Projective geometry from a toric point of view

Ragni Piene

Utrecht University
October 17, 2019

Plane curves

$$
\begin{aligned}
& C_{1}=\left\{(x, y) \mid y^{2}-x^{3}+x=0\right\}, \\
& C_{2}=\left\{(x, y) \mid y^{2}-x^{3}+x-1=0\right\} \subset \mathbb{A}_{\mathbb{R}}^{2}
\end{aligned}
$$

UiO : University of Oslo

Plane curves

$C_{1}=\left\{(x: y: z) \mid y^{2} z-x^{3}+x z^{2}=0\right\}$,
$C_{2}=\left\{(x: y: z) \mid y^{2} z-x^{3}+x z^{2}-z^{3}=0\right\} \subset \mathbb{P}_{\mathbb{R}}^{2}$.
Let $H=\{z=0\}$ be the line at infinity. Then

$$
C_{1} \cap H=C_{2} \cap H=\left\{(x: y: z) \mid z=x^{3}=0\right\}=\{(0: 1: 0)\} .
$$

UiO : University of Oslo

Algebraic geometry $=$ study of zeros of polynomials

 Let \mathbb{K} be a field $\left(\mathbb{R}\right.$ or \mathbb{C} or \mathbb{F}_{p} or \ldots).Affine algebraic n-space: $\mathbb{A}_{\mathbb{K}}^{n} \cong \mathbb{K}^{n}$
Affine algebraic variety:

$$
X=\left\{\left(c_{1}, \ldots, c_{n}\right) \mid f_{\alpha}\left(c_{1}, \ldots, c_{n}\right)=0, \alpha \in I\right\} \subseteq \mathbb{A}_{\mathbb{K}}^{n}
$$

where the $f_{\alpha} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ are polynomials.
Projective algebraic n-space: $\mathbb{P}_{\mathbb{K}}^{n}=\mathbb{A}_{\mathbb{K}}^{n} \cup H$, where H is the hyperplane "at infinity".

Projective algebraic variety:

$$
X=\left\{\left(c_{0}: c_{1}: \cdots: c_{n}\right) \mid F_{\alpha}\left(c_{0}, c_{1}, \ldots, c_{n}\right)=0, \alpha \in I\right\} \subseteq \mathbb{P}_{\mathbb{K}}^{n}
$$

where the $F_{\alpha} \in \mathbb{K}\left[x_{0}, \ldots, x_{n}\right]$ are homogeneous polynomials.

UiO : University of Oslo

Differential geometry

Let $s: \mathbb{R} \rightarrow \mathbb{R}^{N}$ be a (parameterized) curve:

$$
t \mapsto s(t)=\left(s_{1}(t), s_{2}(t), \ldots, s_{N}(t)\right)
$$

where the s_{i} are differentiable functions.
The tangent to the curve at the point $s(t)$ is the line $\left\langle s(t), s^{\prime}(t)\right\rangle$, the osculating plane is $\left\langle s(t), s^{\prime}(t), s^{\prime \prime}(t)\right\rangle$, and so on.

Example (The twisted cubic)
Let $s: \mathbb{R} \rightarrow \mathbb{R}^{3}$ be given by

$$
s(t)=\left(t, t^{2}, t^{3}\right) .
$$

Then $s^{\prime}(t)=\left(1,2 t, 3 t^{2}\right)$ and $s^{\prime \prime}(t)=(0,2,6 t)$.

UiO : University of Oslo

At $s(0)=(0,0,0)$, the tangent line is the x-axis and the osculating plane is the $x y$-plane.

Tangent spaces, osculating spaces, ...

