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Abstract

For a primep > 5, we compute the algebrai&-theory modulop andv; of
the modp Adams summand, using topological cyclic homology. On the way, we
evaluate its modulp andw; topological Hochschild homology. Using a localization
sequence, we also compute tRetheory modulop and v, of the first Moravak -
theory.

Keywords. Algebraic K -theory, Morava K-theory, topological cyclic homology, to-
pological Hochschild homology

1 Introduction

In this paper we continue the investigation from [AR02] andi$A0] of the algebraidé -
theory of topological-theory and related-algebras. Let, be thep-complete Adams
summand of connective compldx-theory, and let’/p = k(1) be the first connective
Morava K-theory. It has a uniqué-algebra structure [Ang, Th. A], and we show in
Section 2 that/p is an/,-algebra (in uncountably many ways), so that’/p) is a K (¢,)-
module spectrum.

Let V(1) = S/(p,v1) be the type2 Smith—Toda complex (see Section 4 below for
a definition). It is a homotopy commutative ring spectrum gop 5, with a preferred
periodic class, € V (1), of degree2p? — 2. We write V(1),(X) = m.(V(1) A X) for
the V' (1)-homotopy of a spectrunX. Multiplication by v, makesV'(1).(X) a P(uvy)-
module, where”(v,) denotes the polynomial algebra o&rgenerated by,. We denote
byF,{z1,...,x,} theF,-vector space generated by, . .., z,,, and byE(zy, ..., z,) the
exterior algebra oveF, generated by, ..., z,.

We computed thé/(1)-homotopy of K'(¢,) in [ARO2, Th. 9.1], showing that it is
essentially a freé’(v,)-module on(4p + 4) generators. The following is our main result,
corresponding to Theorem 7.7 in the body of the paper.
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Theorem 1.1.Letp > 5 be a prime and let/p = k(1) be the first connective Morava
K-theory spectrum. There is an isomorphisnPgf,)-modules

V(l)*K(é/p) = P(’UQ) &® E(El) &® Fp{l, 8)\2, )\2, (%2}
® P(vy) ® E(dlogvy) @ Fp{t%v, | 0 < d < p* — p,p{d}
D P(Ug) X E(El) ®Fp{tdp>\2 | 0<d< p} .

Her6|)\1| = ’€1| = 2p -1, |/\2| = 2p2 -1, ’U2| = 2p2 — 2, ‘legU1| = 1, |(9| = —1
and |t| = —2. This is a freeP(v;)-module of rank(2p? — 2p + 8) and of zero Euler
characteristic.

We prove this theorem by means of the cyclotomic trace map [BBIMo topolog-
ical cyclic homologyT'C'(¢/p; p). Along the way we evaluat® (1).7HH (¢{/p), where
THH denotes topological Hochschild homology, as welVds). T'C(¢/p; p), see Propo-
sition 4.2 and Theorem 7.6.

Let L, be thep-complete Adams summand of periodic complExtheory, and let
L/p = K(1) be the first periodic Moravd -theory. The localization cofiber sequence
K(Z,) — K(¢,) — K(L,) — £K(Z,) of Blumberg and Mandell [BMO08, p. 157] has
the modp Adams analogue

K(Z/p) — K(t/p) — K(L/p) — ¥K(Z/p),

see Proposition 2.2 below. Using Quillen’s computationif@uTh. 7] of K(Z/p), we
obtain the following consequence:

Corollary 1.2. Letp > 5 be a prime and lef./p = K (1) be the first Moravak-theory
spectrum. There is an isomorphismzfv;')-modules

V(1).K(L/p)lvy ' = V(1).K(E/p)lvy ]

If there is a classllog v, € V (1), K(L/p) with Ay = v, - dlog v1, then there is an isomor-
phism ofP(v;)-modules

V(1).K(L/p) = P(v2) @ E(&) @ Fp{1, 02, dlog vy, vy }
® P(vy) ® E(dlogv,) @ F{t"vy | 0 < d < p* — p,p 1 d}
D P(UQ) X E(El) X Fp{tdpl)g legUl | 0<d< p},

where the degrees of the generators are as in Theorem 1. lisTdfsee P (v, )-module of
rank (2p? — 2p + 8) and of zero Euler characteristic.

Our far-reaching aim, which partially motivated the congtigins presented here, is to
conceptually understand the algebraietheory of/,, and other commutativ§-algebras
in terms of localization and Galois descent, in the same gayeunderstand the alge-
braic K-theory of rings of integers in (local) number fields or moemgral regular rings.
The first task is to relat&’(¢,) to the algebraid{-theory of its “residue fields” and “frac-
tion field”, for which we expect a description in terms of Galecohomology to exist,
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starting with the Galois theory for commutatigealgebras developed by the second au-
thor [Rog08]. The residue rings éf appear to bé/p, HZ, andHZ/p, while the fraction
field ff (¢,) is more mysterious. For our purposes, its algebfaitheory K (ff (¢,)) should

fit in a natural localization cofibre sequence of spectra

K(L/p) — K(Ly) — K(ff(£,)) — XK (L/p).

An obvious candidate fdf (¢,) is provided by the algebraic localizatidn[p~'] = LQ,,
having as coefficients the graded fiélg[v;™']. However, by the following corollary, this
is too naive.

Corollary 1.3. The spectras'(L/p), K(L,) and K (LQ,) cannot possibly fit in a cofibre
sequence
K(L/p) — K(Ly) — K(LQp) — XK (L/p).

Indeed, the above computation implies thdtl). K (L/p)[vy '] andV (1), K (L,)[v5 "]
are not abstractly isomorphic, whilé(1), K (LQ,)[v; '] is zero since it is an algebra over
V(1).K(Q,)[vy'] = 0. The later equality follows from the computation of th@rimary
homotopy type ofx'(Q,) [HMO3, Th. D], which shows tha¥’(1). /K (Q,) is ve-torsion.

