PLANAR POLYPOLS, THEIR ADJOINTS AND CANONICAL FORMS

Ragni Piene
(joint work with K. Kohn, K. Ranestad, F. Rydell, B. Shapiro, R. Sinn, M.-S. Sorea, S. Telen)

Nordic Congress of Mathematicians
Aalto University
Finland
August 19, 2022

UiO : University of Oslo

Algebraic geometry and its interactions

- Classical enumerative geometry: "so old-fashioned" until the arrival of string theory in theoretical physics (Gromov-Witten, Donaldson-Thomas, etc.).
- The physics of scattering amplitudes (probability that certain particles are produced in collision with other particles): positive geometries and canonical forms.
(Calculating scattering amplitudes reduces to determining the canonical form.)
- Algebraic statistics: statistical models and likelihood equations.
- Combinatorics: polytopes and toric varieties.
- Less unexpected: algebraic geometry in geometric modeling.

UiO: University of Oslo

Barycentric coordinates

$$
\begin{aligned}
& x=\phi_{1}(x) v_{1}+\phi_{2}(x) v_{2}+\phi_{3}(x) v_{3} \\
& \phi_{i}(x) \geq 0 \\
& \phi_{1}(x)+\phi_{2}(x)+\phi_{3}(x)=1
\end{aligned}
$$

Barycentric coordinates were introduced by August Ferdinand Möbius in 1827.

UiO: University of Oslo

Generalized barycentric coordinates

Generalized barycentric coordinates for polygons were introduced by Eugene Wachspress (1975), with a view towards applications for solving PDE's by the finite element method (further work by Warren, Floater, ...).

Wachspress defined polycons as polygons with sides being segments of conics.

UiO : University of Oslo

Polypols

A (planar) polypol P is given by irreducible curves
$C_{1}, \ldots, C_{k} \subset \mathbb{P}_{\mathbb{C}}^{2}$ and points $v_{i} \in C_{i} \pitchfork C_{i+1}$.
Set $d_{i}:=\operatorname{deg} C_{i}, C:=\cup C_{i}$, and $d:=\sum d_{i}=\operatorname{deg} C$.
The residual scheme $R(P)$ of P is $\operatorname{Sing} C \backslash\left\{v_{1}, \ldots, v_{k}\right\} \subset C$ fattened by the conductor ideal of C at each point.
Recall that if \mathcal{O} is a local ring of dimension 1 and $\overline{\mathcal{O}}$ its normalization, then the conductor ideal is

$$
\mathcal{C}:=\{f \in \mathcal{O} \mid f \overline{\mathcal{O}} \subseteq \mathcal{O}\}
$$

The conductor ideal of a node is the maximal ideal which is also the Jacobian ideal - that of a cusp is also the maximal ideal, which in this case is different from the Jacobian ideal.

UiO : University of Oslo

Adjoints

If $D \subset \mathbb{P}_{\mathbb{C}}^{2}$ is a curve of degree d, then, classically, an adjoint curve is a curve of degree $d-3$ that cuts out the complete canonical series on D (or its normalization \bar{D} if D is singular).

Definition

An adjoint curve A_{P} of a polypol P is a curve of degree $d-3$ that contains $R(P)$.

[^0]
Regular rational polypols

A polypol is rational if all curves C_{i} are rational. We show: a rational polypol has precisely one adjoint curve.

Wachspress used the adjoint curve A_{P} to propose generalized barycentric coordinates on a polycon (or even rational polypol)
P. These coordinates should be rational functions on P that are positive on the interior of P and have poles on A_{P}.

A polypol is real if the C_{i} and v_{i} are real, with a choice of real segments (sides) from v_{i} to v_{i+1} and a closed semialgebraic set $P_{\geq 0} \subset \mathbb{P}_{\mathbb{R}}^{2}$ with interior $P_{>0}$ a union of simply connected sets with boundary the union of the sides.

