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Partitions (5 000 years ago)



The Ishango bone (20 000 years ago)

https://mathtimeline.weebly.com/early-human-counting-tools.html



Counting partitions
Let n be a positive integer.

In how many ways p(n) can we write n as a sum of positive
integers?

1 = 1
2 = 2 = 1 + 1
3 = 3 = 2 + 1 = 1 + 1 + 1
4 = 4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1

p(1) = 1
p(2) = 2
p(3) = 3
p(4) = 5

A closed formula for p(n)?



The partition function (Euler)
Expand the infinite product

(1 + q + q2 + · · · )(1 + q2 + q4 + · · · ) · · · (1 + qm + q2m + · · · ) · · ·

The coefficient of qn is p(n), the number of ways we can write
n = n1 + n2 + . . ., where n1 ≥ n2 ≥ · · · > 0.

The generating function: P (q) :=
∑

n≥0 p(n)qn is

P (q) =
∏
m≥1(1 + qm + q2m + q3m + · · · ) =

∏
m≥1(1− qm)−1.

The function P (q) displays the integer sequence

1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 55, 77, 101, . . .



Generating functions
H.S.Wilf: “A generating function is a clothesline on which we
hang up a sequence of numbers for display."



Plane partitions
Consider next the number of plane partitions π(n):

1 = 1⇒ π(1) = 1

2 = 2, 1 1 ,
1

1
⇒ π(2) = 3

3 = 3, 2 1 ,
2

1
, 1 1 1 ,

1 1

1
,

1

1

1

⇒ π(3) = 6

The generating function for π(n) is the MacMahon function:

M(q) :=
∑

n≥0 π(n)qn =
∏
m≥1(1− qm)−m



M(q) = (1 + q + q2 + q3 + · · · )(1 + q2 + · · ·)2(1 + q3 + · · ·)3 · · ·
= 1 + q + q2 + 2q2 + q3 + q · 2q2 + 3q3 + · · ·

q ↔ 1

q2 ↔ 2

2q2 ↔ 1 1 and
1

1

q3 ↔ 3

q · 2q2 ↔ 2 1 and
2

1

3q3 ↔ 1 1 1 and
1 1

1
and

1

1

1



A plane partition of 22

5 4 2 1 1

3 2

2 2

                      



We want to count:
The number of ways to join 2n points on a circle to form n
nonintersecting chords.

Minggatu (Mongolia, 1730’s) obtained a recursion formula for
these numbers.



Euler (1750’s) counted:

The number of ways to triangulate a regular (n+ 2)-gon.



Euler had a guess for these numbers Cn

J. A. von Segner showed the convolution formula

Cn+1 =
∑n

i=0CiCn−i

By 1758, Euler, Goldbach, and Segner arrived at

Cn = 1
n+1

(
2n
n

)
.

Eugène Charles Catalan (1814–1894) contributed

Cn =
(

2n
n

)
−
(

2n
n−1

)
,

which eventually secured him the name Catalan numbers.

The generating function C(q) :=
∑∞

n=0Cn q
n satisfies the

equation q C(q)2 − C(q) + 1 = 0, hence C(q) = 1−
√

1−4q
2q .



Schubert calculus
• How many lines intersect four given lines in P3?

Degenerate the four lines to two pairs of intersecting lines.
Then the line through the two points of intersection, and
the line which is the intersection of the two planes are the
lines meeting all four lines – the answer is 2.
• How many lines meet six given planes in P4?

The answer is 5.
• How many lines meet 2n given (n− 1)-planes in Pn+1?

The answer is the Catalan number Cn = 1
n+1

(
2n
n

)
.

The function C(q) = 1−
√

1−4q
2q displays the sequence

1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, . . .



Generalized Catalan numbers
• The higher dimensional Catalan numbers

C
(m)
n = C

(n)
m = (mn)!

∏m−1
i=0

i!
(n+i)! = (mn)!