In conclusion, the conjectural fraction fiett{¢,,) appears to be a localization &f,
away fromL/p less drastic than the algebraic localizatibyjp—'| = LQ,. We elaborate
more on this issue in [AR].

The paper is organized as follows. In Section 2 we fix our mmat show that/p
admits the structure of an associati{yealgebra, and give a similar discussion far/p
and the periodic versions/p and KU /p. Section 3 contains the computation of the mod
homology of’HH (¢/p), and in Section 4 we evaluate it51)-homotopy. In Section 5 we
show that the”,»-fixed points and”,.-homotopy fixed points o'HH (¢/p) are closely
related, and use this to inductively determine thé{i )-homotopy in Section 6. Finally,
in Section 7 we achieve the computationZaf'(¢/p; p) and K (¢/p) in V(1)-homotopy.

Notations and conventions.Let p be fixed prime. We writeZ(z) = F,[z]/(x?) for the
exterior algebraP(z) = F,[z] for the polynomial algebra ané(z*') = F,[z,z7!]
for the Laurent polynomial algebra on one generatoand similarly for a list of gen-
erators. We will also writd'(z) = F,{v;(z) | ¢« > 0} for the divided power algebra,
with v;(z) - v;(z) = (4,7)7+;(x), where(i,5) = (i + j)!/i!j! is the binomial coeffi-
cient. We use the obvious abbreviationgz) = 1 and~;(z) = z. Finally, we write
Py (z) = F,[z]/(2") for the truncated polynomial algebra of heightand recall the iso-
morphismI'(z) = P,(ype(x) | e > 0) in characteristip. We write X,y and X, for the
p-localization and the-completion, respectively, of any spectrum or abelian gr&uIn
the spectral sequences {@f-modules) discussed below, we often determine differntia
only up to multiplication by a unit. We use the notatidfx) = y to indicate that the
equationd(x) = ay holds for some unitv € F,,.

2 Base change squares df-algebras

Letp be a prime, even or odd for now. Let. and KU be the connective and the periodic
complex K -theory spectra, with homotopy rings.. = Z[u] and KU, = Z[u*!], where
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lu| = 2. Let¢ = BP(l) andL = E(1) be thep-local Adams summands, with =
Zplwn] and L, = Z,[vi'], where|v;| = 2p — 2. The inclusion? — ku, mapsv; to

—

uP~!. Alternate notations in the-complete cases a€U, = F; andL, = E(1). These
ring spectra are all commutative-algebras, in the sense that each admits a unique
ring spectrum structure. See [BRO5, p. 692] for proofs of uarsgss in the periodic cases.
Let ku/p and KU /p be the connective and periodic mpdomplex/k -theory spectra,
with coefficients(ku/p). = Z/plu] and (KU/p). = Z/p[u*!]. These are2-periodic
versions of the first Morav& -theory spectréd/p = k(1) andL/p = K (1), with (¢/p). =
Z/plv1] and (L/p). = Z/p[vF']. Each of these can be constructed as the cofiber of the
multiplication byp map, as a module over the corresponding commut&tiaégebra. For

example, there is a cofiber sequencéwofmodulesiu & ku - ku/p — Sku.

Let HR be the Eilenberg—Mac Lane spectrum of a riRgWhen R is associative,

H R admits a unique associativealgebra structure, and whe® is commutative H R
admits a unique commutative-algebra structure. The zeroth Postnikov section defines
unigue maps of commutative-algebrasr: ku — HZ andr: ¢ — HZ,, which can be
followed by unique commutativé-algebra maps té/Z/p.

The ku-module spectrunku/p does not admit the structure of a commutative
algebra. It cannot even be @i or H, ring spectrum, since the homomorphism induced
in mod p homology by the resulting map: ku/p — HZ/p of H, ring spectra would
not commute with the homology operati@it' (7,) = 7, in the targetH.(HZ/p;F,)
[BMMSS86, 111.2.3]. Similar remarks apply foKU /p, ¢/p and L/p. Associative algebra
structures, o¥l,, ring spectrum structures, are easier to come by. The faligwesult is a
direct application of the methods of [Laz3£9-11]. We adapt the notation of [BJOB]
to provide some details in our case.

Proposition 2.1. The ku-module spectrunku/p admits the structure of an associative
ku-algebra, but the structure is not unique. Similar statetadwld for KU /p as aKU-
algebra,?/p as an/-algebra andL /p as anL-algebra.

Proof. We constructu/p as the (homotopy) limit of its Postnikov tower of associativ
ku-algebrasP?™=2 = ku/(p,u™), with coefficient ringsiu/(p, u™). = ku./(p,u™) for
m > 1. To start the induction?® = HZ/pis aku-algebraviaon: ku — HZ — HZ/p.
Assume inductively forn > 1 thatP = P?>™~2 has been constructed. We will defiRé™
by a (homotopy) pullback diagram

p¥m——————— P

I

P—tapvs2mtigy/p
in the category of associative:-algebras. Here
d € ADer{”*' (P, HZ/p) = THH;"""*(P, HZ/p)

is an associativéu-algebra derivation of with values ins*" ! HZ /p, and the group of
such can be identified with the indicated topological Hobildacohomology group of?
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over ku. We recall that these are the homotopy groups (cohomollbgigeaded) of the
function spectrun¥’r,, . por (P, HZ/p). The composite mapry o d: P — Y2 HZ/p

of ku-modules, wherer; projects onto the second wedge summand, is restricted & equ
the ku-module Postnikov-invariant ofku/p in

HZ™ NPy Z)p) = mo (P, X* " T HZ/p) .

