A Union Theorem for Cofibrations

By
Joachim Lililg

1. Results. We work in the category \mathscr{T} of 2 of topological spaces and continuous maps. If A is a subspace of X, we denote the closure of A by \bar{A} and the interior of A by A. Let I be the unit interval. We say that a map $i: A \rightarrow X$ has the homotopy extension property (HEP) with respect to Z if, given maps $f: X \rightarrow Z$ and $\varphi: A \times I \rightarrow Z$ such that $f(x)=\varphi(x, 0)$ for $x \in A$, there exists a map $\Phi: X \times I \rightarrow Z$ such that $\Phi \mid X \times 0=f$ and $\Phi \mid A \times I=\varphi$. We call $i: A \rightarrow X$ a cofibration if it has the HEP with respect to every space Z and a closed cofibration if in addition $i(A)$ is closed. We consider subspaces A and B of a space X such that the inclusion maps $A \subset X$ and $B \subset X$ have the HEP w.r.t. Z, and investigate under what assumptions $A \cup B \subset X$ has the HEP w.r.t. Z.

Theorem 1. Assume that $A \subset X$ has the HEP w.r.t. Z. Assume there exists a continuous map $u: X \rightarrow I$ with $A \subset u^{-1}(0)$ and $(u \mid B)^{-1}(0)=A \cap B$. If $B \times I \subset X \times I$ and $(A \cap B) \times$ $\times I \subset B \times I$ have the HEP w.r.t. Z, then $A \cup B \subset X$ has the HEP w.r.t. Z.
(Independently, A. Dold has proved the same result.)
If we assume A and B separated, then we obtain a symmetric result. We define an equivalence relation \sim in $X \times I$ by identifying (x, t) and $(x, 0)$ for $t \in I$ and $x \in A \cap B$. Let $[x, t]$ denote the class of (x, t) in $X \times I / \sim$ and let pr: $X \times I / \sim \rightarrow X$ be given by $\mathrm{pr}[x, t]=x$.

Definition. We call two subspaces A and B of X separated if there exists a continuous $\operatorname{map} j: X \rightarrow X \times I / \sim$ such that $\operatorname{pr} \circ j=\mathrm{id}(X)$ and $j(x)=[x, 0]$ for $x \in A, j(x)=[x, 1]$ for $x \in B$.

In section 3 we show that closed cofibrations are separated.
Now we can state a symmetrical variant of theorem 1:
Theorem 2. Assume that $A \subset X, B \subset X$ have the HEP w.r.t. Z. If $(A \cap B) \times I \subset X \times I$ has the HEP w.r.t. Z and A and B are separated, then $A \cup B \subset X$ has the HEP w.r.t. Z.

Reformulated for cofibrations, we obtain the
Union Theorem. Let $A \subset X$ and $B \subset X$ be cofibrations. Let either (a) $A \cap B \subset B$ be a cofibration and $\bar{A} \cap B=A \cap B$, or (b) $A \cap B \subset X$ be a cofibration and A, B separated. Then $A \cup B \subset X$ is a cofibration.

This theorem follows immediately from theorem 1 and theorem 2 . In case (a) note that if $A \subset X$ is a cofibration then so is $\bar{A} \subset X[2 ;$ Cor. 5]. Moreover a closed cofibration is a Nullstellen-set (i.e. a subspace A of a space X is a Nullstellen-set if there exists a continuous map $u: X \rightarrow I$ with $u^{-1}(0)=A$) (see [1; Satz 3.26]).

From the union theorem we deduce the product theorem for cofibrations:
Corollary 1. Let $A \subset X$ and $B \subset Y$ be cofibrations. Let A be closed in X. Then $(X \times B) \cup(A \times Y) \subset X \times Y$ is a cofibration.

One deduces immediately from the assumptions that $X \times B \subset X \times Y, A \times Y \subset X \times Y$ and $(X \times B) \cap(A \times Y)=A \times B \subset X \times Y$ are cofibrations. Since A is closed in X, we have $(\overline{A \times Y}) \cap(X \times B)=(A \times Y) \cap(X \times B)$, and case (a) proves the corollary.

Since closed cofibrations are separated (see section 3), we have
Corollary 2. If $A \subset X$ and $B \subset X$ are closed cofibrations and if $A \cap B \subset X$ is a cofibration, then $A \cup B \subset X$ is a cofibration.

