Slides for talks on $e O_{2}$-resolutions

Mark Mahowald
Mathematics Department
Northwestern University
Evanston IL 60208
December 28, 1998

1 Introduction

My goals in this talk are:

- To discuss the Morava stablizer group, S_{2} at the prime 2.
- To understand the calculation of $H^{*}\left(S_{2}\right)$ with trivial coefficients and for $E_{2}(V(0))$ as coeficients. This is related to Shimomura's calculations.
- We want to understand both of these items in terms of the Hopkins-Miller spectrum $E O_{2}$.
- We begin by discussing the case of S_{1} which is quite well understood.

First let's look at S_{1} at 2.
The image of J spectrum is given by the fiber of a map

$$
\psi^{3}-1: K O \rightarrow K O
$$

The formal group approach

- We begin with the multiplicative formal group over $\mathbb{F}_{2} F(x, y)=x+y+x y$
- The group of automorphisms is $\mathbb{Z}_{2}^{+}=\mathbb{Z} / 2 \oplus \mathbb{Z}_{2}$
- The Lubin-Tate ring is \mathbb{Z}_{2}. As a graded ring it is $\mathbb{Z}_{2}\left[u^{ \pm 1}\right]$
- The Lubin-Tate ring is the homotopy of a spectrum K
- S_{1} acts on the Lubin-Tate ring and on the spectrum K
- $K^{h \mathbb{Z} / 2}=K O ; \psi^{3}$ is a topological generator of \mathbb{Z}_{2}
- $J=K^{h S_{1}}=\left(K^{h \mathbb{Z} / 2}\right)^{h \mathbb{Z}_{2}}$.

Now let's consider the case $n=2$
The formal group is not so familiar. Over \mathbb{F}_{4} one can take the group with 2 series $[2]=x^{4}$.
Another choice which is interesting is the formal completion of the group structure in the elliptic curve over \mathbb{F}_{4} defined by $x^{3}=y^{2}+y \operatorname{In}$ this case, the 2 series is $[2]=z^{4}\left(\sum_{i \geq 0} z^{12\left(2^{i}-1\right)}\right.$.

The Lubin-Tate ring is $\mathbb{W}_{\mathbb{F}_{4}}\left[\left[u_{1}\right]\right]$
The graded Lubin-Tate ring is the homotopy of a spectrum E_{2}
S_{2} is the automorphism group of the formal group over \mathbb{F}_{4}
S_{2} is the group of units in the ring defined by the quaterions. It has a finite subgroup of order 24 given by $\pm 1, \pm i, \pm j, \pm k$ and $(1 / 2)(\pm 1 \pm i \pm j \pm k)$

Theorem 1.1 (Hopkins and Miller) S_{2} acts on the spectrum E_{2} as a group of E_{∞} operations. $E_{2}^{h G_{24}}=$ $E O_{2}$.

The homotopy of $E O_{2}$ is quite interesting. Our story here is less specific.
The question which we ask is: Is there a finite resolution of $E O_{2}$-modules which calculates $L_{K(2)}\left(S^{0}\right)$.
The E_{2} term of the Adams-Novikov spectral sequence is $H^{*}\left(S_{2} ; E_{2 *}\right)$.

The first step in calculating this is the following Theorem 1.2 (Ravenel)

$$
H^{*}\left(S_{2} ; \mathbb{Z} / 2\left[u^{ \pm 1}\right]\right)=
$$

$$
\left(K(2)_{*}\left[h_{1,0}, h_{1,1}, g\right] /\left(h_{1,0} h_{1,1}, v_{2} h_{1,0}^{3}-h_{1,1}^{3}\right) \otimes \Lambda(\beta)\right.
$$

$$
\left.\oplus K(2)_{*}[\zeta]\left\langle\xi, \xi^{2}\right\rangle\right) \otimes \Lambda(\rho)
$$

The filtration of $|g|=(4,0),|\zeta|=(1,0),|\xi|=$ $(1,0)$.

This next theorem gives the connection between G_{24} and this calculation.

Theorem 1.3

$$
\begin{gathered}
H *\left(G_{24} ; \mathbb{Z} / 2\left[u^{ \pm 1}\right]\right)= \\
K(2)_{*}\left[h_{1,0}, h_{1,1}, g\right] /\left(h_{1,0} h_{1,1} v_{2} h_{1,0}^{3}-h_{1,1}^{3}\right)
\end{gathered}
$$

This suggests that the cohomology of S_{2} is given by $\Lambda(\rho)$ (chain complex of length 4).

$$
\begin{gathered}
\Lambda(\rho)\left(E O_{2 *}(V(1)) \rightarrow \mathbb{Z} / 2\left[\zeta, v_{2}^{ \pm 1}\right] \rightarrow\right. \\
\left.\xi \mathbb{Z} / 2\left[\zeta, v_{2}^{ \pm 1}\right] \rightarrow \beta E O_{2 *}(V(1))\right)
\end{gathered}
$$

We have two questions about this.