We compute that, (P A, PP) = ku./(p,u™) @ E(10, T1m), Where|rg| = 1, |11m] =
2m+1 andE(—) denotes the exterior algebra on the given generatorsp(Foz, the use
of the opposite product is essential here [Ang§8,) The function spectrum description
of topological Hochschild cohomology leads to the spe&egjuence

B3 = Ext™ o, pon (m(P), Z/p)

= Z/p[Yo, Y1,m|
— THH} (P,HZ/p)

wherey, andy, ,, have cohomological bidegreés 1) and(1, 2m + 1), respectively. The
spectral sequence collapsedat= F,, since it is concentrated in even total degrees. In
particular,

ADer?™ N (P, HZ/p) = Fplyrm, v} .

Additively, H"*Y(P;Z/p) = F,{Q1.} is generated by a class dualtp,,, which is
the image ofy, ,, under left composition withpr,. It equals theku-module k-invariant

of ku/p. Thus there are precisefychoicesd = vy, ,, + ayy'*!, with a € F,, for how

to extend any given associative-algebra structure o® = P?™~2 to one onP*" =
ku/(p,u™"1). In the limit, we find that there are an uncountable numberssbeiative
ku-algebra structures oku/p = holim,, P*™, each indexed by a sequence of choices
acl,foralm> 1.

The periodic spectrun&k U /p can be obtained frorku/p by Bousfield K U-locali-
zation in the category dfu-modules [EKMM97, VII1.4], which makes it an associative
KU-algebra. The classification of periodiealgebra structures is the same as in the con-
nective case, since the original-algebra structure ohu/p can be recovered from that
on KU/p by a functorial passage to the connective cover. To cortstyg@as an associa-
tive /-algebra, ot /p as an associative-algebra, replace by v, in these arguments.]

By varying the groundS-algebra, we obtain the same conclusions aldeu as a
kuy,-algebra olku,-algebra, and aboutp as arv,-algebra.
For each choice ofu-algebra structure oku/p, the zeroth Postnikov section

w: ku/p — HZ/p

is aku-algebra map, with the uniqueas-algebra structure on the target. Hence there is a
commutative square of associative-algebras

]{;u%k;u/p

I,

HZ —— HZ/p



6 Christian Ausoni, John Rognes

and similarly in thep-local andp-complete cases. In view of the weak equivaleAceA,,
ku/p ~ HZ/p, this square expresses the associafi/é-algebraHZ/p as the base
change of the associativas-algebraku/p alongn: ku — HZ. Likewise, there is a
commutative square of associatijealgebras

b, ——0/p (2.1)

Pl

HZ,—— HZ/p

that expresse#/Z/p as the base change 6fp along?¢, — HZ,, and similarly in the
p-local case. By omission of structure, these squares arel@goams ofS-algebras and
S-algebra maps.

We end this section by formulating the mgdanalogue of the localization cofibre
sequence in algebrai€-theory

K(Zy) — K(t) — K(Ly) — XK(Zy) (2.2)

conjectured by the second author and established by BlumdeigMandell [BMOS8,
p. 157]

Proposition 2.2. There is a localization cofibre sequence of spectra
K(Z/p) — K(t/p) — K(L/p) — XK (Z/p)

where the first map is the transfer and the second map is indbgetie localization
/p — ¢/plv] = L/p.

Proof. The proof of the existence of the localization sequence) @n in [BMOS, p.
160-163] and the identification of the transfer map adaphaut change to cover the
mod p analogue stated in this proposition. Here we use that a firite¢ /p-module that
is v;-torsion has finite homotopy groups, and the non-zero graspsoncentrated in a
finite range of degrees. O

3 Topological Hochschild homology

We shall compute th& (1)-homotopy of the topological Hochschild homology H (—)
and topological cyclic homology'C'(—; p) of the S-algebras in diagram (2.1), for primes
p > 5. Passing to connective covers, this also compute¥thig¢-homotopy of the alge-
braic K-theory spectra appearing in that square. With these cmftg; or more gener-
ally, afterp-adic completion, the functorEHH andT'C' are insensitive tp-completion
in the argument, so we shall simplify the notation slightymmorking with the associative
S-algebrag and HZ, in place of/, and HZ,. For ordinary ringsi we almost always
shorten notations liké'HH(H R) to THH (R).

The computations follow the strategy of ¢B], [BM94], [BM95] and [HM97] for
HZ/p and HZ, and of [MS93] and [ARO02] for. See also [AR05§54—7] for further
discussion of thd'H H-part of such computations. In this section we shall complute
mod p homology of the topological Hochschild homology ©fp as a module over the
corresponding homology fdt;, for any odd primep.
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Remark 3.1. Our computations are based on comparisons, using the mgaykd in
diagram (2.1) above. We will abuse notation and use the same rior classes in the
homology orV' (1)-homotopy of’THH (¢,), THH (¢/p), THH (Z,) or THH (Z/p), when
these classes unambiguously correspond to each otherttiedeymomorphisms induced
by the maps andr in (2.1). We also use this abuse of notations in later sestionthe
V(1)-homotopy of’'C, etc.

We write H,(—) for homology with modp coefficients. It takes values in graded-
comodules, wherd., is the dual Steenrod algebra [Mil58, Th 2]. Explicitly (ferodd),

A, =P k> 1)@ E(F | k>0)

with coproduct v

QZE:&®$

i+j=k
and -
() =10n+ » ol
it+j=k

Hereé, = 1, & = x(&) has degreé(p* — 1) and7, = x(7:,) has degreép” — 1, where
x is the canonical conjugation [MM65, 8.4]. Then the magsd the zeroth Postnikov
sectionsr of (2.1) induce identifications

H.(HZg)) = P(& | k> 1) ® B(T
H,(6) = P(& | k> 1)®E( |k22)
H.(t/p) =P(& | k>1)® E(7

as A,-comodule subalgebras éf.(HZ/p) = A.. We often make use of the following
A,-comodule coactions

V(7)) = 1@ 7+ 7 ® 1

(51) 16H+6®1

V(M) =107 +70&4+T1®1
)

V() =106+608+ 6,11
V() =10 N +THQ&L+TI® +T®1.