Consider a parameterization $s: \mathbb{C}^{n} \rightarrow \mathbb{P}_{\mathbb{C}}^{N}$,

$$
t=\left(t_{1}, \ldots, t_{n}\right) \mapsto\left(s_{0}(t): \cdots: s_{N}(t)\right) .
$$

The rows of

$$
A_{s}^{k}(t):=\left(\begin{array}{ccccc}
s_{0}(t) & s_{1}(t) & \cdots & \cdots & s_{N}(t) \\
\partial s_{0}(t) / \partial t_{1} & \partial s_{1}(t) / \partial t_{1} & \cdots & \cdots & \partial s_{N}(t) / \partial t_{1} \\
\partial s_{0}(t) / \partial t_{2} & \cdots & \cdots & \cdots & \partial s_{N}(t) / \partial t_{2} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\partial^{k} s_{0}(t) / \partial t_{n}^{k} & \cdots & \cdots & \cdots & \partial^{k} s_{N}(t) / \partial t_{n}^{k}
\end{array}\right) .
$$

considered as points in $\mathbb{P}_{\mathbb{C}}^{N}$ spans the k th osculating space $\operatorname{Osc}_{s}^{k}(t)$ to $s\left(\mathbb{C}^{n}\right)$ at $s(t)$.

UiO : University of Oslo

We have

$$
\operatorname{dim} \operatorname{Osc}_{s}^{k}(t)=\operatorname{rk} A_{s}^{k}(t)-1
$$

We say that $s(t)$ is a k th inflection point if $\operatorname{rk} A_{s}^{k}(t)<\binom{n+k}{k}$.
Example
The curve $s: \mathbb{C} \rightarrow \mathbb{P}_{\mathbb{C}}^{2}$, given by

$$
s(t)=\left(1: t: t^{3}\right)
$$

has

$$
A_{s}^{2}(t):=\left(\begin{array}{ccc}
1 & t & t^{3} \\
0 & 1 & 3 t^{2} \\
0 & 0 & 6 t
\end{array}\right)
$$

Since $\operatorname{rk} A_{s}^{2}(0)=2<3, s(0)$ is an inflection point.

UiO : University of Oslo

The Veronese

Set $N:=\binom{n+k}{k}$. The k th Veronese embedding $\nu_{n, k}: \mathbb{C}^{n} \rightarrow \mathbb{P}_{\mathbb{C}}^{N}$ is given by

$$
\left(t_{1}, \ldots, t_{n}\right) \mapsto\left(1: t_{1}: \cdots: t_{n-1} t_{n}^{k-1}: t_{n}^{k}\right)
$$

(all monomials of degree $\leq k$).
Theorem (Fulton-Kleiman-P.-Tai)
Let $X \subset \mathbb{P}_{\mathbb{C}}^{N}$ be a (nonsingular) variety of dimension n, with $N=\binom{n+k}{k}-1$. If X has no inflections, then $X=\overline{\nu_{n, k}\left(\mathbb{C}^{n}\right)}$ is
the k th Veronese variety.
Example
The only curve $C \subset \mathbb{P}_{\mathbb{C}}^{N}$ with no inflection points is the rational normal curve $t \mapsto\left(1: t: t^{2}: \cdots: t^{N}\right)$.

UiO : University of Oslo

Steiner's Roman surface

A linear projection of the 2nd Veronese surface:

$$
X:=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{1}^{2} x_{2}^{2}+x_{2}^{2} x_{3}^{2}+x_{1}^{2} x_{3}^{2}-x_{0} x_{1} x_{2} x_{3}=0\right\} \subset \mathbb{P}_{\mathbb{R}}^{3}
$$

UiO : University of Oslo

Toric varieties

Take a set of lattice points

$$
\mathcal{A}=\left\{a_{0}, \ldots, a_{N}\right\} \subset \mathbb{Z}^{n}
$$

and define $\varphi:\left(\mathbb{C}^{*}\right)^{n} \rightarrow \mathbb{P}^{N}$ by

$$
t=\left(t_{1}, \ldots, t_{n}\right) \mapsto\left(t^{a_{0}}: \cdots: t^{a_{N}}\right)
$$

The associated projective toric variety is

$$
X_{\mathcal{A}}:=\overline{\varphi\left(\left(\mathbb{C}^{*}\right)^{n}\right)}
$$

The torus $T^{n}:=\left(\mathbb{C}^{*}\right)^{n}$ acts on $X_{\mathcal{A}}$, with open dense orbit $\varphi\left(\left(\mathbb{C}^{*}\right)^{n}\right)$.
E.g., $\mathcal{A}=P \cap \mathbb{Z}^{n}$, for a convex lattice polytope $P \subset \mathbb{R}^{n}$.

