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CHAPTER ONE : INTRODUCTION.

This is an essay about tame mathematical knots. Interest
is concentrated on the knots on the torus surface, the
torus knots, and also on a way to combine knots, similar
to the process of tying two real knots together. This
leads us on to prime knots, one of which is the trivial knot.
Considering the trivial knot as a special torus knot, a
nrimary aim of the essay is to generalize the primeness
property of the trivial knot towards also including torus
knots.

In general we will here call the composition of two or
more knots their tying. Using the alaebraic center of a
knot group we then demonstrate that no two nontrivial
torus knots can be combined to give a new torus knot.
Actually, although it is not explictly stated, we show
that anv knots with trivial knot group center, or nontrivial
torus knots, never yield torus knots when tied together.
Further, it is the content of a result bv Burde and
Zieschang (1966) that all nontrivial knots are of one of
these kinds. Thus the essay demonstrates, assuming this
result, that all torus knots are prime knots.

The level of difficulty is kent simple. The intent of
this work has been to use quite elementarv tools and
techniques and to apply these in an original way SO as

to prove fairly interesting results. So the otherwise very



useful constructions like Seifert surfaces, the elementary
ideals, the Alexander polvnomials and so on are all omitted
and unused.

Space constraints has caused most of the early proofs and
constructions to be omitted, but only if they appear in the
references. The final size of the essay has thus been in-
fluenced by the desire to include the preliminary definitions
leading up to what is really new in this essay. References
are given with their year of publication bracketed.

All ambiguities in notation should be covered below:

c does not exclude equality. Equivalence, equality or iso-
morphism is generally denoted = , except from isomorphism
with 'standard' groups like the infinite additive group of
integers, Z, where = is used. The unit element of a group
is denoted 1, and a finite presentation of a group, and the

group itself, will be written
{x1,...,xn|r1,...,rm}

for generators XqrXgrees Xy and relators TyrToreserTpy. Sets
are denoted similarly, but no confusion should arise. (p,q)
means the g.c.d. of p and g, and m;(X) is the fundamental
group of a topological space X. For groups A and B, with

an amalgamating subgroup C, A * B means their amalgamated
C

product. Suzuki (1982) contains all that is needed on
amalgamated products. Finally, indexation below and above

any operation like *,U,Nn or + denotes repetition in the



standard way.

Essentially, all proved results are numbered, but there
are also three unproved results which are named instead.

These are taken from other sources for reasons expounded

upon when encountered.



CHAPTER TWO : BASIC CONCEPTS.

2.1,

Mathematical knots have been defined so as to canture the
properties of twisting and entanglement most people associate
with knots. A full discussion of what knots should be repre-
sented as, which knots should be considered the same and = -
which should be different, how to generalize the theory of
knots, and so on, is not included here. Time and space has
however been devoted to this in several of the references
( Armstrong 1979, Crowell and Fox 1963, Rolfsen 1976 ).

Instead merely the essential results are recited here for

the sake of completeness.

2.2.
For our purposes a knot is a homeomorphic image of S' in S3.

Two knots are equivalent if there is a homeomorphism of S?3

onto itself taking one onto the other. This is an equivalence
relation, and the equivalence class of a knot is called its
knot type. One can often substitute R®, or an open or closed
ball which is a neighbourhood of the knot, for S® as the
'containing space'. Also the distinction between a knot and

its knot type needs not alwavs be too strict. The subset
{(x,y,2) |x%+v?=1,2z=0}

of R?® included in S® is the trivial knot, denoted by k-

A knot is tame if it is equivalent to a polygonal knot, which



is one consisting of a finite number of straight line-segments.
Otherwise a knot is said to be wild. Wild knots can be
horribly badly embedded in S?, so hereafter we consider tame
knots only. To be able to calculate anyvthing with knots we

define the knot group. For a knot k it is m,(S3-k), and is

denoted by G(k). As for knot types, we can reasonably freely
use another containing space than S°® without changing the
knot group. For tame knots, the group is finitely presentable.

Ways to obtain one such presentation, the Wirtinger nresen-

tation, are explained in Armstrong (1979), Crowell and Fox
(1963), Rolfsen (1976) and Stillwell (1980). We assume the
result here, and use the convention that the generators used
correspond to loops winding once round the oriented knot like
right-hand screws. We have G(kt)={x]}=Z, the infinite cyvclic

group.