The Bokstedt spectral sequences
E*(B) = HH,(H.(B)) = H,(THH(B))
for the commutatives-algebrasB = HZ/p, HZ, and/ begin

E*(Z)p) = A, @ E(0&, | k> 1)@ (07 | k > 0)
E*(Zy)) = H.(HZy)) ® E(o& | k> 1) @ T(o7 | k > 1)
EX(0)=H,(0) @ E(c& | k> 1) QT (o7 | k> 2).

Here HH,(H.(B)) denotes the Hochschild homology of the gradgehlgebrad., (B).
In the above formula we made use of figlinear operatot: H.(B) — HH,(H.(B)),
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x — ox, Whereoz is the class represented by = — = ® 1 in the Hochschild complex.
Notice thato is the restriction of Connes’ operatéto H Hy(H.(B)) = H.(B), and is a
derivation in the sense that

o(zy) = o (y) + (—1)"yo ()

for all x,y € H.(B). These spectral sequences are (graded) commutatr®module
algebra spectral sequences, and there are differentials

"N (V0Tk) = 0&kt1 - Vj—pOTh
for j > pandk > 0, see [Bk, Lem. 1.3], [Hun96, Th. 1] or [Aus05, Lem. 5.3], leaving
E>*(Z/p) = A, ® P,(o7 | k > 0)
E*(Zy)) = H.(HZ)) ® E(0&) ® P07y | k> 1)
E®(0) = H.({) ® E(0&1,08) @ Py(o7 | k> 2).
The inclusion of0-simplicesn: B — THH(B) is split for commutativeB by the aug-
mentatione: THH(B) — B. Thus there are unique representatives gkdedt filtra-

tion 1, with zero augmentation, for each of the classesThere are multiplicative exten-
sions(o7)? = o741 for k > 0, see [ARO5, Prop. 5.9], so

H.(THH(Z/p)) = A« ® P(07)
H.(THH (Z))) = H(HZg) ® E(061) @ P(o7)

asA,-comodule algebras. Th&,-comodule coactions are given by

v(oTy) =1® o7y

v(c€) =1® 0

v(om) =1Q 07 + 7 ® 0&; (3.1)
v(o&) =1® 0&,

v(oT) =1Q 0% + T ® 0&;.

The natural map.: THH ({) — THH (Z,)) induced byr: ¢ — Z, takesoé, to 0 and
0Ty 10 (071)?. The natural map, : THH (Z,)) — THH(Z/p) induced byi: Z,) — Z/p
takeso&; to 0 ando 7y to (07))P.

The Bokstedt spectral sequence for the associathadgebraB = ¢/p begins

E2((/p) = H.({/p) ® E(0&, | k > 1)@ D(o7, 07 | k > 2).

Itis an A,.-comodule module spectral sequence over thksBedt spectral sequence for
since thel-algebra multiplicatiory A ¢//p — ¢/p is a map of associative-algebras.
However, it is not itself an algebra spectral sequencegesihe product orf/p is not

commutative enough to induce a natural product structur@@@/ (¢/p). Nonetheless,
we will use the algebra structure present at#ieterm to help in naming classes.
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The mapr: ¢/p — HZ/p induces an injection of &kstedt spectral sequende-
terms, so there are differentials generated algebraibglly

A" (j0Tk) = 0&kt1 - Vi—pOTh
forj > p, k=0o0rk > 2, leaving
E>®((/p) = H.({/p) ® E(0&) @ P,(070, 07 | k > 2) (3.2)

as anA,-comodule module oveE>(¢). In order to obtainH.(THH(¢/p)), we need
to resolve theA,-comodule andH,.(THH (¢))-module extensions. This is achieved in
Lemma 3.3 below.

The natural mapr.: E>~(¢/p) — E*(Z/p) is an isomorphism in total degrees
(2p — 2) and injective in total degrees (2p? — 2). The first class in the kernel ig,.
Hence there are unique classes

_ - _ \p—1
1, 7, 070, T00T0 5 --- , (070)?

in degree®) < x < 2p — 2 of H.(THH (¢/p)), mapping to classes with the same names
in H.(THH (Z/p)). More concisely, these are the monomiglér,)’ for 0 < ¢ < 1 and
0 < i < p— 1, except that the degrdép — 1) case(d,i) = (1,p — 1) is omitted. The
A,-comodule coaction on these classes is given by the samelasim H.(THH (¢/p))
asinH.(THH(Z/p)), cf. (3.1).

There is also a class in degreg2p — 2) of H,(THH (¢/p)) mapping to a class with
the same name, and sameg-coaction, inH.(THH (Z/p)).

In degreeg(2p — 1), 7, is a map of extensions from

0 — Fp{&i7o} — Hop 1 (THH ((/p)) — Fp{To(07)" '} — 0
to .
0 — F {71,470} — Hop1(THH(Z/p)) — IE1‘19{77'0(67%)19_1} — 0.

The latter extension is canonically split by the augmeotet: THH (Z/p) — HZ/p,
which uses the commutativity of thte-algebraldZ/p.
In degree2p, the mapr, goes from

Hyp(THH (¢/p)) = Fp{&1070}
to .
0— Fp{ﬂ)’fl} — ng(THH(Z/p)) — Fp{O'i'l, §10'77'0} — 0.
Again the latter extension is canonically split.
Lemma 3.2. There is a unique clasgin H,, (THH(¢/p)) represented by, (o7 )P
in £, (¢/p) and mapped by, to 7y(c7)P~' — 7y in H.(THH(Z/p)).

Proof. This follows from naturality of the suspension operatoand the multiplica-
tive relation(o7)” = o7 in H.(THH(Z/p)). A classy in Hy, (THH({/p)) repre-
sented byr,(c7)P~! is determined modulg;7,. Its image inH,, (THH(Z/p)) thus
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has the formm7, + 7(07)P~! moduloé, 7, for somea € F,. The suspensiony lies
in Hyo(THH ((/p)) = F,{& 07}, so its image inH,,(THH(Z/p)) is 0 modulo 7,7,
and ¢,07. It is also the suspension ofr, + 7 (o7 )?~' modulo ¢,7), which equals
o(am) + (079)? = (a + 1)o7. In particular, the coefficienta + 1) of o7 is 0, so
a=—1. O]

Let
H.(THH(())/(0&) = H.(() ® E(0&) ® P(07)
denote the quotient algebra Bt (THH (¢)) by the ideal generated ¢, .