By induction we obtain
Corollary 3. Let $A_{1} \subset X, \ldots, A_{n} \subset X$ be closed cofibrations. For all $\sigma \subset\{1, \ldots, n\}$ let $A_{\sigma}=\bigcap_{l \in \sigma} A_{l} \subset X$ be a cofibration. Then $\bigcup_{l=1}^{n} A_{l} \subset X$ is a cofibration.

Corollary 3 does not hold in general for countably many cofibrations. For let $X=I, A_{l}=\{0,1 / l\}$ for $l=1,2, \ldots$ and $A=\bigcup_{l=1}^{\infty} A_{l}$. The set A is closed in X. The inclusion maps $A_{l} \subset X$ are obviously closed cofibrations. For all finite $\sigma, A_{\sigma} \subset X$ are cofibrations but $A \subset X$ is not a cofibration [1; Beispiel 3.14 (3)].
2. Proof of theorem 1. We will need the lemma (a generalization of a special case of the product theorem for cofibrations):

Lemma 1. If $i: A \times I \subset X \times I$ has the HEP w.r.t. Z, then $(A \times I) \cup(X \times \partial I) \rightarrow X \times I$ and $(A \times I) \cup(X \times 0) \rightarrow X \times I$ have the HEP w.r.t. Z. Here $(A \times I) \cup(X \times \partial I)$ is not considered as a subspace of $X \times I$, but as a quotient space of the topological sum $(A \times I) \cup$ $\cup(X \times \partial I)$ obtained by identifying $(a, 0)$ with $i(a, 0)$ and $(a, 1)$ with $i(a, 1)$. Similarly for $(A \times I) \cup(X \times 0)$.

Proof. Assume given a commutative diagram

Let $Q: I \times I \rightarrow I \times I$ be a homeomorphism with

$$
Q((I \times 0) \cup(\partial I \times I))=I \times 0 .
$$

Define maps $\quad g_{Q}^{\prime}=g \circ\left(\left(\mathrm{id} \times Q^{-1}\right) \mid X \times I \times 0\right)$ and

$$
\psi_{Q}^{\prime}=\psi \circ\left(\left(\mathrm{id} \times Q^{-1}\right) \mid(A \times I \times I) \cup(X \times \partial I \times I)\right)
$$

Let $\psi_{Q}=\psi_{Q}^{\prime} \mid A \times I \times I$ and let $g_{Q}: X \times I \times 0 \rightarrow Z$ be given by

$$
\begin{aligned}
& g_{Q} \mid\left(\mathrm{id} \times Q^{-1}\right)(X \times I \times 0)=g_{Q}^{\prime} \text { and } \\
& g_{Q}\left|\left(\mathrm{id} \times Q^{-1}\right)(X \times \partial I \times I)=\psi_{Q}^{\prime}\right|\left(\mathrm{id} \times Q^{-1}\right)(X \times \partial I \times I) .
\end{aligned}
$$

We obtain the commutative diagram:

Since $A \times I \subset X \times I$ has the HEP w.r.t. Z, there exists a continuous map $\Phi_{Q}: X \times I \times$ $\times I \rightarrow Z$ completing the diagram commutatively. Now we define $\Phi: X \times I \times I \rightarrow Z$ by $\Phi=\Phi_{Q} \circ(\mathrm{id} \times Q)$. One checks that Φ is the desired extension of ψ and g. Analogously one proves the second part of the lemma using a homeomorphism $P: I \times$ $\times I \rightarrow I \times I$ with $P((I \times 0) \cup(0 \times I))=I \times 0$.

We also need the following lemma:
Lemma 2. Let $A \subset X$ be a Nullstellen-set. Let $f, g: X \rightarrow Z$ be continuous maps with $\Phi: f \simeq g$ rel A. Then there exists a homotopy $\tilde{\Phi}: f \simeq g$ rel A with

$$
\tilde{\Phi}(x, t)=\tilde{\Phi}(x, u(x))=\Phi(x, 1) \text { for } x \in X \text { and } t \geqq u(x)
$$

Proof. Let $u: X \rightarrow I$ be a map with $u^{-1}(0)=A$. We define $\tilde{\Phi}: X \times I \rightarrow Z$ by

$$
\tilde{\Phi}(x, t)= \begin{cases}\Phi(x, 1) & \text { for } t \geqq u(x) \\ \Phi(x, t) & \text { for } u(x)=0 \\ \Phi\left(x, \frac{t}{u(x)}\right) & \text { for } t \leqq u(x) \text { and } u(x) \neq 0\end{cases}
$$

Obviously $\tilde{\Phi}$ is well-defined; the continuity of $\tilde{\Phi}$ is proved in [1; Satz 3.26].
Proof of theorem 1. Assume given a commutative diagram