2.3.

We now introduce the family of knots which will receive
most of the attention in this essay. They are the torus
knots, lying on the standard torus surface T?=S!xs'. For

relatively prime integers p,q, the p,g-torus knot is the

one winding p times longitudinally and g times meridinally

round the torus surface, and it is denoted t . t =t
bsd P4 -P,4q

t =k, for nonzero p. Three distinct
q,p p,1 7t

but precise definitions are given in Crowell and Fox (1963),

and so on, and t

Rolfsen (1976) and Stillwell (1980). Below is pictured the

knot t ~ the trefoil.

2,3
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\ meridian

longitude

Rolfsen (1976) and Stillwell (1980) show that G(tp q)=
b
{x,y]xp=yq} for all relatively prime p,qg. Picking a base

point in T?-t X corresponds to a loop winding once around

p,q’
the inside, and y to a loop winding once around the outside

of the torus surface.

2.4.

The following calculation will be essential later. Take
p,g>0, and let G=G(tp’q), C=Z(G) ( the center ). Then
G={x,y|xp=yq}. so xP ¢ =yq ) is a power of both the generators
X and y. It thus commutes with both, and therefore with the

whole of G. The same goes for (xp)n for all integers n, so

L={xp|} c C. L becomes a normal subgroup of G, and for p,g>1
G/L={x|xP=11*{y|y3=1}

must have trivial center. Now any onto homomorphism h:X-Y

must map the center of X into the center of Y. For if c€Z(X),



then for all h(x) in Y, x€X, we have
h(c)-h(x)=h(cx)=h(xc)=h(x) h(c)

so since h is onto h(c)€z(Y). If we take h as the canonical
homomorphism h:CG-»G/L this vields h(C) < {1}, so C < L. Thus

c=L={x"|}={y%!}. For p=1 or g=1 this result is trivial.

Lemma 2.1.

The knot group of the p,g-torus knot is {X,y!xp=yq},

which has infinite cyclic center {xp}}={yq|}.

2.5.
We will later need the order of a(G/C) where a is the
abelianizing map, when G=G(tp q), C=Z(G) and (p,a)=1. We can
b

assume p,q>0. Now
G/c={x|xP=11*{y|y%=1}.

The groups in the product have p, respectively a, elements,

so all the elements of a(G/C) can be written in the form

xiyj for 0gi<p, 0gj<g, and the order of the group must be p-qg.
An easy consequence of this is that there are infinitely many

distinct torus knot types.



CHAPTER THREE ON TORUS KNOTS AND THEIR MERIDIANS.

3.1.
We draw a couple of torus knots:

t3 17Kk £3 2

7=

Ny

It is clear that we can find a diagram for the general p,qg-

torus knot ( assuming p,g>0 ) as below:

bridaes

~_i=2




As for the Wirtinger presentation we pick a loop for each

overpass to give a generator X j for the knot group. The
3

first index is the number of the strand, counting inwards at
the left of the bridge, which the second index denotes the
number of modulo g. This gives rise to a set of generators
{xi,j|1§1<p, 1§j§q} with X1,j=xp,j+1' For the Wirtinger
presentation, the generators actually employed are the set
{Xi,jl <igp, 1<jgq}, and for each of the i,j we obtain the

relation:

Xisj.x1:j= 13j.xi'13j+1'

For convenience we now add on the generators X ;7 1§j<q,
2

and the relations:

1,5 %p,i+1

for 1§j§q, to obtain a presentation for G(tp,q)' Let us call
this presentation the bridge-strand presentation for the
knot group. Note that whenever there is any difficulty with
indexes in the first set of relations, the last set of

relations compensates for this. The expression for the bridge-

strand presentation is contained in the next lemma.

Lemma 3.1.

The p,g-torus knot group has a presentation

G(

tp,q)={xi,j’ 1gigp, 1<dgalxy sox, =%, x 2gigp,

l,J 1SJ .’j.

i-1,3+1"

where the second index is modulo g.
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Next follows the major result of this chapter. Using the
above presentation we determine an exact expression for a
meridian of the p,g-torus knot in the group {x,ylxp=yq}.