Lemma 3.3. The classes

1, 7_'0, 0'7_'0, 7_'00'7_'0, ceey (07_'0)1771, 7_'(](07_'0)1)71,
in E°°(¢/p) represent unique homology classesHn(T'HH (¢/p)), which by abuse of
notation will be denoted

_ _ _ — \p—1
177—070-7—077—00-7—07"'7<0-T0> » Y

mapping underr, to classes with the same namesin(THH (7 /p)), except fory, which
maps to
77'0(0'77'0)17_1 — 71 .

The gradedH, (THH (¢))-moduleH,(THH (¢/p)) is a free H,(THH (¢)) /(c£,)-module
of rank2p generated by these classes in degf@dsough2p — 1:

H.(THH((/p)) = H.(THH(())/(0&) @ F {1, 70,070, 0070, - - -, (070)" 1, y} .
The A,-comodule coactions are given by
v((07)) =1® (07)"

for0<i<p-1, ‘ ‘ .
v(To(070)") = 1@ To(0T0)" + To ® (07p)"
for0 <i<p-2,and

V(y):1®y+7_'0®(0'7_'0)p71—7_'0®§1—7_'1®1.

Proof. H.(¢/p) is freely generated as a module ovér(¢) by 1 and7,, and the classes
o& ando7, in H,(THH (¢)) induce multiplication by the same symbolsii°(¢/p), as
given in (3.2). This generates all & (¢/p) from the2p classes? (o) for 0 < 5 < 1
and0 <i<p-—1.

We claim that multiplication by-¢, acts trivially on H,(THH (¢/p)). It suffices to
verify this on the module generatot$(o7,)’, for which the product witlr¢; remains in
the range of degrees where the maghdTHH (Z/p)) is injective. The action o<, is
trivial on H,(THH (Z/p)), sinced?~!(y,07) = o&; ande(a€;) = 0, and this implies the
claim.
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The A,-comodule coaction on each module generator, incluging determined by
that on its image under.,. In the latter case, for example, we have

(Teom)(v(y) =v(m(y)) =v(Tolom) " — 71)
=1@7(n) ' +7H® (070 —10TH —7H& -7 ®1
=(19om)(1Qy+7®(ch) ' —H @& —T1®1),

and this proves our formula fer(y) sincel ® =, is injective in this degree. O

Remark 3.4. Notice that Lemma 3.3 implies that for different choiceg-ohodule struc-
ture on¢/p, the resulting homology group8.(T"HH (¢/p)) are (abstractly) isomorphic
as graded?,.(THH (¢))-modules andi,-comodules.

4 Passage td/(1)-homotopy

Forp > 5 the Smith—Toda complek' (1) = S U, ¢! U,, ¢**~! U, e* is a homotopy

commutative ring spectrum [Smi70, Th 5.1], [Oka84, Ex. 4lbis defined as the map-
ping cone of the Adams self-map: ©*~2V(0) — V/(0) of the modp Moore spectrum

V(0) = S'U, e*. Hence there is a cofiber sequence

B2-2V(0) 25 V(0) 5 V(1) 2 S21Y(0).

There are some choices of orientations involved in fixindhsurt exact triangle, compare
for instance with [HMO3, Sect. 2.1]. The composite nigp = i1j;: V(1) — 2?1V (1)
defines the primary;-Bockstein homomorphism, acting naturally if1)..(X).

In this section we computeé(1).7HH (¢{/p) as a module over (1), THH (¢), for any
primep > 5. The unique ring spectrum map frdr{1) to HZ/p induces the identification

H.(V(1)) = E(70,71)
(no conjugations) ad,-comodule subalgebras df,, see [Tod71§4]. Here

V(i) =1@m+71®1
vin)=1en+6L@m0+n1®1.

A form of the following lemma goes back to [Whi62, p. 271].

Lemma 4.1. Let M be anyHZ/p-module spectrum. Thel/ is equivalent to a wedge
sum of suspensions 6fZ/p. HenceH, (M) is a sum of shifted copies of, as anA.-
comodule, and the Hurewicz homomorphisit\/) — H.,.(M) identifiesr, (M) with the
A,-comodule primitives itH . (M).

Proof. The module action map: HZ/p A M — M is a retraction, sa. (M) is a direct
summand ofr.(HZ/p N M) = H.(M), hence is a grade@/p-vector space. Choose
mapsa: S™ — M that represent a basis for this vector space. The wedge stima ofaps
No(1Aa): ¥"HZ/p = HZ/pNS™ — M is the desired.-isomorphism\/ X"HZ/p —
M. O
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For eachv-algebraB, V(1) A THH(B) is a module spectrum ovéf (1) A THH (¢)
and thus ovel/ (1) A ¢ ~ HZ/p, SOH,(V (1) NTHH(B)) is a sum of copies ofl, as
an A.-comodule, by Lemma 4.1. In particuldr(1),THH (B) = m.(V (1) ATHH(B))
is naturally identified with the subgroup df.-comodule primitives in

H.(V(1) A\THH(B)) = H,(V(1)) ® H.(THH(B))

with the diagonald,.-comodule coaction. We write/ x for the image ob ® x under this
identification, withv € H.(V (1)) andx € H.(THH(B)). Let

60:1/\7_'04—7'0/\1
a=1AN"+10ANE+T AL

)\1 =1A 0'51
)\2 =1A 0'52 (41)
Ho = 1A oTo

,u1:1/\a7_'1+7'0/\051
u2:1/\a7_'2+7'0/\a§2.

