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Toward a Global Understanding of π∗(S
n)

Mark Mahowald

Abstract. This talk will describe recent advances in getting a global
picture of the homotopy groups of spheres. These results begin with the
work of Adams on the homotopy determined by K-theory. Substantial
new information follows from the nilpotence results of Devinatz, Hopkins
and Smith.
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1 Introduction

Until about 1960, the primary method used to calculate homotopy groups of
spheres was the EHP sequence. This was invented by James at the prime 2
and Toda at odd primes. Early steps in this direction were taken by Freudenthal.
Basically, the EHP sequence is a consequence of the result that

Sn → ΩSn+1 → ΩS2n+1

is a 2 local fibration. At odd primes there is a similar result with some twists.
Spectral sequences give a way to organize such calculations. We consider the
filtration of Ωn−1Sn given by

S1 → ΩS2 → · · · → ΩSn−2Sn−1 → Ωn−1Sn.

When we apply homotopy to this filtration we get a spectral sequence in the
standard fashion. The E1 is given by

Es,t
1 = πt+1(Ω

s−1S2s−1) = πt+s(S
2s−1).

The key feature here is that the input to this spectral sequence is the output of
an earlier calculation. In particular, once π1(S

1) is determined, no other outside
calculation is necessary. This seductive feature attracted a lot of attention early on.
This feature caused many to miss some obvious additional structure which is the
current focus. If we look only at Es,t

1 for s ≤ n, the spectral sequence converges to
πt+nS

n. If we allow all s, the spectral sequences converges to the stable homotopy
groups which we write as πt(S

0). The filtration induced on πt(S
0) refers to the
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sphere of origin of the class. This means the smallest integer s such that the
homotopy class is in the image of the suspension map Ωs−1Ss → Ω∞−1S∞. The
class in Es,t

1 = πt+s(S
2s−1) which projects to a class is called the Hopf invariant

of that class. There are a few global results obtained essentially from the EHP
sequence approach.

Theorem 1.1 (Serre) The groups, πjS
n are finite except if j = n or if n = 2k

and j = 4k − 1.

Theorem 1.2 (James and Toda) The E2 term of the EHP spectral sequence is
an Fp vector space.

James at 2 and Toda at odd primes essentially proved this. This result gives
an estimate of the maximum order of the torsion subgroup of πtS

n. This result
was sharpened to the best possible by the following result.

Theorem 1.3 (Cohen, Moore, and Neisendorfer) If j 6= 2n + 1 then
pnπj(S

2n+1) = 0 for p an odd prime. There are classes of order pn.

At the prime 2 the sharpest estimate is not known. The result of James
implies that 22nπj(S

2n+1) = 0. The maximum known elements would suggest
a more complicated formula but approximately 2n+1πj(S

2n+1) = 0. A precise
conjecture is made in the next section.

There is another feature of the EHP spectral sequence which should be
noted. Since Es,t

1 = πt+s(S
2s−1) it is clear that if t < 3s − 3 then Es,t

1 depends

only on the value of t − s. In general, Es,t
r = Es+2r/2+1,t+2r/2+1

r provided that
2r/2+1 + t < 3(s+2r/2+1)− 3. This allows one to describe a stable EHP spectral
sequence in which SEs,t

1 = πt−s−1(S
0). This spectral sequence is defined for all

s ∈ Z. It is a consequence of Lin’s theorem that this spectral sequence converges
to πt(S

−1). The paper by Mahowald and Ravenel [8] explores the consequences of
this observation and gives complete references.

2 v1 periodicity

Another global result which does not follow from EHP considerations is the fol-
lowing result.

Theorem 2.1 (Nishida) Under composition, any element in a positive stem is
nilpotent.

It is this result which leaves one in a quandary as to how to describe an infinite
calculation. Adams was the first to notice how to use Bott periodicity to construct
infinite families. This is somewhat easier at odd primes but one can accomplish
essentially the same thing by considering the finite complex, Y 6 = CP 2 ∧ RP 2 at
p = 2 and Y k = Sk−1 ∪p e

k at p odd. We have the following result.
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Proposition 2.2 Let q = 2(p − 1). For each prime p and each k > 6 there is a
map Y k+q → Y k such that all composites

Y k+qj → Y k+q(j−1) → · · · → Y k

are essential for all j and k. We will call this map v for any j and k.

