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Partitions

Let n be a positive integer.

In how many ways can we write n as a sum of positive integers?

1 = 1
2 = 2 = 1 + 1
3 = 3 = 2 + 1 = 1 + 1 + 1
4 = 4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1



A partition of 7



Partitions
Let n be a positive integer.

In how many ways p(n) can we write n as a sum of positive
integers?

1 = 1
2 = 2 = 1 + 1
3 = 3 = 2 + 1 = 1 + 1 + 1
4 = 4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1

p(1) = 1
p(2) = 2
p(3) = 3
p(4) = 5

A closed formula for p(n)?



The partition function (Euler)
Expand the infinite product

(1 + q + q2 + · · · )(1 + q2 + q4 + · · · ) · · · (1 + qm + q2m + · · · ) · · ·

The coefficient of qn is p(n), the number of ways we can write
n = n1 + n2 + . . ., where n1 ≥ n2 ≥ · · · > 0.

The generating function: P (q) :=
∑
p(n)qn is

P (q) =
∏
m≥1

(1 + qm + q2m + q3m + · · · ) =
∏
m≥1

(1− qm)−1.

The function P (q) displays the integer sequence

1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 55, 77, 101, . . .

A closed formula: p(n) = 1
2πi

∫
C
P (q)
qn+1dq.



Generating functions

“A generating function is a clothesline on which we hang up a
sequence of numbers for display."

H.S.Wilf
generatingfunctionology

Academic Press Inc., 1990



Plane partitions
Consider next the number of plane partitions π(n):

1 = 1⇒ π(1) = 1

2 = 2, 1 1 ,
1

1
⇒ π(2) = 3

3 = 3, 2 1 ,
2

1
,

1

1

1

, 1 1 1 ,
1 1

1
⇒ π(3) = 6

The generating function for π(n) is the MacMahon function:

M(q) =
∏
m≥1

(1− qm)−m



M(q) = (1 + q + q2 + q3 + · · · )(1 + q2 + · · ·)2(1 + q3 + · · ·)3 · · ·
= 1 + q + q2 + 2q2 + q3 + q · 2q2 + 3q3 + · · ·

q ↔ 1↔ {1}
q2 ↔ 2↔ {1, z}

2q2 ↔ 1 1 and
1

1
↔ {1, y} and {1, x}

q3 ↔ 3↔ {1, z, z2}

q · 2q2 ↔ 2 1 and
2

1
↔ {1, y, z} and {1, x, z}

3q3 ↔ 1 1 1 ,
1 1

1
,

1

1

1

↔ {1, y, y2}, {1, x, y}, {1, x, x2}



A plane partition of 22

5 4 2 1 1

3 2

2 2

←→ {1, x, xz, xz2, x2, x2z, xy, xyz, x2y, x2yz,
y, yz, yz2, yz3, y2, y2z, y3, y4, z, z2, z3, z4}

                      



We want to count:

I The number of ways to insert n pairs of parentheses in a
word of n+ 1 letters.

For n = 3 there are 5 ways:
((ab)(cd)), (((ab)c)d), ((a(bc))d), (a((bc)d)), (a(b(cd))).

I The number of ways to join 2n points on a circle to form n
nonintersecting chords.





We want to count:
I The number of ways to insert n pairs of parentheses in a

word of n+ 1 letters.

For n = 3 there are 5 ways:
((ab)(cd)), (((ab)c)d), ((a(bc))d), (a((bc)d)), (a(b(cd))).

I The number of ways to join 2n points on a circle to form n
nonintersecting chords.

I The number of ways to triangulate a regular (n+ 2)-gon.
For n = 4 there are 14 ways:



The answer: the Catalan numbers
The nth Catalan number is

Cn =
1

n+ 1

(
2n

n

)
They satisfy the convolution formula

Cn+1 =

n∑
i=0

CiCn−i

From this one deduces the equation q C(q)2 − C(q) + 1 = 0 for
the generating function:

C(q) :=

∞∑
n=0

Cn q
n =

1−
√

1− 4q

2q



Schubert calculus
I How many lines intersect four given lines in P3?