A meridian of a knot is defined in Neuwirth (1965). If we
thicken a knot slightly to obtain a nice tube containing the
knot, a meridian is roughly a loop on the surface of this-

thin tube, which also is homotopically trivial in the tube.

3.2.

We take the oriented p,g-torus knot for some relatively
prime integers p,g. The knot group G=G(tp’q) then has a
bridge-strand presentation as given in Lemma 3.1., and a
(simpler) presentation as the amalgamated product {x,ylxp=yq}.
The generators x and y of the latter are expressible in terms
of the X5 3 and conversely. For one obvious choice of base

L]

point we have

x then represents a loop going under each of the g bridges
around the knot in turn, and v corresponds to a loop winding
around all of £he p strands to the left of the first bridge,
meridinally in the sense of a right-hand screw. The geo-
metrical situation ensures that xp=yq, which also is qguite
easy to show explictly, e.g. using the same technique as used

directly below.
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We turn to finding a meridian of tp q in terms of x and y.
>

Each of the Xi,j’ 1<igp, 1<j<q are meridians. In particular we

claim that there are integers k,1l such that

X =X1 k
1,177 %Y -

Since (p,q)=1 we can find k,l such that pk+gl=1. We have as-
sumed p,q>0, so one of the k,l1 must be non-positive. Adding
any multiple of g to k and deducting the same multinle of p
from 1 does not alter the value of pk+gl, so we can assume that

k is positive and I is negative. Then:

yk=yk_1o(x - X *e..*X X )
p,1 “p-1,1 2,1 71,1
k-1

=y (xp,1-xp_1,1-...-x1,1-x

1,2)

k-1
A I R U SRR S Y
=x1’1-xp_1,2-...-x1,2~(xp,2-...-x1,2)
=X1,1.X1,2.Xp-2,3'""X1,3.(Xp,3

=X1 ,1 ® e 'X1 ,pk_;‘ 'X1 ’pko
But pk-1=q(-1), so

k=x . . X X
v 1.1° "+

, 1,pk-1""1,pk
X1,17 0 % ,q0-1) TR,

_ (-1)
=(x -...-x1’q) -x1,1

or

Which of course is independent of the particular choice of
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k and 1, as long as pk+gl=1.

Lemma 3.2.

J

the element X

For the torus knot t yl, where pi+gi=1,

p,a’
represents a meridian of the knot in the knot group {X,ylxp=yq}.
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CHAPTER FOUR : COMPOSITION OF KNOTS.

4.1,

We now take a look at composition of knots. The most
intuitive way to combine two knots is to split each open
at one point each and connect the loose ends of one in a
nice way to the corresponding ends of the other. Precise
constructions are found in Neuwirth (1965) and Rolfsen

(1976) . The below drawinc may indicate how they do it:

4.2,
Instead of dwelling upon this, we show how to tie
several knots together.

Take n oriented knots k,,k,,...,k in S%. We find a closed
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ks

E3
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E,

O 3
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B3

D,

B2

Aj

As




15

ball Ei containing ki for each i, and assume that all the
Ei are disjoint. On the surface of each Ei we can assume
that we have a closed disc Di and an arc as from ki in the
interior of this disc. Orientations inherit from S*®, and
are assumed to fit that of the ki' Finally we take a closed
ball E disjoint from all of the Ei' On E we find n disjoint
closed discs A1,A2,...,An. and n arcs 81,82,...,8n in the
respective interiors as before. We join the endpoints of
each B, to B; 4 and B. 4 by arcs in the interior of E or a
Ai’ in such a way that the result is the trivial knot kt in

E. We orient E, kt' the Ai and the Bi as before. Then for

each i we identify by opposing orientations the vair (Di,a.)

1
n
with the corresponding pair (Ai,Bi). Now remove from ;U;ki
=1
the identified interiors of the arcs ai,Bi . The result is
n
a knot k lying in EU( U Ei)’ which we extend by adding on
i=1

some space to obtain S?®. The resultant knot is then called

the tying of the knots k1452'°"'kn' and we write:

n
k= + k.
. i
i=1
As for the combination of two knots, the knot type of
k is well defined whenever all the ki are given orientations.
Also we can show that the tving of two knots, written k1+k2,
2
as defined in the above references, is equivalent to + k.
i=1

as defined here. So the definitions are properly compatible.