This means that we can consider the homotopy theory, [Y ∗, ] as a module
over Z[v]. We will label this homotopy modlule as π∗( , Y ). We can again ask for
freeness and exponents with respect to this module. The question about freeness
has been completely answered. The exponent question is completely open. A
starting point for understanding freeness in this context is the following result.
It is possible to compare the fibers of the single suspension map in the EHP
sequence. This gives a new sequence of fibrations

W (n)→ S2n−1 → Ω2S2n+1

In this context, Serre’s theorem is equivalent to the assertion that W (n) is ratio-
nally acyclic. To get information about [Y ∗, ] for spheres, it is useful to compare
[Y ∗,W (n)] for various n. The following result allows this.

Proposition 2.3 There is a a map W (n) → Ω2pW (n + 1) which induces an
isomorphism in v−1π∗( , Y ) homotopy.

This proposition is key to determining the homotopy which can be detected
in some sense by K-theory. In order to state the result we need to recall a small
part of the Snaith splitting theorem. We will state the results for the prime 2.
Something similar is true for odd primes.

Theorem 2.4 (Snaith) There is a map

sn : Ω2n+1S2n+1 → Ω∞Σ∞

0 RP 2n

which induces a monomorphism in homology.

Using these maps we can prove the following.

Theorem 2.5 The Snaith maps, sn induce isomorphisms in the homotopy theory
v−1π∗( , Y ).

All that remains is to compute this homotopy theory and that is an easy calcula-
tion. Thus a summand in πk+2n+1(S

2n+1) for each k 6= 4, 5mod 8 is determined.
For certain values of n there are non-trivial summands for the other values of
k. This aspect of homotopy theory is quite well understood. This material ap-
pears in several papers, the last one, [3], contains references to earlier work. The
computational aspects is being pursued by Bendersky and Davis.

This discussion works in a very similar fashion at odd primes and the result
is much easier to state. Let p be an odd prime and q = 2p − 2. Let ν(k) be the
maximum power of p which divides k.
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Theorem 2.6 ([13]) If j = kq − 1 or if j = kq − 2 then j > 2n + 1, then
πj+2n+1(S

2n+1) contains a Z/pmin(n,ν(k) summand.

The homotopy detected by K-theory is special at the prime 2. At all
odd primes in behaves in a similar fashion with the summand being defined
by number theoretic functions as the above Theorem illustrates. In particu-
lar, at odd primes the elements of maximal order are found in the homotopy
detected by K-theory. Typically, exponent theorems are proved by showing
that the loop space power map has a certain order. In particular, we consider
P (r) : Ω2n+1S2n+1 → Ω2n+1S2n+1 given by multiplication by pr in the loop vari-
able. Theorem 1.3 is proved by showing that P (n) is null if p is odd. A result this
simple at 2 is false. The conjectured result is:

Conjecture 2.7 At the prime 2, where P (n) refers to the 2n power map we
expect:

• If n ≡ −1, 0 mod 4, then P (n) is null.

• If n ≡ 1, 2 mod 4 and n > 1, then P (n+ 1) is null.

• Among the torsion classes in π∗(S
2n+1), the element of maximal order is

detected by K-theory.

If all parts of this conjecture are correct, the proof would have to be quite different
than the proof of Theorem 1.3 since we have the following result.

Theorem 2.8 If n ≡ −1, 0 mod 4, then there is a homotopy class of order 2n

detected by K-theory. If n ≡ 1, 2 mod 4 and n > 1, then the maximum order
among the classes detected by K-theory is 2n−1.

A conjecture of this sort was first made by Barratt. This version is due to
Barratt and Mahowald.

3 Telescopes and localizations

In order to understand the next kind of periodicity I want to introduce some ad-
ditional notation. The first question which needs to be answered is: “For which
finite complexes, F , are there maps, v : ΣkF → F , all of whose iterates are essen-
tial?” We will find it easier to suppress the suspension variable in this discussion.
We are looking for maps like the map described above for Y . Devinatz, Hopkins
and Smith [4]answered this question.