Degenerate the four lines to two pairs of intersecting lines.
Then the line through the two points of intersection, and
the line which is the intersection of the two planes are the
lines meeting all four lines – the answer is 2.

I How many lines meet six given planes in P4?

The answer is 5.
I How many lines meet 2n given (n− 1)-planes in Pn+1?

The answer is the Catalan number Cn = 1
n+1

(
2n
n

)
.

The function C(q) = 1−
√
1−4q
2q displays the sequence

1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, . . .



Apollonius’s 8 circles

Melchoir, CC BY-SA 3.0



Plane curves
A plane curve of degree d is given as the set of zeros of a
(homogeneous) polynomial F (x0, x1, x2) in three variables of
degree d.

The curve on the left is a conic (d = 2). It is a rational curve (it
has genus 0). The one to the right is a cubic (d = 3). It is
elliptic (it has genus 1).



Plane curves
A plane curve of degree d is given as the set of zeros of a
(homogeneous) polynomial F (x0, x1, x2) in three variables of
degree d.

The curve on the left is a conic (d = 2). It is a rational curve (it
has genus 0). The one to the right is a cubic (d = 3) with a
node. It is rational.

	



Counting rational plane curves (“Gromov–Witten”)
The space of all curves of degree d in P2 is a projective space of
dimension

(
d+2
2

)
− 1.

The rational curves are those which have
(
d−1
2

)
singular points.

They form a sub-“space” of dimension 3d− 1.

Problem: Find the number Nd of plane rational curves of degree
d passing through 3d− 1 points.

Kontsevich’s recursion formula:

Nd =
∑

d1+d2=d

Nd1Nd2

(
d21d

2
2

(
3d− 4

3d1 − 2

)
− d31d2

(
3d− 4

3d1 − 1

))
What is the generating function

∑
Nd q

d = ??



A better generating function?
Set nd := Nd

(3d−1)! . Then

nd =
∑

d1+d2=d

nd1nd2
d1d2((3d1 − 2)(3d2 − 2)(d+ 2) + 8(d− 1))

6(3d− 1)(3d− 2)(3d− 3)

gives a generating function (in two variables)

Γ(y1, y2) :=
∑
d

nde
y1dy3d−12 ,

which satisfies the differential equation

∂3Γ/∂y32 = (∂3Γ/∂y21∂y2)
2 − (∂3Γ/∂y31)(∂3Γ/∂y1∂y

2
2).



To display on the clothesline:



. . . this sequence of numbers:

N1 = 1

N2 = 1

N3 = 12

N4 = 620

N5 = 87304

N6 = 26312976

N7 = 14616808192

N8 = 13525751027392

N9 = 19385778269260800

N10 = 40739017561997799680



Rational curves on a quartic surface

Let S ⊂ P3 be a quartic surface. If H ⊂ P3 is a plane, then
C := H ∩ S ⊂ H ∼= P2 is a plane quartic curve.

Problem: How many H are such that C has three nodes? Or,
how many H are triply tangent to S?

Answer 1: Set d = 4 in the formula

t(d) =
1

6
d(d− 2)(d7 − 4d6 + 7d5 − 45d4 + 111d2 + 548d− 960)

to get t(4) = 3200.

Answer 2: P (q)24 = 1 + 24q + 324q2 + 3200q3 + · · ·



K3 and the partition function
Let S be a K3 surface (e.g., S ⊂ P3 is a quartic surface) and L a
line bundle. The rational (genus 0) curves in the linear system
|L| are the curves with r := (L2 + 2)/2 singularities. Their
number, Nr, is independent of S and L.
Yau–Zaslow Conjecture: The generating function is∑∞

r=0Nr q
r =

∏
m≥1(1− qm)−24 = (

∑
p(n)qn)24 = P (n)24.