∏n−1
j=0

j!
(m+j)!

count the number of linear (m− 1)-spaces in Pn+m−1

meeting mn linear (n− 1)-spaces, and the number of
standard m× n Young diagrams. Note that C(2)

n = Cn.
• The super Catalan numbers (Ira Gessel)

Cm,n =
(2m)!(2n)!

(m+ n)!m!n!

– but what do they count? Open problem for m,n ≥ 5 and
m 6= n. Note that C1,n = 2Cn.



Plane curves
A plane curve of degree d

X = {(x0 : x1 : x2) ∈ P2|F (x0, x1, x2) = 0},
where F is a homogeneous polynomial of degree d.

The curve on the left is a conic (d = 2). It is a rational curve (it
has genus 0). The one to the right is a cubic (d = 3). It is
elliptic (it has genus 1).



Plane curves
A plane curve of degree d is given as the set of zeros of a
(homogeneous) polynomial F (x0, x1, x2) in three variables of
degree d.

The curve on the left is a conic (d = 2). It is a rational curve (it
has genus 0). The one to the right is a cubic (d = 3) with a
node. It is rational.

	



Counting rational plane curves (“Gromov–Witten”)

The space of all curves of degree d in P2 is a projective space of
dimension

(
d+2

2

)
− 1.

The rational curves are those which have
(
d−1

2

)
singular points.

They form a subset (Severi variety) of dimension 3d− 1.

Problem: Find the number Nd of plane rational curves of degree
d passing through 3d− 1 points.

Example
N1 = 1, N2 = 1, N3 = 12, N4 = 620, N5 = 87304, . . . .



Kontsevich’s recursion formula

Set nd := Nd
(3d−1)! .

nd =
∑

d1+d2=d

nd1nd2
d1d2((3d1 − 2)(3d2 − 2)(d+ 2) + 8(d− 1))

6(3d− 1)(3d− 2)(3d− 3)

This gives a generating function (in two variables)

Γ(q1, q2) :=
∑
d

nde
q1dq3d−1

2 ,

which satisfies the differential equation

∂3Γ/∂q3
2 = (∂3Γ/∂q2

1∂q2)2 − (∂3Γ/∂q3
1)(∂3Γ/∂q1∂q

2
2).



Rational curves on a quartic surface

Let S ⊂ P3 be a quartic surface. If H ⊂ P3 is a plane, then
C := S ∩H ⊂ H ∼= P2 is a plane quartic curve.

Problem: How many H are such that C has three nodes? Or,
how many H are triply tangent to S?

Answer 1: The number of tri-tangent planes to a surface of
degree d in P3 is

t(d) = 1
6d(d−2)(d7−4d6+7d5−45d4+114d3−111d2+548d−960),

so the answer is t(4) = 3200.



The Yau—Zaslow formula
Answer 2:

P (q)24 = 1 + 24q + 324q2 + 3200q3 + · · · ,
where P (q) =

∑
p(n)qn =

∏
m≥1(1− qm)−1 is the partition

function!

Hint:
Let S be a K3 surface (e.g., a quartic surface S ⊂ P3) and |D| a
linear system of dimension r. Nonsingular curves in |D| have
genus r. Let Mr denote the number of rational curves in |D| (=
the number of curves with r singular points). Then∑∞

r=0Mr q
r = P (q)24.

(Degenerate S to an elliptic fibration over P1 with c2(S) = 24
singular (hence rational) fibers. . . )



Stirling and Bell numbers

The Stirling numbers Sn,k count the number of partitions of a
set with n elements into k blocks.

The Bell numbers count all partitions:

Bn :=
∑n

k=1 Sn,k.

They satisfy a recursive relation: set B0 := 1, then

Bn+1 =
∑n

i=0

(
n
i

)
Bi.

We get
B1 = 1, B2 = 2, B3 = 5, B4 = 15, . . .



Block partitions
Set Πn := {partitions of {1, . . . , n}}.