Theorem 3.1 Let F be a finite complex and v : ΣkF → F . The composite

Σk·jF → Σk(j−1)F → · · · → F

is essential for all j if and only if MU∗(v) 6= 0 where MU∗ is complex bordism
theory.
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MU∗ splits into a wedge of theories at a fixed prime. These smaller theories
are called Brown-Peterson homology theories, BP∗. Their homotopy is given by
π∗(BP ) = Z[vi, i = 1, · · · ]. The dimension of vi is 2(p

i−1). In order to understand
a particular periodicity family it is useful to localize BP . Consider the theory
defined by v−1

n BP . It is possible to get a more efficient theory by first killing
vi, for i > n and inverting vn in this new theory. Call the resulting spectrum,
E(n). We have π∗(E(n)) = Z(p)[v1, · · · , vn, v

−1
n ]. Work of Miller, Ravenel and

Wilson, [9], show that this spectrum leads to an important localization. Note that
E(1) = K at 2. At other primes E(1) is one of the factors into which K splits.

Bousfield, [2] has introduced a notion of localization at a spectrum. An excel-
lent discussion of this is in the paper by Ravenel, [10]. A particularly important
family of localizations is that given by localization with respect to E(n). This gives
rise to the chromatic tower. Let Ln(X) be the Bousfield localization of X with re-
spect to E(n). Suppose X is a p-complete spectrum. Then there are commutative
diagrams

Li+1(X) → Li(X)
↑ ↑
X ≃ X

such that X → homlim Li(X) is a homotopy equivalence.
The computations in the chromatic tower have been done for the stable sphere

if i = 1 and all primes or i = 2 and the prime is larger than 3. For i = 1 the
results of the previous section describe the answer. For i = 2 the result is very
complicated and the reader is referred to the paper by Shimomura and Yabe,
[12]. It is quite interesting to note that the Shimomura-Yabe result can be stated
in terms of number theory functions for all primes p > 3. This is analogous to
Theorem 2.6. These results suggest that the answer for the infinite prime might be
possible. This would give the homotopy information in terms of functions whose
argument is the prime and whose value is the order of a summand. In this sense,
Theorem 2.6 and the Shimomura-Yabe result [12] are results for the infinite prime.
It seems that if n > p − 1, then Ln(S

0) should have such a prime independent
description.

The situation for unstable spheres and L2 localizations is still not clear. Bous-
field has also defined localizations of spaces with respect to a spectrum. This seems
to be a somewhat harder notion than localization of spectra. For S2k+1, Arone
and Mahowald, [1], have constructed a tower which reduces to a finite tower for
each Ln. Here are some details. Let X be some space (or spectrum) and let F be
some functor. Then Goodwillie [5] constructs a tower of functors

P1F (X) ← P2F (X) ← · · · ← PnF (X) ← · · ·
↓ ↓ ↓

D2F (X) D3F (X) Dn+1F (X)

and a collection of maps F (X)→ PnF (X) such that the inverse limit of the tower
is equivalent to F (X) and the fibers at each stage, DiF (X), are infinite loop
spaces. For the example of the identity functor and for X = S2k+1, this tower is
investigated by Arone and Mahowald in [1]. For our purposes, the key result is
the following.
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Theorem 3.2 For each prime and each n, the Ln localization of S2k+1 can be
represented by a tower of n fibrations. Each of the fibers is an infinite loop space.
The fiber at the stage k, Dk, satisfies Lk−1Dk = pt.

The key point is the observation that the Goodwillie tower is constant, except
when n = pk. In this case the stable spectrum represented by the fiber at the
n = pk stage has acyclic homology with respect to the homology theory E(k− 1).
This result can be used to compute the homotopy of LnS

2n+1 once one knows the
stable theory. This has been done for L1. It represents an interesting problem for
L2 at primes bigger than 3, in view of the Shimomura-Yabe calculations [12].

If n > 1, the homotopy theory defined by a finite complex with a self map
detected by vn seems to detect more homotopy than is present in LnS

2n+1. That
this should be the same is called the telescope conjecture. Recent work of Ravenel
suggest this conjecture is false. Several proofs of the disproof of the telescope
conjecture have been circulated but it is not yet clear if the result is proved.