UiO: University of Oslo

Osculating spaces

Set $\mathbf{1}:=(1, \ldots, 1) \in\left(\mathbb{C}^{*}\right)^{n}$. The rows of the matrix $A_{\varphi}^{k}(\mathbf{1})$ span the osculating space $\operatorname{Osc}_{\varphi}^{k}(\mathbf{1})$, and $\operatorname{dim} \operatorname{Osc}_{\varphi}^{k}(\mathbf{1})=\operatorname{rk} A_{\varphi}^{k}(\mathbf{1})-1$.

Example

$$
\begin{aligned}
\nu_{2,2}\left(t_{1}, t_{2}\right) & =\left(1: t_{1}: t_{2}: t_{1}^{2}: t_{1} t_{2}: t_{2}^{2}\right) \in \mathbb{P}^{5} \\
A_{\nu_{2,2}}^{2}(\mathbf{1}) & :=\left(\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 2 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 2 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) .
\end{aligned}
$$

UiO : University of Oslo

Togliatti's surface

The lattice point configuration

$$
\mathcal{A}=\{(1,0),(0,1),(2,0),(0,2),(2,1),(1,2)\} \subset \mathbb{Z}^{2}
$$

defines the toric embedding

$$
\varphi:\left(\mathbb{C}^{*}\right)^{2} \rightarrow \mathbb{P}^{5}
$$

given by

$$
\left(t_{1}, t_{2}\right) \mapsto\left(t_{1}: t_{2}: t_{1}^{2}: t_{2}^{2}: t_{1}^{2} t_{2}: t_{1} t_{2}^{2}\right)
$$

Then $X_{\mathcal{A}}=\overline{\varphi\left(\left(\mathbb{C}^{*}\right)^{2}\right)}$ is a toric surface.

UiO : University of Oslo

Togliatti lattice point configuration

Projections and sections

Let $\mathcal{A}=\left\{a_{0}, \ldots, a_{N}\right\} \subset \mathbb{Z}^{n}$ be a lattice point configuration and $X_{\mathcal{A}} \subset \mathbb{P}^{N}$ the corresponding toric variety.

Let $\mathcal{A}^{\prime}=\mathcal{A} \backslash\{m$ points $\}$.
Then the toric variety $X_{\mathcal{A}^{\prime}} \subset \mathbb{P}^{N^{\prime}}$, where $N^{\prime}=N-m$, is the (toric) linear projection of $X_{\mathcal{A}}$ with center equal to the linear span of the "removed points".

A toric hyperplane section $X_{\mathcal{B}}$ of $X_{\mathcal{A}}$ is given by $\mathcal{B} \subset \mathbb{Z}^{n-1}$ obtained by taking a hyperplane in \mathbb{Z}^{n} and "collapsing" the point configuration \mathcal{A} into this lattice hyperplane in such a way that one point is "lost": two points map to the same point.

UiO: University of Oslo

Third Veronese surface $\nu_{2,3}: \mathbb{P}^{2} \rightarrow \mathbb{P}^{9}$

$$
X_{P}, \text { where } P=3 \Delta_{2}
$$

Del Pezzo: $\mathbb{P}^{2} \xrightarrow{\rightarrow-} \mathbb{P}^{9-3}=\mathbb{P}^{6}$

Segre-Veronese: $\mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{8}$ via $\mathcal{O}(2,2)$

$$
X_{P}, \text { where } P=2 \square_{2}
$$

Del Pezzo: $\mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{8-2}=\mathbb{P}^{6}$

0	0	0	0

0
0
0

Del Pezzo as a section of $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{7}$

X_{P}, where $P=\square_{3}$

UiO : University of Oslo

Polytopes and toric varieties: dictionary

$P \subset \mathbb{R}^{n}$ convex lattice polytope
$X_{P}:=X_{\mathcal{A}} \subset \mathbb{P}^{N}$, where $\mathcal{A}=P \cap \mathbb{Z}^{n}$.
$L_{P}:=\left.\mathcal{O}_{\mathbb{P}^{N}}(1)\right|_{X_{P}}$