Geometric reason (Bryan–Leung): The Euler number c2(S) is
24, and S can be degenerated (in symplectic geometry) to an
elliptic fibration over P1 with 24 singular (hence rational) fibers.
There are p(ji) degree ji maps from a stable rational curve (a
bunch of P1’s) to a singular fiber, hence
Nr =

∑
j1+···+j24=r p(j1) · · · p(j24).



Bell numbers
The Stirling numbers Sn,k count the number of partitions of a
set with n elements into k blocks. The Bell numbers count all
partitions: Bn =

∑n
k=1 Sn,k. They can be defined recursively:

B0 = 1 and Bn+1 =
∑n

i=0

(
n
i

)
Bi

Their exponential generating function

B(q) :=
∑∞

n=0
1
n!Bn q

n

satisfies the differential equation
B′(q)
B(q) = eq,

and hence
B(q) = ee

q−1.



Polydiagonals
Let X be a space, and consider

Xn = X × · · · ×X = {(x1, . . . , xn) |xi ∈ X}.

For each k ≤ n and each partition ik of {1, 2, . . . , n} into k
disjoint subsets {ij1, i

j
2, . . . , i

j
l(j)}, j = 1, . . . , k,

∑
l(j) = n, the

corresponding polydiagonal is defined as

∆(ik) = {(x1, . . . , xn) |x
ijr

= x
ijs

for all r, s, j}.

Then #{∆(ik)} = Sn,k, and Bn = #∪nk=1 {∆(ik)} is the number
of all polydiagonals in Xn, and there are

n!

j1! · · · jn!

( 1

1!

)j1 · · · ( 1

n!

)jn
polydiagonals of each type (ji = #blocks of i elements).



Example
n = 4: X4 = X ×X ×X ×X

k = 2

i2:

{1}, {2, 3, 4}; {2}, {1, 3, 4}; {3}, {1, 2, 4}; {4}, {1, 2, 3};

{1, 2}, {3, 4}; {1, 3}, {2, 4}; {1, 4}, {2, 3}.

There are 4!
1!1!(

1
1!)

1( 1
3!)

1 = 4 of the first type,

and 4!
2!(

1
2!)

2 = 3 of the second type.

#{∆(i2)} = S4,2 = 4 + 3 = 7∑
k #{∆(ik)} =

∑
k S4,k = 1 + 7 + 6 + 1 = 15 = B4



Bell polynomials
The partial Bell polynomials are

Bn,k(a1, . . . , an−k+1) =
∑(

n
j1···jn−k+1

)
(a11! )

j1 · · · ( an−k+1

(n−k+1)!)
jn−k+1 ,

summing over j ` n,
∑
ji = k.

The complete (exponential) Bell polynomials are

Bn(a1, . . . , an) =
∑n

k=1Bn,k(a1, . . . , an−k+1).

B1(a1) = a1,

B2(a1, a2) = a21 + a2,

B3(a1, a2, a3) = a31 + 3a1a2 + a3

B4(a1, a2, a3, a4) = a41 + 6a21a2 + 4a1a3 + 3a22 + a4



Bell polynomials – other definitions

Recursively defined by B0 = 1 and

Bn+1(a1, . . . , an+1) =
∑n

i=0

(
n
i

)
Bn−i(a1, . . . , an−i)ai+1,

or by the formal identity∑
i≥0

1
i!Bi(a1, . . . , ai)q

i = exp
(∑

j≥1
1
j!ajq

j
)
.

Note that Sn,k = Bn,k(1, . . . , 1) and Bn = Bn(1, . . . , 1).



Faà di Bruno’s formula
Let h(t) = f(g(t)) be a composed function.

Differentiate once: h′(t) = f ′(g(t))g′(t)

and twice: h′′(t) = f ′′(g(t))g′(t)2 + f ′(t)g′′(t).

