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Envelopes of families of linear spaces
Let X ⊂ Pn be a projective variety, r = dimX, F a vector
bundle of rank n− r + 1, and On+1

X → F a surjective map.
Set π : P(F) → X.

This gives a family of linear (n− r)-spaces

ψ : P(F) ⊂ X × Pn → Pn.

The envelope EF ⊂ Pn is the branch locus of ψ.

Example
The envelope of the family of tangents to a plane curve is the
curve itself. The envelope of the family of “normal lines” is the
evolute of the curve.



Apollonius of Perga, 262–200 BC
In his Treatise on Conic Sections, Book V, Apollonius
constructs and studies normals to a conic – he finds these more
interesting than the tangents:

In the fifth book I have laid down propositions relating to
maximum and minimum straight lines. You must know
that our predecessors and contemporaries have only su-
perficially touched upon this investigation of the shortest
lines, and have only proved what straight lines touch the
sections . . .

He spends 16 pages finding the number – 4 – of normals through
a given point (the Euclidean distance degree!) and considers the
points “where two normals fall together” – the evolute!



An ellipse and its evolute



The cissoid of Diocles (x2 + y2)x− 4y2 = 0



Perpendicularity in projective space
Fix a hyperplane H∞ = Pn−1 ⊂ Pn and a quadric Q∞ ⊂ H∞.
Let L be a linear space of dimension r and take (L∩H∞)⊥ with
respect to Q∞. For p ∈ L, the space perpendicular to L at p is

⟨p, (L ∩H∞)⊥⟩.

Example

P2
C, H∞ = {z = 0}, and

Q∞ = {x2 + y2 = 0} ⊂ H∞,

gives the Euclidean geometry in R2 ⊂ C2 = P2
C \H∞.



The Euclidean normal bundle
Let Tp be the tangent space to X ⊂ Pn at p ∈ X. The normal
space to X at p is the linear (n− r)-space

Np := ⟨p, (Tp ∩H∞)⊥⟩.

These normal spaces are the (projective) fibres of the Euclidean
normal bundle

E := K∨ ⊕OX(1),

where K := Ker(On+1
X → P1

X(1)).

The map On+1
X → E = K∨ ⊕OX(1) is the sum of the maps

On+1
X → On

X
∼= (On

X)∨ → K∨ and On+1
X → OX(1).



Evolutes
The evolute EX of X is the envelope of its family of normal
spaces

ψ : P(E) ⊂ X × Pn → Pn.

Example (Evolutes of plane curves)
If X ⊂ P2 is a plane curve of degree d, with δ nodes and k0
cusps, we have:

degEX = 3d(d− 1)− 6δ − 8k0

degCX = 3
(
d(2d− 3)− 4δ − 5k0

)
degMX = d2 − 4δ − 5k0

(where MX ⊂ (P2)∨ is the curve of normals).



Real plane curves (with C. Riener and B. Shapiro)

We studied evolutes and curves of normals (in the dual
projective plane) for real plane curves. Note that the evolute is
the locus of the centers of curvature.

In particular, we were interested in finding Klein–Schuh type
formulas for the singularities of these curves. For example, Klein
showed (and Schuh generalized) that a plane curve of degree d
can have at most d(d− 2) real inflection points, i.e., one third of
the number of complex inflection points.



The R-degree of a curve
The R-degree of a curve D ⊂ R2 is

R deg(D) := supL#(D ∩ L)

where L ⊂ R2 are all lines intersecting D transversally.

Problem 1: What are

e(d) := maxD R deg(ED) and n(d) := maxD R deg(MD),

where the maximum is taken over all curves D ⊂ R2 of degree d?

Answer: e(d) ≥ d(d− 2) and n(d) = d2.

For complex curves: degED = 3d(d− 1) and degMD = d2.



Vertices

A vertex of a plane curve D ⊂ R2 is a critical point of the
curvature function, i.e., a cusp of the evolute ED ∩ R2.

Problem 2: What is

v(d) := maxD κR(ED),

with max taken over all curves D ⊂ R2 of degree d?

Answer: v(d) ≥ d(2d− 3)

For complex curves: 2d(3d− 5).



Diameters
A diameter of a plane curve D ⊂ R2 is a line L which is the
normal to D at two distinct points. The diameters are double
points of the curve of normals MD.

Problem 3: What is

δM (d) := maxD δ
cru(MD),

with max taken over all curves D ⊂ R2 of degree d?

Answer: δM (d) ≥ 1
2d

4 − d3 + 1
2d

and conjecturally (for d ≥ 3),

δM (d) ≤ 1
2d

4 − 3d2 + 5
2d.

For complex nodes: δM (d) = 1
2d

4 − 5
2d

2 + 2d.



Crunodes of the evolute

For a given curve D ⊂ R2, how many points in the plane are the
centers of more than one circle of curvature, i.e., how many
crunodes does the evolute have?

Problem 4: What is

c(d) := maxD δ
cru(ED),

with max taken over all curves D ⊂ R2 of degree d?