Given k = (k1, . . . , kn), ki ≥ 0,
∑n

i=1 iki = n, we say π ∈ Πn has
type k if π has ki blocks of size i.

A partition of type k has k :=
∑n

i=1 ki blocks.

Let βk denote the number of partitions of type k. Then

βk :=
n!

k1! · · · kn!

( 1

1!

)k1 · · · ( 1

n!

)kn .
We have

Sn,k =
∑

k,k βk and Bn =
∑

k βk.



Example
n = 4, k = 2

k = (1, 0, 1, 0):

{1}, {2, 3, 4}; {2}, {1, 3, 4}; {3}, {1, 2, 4}; {4}, {1, 2, 3}.

k = (0, 2, 0, 0):

{1, 2}, {3, 4}; {1, 3}, {2, 4}; {1, 4}, {2, 3}.

There are β(1,0,1,0) = 4!
1!1!(

1
1!)

1( 1
3!)

1 = 4 of the first type,

and β(0,2,0,0) = 4!
2!(

1
2!)

2 = 3 of the second type.

S4,2 = 4 + 3 = 7∑4
k=1 S4,k = 1 + 7 + 6 + 1 = 15 = B4



Polydiagonals
Let X be a space, and consider

Xn := X × · · · ×X = {(x1, . . . , xn) |xi ∈ X}.

For π ∈ Πn, set

∆(n)
π := {(x1, . . . , xn) ∈ Xn|xi = xj if i, j in same block of π}.

If π has type k, we say that ∆
(n)
π is a polydiagonal of type k.

There are βk polydiagonals of type k, and
∑

k βk = Bn
polydiagonals.

Example
The small diagonal is ∆

(n)
{1,...,n} = {(x, . . . , x) ∈ Xn|x ∈ X}.



Bell polynomials
The Bell polynomials are

Bn(z1, . . . , zn) :=
∑

k βkz
k1
1 · · · zknn .

Note that Bn(1, . . . , 1) = Bn.

B1(z1) = z1,

B2(z1, z2) = z2
1 + z2,

B3(z1, z2, z3) = z3
1 + 3z1z2 + z3

B4(z1, z2, z3, z4) = z4
1 + 6z2

1z2 + 4z1z3 + 3z2
2 + z4



Bell polynomials – other definitions
Recursively defined by B0 = 1 and

Bn+1(z1, . . . , zn+1) =
∑n

i=0

(
n
i

)
Bn−i(z1, . . . , zn−i)zi+1,

or by the formal identity for the (exponential) generating
function ∑

n≥0
1
n!Bn(z1, . . . , zn)qn = exp

(∑
j≥1

1
j!zjq

j
)
,

Note binomiality:

Bn(z1+z′1, . . . , zn+z′n) =
∑n

i=0

(
n
i

)
Bn−i(z1, . . . , zn−i)Bi(z

′
1, . . . , z

′
i).



Nodal curves on families of surfaces
Given a family of curves on a family of surfaces D ⊂ F f→ Y ,
find an expression Nr for the class of curves that have r nodes.

Conjecture (Kleiman–P.): There exist universal polynomials bi
of weighted degree i+ 2 in the Chern classes c1(OF (D)), c1(Ω1

f ),
and c2(Ω1

f ) such that, setting ai := f∗bi,

Nr = 1
r!Br(a1, . . . , ar),

where Br is the rth Bell polynomial.

Proved for r ≤ 8, and gave an explicit algorithm for the
computations, using the recursive property of the Bell
polynomials.



Existence and shape of the polynomials
For a trivial family F = S × Y , where Y = |D| is a linear system
on the surface S, this follows from Göttsche’s conjecture, which
has been proved (Tzeng, Kool–Shende–Thomas).

T. Laarakker (2018) proved part of our conjecture: there exist
universal polynomials Ur such that Nr is equal to Ur evaluated
on classes f∗c1(OF (D))ac1(Ω1

f )bc2(Ω1
f )c, with a+ b+ 2c ≤ r+ 2.