4 Formal groups and homotopy theory

In addition, the connection of MU∗ with formal groups has played an important
role in understanding higher periodicities. The starting point is the multiplication
map, µ : CP×CP → CP . Let α ∈MU2(CP ) represent the cohomology class given
by CP = MU(1)→ Σ2MU . Then MU∗(µ)(α) is a power series in two variables.
This power series, F , satisfies the axioms of a one dimensional commutative formal
group over the ring MU∗(pt). The key theorem is due to Quillen.

Theorem 4.1 (Quillen) The formal group constructed above induces an isomor-
phism from the Lazard ring to MU∗(pt). All of the constructions in the theory of
one dimensional commutative formal groups carry over to this topological setting.

Hopkins and Miller have discovered a partial converse to this result. Let FG
denote the category having as objects pairs (k,Γ), where k is a perfect field of
characteristic p, and Γ is a formal group of height n over k, and with morphisms
α : (k1,Γ1) → (k2,Γ2) consisting of a pair (i, f), where i is a map i : k1 → k2 of
rings and f is an isomorphism f : Γ1 → Γ2 of formal group laws. Then we have:

Theorem 4.2 (Hopkins-Miller) There exists a functor (k,Γ) → Ek,Γ from FGop

to the category of A∞ ring spectra, such that,

1. Ek,Γ is a commutative ring spectrum;

2. there is a unit in π2Ek,Γ;

3. πoddEk,Γ = 0, from which it follows that Ek,Γ is complex orientable;

4. and such that the corresponding formal group law over π0Ek,Γ is the the
universal deformation of (k,Γ).

A discussion of this result and related topics of formal groups and universal
deformations is in the course notes prepared by Rezk [11].
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Hopkins and Miller apply this result to construct higher K-theories, EOn,
at primes p where (p − 1)|n. At 2 and 3, EO2 is very interesting. In particular,
this spectrum captures the way in which L2 differs from the calculations of [12].
There is a connected version of EO2 which is called eo2. Various constructions
of this spectrum yield various properties. In particular, Hopkins and Miller have
constructed a version which makes eo2∗ into an E∞ ring spectrum. In [7] the
homotopy groups eo2∗ are computed. That paper also discusses the connection
that this spectrum has with elliptic curves over F4 and height 2 elliptic curves.
There will be a sequence of papers by Hopkins, Miller and others which expand
on this theory. Without writing down specific groups, we observe that using this
spectra we can show that a substantial part of the known calculation of the stable
stems fit into periodic families. The basic periodicity of eo2 at 2 is 192 which
represents v322 . At the prime 3, the period is 72. How all of this should work out
on unstable spheres is still not clear.

The connection with elliptic curves should be expanded on. Elliptic curves
over a ring R can be co-represented by Z[a1, a2, a3, a4, a6]. The coefficients, ai, are
the coefficients in the Weierstrass form of the equation for the curve,

x3 + a2x
2 + a4x+ a6 = y2 + a1xy + a3y.

This equation represents a curve with a single point on the line at infinity. The
discriminant, ∆, is a polynomial in the coefficients. If ∆ 6= 0, then the curve is
non-singular. Coordinate transformations which preserve the curve are

x 7→ x+ r

y 7→ y + sx+ t

These substitutions give transformation formulas for the coefficients. We can use
these to construct a Hopf algebroid,

Z[a1, a2, a3, a4, a6] ⇒ Z[a1, a2, a3, a4, a6, s, r, t]

The homology of this Hopf algebroid is the E2 term of the Adams-Novikov spectral
sequence to calculate π∗(eo2). The homology in dimension 0 is isomorphic to the
ring of modular forms. There are differentials in the Adams-Novikov spectral
sequence. For more details see [7].

The theories, Ep−1, are also related to curves. These curves, of genus
(

p−1
2

)

,
give rise to formal groups in a more complicated fashion. This is discussed in
the paper by Gorbounov and Mahowald, [6]. In this case too, the connection is
exploited to give an easy calculation of the E2 term of the Adams-Novikov spectral
sequence.
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