- What spectrum has $\mathbb{Z} / 2\left[\zeta, v_{2}^{ \pm 1}\right]$ as its homotopy?
- Where do the maps come from?

Following the image of J case we consider the diagram where $x=\sqrt{-3}$ and G_{24}^{\prime} is another finite group obtained by conjugation with x.

$$
\begin{gathered}
E_{2}^{h G_{24}} \xrightarrow{1} \cdot E_{2}^{h G 24} \\
{[x]} \\
E_{2}^{h G_{24}^{\prime}} \longrightarrow E_{2}^{h \mathbb{Z} / 6}
\end{gathered}
$$

This suggests that $[x]-1: E_{2}^{h G_{24}} \rightarrow E_{2}^{h \mathbb{Z} / 6}$ should be an interesting map.

Can we understand the correct map $E_{2}^{h G_{24}} \rightarrow E_{2}^{h \mathbb{Z} / 6}$ which occurs in the resolution from some other point of view?

The map

$$
\psi^{3}-1: K O \rightarrow K O
$$

when restricted to connected covers can be lifted to a map

$$
g: b o \rightarrow \Sigma^{4} b s p
$$

Consider a bo-resolution.

$$
b o \rightrightarrows b o \wedge b o \ldots
$$

Theorem 1.4 bo $\wedge b o=b o \vee \Sigma^{4} b s p \vee X$ where X is some other spectrum.

This allows one to define a map $f: b o \rightarrow \Sigma^{4} b s p$.
Theorem 1.5 Any map such as f which induces an isomorphism in cohomology in dimension 4 induces the same map in homotopy as does g above.
Corollary 1.6 $J=L_{K(1)} S^{0}=v_{1}^{-1}\left(f i b\left(b o \rightarrow \Sigma^{4} b s p\right)\right)$.

This suggests that we should look at a connected version of $E O_{2}$ which we will call $e O_{2}$.

We can form an e_{2}-resolution.

$$
e O_{2} \rightrightarrows e o_{2} \wedge e O_{2} \cdots
$$

We do not have a splitting theorem for $e O_{2} \wedge e O_{2}$. We do have an algebraic version.

Theorem 1.7 As an A-module, $H^{*}\left(e o_{2} \wedge e o_{2}\right)=$ $\oplus_{i \geq 0} A \otimes_{A(2)} M_{i}$ where $M_{i}=H^{*}\left(\Sigma^{8 i} b o_{i}\right)$ and $b o_{i}$ is the ith bo-Brown-Gitler spectrum. $\quad\left(H^{*}\left(b o_{i}\right)=\right.$ $\left.A / A\left\{S q^{1}, S q^{2}, \chi S q^{4 j}, j>i\right\}\right)$

Conjecture $1.8 e o_{2} \wedge e o_{2}=e o_{2} \vee e o_{2} \wedge\left(\Sigma^{8} b o_{1} \cup\right.$ $\left.\Sigma^{16} b o_{2}\right) \vee Y$ where Y is some unspecified spectrum. There is some map connecting the second and third parts.

$$
\begin{gathered}
D \rightarrow \Sigma^{15} b o_{2} \rightarrow \Sigma^{8} b o_{1} \\
\Sigma^{32} e o_{2} \rightarrow D \rightarrow C
\end{gathered}
$$

Conjecture $1.9 v_{2}^{-1} C=E_{2}^{h \mathbb{Z} / 6}$ and the map in the resolution above is obtained from the e_{2} resolution.

- Next we should come back to the short chain complex discussed earlier.
- Let F be the fiber of the map $L_{2} e o_{2} \rightarrow L_{2} C$.
- Let $C F$ be Brown-Commentez dual of the above map.
- Then $L_{K(2)}(V(0)$ should fit into an exact sequence

$$
C F \rightarrow L_{K(2)}(V(0) \rightarrow F
$$

- This is not quite the end since there is the exterior generator ρ

Shimomura's calculations of the E_{2} term for $L_{K(2)}(V(0))$ fit this resolution. The resolution conjectures all of the differentials in the Adams-Novikov spectral sequence.