These are all.-comodule primitive, when defined, H..(V (1) ATHH (B)) for B = ¢,
¢/p, HZ, or HZ/p (see Remark 3.1). By a dimension count,

V(1).THH(Z/p) = E(eo, €1) ® P(uo)
V(1).THH(Z)) = E(e1) ® E(A) ® P(u1)
V(1).THH() = E(A, M) © Plus)

as commutativéf,-algebras. The map: ¢ — HZ, takes\, to 0 and x, to xf. The
mapi: HZ, — HZ/p takes\, to 0 and; to ug. Note thatu, € V(1),,.THH (¢) was
simply denoted. in [ARO2].

In degrees< (2p — 2) of H.(V(1) ATHH (¢/p)) the classes

ph = 1A (07)" (4.2)

for0<i<p-1land
oty = 1 A To(070) + 70 A (070)" (4.3)
for 0 < i < p — 2 are A.-comodule primitive, hence lift uniquely t&(1).THH (¢{/p).
These map to the classéy:, in V(1),THH(Z/p) for0 < § < 1and0 <i < p-—1,
except that the degree bound excludes the top ca@w@ﬁl.
In degre€2p—1) of H.(V(1)ATHH ({/p)) we have generatois\&, 7, oA (07 )P~ 1,
70 A&, 1 A landl A y. These have coactions

y(l/\éng):1®1/\§170+To®1/\£1+§1®1/\7'0+£17'0®1/\1
V(oA (0P D) =101 A (07)P P+ 10 @ 1A (07)P~
V(o AE) =101 AG+ T RIANG+ERTAT+ETHR®TAT
vinAD) =10 A1+ A1+7®@1A1L
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and
VIAY) =1R1AYy+ 7@ 1A (07! ' =R @1AE —F 1AL,
Hence the sum B
El;:1/\y—|—7’0/\(0'7_'0)p_1—7'0/\51—7'1/\1 (44)

is A,-comodule primitive. Its image undet. in H.(V (1) ANTHH(Z/p)) is
eougfl — €1 = 1 /\7—_0(0_7—_0)p71 + T0 N (0'7_'(]);071 — 1A 7_'1 — 170 /\51 —T1 Al.

Let
V(1).THH(() /(M) = E(A2) @ P(p2)

be the quotient algebra &f(1).7HH (¢) by the ideal generated by;.

Proposition 4.2. The classes
1 y €05 Mo s €OMO 5 - - /’Lg_l , €1 € H*(V<]-) /\THH(K/p>)

defined in(4.2), (4.3) and (4.4) have unique lifts with same nameslii1).THH (¢/p).
The graded/(1).THH (¢)-moduleV (1), THH (¢/p) is a freeV (1), THH(¢)/(\1)-mod-
ule generated by thes® classes:

V(1).THH((/p) = V(1),THH(()/(\) @ F,{1, co, o, €optos - - 115" &1}

The mapr, to V(1),THH (Z/p) takesed i in degreed < § + 2i < 2p — 2 to €)uf, and
takese, in degree(2p — 1) to eoul " — €.

Proof. Additively, this follows by another dimension count, anc thescription ofr,
follows from the definition of the classes in question. It ens to prove that the action
of V(1),THH (?) is as claimed.

The action oful and o in V (1), THH (¢) on the generators

1 p-1 g
» €0y Oy EOMO5 - - -5y Lo 5 €1

of V(1),THH (¢/p) is non-trivial for all: > 0, since the corresponding statement holds
for the images of these classesih(V (1) A THH(¢)) and H.(V (1) AN THH(¢/p)).
This follows from Lemma 3.3 and the definition these clasea®mains to show that
A1 acts trivially onV' (1), THH (¢/p). For degree reasons, multiplication By is zero

on all classes except possihly and .5, for i > 0. Because of the module structure, it
sufficesto shows that; = A\;-1 =0inV (1), THH(¢/p). This follows from the statement
that the image of\; in H.(V(1) ATHH({/p)) is equal tol A ¢&; = 0, as implied by
Lemma 3.3. ]

5 TheC),-Tate construction

For the remainder of this paper, lebe a prime withp > 5. We briefly recall the termi-
nology on equivariant stable homotopy theory used in theide@nd refer to [GM95],
[HM97, §1], [HMO3, 4] and [AR02 53] for more details. Lef’,» denote the cyclic group
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of orderp™, considered as a closed subgroup of the circle giypnd letG = S* or C,n.
For each spectrunX’ with S'-action, letX,; = EG, Ag X andX"¢ = F(EG,, X)¢
denote its homotopy orbit and homotopy fixed point spectsaysual. We now write
X'¢ = [EG A F(EG,,X)|¢ for the G-Tate construction onX, which was denoted
ta(X)C in [GMY5] andH(G, X) in [HM97, HM03, AR02)].

We denote byF the Frobenius mapt©" — X%» ' given by the inclusion of
fixed-point spectra, and by the Verschiebung mag“»"—* — X% given by trans-
fer. We shall also consider the homotopy Frobenius, Tatedfins and homotopy Ver-
schiebung mapg™”: X" — XhCpm  ph. XhCm _, xMOm-1 pt. xt5' _, XtCm and
Ve XhCm-1  XhCm,

There are conditionally convergeGthomotopy fixed point and--Tate spectral se-
quences i/ (1)-homotopy forX, with

E2,(G,X) = Hp (G V(1)(X)) = V(1)sre(X)

and
E2(G.X) = H, (G, V(1)(X)) = V(1) ape (X))

HereH; (G;V(1).(X)) denotes the group cohomology@fandﬁ[;p(G; V(1).(X)) the
Tate cohomology o7, with coefficients inl’(1)..(X). Notice that in our case, with' =
THH (B), the action of7 onV(1)..(X) is trivial, since it is the restriction of afi*-action.
We write H, (Cyn; F,) = E(u,) ® P(t) and [, (Cye; Fy) = E(uy,) ® P(#!) with u, in
degreel andt in degree2, see for example [Ben98, Prop. 3.5.5] and [HMO03, Lem. 4.2.1].
Sou,, t andz € V(1),(X) have bidegre€—1,0), (—2,0) and(0,¢) in either spectral
sequence, respectively. See [HM@3,3] for proofs of the multiplicative properties of
these spectral sequences. Similarly, we wiitg(S';F,) = P(t) and },(S%;F,) =
P(t*!). We have morphisms of spectral sequences induced by thetbpynand Tate
Frobenii, which on theZ?-terms mag to ¢t andu,, to zero.