Answer: c(d) ≥
(
d(d−3)+1

2

)
= 1

2d
4 − 3d3 + 5d2 − 3

2d

For complex nodes: c(d) = 9
2d

4 − 9d3 − 13
2 d

2 + 15d



Trifolium pratense



The trifolium (x2 + y2)2 − x3 + 3xy2 = 0



The fourleafed clover



The quadrifolium (x2 + y2)3 − 4x2y2 = 0



Ranunculus



The ranunculoid x12+6x10y2+15x8y4+20x6y6+ · · · = 0



Thom polynomials
Consider a family of linear (n− r)-spaces

ψ : P(F) ⊂ X × Pn → Pn.

Its envelope EF is the image of the singularity locus Σ1 of ψ.
The cuspidal locus CF of EF is given by Σ1,1, and its cuspidal
locus κF by Σ1,1,1. Set ci := ci(ψ

∗TPn − TP(F)). Then

[EF ] = ψ∗c1 ∩ [Pn]

[CF ] = ψ∗(c
2
1 + c2) ∩ [Pn]

[κF ] = ψ∗(c
3
1 + 3c1c2 + 2c3) ∩ [Pn]

The degree of these classes can be expressed in terms of the
Chern classes of TX , OX(1), and F .



Evolute of space curves
Let X ⊂ P3 be a curve. Its evolute EX – the envelope of the
family of its Euclidean normal planes – was denoted the polar
developable by Monge (1871) and the polar surface by Darboux
(1887).

The space evolute of X is the cuspidal edge CX ⊂ EX of the
evolute. It is the locus of the centers of spherical curvature. The
osculating planes to the space evolute are the normal planes to
X (Blaschke and Leichtweiss). The evolute EX is the tangent
developable of CX .

Salmon (1862) considered projective plane and space curves and
surfaces in P3 and found formulas for the degrees of their
evolutes.



Numerical formulas for space curves
Let X ⊂ P3 be a curve of degree d, genus g, and with k0 cusps.
Evaluating the Thom polynomials with F = E and taking
degrees, gives

degEX = 6(d+ g − 1)− 2k0

degCX = 3(3d+ 4g − 4− k0)

deg κX = 4
(
3d+ 5g − 5− k0

)
.

Salmon found that the degree of the evolute EX is equal to
3d+ d∗, where d∗ is the class of X (the degree of its strict dual).
He found the degree of the space evolute CX to be 5d+ k2,
where k2 is the number of hyperosculating planes to X. His
formulas agree with the ones above.



Evolute of surfaces
Let X ⊂ P3 be a smooth surface of degree d. The Thom
polynomials give

[EX ] = ψ∗
(
π∗c1(Ω

1
X) + π∗c1(E) + 2c1(OP(F)(1))

)
∩ [P3]

[CX ] = ψ∗
(
2π∗c1(Ω

1
X)2 + . . .

)
∩ [P3]

[κX ] = ψ∗
(
22π∗c1(Ω

1
X)2c1(OP(E)(1)) + . . .

)
∩ [P3].

In terms of the degree d of X this gives

degEX = 2d(d− 1)(2d− 1)

degCX = 2d(d− 1)(11d− 16)

deg κX = 4d(30d2 − 97d+ 78).

The first formula agrees with the one given by Salmon.



Umbilics
The local study of the geometry of the evolute a real surface is
well known. Since the evolute is the locus of the focal points,
i.e., the centers of spherical curvature, each normal to the
surface will intersect the evolute in two points. When these two
points come together, the curvature of the surface is the same in
all directions. These points are the umbilical points of the
surface.

According to Porteous, the umbilical points are the D4

singularities of the real map ψR : X × R → R3.
The singularities come in different types.

Kazarian: #D++
4 −#D+−

4 +#D−+
4 −#D−−

4 = 4,
Uribe-Vargas in PR, . . .



Lagrange maps
The map ψ : P(E) → P3 is supposedly Lagrangian (only
“locally”?).

According to Mikosz–Pragacz–Weber the Thom polynomial for
D4 for a Lagrangian map is

Q̃2,1 = a1a2 − 2a3,

for Chern classes ai.

Question: Which bundles are the ai the Chern classes of?

We know what to expect for X ⊂ P3 a surface of degree d,
namely Salmon’s 1882 formula:

#D4 = 2d(5d2 − 14d+ 11)



Other applications to enumerative geometry
• “Direct proof” of Noether’s formula χ(X) = 1

12(c
2
1+ c2) for a

surface X, by considering a generic map X → P3 (P. 1979).
• “Direct proof” of the Hirzebruch Riemann–Roch formula
χ(X) = 1

24c1c2 for a threefold X, by considering a generic
map X → P4 (P.–Ronga 1981).

• Salmon’s formula for the number of triple tangent planes of
a smooth surface of degree d (P. 1978, Ohmoto 2024).

• Roberts’s number of plane curves of degree d with three
nodes passing through 1

2d(d+ 3)− 3 points (Kleiman–P.
2004, Ohmoto 2024).

• Formulas for generic space curves (Nekarda–Ohmoto 2024)
and surfaces in 3- and 4-space (Nekarda 2023).



Thank you for your attention!