In fact the operation + becomes commutative and associative,
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By a suitable deformation retraction we obtain :
ﬂl(Sg—ki)=ﬂ1(S3—(ki+kt))=W1(S3—ki) for i=1,...,n.
Furthermore

n

ktU(;U Ej)
n
+

-—
o
[

e

J=1

o

[

k.
i

nHnoSXs nCeCs

-

i=1

e

n
SO W1(Ss—.U1ki) = G(ky) = {t|} for a generator t of G(k,).

n
) = my( + ki)' We now apply van Kampen's
i=1

theorem (n-1) times to get:

n n n n
G( + ki)=w1(s3— + ki)=ﬂ1(S3- N ki)=mi( U (S3-ki))
i=1 i=1 i=1 i=1
1’1—1 3 3
=ﬂ1(.91(8 -ki)) * m,(S —kn)
171 n-q
T (U (S3—ki)n(sa—kﬁ))
i=1
n-1
=W1(ig1(sa—ki)) * wl(sa—kﬁ)
ﬂl(SS—kt)
n—1 3 3
=r;( U (S°-k!)) * mw(s°-k!)
1= T} n
n n
= * mi(s-kl) = * T (S-ks) ,
{t]} {t]}
1=1 i=1
n n
or G( + k.)= * G(k.).
i=1 * (¢]y
i=1

For a choice of t we find meridians Mg My eee, My of the

respective knots, winding in the opposite directions of what
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t corresponds to around each of the respective ai=8i. The

amalgamating maps then take a power of t onto the same

power of the equivalence classes of My yeee My in
G(k1),...,G(kn) as appropriate.
If we change the orientations of any of the ki’ and thus
n
the mi,the knot group of + ki is onlv changed up to iso-
i=1
morphism. So we can state:
Theorem 4.1.
n n
= ¥ G .
For knots k1,k2,...,kn, G(.f ki) C(kl) where
i=1 {t]}
i=1

t is identified with elements corresponding to a meridian for

each of the knots ki'

4.4.

In particular, if n=2, G(k1)={x1,...,xn1|r1,..., 1} and

n
G(k2)={y1,...,yn2|s1,...,sm2}, then

G(k,+k,) = {x1,...,xn1,y1,...,yn2|r1,...,rm1,s1,...,sm2,R}
where R is a relation xg=y§ for any i€{1,...,n1}, je€{1,...,n2}
and §,e=%1.

For any two torus knots tp q and tr g We can find integers
> >
k

i 1
v© and z"w

J in G(t_ )=

i,j,k,1 such that pitqj=rk+sl=1,and x 0,4
3

{x,v]|%xP=y?} and G(t, S)={z,w|zr=ws} represent meridians.
3
The theorem then gives us
G(tp q+tr,s)={x,y,z,w[xp=yq,zr=ws,x3y1=zlwk}.
3

To conclude the chapter we show an essentially obvious lemma.
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Lemma 4.1.

m
For knots k1’k2""’kn and 1§m§n, G(.f1ki) is isomorphic
n 1=
to a subaroup of G( + ki)'
i=1
m m m n
G(+ k;) = * G(k;) < * G(ky)) *F (% G(ki))
i=1 {t]} {t]} {t]} {t]}
i=1 i=1 i=m+1
n n
= * G(k.) = G( + k.)
{e]r i=1 *

i=1

by a propertv of the amalgamated free product of groups.
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CHAPTER FIVE : SUBGROUPS, AND THE CENTER IN PARTICULAR.

5.1.

In the last chapter prime knots were mentioned. The trivial
knot is one such. This result is not trivial to prove, so
we will here cheat a little and use a theorem which we do
not attempt to prove. The difficult part of it requires
Dehn's lemma and the placement of certain discs in S% which

we have not developed any basis for studying. The theorem is:

The Unknotting Theorem. A tame knot is trivial if and

only if its knot group is infinite cyclic.

We refer to Rolfsen (1976) for the two results on this
page. The theorem above is really beyond the kind of tools
we want to employ here, but we do not really need this result
in the development of our theory either. Instead it will
serve as an inspiration for what is to come, and also it
bestows some geometrical insight which may help to give a
little perspective to what is happening in the next section.

Using it we prove:

" The Basic Untving Lemma. The tying of two knots is trivial

if and only if both are trivial.