We are principally interested in the case wh€n= THH (B), with the S'-action
given by the cyclic structure [Lod98, Def. 7.1.9], [HMOR..2]. It is a cyclotomic spec-
trum, in the sense of [HM9%&1], leading to the commutative diagram

THH(B)nc,. —~— THH(B)%" — THH(B)" —— STHH(B)sc,

(B
| Jr Jr |
(B

THH(B)ac,. X THH (B —s THH(B)!C —— STHH (B¢,

of horizontal cofiber sequences. We abbrevigtéG, THH (B)) to E2(G, B), etc. When
B is a commutativeS-algebra, this is a commutative algebra spectral sequemzk,
when B is an associativel-algebra, withA commutative, ther&*(G, B) is a module
spectral sequence ov&r (G, A). The mapR” corresponds to the inclusidt?(G, B) —
EQ(G, B) from the second quadrant to the upper half-plane, for cdiveesB.

Definition 5.1. We call a homomorphism of graded groupsoconnected if it is an iso-
morphism in all dimensions greater thamand injective in dimensioh.
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In this section we comput€(1).THH (¢/p)'°> by means of th&’,-Tate spectral se-
quence inV (1)-homotopy for’HH (¢/p). In Propositions 5.7 and 5.8 we show that the
comparison map’y: V (1), THH(¢/p) — V (1), THH(¢/p)!° is (2p — 2)-coconnected
and can be identified with the algebraic localization homgrhsm that invertg:s,.

First we recall the structure of th€,-Tate spectral sequence 6t/ H (Z/p), with
V(0)- andV (1)-coefficients. We hav& (0).THH (Z/p) = E(ey) @ P(up), and (with an
obvious notation for the case bf(0)-homotopy) theE?-terms are

E*(Cy, Z/p; V(0)) = E(w) ® P(t*') ® E(eo) @ P(ho)
E*(Cy, Zfp) = B(ur) ® P(t*) ® B(eo, 1) @ Plpo) -

In eachG-Tate spectral sequence we have a first differential
d*(r) =t ox,
see e.g. [Rog983.3]. We easily deducec, = pp andoe; = pfy from (4.1), so

E¥(Cy, Z/p; V(0) = E(w) © P(£*)
E3(C,, Z/p) = E(uy) @ P(t*Y) @ Eleou ™" — ).

Thus thel’(0)-homotopy spectral sequence collapse&at= £°. By naturality with
respect to the mag: V(0) — V/(1), all the classes on the horizontal axisf¥(C,,, Z/p)
are infinite cycles, so also the latter spectral sequendapssas aE?’(Cp, Z]p).

We know from [HMO3, Cor. 4.4.2] that the comparison map

I V(0),.THH (Z/p) — V(O)*THH(Z/p)tCP

tAakeSegpg to (ut~H)%t%, forall 0 < § < 1,7 > 0. In particular, the integral map
I'y: m.THH(Z/p) — 7. THH(Z/p)*°r is (—2)-coconnected. From this we can deduce

A

the following behavior of the comparison mBpin V/(1)-homotopy.

Lemma 5.2. The map
0\ : V(). THH(Z/p) — V(1).THH(Z/p)'

takes the classeg; from V(0).THH(Z/p), for0 < 6 < 1 andi > 0, to classes
represented iz (C,, Z/p) by (u,t~1)°t~* (on the horizontal axis). Furthermore, it takes
the cIas&Oug_l—el in degreg(2p—1) to a class represented lawg_l—el (on the vertical
axis).

Proof. The classes)u! are in the image fronV (0)-homotopy, and we recalled above
that they are detected HKy:,¢~1)°¢~" in the V(0)-homotopyC,-Tate spectral sequence
for THH(Z/p). By naturality alongi,: V' (0) — V/(1), they are detected by the same
(nonzero) classes in tHé(1)-homotopy spectral sequenE@°(Cp, Z]p).

To find the representative fdr, (o) ' — €;) in degree(2p — 1), we appeal to the
cyclotomic trace map from algebrai€-theory, or more precisely, to the commutative
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diagram
K(B) (5.1)

\ [ Jr

THH(B)"% -2 THH(B)!C |

The Bokstedt trace map: K(B) — THH (B) admits a preferred liftr,, through each
fixed point spectrunTHH (B)“»", which homotopy equalizes the iterated restriction and
Frobenius map&” andF" to THH (B), see [Dun04§3]. In particular, ther-operator on
V(1).THH(B) is zero on classes in the imagetof

In the caseB = HZ/p we know thatK (Z/p), ~ HZ,, soV (1).K(Z/p) = E(&),
where thev;-Bockstein ofe; is —1. The Bokstedt trace image-(é,) € V(1).THH(Z/p)
lies inF,{e, coul '}, hasv,-Bocksteintr(—1) = —1 and suspends by to 0. Hence

t?"(gl) = eougfl — €71.

As we recalled above, the mép: =, THH(Z/p) — m, THH(Z/p)'°» is (—2)-coconnec-
ted, so the corresponding maplif{1)-homotopy is at leagp — 2)-coconnected. Thus
it takeseouh " — €, to a nonzero class iW (1), THH (Z/p)», represented somewhere in
total degre€2p — 1) of E>(C,,, Z/p), in the lower right hand corner of the diagram.

