UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Examination in: MA 001 — Matematiske metoder.

Day of examination: Mandag 11. desember 2000.

Examination hours: 09.00 - 15.00.

This examination set consists of 4 pages.

Appendices: Ingen.

Permitted aids: Alle skriftlige hjelpemidler og

lommekalkulator.

Make sure that your copy of the examination set is complete before you start solving the problems.

Problem 1.

a) Find the indefinite integrals

$$\int (3+4\sin 2x) dx \quad \text{and} \quad \int x^2 \cos x dx.$$

b) Let $D = 1 + i\sqrt{3}$ where $i^2 = -1$. Find the square root \sqrt{D} and give the answer in the form a + ib.

Problem 2.

Let a function ℓ be given by the formula $\ell(y) = y + \ln y$.

- a) For which real y is $\ell(y)$ defined? Find $\lim_{y\to 0^+} \ell(y)$ and $\lim_{y\to\infty} \ell(y)$. What is the set of values of ℓ ?
- b) Compute $\ell'(y)$. Decide if ℓ is strictly increasing or not. Compute $\ell''(y)$. Decide if the graph of ℓ curves upwards or downwards.

(Continued on page 2.)

Let y = e(x) be the inverse function of $x = \ell(y)$, i.e., y = e(x) if and only if $x = \ell(y)$.

c) What is the set where e is defined, and what is the set of values of e? Find $\lim_{x\to-\infty} e(x)$ and $\lim_{x\to\infty} e(x)$.

The following table gives some values of the function ℓ , correct to two decimal places:

I	y	0.10	0.40	0.70	1.00	1.30
	$\ell(y)$	-2.20	-0.52	0.34	1.00	1.56

- d) Let L(y) = ay + b be the linear function determined by $L(0.40) = \ell(0.40) \approx -0.52$ and $L(0.70) = \ell(0.70) \approx 0.34$. Find y_1 such that $L(y_1) = -0.20$, correct to two decimal places.
- e) Is the graph of L lying over or under the graph of ℓ when 0.40 < y < 0.70? Is the exact solution y_2 to the equation $\ell(y_2) = -0.20$ greater than or less than the solution y_1 to the equation $L(y_1) = -0.20$? Justify both answers.
- f) Let K be a positive constant. Show that

$$y + K \ln y = K \cdot \ell(\frac{y}{K}) + K \ln K$$

by calculating $K \cdot \ell(y/K)$.

Problem 3.

In an enzymatic reaction a substance A is converted to a substance B. Due to an inhibitor (poison), that which is expended of substance A is not replaced. Let y = y(t) be the concentration of the substance A at time t. We suppose that y(t) > 0 for all t. The reaction rate is assumed to be given by Michaelis and Menten's equation, which leads to the differential equation

$$\frac{dy}{dt} = -V \cdot \frac{y}{y+K} \,.$$

Here V and K are positive constants. This is a separable differential equation dy/dt = f(t)g(y) where f(t) = -V and g(y) = y/(y+K).

a) Show that the solutions y = y(t) of the differential equation (*) are precisely the functions that satisfy the equation

$$y + K \ln y = -Vt + C$$

where C is an arbitrary constant.

(Continued on page 3.)

b) Use the result in problem 2(f) to show that the solutions to the differential equation (*) can be expressed as

$$y(t) = K \cdot e(-\frac{V}{K}t + D)$$

where e is the function from problem 1 and D is an arbitrary constant.

c) Show that

$$D = \frac{y_0}{K} + \ln \frac{y_0}{K}$$

where $y_0 = y(0)$.

- d) Find the limit for the concentration of substance A when $t \to \infty$, i.e., $\lim_{t\to\infty} y(t)$.
- e) Suppose that V=2.40, K=2.00 and $y_0=2.00$. Assume also that the solution y_1 from problem 2(d) accurately approximates the solution $y_2=e(-0.20)$ from problem 2(e) to one decimal place. Use this and the result from problem 2(d) to find y(1.00), correct to one decimal place.

Problem 4.

a) Shade the region M in the xy-plane that is given by the inequalities

$$x - 2y \ge 1$$
, $x + 3y \ge -4$, $2x + y \le 8$, $3x - y \le 8$.

Use the same unit of length on both axes.

b) Draw, in the same figure, one of the level curves of the function f(x,y) = x + y, and find the greatest and the least value of f(x,y) when (x,y) ranges through M.

Problem 5.

a) Find the eigenvalues of the matrix

$$\begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix} .$$

b) Find the general solution (x(t), y(t)) to the system of differential equations:

$$\frac{dx}{dt} = x + 2y$$

$$\frac{dy}{dt} = x$$

c) Find the special solution to the system of differential equations (**) that is subject to the initial conditions x(0) = 1 and y(0) = 2. Also find the other special solution that satisfies x(0) = 1 and $\lim_{t \to \infty} y(t) = 0$.

END