- T^{n}-orbits of $X_{P} \leftrightarrow$ faces of P
- $\operatorname{deg} X_{P}=\operatorname{Vol}_{\mathbb{Z}}(P)$
- X_{P} nonsingular iff P smooth (Delzant)
- topological Euler characteristic $e\left(X_{P}\right)=\#$ vertices of P
- $\operatorname{dim} H^{0}\left(X_{P}, m L_{P}\right)=\#\left(m P \cap \mathbb{Z}^{n}\right)$

UiO : University of Oslo

Lattice points

Let P be a lattice polygon. Count its lattice points:

$$
\#\left(P \cap \mathbb{Z}^{2}\right)=11
$$

UiO : University of Oslo

Dilated polytopes

Count the lattice points of the dilated polygons $m P$.

$$
\#\left(m P \cap \mathbb{Z}^{2}\right)=\text { ? }
$$

UiO : University of Oslo

Ehrhart polynomials

The number of lattice points in the m th dilation of P,

$$
e_{P}(m):=\#\left(m P \cap \mathbb{Z}^{n}\right)
$$

is a polynomial in m of degree $n=\operatorname{dim} P$.

Reciprocity: $e_{P}(-m)=(-1)^{n} \# \operatorname{int}\left(m P \cap \mathbb{Z}^{n}\right)$
Why? If $(X, L)=\left(X_{P}, L_{P}\right)$, then

$$
e_{P}(m)=\operatorname{dim} H^{0}(X, m L)=\chi(m L),
$$

$$
e_{P}(-m)=\chi(-m L)=(-1)^{n} \chi\left(m L-K_{X}\right)=(-1)^{n} \operatorname{dim} H^{0}\left(X, m L-K_{X}\right)
$$

and $\left(X, m L-K_{X}\right)$ is the toric variety defined by $\operatorname{int}\left(m P \cap \mathbb{Z}^{n}\right)$.
UiO : University of Oslo

Ehrhart series (R. Stanley)

The generating function of the Ehrhart polynomials is

$$
E_{P}(t):=\sum e_{P}(m) t^{m}=\frac{\sum_{i=0}^{n} h_{i} t^{i}}{(1-t)^{n+1}}
$$

where the h_{i} are non-negative integers such that $h_{0}=1$ and

- $\sum_{i=0}^{n} h_{i}=\operatorname{Vol}_{\mathbb{Z}}(P)$,
- $h_{1}=\#\left(P \cap \mathbb{Z}^{n}\right)-(n+1)$,
- $h_{n}=\# \operatorname{int}\left(P \cap \mathbb{Z}^{n}\right)$.

In the example, we get

$$
E_{P}(t)=\frac{1+8 t+4 t^{2}}{(1-t)^{3}}
$$

which is equivalent to (Pick's formula!)

$$
e_{P}(m)=\#\left(m P \cap \mathbb{Z}^{2}\right)=\frac{13}{2} m^{2}+\frac{7}{2} m+1
$$

UiO : University of Oslo

Cayley polytopes

The polytope
$P=\operatorname{Conv}\left\{e_{0} \times P_{0}, \ldots, e_{r} \times P_{r}\right\} \subset \mathbb{R}^{n}$
is called a Cayley polytope.
We write

$$
P=\operatorname{Cayley}\left(P_{0}, \ldots, P_{r}\right)
$$

Vertices of $\Delta_{r} \subset \mathbb{R}^{r}$

$$
e_{0}, \ldots, e_{r}
$$

UiO: University of Oslo
A Cayley polytope is "hollow"

- it has no interior lattice points.

Hollow polytopes

A Cayley polytope is "hollow": it has no interior lattice points.
Example

$$
n=3, r=2, P_{0}=[0,2], P_{1}=P_{2}=[0,1]
$$

UiO : University of Oslo

The codegree and degree of a polytope

$\operatorname{codeg}(P):=\min \{m \mid m P$ has interior lattice points $\}$.

$$
\operatorname{deg}(P):=n+1-\operatorname{codeg}(P)
$$

Example

- $\operatorname{codeg}\left(\Delta_{n}\right)=n+1$
- $\operatorname{codeg}\left(\square_{n}\right)=2$
- $P=\operatorname{Cayley}\left(P_{0}, \ldots, P_{r}\right)$ implies $\operatorname{codeg}(P) \geq r+1$.