Set hi := h(i)(t), fi := f (i)(g(t)), gi := g(i)(t). Then

h1 = f1 g1

h2 = f1 g2 + f2 g
2
1

h3 = f1 g3 + 3f2 g1 g2 + f3 g
3
1

and indeed

hn =
∑n

k=1 fk Bn,k(g1, . . . , gn−k+1)



Nodal curves on families of surfaces
Given a family of curves on a family of surfaces, find an
expression Nr for the class of curves that have r nodes.

Conjecture (Kleiman–P.): There exist universal linear
polynomials a1, a2, . . . in four variables such that∑

Nr q
r =

∑ 1

r!
Br(a1(m, k, s, x), . . . , ar(m, k, s, x)) qr

where Br is the rth Bell polynomial and m, k, s, x are the
Landweber–Novikov Chern classes of the family.

Proved it for r ≤ 8.

Proved by T. Laarakker (2018) for all r.



The recursion
Express the class Nr of r-nodal curves in terms of (r − 1)-nodal
and lower.

Blow up the family of surfaces to get rid of one node in each
curve, then use the formula for (r − 1)-nodal curves on the
blown up family and push it down.This creates a “derivation
formula” à la Faà di Bruno:

r!Nr = (r − 1)!Nr−1N1 + ∂((r − 1)!Nr−1)

Set a1 = N1 and a2 = ∂(a1). Then

2!N2 = a21 + a2 = B2(a1, a2)

and, pretendig ∂ is a derivation and setting a3 = ∂(a2):

3!N3 = (a21+a2)a1+∂(a21+a2) = a31+3a1a2+a3 = B3(a1, a2, a3).



Why Bell polynomials? Another reason!
Let D ⊂ F π→ Y be a family of curves on surfaces, and let
X ⊂ D denote the critical locus: the set of points that are
singular in their fibre.

The class ai represents an intersection class supported on the
small diagonal of Xi = X ×Y · · · ×Y X and each product of ai’s
to a class on a corresponding polydiagonal (Qviller).

For example, a1 = π∗[X] = N1 and −a2 is the sum of the
(excess) contribution of the diagonal in X ×Y X and of the
locus of cuspidal curves. Therefore

N2 =
1

2
(a21 + a2) =

1

2
B2(a1, a2).



Other ways of counting curves

I Count tropical curves (Mikhalkin, Gathman–Markwig,
Brugallé, Block–Göttsche, . . . )

I Count floor diagrams (Block, Göttsche, Fomin, . . . )
I Count real curves (Welschinger, . . . )
I Count curves on (some) singular toric surfaces

(Liu–Osserman)
I Count curves (or sheaves, or cycles, . . . ) on higher

dimensional varieties, e.g. threefolds (Donaldson–Thomas)



Back to MacMahon

A plane partition of n can be viewed as a set of n monomials in
three variables x, y, z such that all the other monomials generate
an ideal in C[x, y, z], of colength n.

Example
The plane partition of 4:

2 1

1

corresponds to the set of monomials {1, x, y, z}, which gives the
ideal 〈x2, xy, xz, y2, yz, z2, . . . 〉 of colength 4.



Recall the plane partition of 22:

5 4 2 1 1

3 2

2 2

←→ {1, x, xz, xz2, x2, x2z, xy, xyz, x2y, x2yz,
y, yz, yz2, yz3, y2, y2z, y3, y4, z, z2, z3, z4}

                      



Donaldson–Thomas and MacMahon

We have seen that the integer π(n) counts the number of
monomial ideals in C[x, y, z] of colength n.

These correspond to the colength n ideals that are invariant
under the action of the torus (C∗)3,

or to the length n fixed points of C3 under the torus action.

This is the virtual count of the degree zero Donaldson–Thomas
invariants:

DT0(C3)(q) = M(−q) =
∏
m≥1

(1− (−q)m)−m



Thank you for your attention!


