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Abstract

These are my notes for a series of talks on EO2 resolutions. The

new mathematics presented here is joint with Charles Rezk and has

profited from conversations with Paul Goerss and Mike Hopkins

1 Introduction

I would like to discuss an understanding of the Morava stabilizer group at
the prime 2 for height 2 formal groups. I will need to introduce this topic by
considering some easier examples. Most topologists have some understanding
of the image of J and the J spectrum. From Adams and others we know that
there is a map ψ3 − 1 : KO → KO whose fiber is the J spectrum at 2. This
is a spectrum which contains the image of the J homomorphism and some
additional classes which are always a part of this homotopy.

We want to understand this case from the formal group point of view.
The Morava stabilizer group is the group of automorphisms of a formal group.
For the image of J case we want to look at the multiplicative formal group
which is a formal group of height 1 and we want to concentrate on the prime
2. Let R be a local ring with a maximal ideal, m, such that R/m = F2. The
Lubin-Tate theory asserts that the lifts of the multiplicative formal group to
a formal group over R is co-representable and the co-representing ring is just
Z2. The Morava stabilizer group is just the group of automorphisms of this
ring. This group is the multiplicative group of Z2 which is Z/2⊕Z2. Algebraic
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topologists insist on a grading and so the Lubin-Tate ring is Z2[u, u
−1] where

|u| = 2. This graded ring is the homotopy of a spectrum, K. The Morava
stabilizer group acts on the homotopy. A theorem of Adams gives an action
on the spectrum K, itself.

Theorem 1.1 KhZ/2 = KO.

There is a spectral sequence converging to the homotopy of KhZ/2 whose
E2 term is H∗(Z/2;K∗). The non-zero element of Z/2 acts on u by sending
it to −u. The result is the well known homotopy of KO. It is important to
note that the class which corresponds to the generator ξ of H∗(Z/2,Z) has
Adams filtration (2,0) and so is in the minus two stem. The class u2ξ = η2.
We should note that in this setting, the connected cover of the spectrum is
not so easy to describe.

2 Formal groups of height 2

Now let’s look at the case of a formal group of height 2 over F4. The Lubin-
Tate theory is similar. Let R be a local ring so that R/m = F4. The ring
which co-represents the deformation space of lifts is now WF4

[[u1]][u, u
−1].

Again, this is the graded answer where |u1| = 0 and |u| = 2. The Morava
stabilizer group is the group of automorphisms of the formal group over F4.
This is a much more complicated non-commutative group that the previous
case.

Let’s call the group S2. It is possible to give a description of the group
in a more conventional fashion. We begin by considering the integral lattice
in H generated by ±1,±i,±j,±k. We can extend the lattice by including
the 16 elements (1/2)(±1± i± j ± k). In the resulting ring we complete at
the ideal generated by 2. The Morava stabilizer group, S2, is the group of
units in this ring. There is a finite group of order 24, G24, the group of units
before completing. There is a class S which represents the square root of 2,
The torsion free part is a free module over WF4

on 1 and S.
There is a spectrum, E2, whose homotopy is the co-representing ring,

WF4
[[u1]][u, u

−1]. The group S2 acts on this ring. A fundamental result of
Hopkins and Miller is the following theorem.

Theorem 2.1 S2 acts on the spectrum E2 as a group of E∞ operations.
EhG24

2 = EO2.
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The homotopy of EO2 is quite interesting. Our story here is less specific.
The question which we ask is: Is there a finite resolution of EO2-modules
which calculates LK(2)(S

0). The E2 term of the Adams-Novikov spectral se-
quence isH∗(S2;E2∗). The steps in doing this would seem to be the following.

Theorem 2.2 (Ravenel)

H∗(S2;Z/2[u
±1]) = (K(2)∗[h1,0, h1,1, g]/(h1,0h1,1, v2h

3
1,0 − h31,1)⊗ Λ(β)

⊕K(2)∗[ζ]〈ξ, ξ2〉)⊗ Λ(ρ)

The filtration of |g| = (4, 0), |ζ| = (1, 0), |ξ| = (1, 0).

This next theorem gives the connection between G24 and this calculation.

Theorem 2.3 H∗(G24;Z/2[u
±1]) = K(2)∗[h1,0, h1,1, g]/(h1,0h1,1v2h

3
1,0−h31,1)

This suggests that the cohomology of S2 is given by Λ(ρ) (chain complex
of length 4).

Λ(ρ)(EO2∗(V (1)) → Z/2[ζ, v±1
2 ] → ξZ/2[ζ, v±1

2 ] → βEO2∗(V (1)))

We have two questions about this. First, what spectrum has Z/2[ζ, v±1
2 ]

as its homotopy? Second, where do the maps come from?
If we consider the ψ3 − 1 map of the image of J spectrum case as the

right source for the maps we could look at the following. Consider the class
i + j + k =

√
−3. This conjugates G24 to another finite group of order 24,

G′
24. The intersection of these two groups is a cyclic group of order 6. We

can think of this in terms of the following diagram.

