

UiO : University of Oslo

Nodal curves on families of surfaces

Given a family of curves on a family of surfaces, find an expression N_{r} for the class of curves that have r nodes.
Conjecture (Kleiman-P.): There exist universal linear polynomials a_{1}, a_{2}, \ldots in four variables such that

$$
\sum N_{r} q^{r}=\sum \frac{1}{r!} B_{r}\left(a_{1}(m, k, s, x), \ldots, a_{r}(m, k, s, x)\right) q^{r}
$$

where B_{r} is the r th Bell polynomial and m, k, s, x are the Landweber-Novikov Chern classes of the family.
Proved it for $r \leq 8$.
Proved by T. Laarakker (2018) for all r.

UiO : University of Oslo

The recursion

Express the class N_{r} of r-nodal curves in terms of $(r-1)$-nodal and lower.

Blow up the family of surfaces to get rid of one node in each curve, then use the formula for $(r-1)$-nodal curves on the blown up family and push it down. This creates a "derivation formula" à la Faà di Bruno:

$$
r!N_{r}=(r-1)!N_{r-1} N_{1}+\partial\left((r-1)!N_{r-1}\right)
$$

Set $a_{1}=N_{1}$ and $a_{2}=\partial\left(a_{1}\right)$. Then

$$
2!N_{2}=a_{1}^{2}+a_{2}=B_{2}\left(a_{1}, a_{2}\right)
$$

and, pretendig ∂ is a derivation and setting $a_{3}=\partial\left(a_{2}\right)$:

$$
3!N_{3}=\left(a_{1}^{2}+a_{2}\right) a_{1}+\partial\left(a_{1}^{2}+a_{2}\right)=a_{1}^{3}+3 a_{1} a_{2}+a_{3}=B_{3}\left(a_{1}, a_{2}, a_{3}\right) .
$$

UiO : University of Oslo

Why Bell polynomials? Another reason!

Let $D \subset F \xrightarrow{\pi} Y$ be a family of curves on surfaces, and let $X \subset D$ denote the critical locus: the set of points that are singular in their fibre.

The class a_{i} represents an intersection class supported on the small diagonal of $X^{i}=X \times_{Y} \cdots \times_{Y} X$ and each product of a_{i} 's to a class on a corresponding polydiagonal (Qviller).

For example, $a_{1}=\pi_{*}[X]=N_{1}$ and $-a_{2}$ is the sum of the (excess) contribution of the diagonal in $X \times_{Y} X$ and of the locus of cuspidal curves. Therefore

$$
N_{2}=\frac{1}{2}\left(a_{1}^{2}+a_{2}\right)=\frac{1}{2} B_{2}\left(a_{1}, a_{2}\right) .
$$

UiO: University of Oslo

Other ways of counting curves

- Count tropical curves (Mikhalkin, Gathman-Markwig, Brugallé, Block-Göttsche, ...)
- Count floor diagrams (Block, Göttsche, Fomin, ...)
- Count real curves (Welschinger, ...)
- Count curves on (some) singular toric surfaces (Liu-Osserman)
- Count curves (or sheaves, or cycles, ...) on higher dimensional varieties, e.g. threefolds (Donaldson-Thomas)

UiO: University of Oslo

Back to MacMahon

A plane partition of n can be viewed as a set of n monomials in three variables x, y, z such that all the other monomials generate an ideal in $\mathbb{C}[x, y, z]$, of colength n.

Example
The plane partition of 4 :

2	1
1	

corresponds to the set of monomials $\{1, x, y, z\}$, which gives the ideal $\left\langle x^{2}, x y, x z, y^{2}, y z, z^{2}, \ldots\right\rangle$ of colength 4 .

UiO: University of Oslo

Recall the plane partition of 22 :

5	4	2	1	1		
3	2					
2	2				\longleftrightarrow	$\left\{1, x, x z, x z^{2}, x^{2}, x^{2} z, x y, x y z, x^{2} y, x^{2} y z\right.$,
:---:						
$\left.y, y z, y z^{2}, y z^{3}, y^{2}, y^{2} z, y^{3}, y^{4}, z, z^{2}, z^{3}, z^{4}\right\}$						

Donaldson-Thomas and MacMahon

We have seen that the integer $\pi(n)$ counts the number of monomial ideals in $\mathbb{C}[x, y, z]$ of colength n.
These correspond to the colength n ideals that are invariant under the action of the torus $\left(\mathbb{C}^{*}\right)^{3}$,
or to the length n fixed points of \mathbb{C}^{3} under the torus action.
This is the virtual count of the degree zero Donaldson-Thomas invariants:

$$
D T_{0}\left(\mathbb{C}^{3}\right)(q)=M(-q)=\prod_{m \geq 1}\left(1-(-q)^{m}\right)^{-m}
$$

UiO : University of Oslo

Thank you for your attention!