He also showed that the polynomials are multiplicative:

Ur(F t F ′) =
∑

i Ui(F )Ur−i(F
′).

Given the polynomiality of the Bell polynomials:
1
r!Br(a1 + a′1, . . . ) =

∑
i

1
i!Bi(a1, . . . , ai)

1
(r−i)!Br−i(a

′
1, . . . , a

′
r−i),

this gives evidence for our conjecture that Ur = 1
r!Br.



Intersection theory
Let D ⊂ F f→ Y be a family of curves on surfaces, and set

X := {x ∈ D|x ∈ Df(x) is singular}.

Let ∆ ⊂ Xr = X ×Y · · · ×Y X be the union of all diagonals:
Xr \∆ is the rth configuration space of X. Set f r : F r → Y .
Then

f r∗ [X
r \∆] = r!Nr.

Let pj : F r → F be the projection maps. Then

Nr = 1
r!f

r
∗ [X

r \∆] = 1
r!f

r
∗
(∏

p∗j [X]− (p∗1X · · · p∗rX)∆
)
,

where the last term is the sum of the equivalences of all
distinguished irreducible varieties in ∆ (Fulton).



Why Bell polynomials?
We have (N. Qviller)∏r

j=1 p
∗
j [X]− (p∗1X · · · p∗rX)∆ =

∑
π∈Πr

n
(r)
π (p∗1X · · · p∗rX)∆

(r)
π ,

where
n

(r)
π :=

∏r
i=1((−1)i−1(i− 1)!)ki

and k = (k1, . . . , kr) is the type of π.

Set bi := (−1)i(i− 1)!(p∗1X · · · p∗iX)
∆

(i)
{1,...,i} and ai := f i∗bi.

Then
n(r)
π f r∗ (p

∗
1X · · · p∗rX)∆

(r)
π = ak11 · · · a

kr
r

and

Nr = 1
r!

∑
π a

k1
1 · · · akrr = 1

r!

∑
k βka

k1
1 · · · akrr = 1

r!Br(a1, . . . , ar).



Counting more than nodes
If we replace bi by the equivalence b̃i of ∆

(i)
{1,...,i} without

including other irreducible distinguished varieties contained in
∆

(i)
{1,...,i}, then we get classes Ñr for curves with r nodes or other

multi-singularities of codimension r.

For example,
Ñ1 = ã1 = a1 = N1,

Ñ2 = 1
2(ã2

1 + ã2) = N2 +NA2 ,

Ñ3 = 1
3!(ã

3
1 + 3ã1ã2 + ã3) = N3 +NA1A2 +NA3 .

(Cf. Qviller, Kazarian’s Thom polynomials.)



Back to MacMahon

A plane partition of n can be viewed as a set of n monomials in
three variables x, y, z such that all the other monomials generate
an ideal in C[x, y, z], of colength n.

Example
The plane partition of 4:

2 1

1

corresponds to the set of monomials {1, x, y, z}, which gives the
ideal 〈x2, xy, xz, y2, yz, z2, . . . 〉 of colength 4.



Recall the plane partition of 22:

5 4 2 1 1

3 2

2 2

←→ {1, x, xz, xz2, x2, x2z, xy, xyz, x2y, x2yz,
y, yz, yz2, yz3, y2, y2z, y3, y4, z, z2, z3, z4}

                      



Donaldson–Thomas and MacMahon
We have seen that the integer π(n) counts the number of
monomial ideals in C[x, y, z] of colength n.

These correspond to the colength n ideals that are invariant
under the action of the torus (C∗)3,

or to the length n fixed points of C3 under the torus action.

These are (up to sign) the rank 1 Donaldson–Thomas invariants:

DT1(C3)(q) = M(−q) =
∏
m≥1

(1− (−q)m)−m

(For more, see recent work of Fasola–Bonavari–Ricolfo.)



Thank you for your attention!