Proof: The tving of two trivial knots is of course trivial.

Converselv assume k1+k2=kt' Then G(k1+k2)=G(kt)ZZ, so by
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lemma 4.1. G(ki) c 7 for i=1,2. No knot group equals {1}, so
G(ki)zz for i=1,2. By the unknotting theorem it follows that

k =k2=kt as required. The statement that no knot group equals

1
{1} also follows from lemma 4.1.

An untying theorem appearing in the next chapter will also
prove that certain knots cannot be tied together to give the

trivial knot, without the use of the unknotting theorem. Mean-

while we turn to pondering upon what we actually just proved.

5.2.

In this section the trivial group is that of the trivial
knot. We can then rewrite the last proof, now using the
unknotting theorem at the very start: Given two nontrivial
knots, their knot groups are nontrivial, and being sub-
groups of the tving's knot group, the latter is nontrivial.
Thus the tving is nontrivial.

It is the property of not being infinite cyclic which
translates through to the tying's group. This is a very
general assumption. It is natural to try to impose stronger
restrictions in order to arrive at similar results
holding more information. One wayv to do this is to study
certain subgroups of the various knot groups. If we can
find a subgroup exhibited by a whole class of knots, and
further demonstrate that some or all tyings lack this
subgroup, no tyings of this kind can possibly be of the

first kind.
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5.3.

So we look for subgroups which do not carry over to tyings.
We have considered infinite cyclic ones. The order of a
finite subgroup would be a powerful characteristic, but there
appears to be none. Abelian groups are easy to handle, but
abelianizing a knot group alwavs yields the infinite cyclic
group, so we cannot find any tyings at all without that
property. The kernel of the abelianizing map, the commutator
subgroup, is easily seen to consist of those elements in
the knot group where the sum of the exponents in a
representing word from the Wirtincer presentation is zero.

A lot of work on such subgrouns is outlined in Neuwirth
(1965), and some results are found in the other references
on knot theory too. The center C=Z(G(k)) of a knot group
will however be the most useful for us. We have already

worked it out for torus knots, and found:

Pl 1
z(c(t, ))=1="|}=z.

]

Having an infinite cyclic center is therefore characteristic
for torus knots. In the spirit of 5.2. we consequently
devote the rest of the chapter to see what happens to a

group's center under amalgamation.

5.4.
For two knots k1,k2( anv orientations will do ) set k=k1+k2,

Gi=G(ki), G=G(k), Ci=Z(Gi) and C=%Z(G) for i=1,2. Treating all
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groups as subgroups of G (lemma 4.1.), the amalgamating sub-

group H={t|} equals

G

©

To have c€C we must have cg=gc for all g€G. In particular
we can require cg=gc for all g€G1. The only such elements in

G1 lie in C1. It is easy to see that no elements in G—G1

commute with those in G1—H. Thus if the latter in nonempty

we can conclude that C c C1. If G1=H then G=G2, sO C=C2.

> and C2 we obtain C < C2 if G2—H*@. Else

C=C1. 0Of course, if c'GC1 n C2 then ¢ commutes with all

generators of G in particular, and all of G in general.

Similarly for G

Thus this implies that C1ﬂC2 c C.

Lemma 5.1.

If G,+H and G,#H then Z(G)=Z(G1)nZ(G2). If anv G;=H then

1 2
Z(G)=Z(Gj) where i#7j.
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Corollarvy 5.1.

+H and G.#H then Z(G) < H.

If G1 5

The argument immediately generalizes to multiple tvings.
n

We take knots k1,k2,...,kn, k=i1-1ki and groups Gi'ci'G and

C as before, but for i=1,2,...,n. Let H={t]|} be the

common amalgamating subgroup. As subgroups of G, for i*j

we then have:

If Gi*H then C < Ci as before for all i, If Gi=H then

n n
Z(G( + k.)) = Z(G( + k.)) if n>1.
j=19 j#i

n
Again if c€ n Ci then ¢ commutes with all of G,so c€C. Thus
i=1
we obtain:

Lemma 5.2.

n
If at least one Gi¢H, then Z(G) = n

Corollary 5.2.

If at least two Gi¢H, then Z(G) < H.
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CHAPTER SIX : STRONGER RESULTS ON UNTYING.

6.1.

Combining the past results we show:

Theorem 6.1.