Examples

P_{1}

$\operatorname{codeg}\left(P_{1}\right)=3 \quad \operatorname{codeg}\left(P_{2}\right)=2$

$\operatorname{codeg}\left(P_{3}\right)=1$

UiO : University of Oslo

The Cayley polytope conjecture

Question (Batyrev-Nill): Is there an integer $N(d)$ such that any polytope P of degree d and $\operatorname{dim} P \geq N(d)$ is a Cayley polytope?

Answer (Haase-Nill-Payne): Yes, and $N(d) \leq\left(d^{2}+19 d-4\right) / 2$
Question: Is $N(d)$ linear in d ?
Answer (Dickenstein-Di Rocco-P.): Yes, $N(d)=2 d+1$ (if P is smooth and \mathbb{Q}-normal).

Note that $n \geq 2 d+1$ is equivalent to $\operatorname{codeg}(P) \geq \frac{n+3}{2}$.

UiO: University of Oslo

Theorem (Dickenstein, Di Rocco, P., Nill)

Let P be a smooth lattice polytope of dimension n. The following are equivalent
(1) $\operatorname{codeg}(P) \geq \frac{n+3}{2}$
(2) $P=\operatorname{Cayley}\left(P_{0}, \ldots, P_{r}\right)$ is a smooth Cayley polytope with $r+1=\operatorname{codeg}(P)$ and $r>\frac{n}{2}$.

The proof of this combinatorial result is algebro-geometric (adjoints and nef-value maps à la Beltrametti-Sommese, toric fibrations à la Reid).

UiO: University of Oslo

Resultants and discriminants

Il faut éliminer la théorie de l'élimination.

> J. Dieudonné (1969)

Eliminate, eliminate, eliminate
Eliminate the eliminators of elimination theory.
S. S. Abhyankar (1970)

Résultant, discriminant
M. Demazure (2011) - à J.-P. Serre pour son 85 -ième anniversaire

Question: For which a_{0}, \ldots, a_{m} and b_{0}, \ldots, b_{n} do

$$
f(x)=a_{m} x^{m}+\cdots+a_{0} \text { and } g(x)=b_{n} x^{n}+\cdots+b_{0}
$$

have a common root?

UiO : University of Oslo

James Joseph Sylvester (1814-1897)

The Sylvester matrix is the $(m+n) \times(m+n)$-matrix

$$
\left(\begin{array}{ccccc}
a_{m} & a_{m-1} & a_{m-2} & \ldots & \ldots \\
0 & a_{m} & a_{m-1} & a_{m-2} & \ldots \\
\vdots & & & \vdots & \\
b_{n} & b_{n-1} & b_{n-2} & \ldots & \ldots \\
0 & b_{n} & b_{n-1} & b_{n-2} & \cdots
\end{array}\right)
$$

The resultant $\operatorname{Res}(f, g)$ is the determinant of this matrix.

A student of Sylvester: Florence Nightingale (1820-1910)

Figure: Diagram of the Causes of Mortality in the Army in the East

Arthur Cayley (1821-1895)

Set

$$
h(x, y):=f(x)+y g(x) .
$$

If α is a common root of f and g, then

$$
\left(\alpha,-\frac{f_{x}(\alpha)}{g_{x}(\alpha)}\right)
$$

is a common zero of h, h_{x}, h_{y}.

The Cayley trick

Consider

$$
\begin{aligned}
& h\left(x_{1}, \ldots, x_{n-r}, y_{1}, \ldots, y_{r}\right):= \\
& \quad f_{0}\left(x_{1}, \ldots, x_{n-r}\right)+y_{1} f_{1}\left(x_{1}, \ldots, x_{n-r}\right)+y_{r} f_{r}\left(x_{1}, \ldots, x_{n-r}\right)
\end{aligned}
$$

The discriminant $\Delta(h)$ of h is obtained by eliminating the x_{i} 's and y_{i} 's from the $n+1$ equations

$$
h=0, \partial h / \partial x_{i}=0, \partial h / \partial y_{j}=f_{j}=0
$$

Hence $\Delta(h) \sim \operatorname{Res}\left(f_{0}, \ldots, f_{r}\right)$.