The inclusion map $A \subset X$ has the HEP w.r.t. Z, and consequently there exists an extension $\Phi: X \times I \rightarrow Z$ of $\varphi \mid A \times I$ and f. Now define maps

$$
\begin{array}{lll}
\Phi: X \times I \times 0 \rightarrow Z & \text { by } & \Phi(x, s, 0)=\Phi(x, s) \\
\varphi: B \times I \times 1 \rightarrow Z & \text { by } & \varphi(b, s, 1)=\varphi(b, s) \\
F: X \times 0 \times I \rightarrow Z & \text { by } & F(x, 0, t)=f(x) \text { for every } t \in I \quad \text { and }
\end{array}
$$

$$
\psi:(A \cap B) \times I \times I \rightarrow Z \quad \text { by } \quad \psi(a, s, t)=\psi(a, s, 0)=\varphi(a, s)
$$

for $a \in A \cap B$ and $t \in I$. Since $(A \cap B) \times I \subset B \times I$ has the HEP w.r.t. Z, there exists, by lemma 1 , a homotopy $\Psi: B \times I \times I \rightarrow Z$ with

$$
\begin{aligned}
& \Psi(b, s, 0)=\Phi(b, s) \\
& \Psi(b, s, 1)=\varphi(b, s), \\
& \Psi(b, 0, t)=f(b) \text { for } \quad b \in B \text { and } \\
& \Psi(a, s, t)=\psi(a, s, t)=\varphi(a, s) \text { for } a \in A \cap B \text { and } t \in I .
\end{aligned}
$$

In view of lemma 2 we can deform Ψ to $\widetilde{\Psi}: B \times I \times I \rightarrow Z$ with $u^{\prime}: B \times I \rightarrow Z$ defined by $u^{\prime}(b, s)=u(b)$. The map $B \times I \subset X \times I$ has the HEP w.r.t. Z; hence, by lemma 1 , there exists a continuous map $\Omega: X \times I \times I \rightarrow Z$ with

$$
\begin{aligned}
& \Omega(x, s, 0)=\Phi(x, s, 0) \\
& \Omega(x, 0, t)=F(x, 0, t) \quad \text { and } \\
& \Omega(b, s, t)=\widetilde{\Psi}(b, s, t) \quad \text { for } \quad b \in B
\end{aligned}
$$

We now define the desired extension $H: X \times I \rightarrow Z$ of φ and f by $H(x, s)=\Omega(x, s, u(x))$. It is clear that H is continuous and that $H \mid X \times 0=f$ and $H \mid(A \cup B) \times I=\varphi$.
3. Proof of theorem 2. In this section we shall first give several criteria for the separation of two subspaces of a space X.

Lemma 3. (a) Given subspaces A and B of X and a continuous map $u: X-(A \cap B) \rightarrow I$ with $A-(A \cap B) \subset u^{-1}(0)$ and $B-(A \cap B) \subset u^{-1}(1)$, then A and B are separated and $\partial A \cap \partial B \subset A \cap B$. (∂A is the boundary of A.)
(b) i) If A and B are Nullstellen-sets, then a map u exists satisfying the hypothesis in (a).

In particular: if $A \subset X$ and $B \subset X$ are closed cofibrations, then A and B are separated.
ii) If \bar{A} and \bar{B} are Nullstellen-sets and if $\partial A \cap \partial B \subset A \cap B$, then a map u exists satisfying the hypothesis in (a).

In particular: if $A \subset X$ and $B \subset X$ are cofibrations and if $\partial A \cap \partial B \subset A \cap B$, then A and B are separated.

Proof. (a) We define $j: X \rightarrow X \times I / \sim$ by

$$
j(x)= \begin{cases}{[x, u(x)]} & \text { for } x \notin A \cap B, \\ {[x, 0]=[x, t]} & \text { for } x \in A \cap B \text { and } t \in I .\end{cases}
$$

(b) The case i) follows from ii) because $\partial A \cap \partial B \subset A \cap B$. Now let $\lambda, \mu: X \rightarrow I$ be continuous maps with $\bar{A}=\lambda^{-1}(0)$ and $\bar{B}=\mu^{-1}(0)$. We define a map $u: X-$ $-(A \cap B) \rightarrow I$ by

$$
u(x)= \begin{cases}\frac{\lambda(x)}{\lambda(x)+\mu(x)} & \text { for } x \notin A \cap B \\ 1 & \text { for } \\ x \in(\bar{A}-A) \cap \stackrel{\circ}{B} \\ 0 & \text { for } \\ x \in(\bar{B}-B) \cap \stackrel{A}{A}\end{cases}
$$

It is obviously sufficient to show continuity in the points of $A \cap(B-B)$. But this is clear because, for an arbitrary $x \in \AA \cap(\bar{B}-B)$, a neighborhood U of A can be chosen such that $u(x)=0$ for every $x \in U$.