A real polypol is regular if all points on the sides of P except the vertices v_{i} are nonsingular on C and $C \cap P_{>0}=\emptyset$.

UiO : University of Oslo

Wachspress coordinates for a polygon

Let P be a polygon, let $C_{i}: f_{i}=0$, and $A_{P}: \alpha_{P}=0$. Set $p_{i}:=\frac{f_{1} \cdots f_{k}}{f_{i} f_{i+1}}$. The Wachspress coordinates are the rational functions on P given by

$$
\phi_{i}(v):=\frac{\alpha_{P}\left(v_{i}\right)}{p_{i}\left(v_{i}\right)} \cdot \frac{p_{i}(v)}{\alpha_{P}(v)} .
$$

They satisfy

- $\phi_{i}\left(v_{j}\right)=\delta_{i, j}$
- $v=\sum_{i=1}^{d} \phi_{i}(v) v_{i}$
- $\phi_{i}(v) \geq 0$
- $\sum_{i=1}^{d} \phi_{i}(v)=1$

UiO : University of Oslo

Wachspress's conjecture

Let P be a regular rational polypol.
Wachspress (and we) showed that $A_{P} \cap \partial P=\emptyset$.
Wachspress conjectured: $A_{P} \cap P_{>0}=\emptyset$.
He claimed the conjecture holds (1) for convex polygons, and (2) for polypols with $d \leq 5$.

We proved (1) - and more.
The first open case of (2) is a P formed by three ellipses. We show there are 44 configurations and prove the conjecture for 33 of these.

UiO : University of Oslo

Convex polygons

Theorem
Let P be a convex real polygon with k sides. Then A_{P} is hyperbolic with respect to any $v \in P_{\geq 0}$. More precisely, $A_{P}(\mathbb{R})$ consists of $\left\lfloor\frac{k-3}{2}\right\rfloor$ nested ovals plus, if k is even, a pseudoline.

UiO : University of Oslo

Positive geometries and their canonical forms

Let X be a projective complex variety of dimension n, $X_{\geq 0} \subset X(\mathbb{R})$ a closed semialgebraic subset such that its Euclidean interior $X_{>0}$ is an open oriented manifold with closure $X_{\geq 0}$. Let C_{1}, \ldots, C_{k} be the irreducible components of ∂X. Let $C_{i, \geq 0}$ be the closure of the interior of $C_{i} \cap X_{\geq 0}$ in $C_{i}(\mathbb{R})$.
We say that $\left(X, X_{\geq 0}\right)$ is a positive geometry if there exists a unique meromorphic n-form $\Omega\left(X, X_{\geq 0}\right)$, called its canonical form, such that
(a) if $n=0, X_{\geq 0}$ is a point and $\Omega\left(X, X_{\geq 0}\right)= \pm 1$,
(b) if $n>0,\left(C_{i}, C_{i, \geq 0}\right)$ is a positive geometry with canonical form $\Omega\left(C_{i}, C_{i, \geq 0}\right)=\operatorname{Res}_{C_{i}}\left(\Omega\left(X, X_{\geq 0}\right)\right)$,
(c) $\Omega\left(X, X_{\geq 0}\right)$ is holomorphic on $X \backslash \cup C_{i}$.

UiO: University of Oslo

Positive geometries in dimension 1

Observe that it follows from the definition that if $\left(X, X_{\geq 0}\right)$ is a positive geometry, then X can have no non-zero holomorphic n-forms.
Example ($n=1$)
The curve X must be rational, hence $X=\mathbb{P}_{\mathbb{C}}^{1}$. Then $X_{\geq 0}$ is a finite union of closed segments in $\mathbb{P}_{\mathbb{R}}^{1}$.
Assume $X_{\geq 0}=[a, b] \subset \mathbb{R}$. Consider $\Omega:=\left(\frac{1}{t-a}-\frac{1}{t-b}\right) d t$. Then $\operatorname{Res}_{a} \Omega=1$ and $\operatorname{Res}_{b} \Omega=-1$ and Ω is holomorphic on $\langle a, b\rangle$. Hence

$$
\Omega\left(\mathbb{P}_{\mathbb{C}}^{1},[a, b]\right)=\frac{t-b-t+a}{(t-a)(t-b)} d t=\frac{b-a}{(t-a)(b-t)} d t
$$