Hyperplane sections and discriminants

Let $P_{j} \subset \mathbb{R}^{n-r}, j=0, \ldots, r, P=\operatorname{Cayley}\left(P_{0}, \ldots, P_{r}\right)$,
$\varphi:\left(\mathbb{C}^{*}\right)^{n-r} \times\left(\mathbb{C}^{*}\right)^{r} \rightarrow X_{P} \subseteq \mathbb{P}^{N}, \varphi_{j}:\left(\mathbb{C}^{*}\right)^{n-r} \rightarrow X_{P_{j}} \subset X_{P}$.
A hyperplane section of X_{P} :

$$
h\left(x_{1}, \ldots, x_{n-r}, y_{1}, \ldots, y_{r}\right):=f_{0}+y_{1} f_{1}+\cdots+y_{r} f_{r}=0
$$

where $f_{i}=0$ is a hyperplane section of $X_{P_{i}}$.
The hyperplane section is singular (i.e., the hyperplane is tangent to X_{P}) when $\Delta(h)=0$.

Geometric interpretation of the Cayley trick: The hyperplane H is tangent to X_{P} iff $H \supseteq\left\langle\varphi_{0}(t), \ldots, \varphi_{r}(t)\right\rangle$, for $t \in\left(\mathbb{C}^{*}\right)^{n-r}$.

UiO : University of Oslo

Degree of dual varieties

Theorem (Gelfand-Kapranov-Zelevinsky)
If $X_{P} \subset \mathbb{P}^{N}$ is nonsingular and the dual variety $X_{P}^{\vee}:=\left\{H \in\left(\mathbb{P}^{N}\right)^{\vee}\right.$ is tangent to $\left.X_{P}\right\}$ is a hypersurface, then

$$
\operatorname{deg} X_{P}^{\vee}=\sum_{F \prec P}(-1)^{\operatorname{cod} F}(\operatorname{dim} F+1) \operatorname{Vol}_{\mathbb{Z}}(F)
$$

where the F 's are the faces of P.
Example
Let $X_{P} \subset \mathbb{P}^{6}$ be the Del Pezzo surface. Then

$$
\begin{gathered}
\operatorname{deg} X_{P}=\operatorname{Vol}_{\mathbb{Z}}(P)=6, \\
\operatorname{deg} X_{P}^{\vee}=3 \operatorname{Vol}_{\mathbb{Z}}(P)-2 \cdot 6 \cdot 1+6=3 \cdot 6-2 \cdot 6+6=12 .
\end{gathered}
$$

UiO: University of Oslo

A surface in \mathbb{P}^{3}

$$
\mathcal{A}=\{(0,0),(1,0),(1,1),(0,2)\}
$$

gives

$$
X_{\mathcal{A}}: \varphi\left(t_{1}, t_{2}\right)=\left(1: t_{1}: t_{2} t_{2}: t_{2}^{2}\right) \in \mathbb{P}^{3}
$$

and (compute!)

$$
X_{\mathcal{A}}^{\vee}: \varphi^{\vee}\left(t_{1}, t_{2}\right)=\left(-1: 2 t_{1}^{-1}:-2 t_{1}^{-1} t_{2}^{-1}: t_{2}^{-2}\right)
$$

so $X_{\mathcal{A}}^{\vee} \cong X_{-\mathcal{A}}$, where

$$
-\mathcal{A}=\{(0,0),(-1,0),(-1,-1),(0,-2)\}
$$

This surface is selfdual: $X_{\mathcal{A}}^{\vee} \cong X_{\mathcal{A}}$.