EhG24

2 EhG24
2

E
hG′

24

2 E
hZ/6
2

✲
1

❄

[x]

❄

✲

We would expect that this diagram does not commute and the difference
should define a map 1 − [x] : EhG24

2 → E
hZ/6
2 . This is reminiscent to what
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happened in the K-theory situation. This suggests that E
hZ/6
2 should be

interesting. We note the following: The Z/3 leaves u3 = v2 as an invariant.
The Z/2 acts in the usual fashion and the result is H∗(Z/2;E2∗(V (1))) =
K(2)∗[ζ] which looks right.

I do not know if the map above 1− [x] is the correct map. Let us go back
to the image of J picture again to get some hints.

The image of J spectrum is the fiber of the map ψ3−1 : KO → KO.When
restricted to connected covers, this map can be lifted to a map g : bo→ Σ4bsp.
Here bo is the connected spectrum constructed from Bott peridocity and bsp
is the connected spectrum constructed from Bott peridocity using BSP , the
symplectic group. The homotopy groups are:

πj(bo) =







Z j ≡ 0(4), j ≥ 0
Z/2 j ≡ 1, 2(8), j > 0
0 otherwise

πj(bsp) =







Z j ≡ 0(4), j ≥ 0
Z/2 j ≡ 5, 6(8), j > 0
0 otherwise

There is another way to construct a map like g. Consider a bo-resolution.

bo⇒ bo ∧ bo · · ·

Theorem 2.4 bo ∧ bo = bo ∨ Σ4bsp ∨X where X is some other spectrum.

This allows one to define a map f : bo→ Σ4bsp.

Theorem 2.5 Any map such as f which induces an isomorphism in coho-
mology in dimension 4 induces the same map in homotopy as does g above.

This gives a formally alternative understanding of the J-spectrum and a
version of its connective cover.

Corollary 2.6 J = LK(1)S
0 = v−1

1 (fib(bo→ Σ4bsp)).

This suggests that we should look at a connected version of EO2 which we
will call eo2. Hopkins and I have constructed it and Hopkins and others have
produced versions with good properties. We need only a minimal version.
Here is a table of conparsions between eo2 and bo.

bo eo2
H∗ A⊗A(1) Z/2 A⊗A(2) Z/2
π∗ easy computed but complicated
periodicity v41 v322
Hurwitz image Z/2 ∈ π8k+1,2 very large
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3 Conjectural part

Now we come to the conjectural part of the talk. I will try to make clear
what is a theorem and what is conjectural.

We can form an eo2-resolution.

eo2 ⇒ eo2 ∧ eo2 · · ·

We do not have a splitting theorem for eo2 ∧ eo2. We do have an algebraic
version.

Theorem 3.1 As an A-module, H∗(eo2 ∧ eo2) = ⊕i≥0A ⊗A(2) Mi where
Mi = H∗(Σ8iboi) and boi is the ith bo-Brown-Gitler spectrum. (H∗(boi) =
A/A{Sq1, Sq2, χSq4j, j > i})

We know that eo2 ∧ eo2 does not split as ∨Σ8ieo2 ∧ boi. This follows from
some particular calculations in π∗(S

0) in the 38 and 39 stems.

Conjecture 3.2 eo2 ∧ eo2 = eo2 ∨ eo2 ∧ (Σ8bo1 ∪ Σ16bo2) ∨ Y where Y is
some unspecified spectrum. There is some map connecting the second and
third parts.

There is an interesting map between Σ15bo2 → Σ8bo1 which induces the
known differential in the Adams spectral sequence. Let D be the cofiber.
Then eo2 ∧D has an extra homotopy class in dimension 32. If we cone this
off with a single copy of eo2 we get a spectrum C whose Adams spectral
sequence can be completly computed. If we invert v2 in C we get a spectrum
whose Adams-Novikov spectral sequence looks very much like a candidate
for E

hZ/6
2 . In particular, they have the same E1-term.

If we suppose that this all will work, then we need to compute the map
between eo2 and C. Shimomura has calculated something which we can use
as describing this map at least if we concentrate on just the Moore space. If
we use this picture, we can read off all of the Adams-Novikov differentials
from the known eo2 structrue and the map defining C.

Next we should come back to the short chain complex discussed earlier.
Let F be the fiber of the map v−1

2 eo2 → v−1
2 C. Let CF be Brown-Commentez

dual of the above map. Then LK(2)(V (0) should fit into an exact sequence

CF → LK(2)(V (0) → F.
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This is almost right. We have to take into account the two copies of this
construction given by Λ(ρ).

This understanding gives a conceptual approach to understanding Shi-
momura’s computations and also suggests what the differentials should be in
the Adams-Novikov spectral sequence.

The short complex gives a complex like:

eo2 → C → C → eo2

If we invert v1 we have

KO[v42/v
12
1 ] → (v2/v

3
1)KO[v2/v

3
1] → (v2/v

3
1)KO[v2/v

3
1] → KO[v42/v

12
1 ]

It is useful to describe these maps by what happens to various powers
of v2. These results are a consequence of Shimomura’s calculations. In each
case we assume n > 1.

2n(2t+ 1) → 2n−1(4t+ 1)
2n−2(4t+ 3) → 2n−1(2t+ 1)
2n(2t+ 1) + 1 → 2n−1(4t+ 1) + 1

2n−1(4t+ 3) + 1 → 2n(2t+ 1)

This leaves 4 free copies. The first two represent the image of J and the
second two is a kind of dual image of J. This pattern is typical of n = 2
phenomena.
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