UiO : University of Oslo

Regular rational polypols give positive geometries

Theorem
A regular rational polypol P gives a positive geometry with canonical form

$$
\Omega\left(\mathbb{P}_{\mathbb{C}}^{2}, P_{\geq 0}\right)=\frac{\alpha_{P}}{f_{1} \cdots f_{k}} d x \wedge d y
$$

Proof. We have

$$
\begin{gathered}
\frac{\alpha_{P}}{f_{1} \cdots f_{k}} d x \wedge d y=\frac{\alpha_{P}}{f_{1} \cdots \hat{f}_{i} \cdots f_{k}} d x \wedge \frac{d y}{f_{i}} \\
\text { and } d f_{i}=\left(f_{i}\right)_{x} d x+\left(f_{i}\right)_{y} d y \text { and } d x \wedge d f_{i}=\left(f_{i}\right)_{y} d x \wedge d y, \text { hence } \\
\operatorname{Res}_{C_{i}} \Omega\left(\mathbb{P}_{\mathbb{C}}^{2}, P_{\geq 0}\right)=\frac{\alpha_{P}}{f_{1} \cdots \hat{f}_{i} \cdots f_{k} \cdot\left(f_{i}\right)_{y}} d x .
\end{gathered}
$$

UiO : University of Oslo

Take a rational parameterization $t \mapsto(x(t), y(t))$ of C_{i} with $v_{i}=\left(x\left(a_{i}\right), y\left(a_{i}\right)\right)$ and $v_{i+1}=\left(x\left(b_{i}\right), y\left(b_{i}\right)\right)$.
We get

$$
\operatorname{Res}_{C_{i}} \Omega\left(\mathbb{P}_{\mathbb{C}}^{2}, P_{\geq 0}\right)=\frac{F(t)}{G(t)\left(t-a_{i}\right)\left(b_{i}-t\right)} d t
$$

with $\operatorname{deg} F=\operatorname{deg} G=d_{i}(d-1)-2$. Check that F and G have the same roots with the same multiplicities (Jacobian ideal $=$ conductor ideal • ramification ideal). Thus $\gamma_{i}:=F(t) / G(t)$ is a constant, and we get

$$
\operatorname{Res}_{C_{i}} \Omega\left(\mathbb{P}_{\mathbb{C}}^{2}, P_{\geq 0}\right)=\gamma_{i} \Omega\left(\mathbb{P}_{\mathbb{C}}^{1},\left[a_{i}, b_{i}\right]\right)=\gamma_{i} \frac{b_{i}-a_{i}}{\left(t-a_{i}\right)\left(b_{i}-t\right)}
$$

With the correct scaling of α_{P}, we show $\gamma_{i}=1$ for all i.

UiO : University of Oslo

Other positive geometries

UiO : University of Oslo

Open questions

- Wachspress's conjecture for regular rational polypols is wide open.
- The adjoint curve of a convex polygon is hyperbolic. For convex polypols (or for polytopes in higher dimension) the adjoint can be hyperbolic or not. Find a condition for hyperbolicity.
- When is the adjoint curve of a polypol singular?
- The adjoint map that sends a polypol to its adjoint curve is a finite map in some cases (we found all). What is the degree of this map? For convex heptagons, we conjecture the degree is 864 .
- Prove the pushforward conjecture: for nice maps between positive geometries, the pushforward of the canonical form is the canonical form. (We proved this in dimension 1.)
UiO : University of Oslo

Thank you for your attention!

[^0]: UiO: University of Oslo