UiO: University of Oslo

The corresponding polygons

UiO : University of Oslo

Higher order dual varieties

The k th dual variety $X^{(k)}$ is defined as:

$$
X^{(k)}=\overline{\left\{H \in\left(\mathbb{P}^{N}\right)^{\vee} \mid H \supseteq \operatorname{Osc}_{x}^{k} \text { for some regular } x\right\}}
$$

In particular, $X^{(1)}=X^{\vee}, X^{(k-1)} \supseteq X^{(k)}$, and $X^{(k)}$ is contained in the singular locus of X^{\vee} for $k \geq 2$.
The expected dimension of X^{\vee} is $N-1$ and that of $X^{(k)}$ is $n+N-\operatorname{dim} \mathrm{Osc}_{x}^{k}-1$.
$X_{\mathcal{A}}$ is k-selfdual if $\phi\left(X_{\mathcal{A}}\right)=X_{\mathcal{A}}^{(k)}$ for some $\phi: \mathbb{P}^{N} \cong\left(\mathbb{P}^{N}\right)^{\vee}$.

UiO : University of Oslo

Characterization of k-selfdual configurations

The lattice configuration $\mathcal{A}=\left\{a_{0}, \ldots, a_{N}\right\} \subset \mathbb{Z}^{n}$ is k nap if no basis vector $e_{i} \in \mathbb{R}^{N+1}$ is in the row span of the matrix $A^{k}(\mathbf{1})$.

Theorem (Dickenstein-P.)
(1) $X_{\mathcal{A}}$ is k-selfdual if and only if $\operatorname{dim} X_{\mathcal{A}}=\operatorname{dim} X_{\mathcal{A}}^{(k)}$ and \mathcal{A} is knap.
(2) If \mathcal{A} is knap and $\operatorname{dim} \operatorname{Ker} A^{k}(\mathbf{1})=1$, then $X_{\mathcal{A}}$ is k-selfdual.
(3) If \mathcal{A} is $k n a p$ and k-selfdual, and $\operatorname{dim} \operatorname{Ker} A^{k}(\mathbf{1})=r>1$, then $\mathcal{A}=e_{0} \times \mathcal{A}_{0} \cup \ldots \cup e_{r-1} \times \mathcal{A}_{r-1}$ is r-Cayley.

UiO : University of Oslo

Chasles-Cayley-Bacharach

Observation: Any vector in the rowspan of $A^{k}(\mathbf{1})$ is of the form $\left(Q\left(a_{0}\right), \ldots, Q\left(a_{N}\right)\right)$, where Q is a polynomial in n variables of degree $\leq k$. Hence \mathcal{A} is not k nap iff there is Q such that $Q\left(a_{i}\right) \neq 0$ and $Q\left(a_{j}\right)=0$ for all $j \neq i$.
Example
Three quadrics $Q_{1}, Q_{2}, Q_{3} \in \mathbb{Z}\left[x_{1}, x_{2}, x_{3}\right]$ with

$$
Q_{1} \cap Q_{2} \cap Q_{3}=\left\{a_{0}, \ldots, a_{7}\right\}=\mathcal{A} \subset \mathbb{Z}^{3} \subset \mathbb{R}^{3}
$$

Then $X_{\mathcal{A}}$ is a 2-selfdual threefold:
By Cayley-Bacharach, \mathcal{A} is 2nap, and the rank of the (10×8)-matrix $A^{2}(\mathbf{1})$ is $10-3=7$, so $\operatorname{dim} \operatorname{Ker} A^{2}(\mathbf{1})=1$.

Polynomials with many integral zeros

Take integers m_{1}, m_{2}, m_{3} and set $f(x)=\prod_{i=1}^{3}\left(x-m_{i}\right)$.
The quadratic polynomial ${ }^{1}$

$$
Q(x, y)=\frac{f(x)-f(y)}{x-y} \in \mathbb{Z}[x, y]
$$

vanishes at the 6 lattice points $\left(m_{i}, m_{j}\right), j \neq i$.
Then \mathcal{A} is 2 nap, and $\operatorname{rk} A^{2}(\mathbf{1})=6-1=5$, so $\operatorname{dim} \operatorname{Ker} A^{2}(\mathbf{1})=1$. Hence \mathcal{A} is 2 -selfdual.
${ }^{1}$ cf. Schaefer, Rodriguez Villegas-Voloch
UiO : University of Oslo

Togliatti revisited

For $m_{1}=0, m_{2}=1, m_{3}=2$,

$$
Q(x, y)=x^{2}+x y+y^{2}-3 x-3 y+2,
$$

and \mathcal{A} is the Togliatti configuration:

UiO : University of Oslo

Thank you for your attention!