The tving of two nontrivial torus knots is not a torus knot.

An immediate corollary is:

Corollary 6.1.

The tying of two nontrivial torus knots is not the

trivial knot.

Proof of theorem:

, as previously.
b,q rss

Then (p,a)=(r,s)=1, and we can assume that 1<p,q,r,s. Set

We take two nontrivial torus knots t

k1=tp’q, 2=tr,s' k=k1+k2 and other notation as before. As in

section 2.5. we can show that a(Gi/Ci) have pg and rs elements

k

for i=1,2, so no G,=H as a(H/Z(H))={1} with but 1 element.

Thus by lemma 5.1.

C = C1ﬂC2 c H.

But C1={xp|} and C2={zr|}. Furthermore we have integers i,j,k,1

such that pi+qgj=rk+sl=1, which gives us:

B o= {t]} = {x3v?|} = {z"w"[}.
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If there are any c#1 in C, then there must be nonzero integers

m,n such that

(xp)m =c=t"= (xjyi)n.

We can consider both (xp)m and (x‘]yl)n as elements of G1. And

it will be useful to look at G, as the free product with

1

amalgamation below:

Gy = {x[} * A{v[}
{2]}

9 gefine the amalgamation.

of A={x|} and B={v|} where %=xP and 2=y
Considering A and B as subgroups of G1, (xp)mEAnB. For n#0

i or p|j. But

the only way (><Jyl)r1 can lie in ANB is that ¢«

if gli then

a|pi and glaj so gl|pit+qj so g1,
and if p|3j then

plaj and p|pi so p|pit+qj and pl|1.

Both of these are impossible for 1<p,g. Therefore if m and
n are nonzero, (xp)m¢(x3yl)n, so ¢ cannot equal both and C

must be trivial:

Z(G(tp’q+tr,s))={1}-

Since this is not infinite cvclic,it is not the center of a

torus knot group. Which completes the proof.
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6.2.
For multiple tyings we can weaken the assumption, at least

apparently:

Theorem 6.2.

The tying of any n knots k1,k2,...,kn of which at least two
are nontrivial torus knots, is not a torus knot, nor is:

it trivial.

We see that torus knots resist being split up into smaller
knots.
Proof of theorem:

We have the knots k1,k2,...,kn, n>1, and assume that k1
and k. are nontrivial torus knots. Then G,#H and G,+H, soO

2 1 2
by lemma 5.2. we get:

n
Z2(G) = N Z2(G.) < Z(G,)NZ(G,) = {1}.
. 1 1 2
i=1
G.*H
i
n
whence k = + k. is neither trivial nor a torus knot. Which is
i=1

what we wanted to prove.

6.3.

With the technigues available we do not get much further.
There is however a result, of fairly new origin, about centers
of knot groups. Applied on theorem 6.2. it gives us a

somewhat neater result. The result referred to is:

The Knot Group Center Theorem. A knot group has nontrivial

center if and only if the knot is a torus knot.
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A proof is given by Burde and Zieschang (1966), but is
much too difficult to be presented here, and relies upon
several other results of a similar nature. Using this theorem
we can however now prove that all torus knots are prime
knots, which theorem 6.1. was a partial proof of. So we

state:

Theorem 6.3.

All torus knots are prime knots.

Proof of theorem:
Assume that we have knots k, and k., such that k,+k,=t
1 2 172 "p,q
for some relatively prime r,q. If any of the ki for i=1,2
are not torus knots, Burde and Zieschang's result shows that

Ci={1}. It follows that for this i,Gi#H, since if G;=H

then Ci=Z(H)=H¢{1}. So by our lemma 5.2.:

2
C= NCcC, cc. = {1}
j=1 9
G.*H
J
and C={1} contradicting C=Z(G(tp q))zZ.
3

Thus both of the ki must be torus knots. If both are non-
trivial it follows from theorem 6.1. that k1+k2 is not a
torus knot, so at most 1 of the ki for i=1,2 are nontrivial.

Thus tp q is always a prime knot. Which completes the proof.
>
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An equivalent restatement of the theorem is:

Corollary 6.2.

Any tying of two or more nontrivial knots is never a

torus knot, and in particular not a trivial knot.

The last results also show that there are infinitely
many distinct prime knot types. Which concludes this

treatment.
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