Remark. If A and B are separated then there need not exist a continuous map $u: X-(A \cap B) \rightarrow I$ satisfying lemma 3(a) as following example of D. Puppe shows: Take $X=\{a, b, c\}$ with the open sets $\emptyset,\{a\},\{a, c\}, X$. Let $A=\{a, c\}$ and $B=\{b, c\}$. Then $j: X \rightarrow X \times I / \sim$ is continuous but there is no continuous $u: X-\{c\} \rightarrow I$.

For the proof of theorem 2 we need the following lemma.
Lemma 4. Let A be a subspace of X such that $A \times I \subset X \times I$ has the HEP w.r.t. Z. Let $K, L: X \times I \rightarrow Z$ be homotopies with $K_{0}=L_{0}$ and $K|A \times I=L| A \times I$. Then there exists a homotopy $\Phi: K \simeq L \operatorname{rel}(A \times I) \cup(X \times 0)$.

Proof. We define maps $g:(X \times I \times \partial I) \cup(X \times 0 \times I) \rightarrow Z$ by

$$
g(x, s, t)= \begin{cases}K(x, s) & \text { for } t=0 \text { or } s=0 \\ L(x, s) & \text { for } t=1\end{cases}
$$

and $\psi: A \times I \times I \rightarrow Z$ by $\psi(a, s, t)=K(a, s)=L(a, s)$ for every $t \in I$. Since g is defined by continuous maps on closed subspaces, it is continuous. The map $A \times I \subset X \times I$ has the HEP w.r.t. Z, and consequently, by lemma 1 , there exists a continuous map $\Phi: X \times I \times I \rightarrow Z$ with $\Phi \mid A \times I \times I=\psi$ and $\Phi \mid(X \times I \times \partial I) \cup(X \times 0 \times I)=g$. It is clear that Φ satisfies all the required conditions.

Proof of theorem 2. Assume given a homotopy $\varphi:(A \cup B) \times I \rightarrow Z$ with $\varphi_{0}=f: X \rightarrow Z$. The maps $A \subset X$ and $B \subset X$ have the HEP w.r.t. Z. Hence there exist extensions $\Phi^{A}: X \times I \rightarrow Z$ of $\varphi \mid A \times I$ and $\Phi^{B}: X \times I \rightarrow Z$ of $\varphi \mid B \times I$ with $\Phi_{0}^{A}=\Phi_{0}^{B}=f$. Then $\Phi^{A}|(A \cap B) \times I=\varphi|(A \cap B) \times I=\Phi^{B} \mid(A \cap B) \times I$. Since $(A \cap B) \times I \subset X \times I$ has the HEP w.r.t. Z, there exists a homotopy $\Psi: \Phi^{A} \simeq \Phi^{B} \operatorname{rel}((A \cap B) \times I) \cup(X \times 0)$, by lemma 4. By assumptions, we have a continuous map $j: X \rightarrow X \times I / \sim$ with $j(x)=[x, 0]$ for $x \in A$ and $j(x)=[x, 1]$ for $x \in B$. We consider the diagram

where $p: X \times I \rightarrow X \times I / \sim$ is the identification map and $T: I \times I \rightarrow I \times I$ switches the factors. The composite $\Psi \circ$ (id $\times T$) factors through $p \times \mathrm{id}$ and hence induces a $\operatorname{map} \Omega:(X \times I / \sim) \times I \rightarrow Z$. A required extension of φ and f is given by $\Omega \circ(j \times \mathrm{id})$: $X \times I \rightarrow(X \times I / \sim) \times I \rightarrow Z$.

This paper is a condensation from my diplom thesis written under the supervision of Prof. T. tom Dieck and Dr. R. Vogt to whom I am indepted for advice and suggestions contributing to this work.

References

[1] T. тom Dieck, K. H. Kamps und D. Puppe, Homotopietheorie. Lect. Notes Math. 1:7, Berlin 1970.
[2] A. Strom, Note on cofibrations II. Math. Scand. 22, 130-142 (1968).
Eingegangen am 17. 7. 1972
Anschrift des Autors:
Joachim Lillig
Mathematisches Institut der Universität des Saarlandes 66 Saarbrücken