Going down the middle part of the diagram, we reach a ¢l&sstr ) (€ ), represented
in total degre€2p — 1) in the left half-planeC,-homotopy fixed point spectral sequence
E>(C,,Z/p). Itsimage under the edge homomorphisnvtd ). T'HH (Z/p) equals(F o
tr1)(&) = tr(&), hencgl' otry ) (€, is represented byl —¢; in E5%, 1(Cy, Z/p). Its
image under?" in the C,,-Tate spectral sequence is the generato@gjjp_l((?p, Z]p) =
F,{eoul " — €1}, hence that generator is thg°-representative df (eoul) ' — ;). O

The (2p — 2)-connected map: ¢/p — HZ/p induces a2p — 1)-connected map
V(1).K(¢/p) — V(1).K(Z/p) = E(&), by [BM94, Prop. 10.9]. We can lift the alge-
braic K -theory class; to ¢/p. This lift is not unique, but we fix one choice.

Definition 5.3. We call
& € V(1)z-1K(/p)

a chosen class that maps to the gener@gtor V(1),,_1 K(Z/p) = Z/p.

Lemma 5.4. The Bkstedt tracer: V(1).K(¢/p) — V(1).THH ({/p) takesel to ;.

Proof. In the commutative square

V(1).K(¢/p) — V(1).THH((/p)

V(1).K(Z/p) "~V (1),THH(Z/p)
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the trace imager (/) in V (1), THH (¢/p) must map under, to tr(¢,) = eul " — € in
V(1).THH (Z/p), which by Proposition 4.2 characterizes it as being equidld@lass; .
Hencetr (i) = &,. O

Next we turn to theC,-Tate spectral sequende*(C,,¢/p) in V(1)-homotopy for
THH (¢/p). Its E*-term is
EQ(C[M £/p> - E(“l) ® P(til) ® Fp{17 €0, Ho, COHO, - - - 7#8_17 El} & E()\Q) & P(MZ) .
We haved®(z) =t - ox, where

oleoy ')

ph ford=1,0<1i<p,
0 otherwise

is readily deduced from (4.1), ardé;) = 0 sincee; is in the image ofr. Thus
E*(Cy, t/p) = E(w) @ P(t7) @ E(&) ® E(As) ® P(tus). (5.2)

We prefer to use, rather thanu, as a generator, since it represents multiplication by
vy (Up to a unit factor irfF,) in all module spectral sequences ov&r(S*, ¢), by [AR02,
Prop. 4.8].

To proceed, we shall use théf(Op, ¢/p) is a module over the spectral sequence for
THH (¢). We therefore recall the structure of the latter spectrqusace, from [AR02,
Th. 5.5]. It begins

E2(C,,0) = E(uy) ® P(t*Y) @ E(A1, \y) @ P(us).
The classed, A\, andtu, are infinite cycles, and the differentials
dP(t7P) =t
4P (17 P7) = 1P )
PP (gt ™) =ty

leave the terms

E#THC,, 0) = Euy, M, \y) @ P22, tuy)
EHY(C,0) = E(ug, A, As) @ P(E tpy)
EPH2(C, 0) = E(M\, X)) @ P(t*77)

with E2*+2 — E> converging toV/ (1), THH (¢)!°>. The comparison map, takes),
Xs andp, to A1, A2 andt—?’ (up to a unit factor irF,,), respectively, inducing the algebraic
localization map and identification

I'y: V(1),THH(() — V(1),THH(()[u;'] = V(1),THH(¢)!% .
Lemma 5.5. In £*(C,, {/p), the classu;t~? supports the nonzero differential
d2p2 (Ult_p) = Ultp2_p)\2 s

and does not survive to the>-term.
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Proof. In £*(C,, (), there is such a differential. By naturality along/ — ¢/p, it follows
that there is also such a differentialﬁ?T(Om ¢/p). It remains to argue that the target class
is nonzero at th&?””-term. Considering th&3-term in (5.2), the only possible source of
a previous differential hitting.;t?* 7\, is &, supporting ai2?’~2r+!-differential. Bute,

is in an even column and, ?*~? ), is in an odd column. By naturality with respect to the
Tate Frobenius map": THH (¢/p)'S" — THH({/p)°r, any such differential from an
even to an odd column must be zero. Indeed,$hd@ate spectral sequence h&a$term
given by P(t*!) @ V (1), THH (¢/p), and F'* induces the injective homomorphism that
takesE?2(S*, ¢/p) isomorphically to the even columns &7(C,,, ¢/p). SinceE* (S, ¢/p)

is concentrated in even columns, all differentials of odugth are zero. By naturality,
classes ofs"(C,, ¢/p) that lie in the image ofs” (F*) cannot support a differential of odd
length; compare with [AR02, Lemma 5.2]. In the present situatthed?-differential of
E*(C,, ¢/p) leading to (5.2) is also non-zero i (S, /p), so that we have

E*(S",¢/p) = P(t*") ® E(&) ® E(X\2) ® P(tps) .

By inspection, if the clasg, € E(C,,{/p) survives toE?”~2+1(C, (/p), then it will
lie in the image ofs2”" ~2P+1(Ft), O

To determine the map; we use naturality with respect to the mapl/p — HZ/p.

Lemma 5.6. The classesl,eo,uo,eouo,...,ug‘l andé, in V(1),THH(¢/p) map un-
derT'; to classes if/ (1), THH ({/p)'°r that are represented i/ (C,, ¢/p) by the per-
manent cyclegu,t~1)°¢~* (on the horizontal axis) in degrees (2p — 2), and by the
permanent cycle, (on the vertical axis) in degre@p — 1).

Proof. In the commutative square

I

V(1).THH (¢/p) ——V (1).THH (¢/p)

V(1).THH(Z/p) —V (1),THH(Z/p)""

the classes) in the upper left hand corner map to classes in the lower hightl corner
that are represented lgy,¢~1)°t " in degrees< (2p — 2), ande; maps toegu! " — € in
degreg2p — 1). This follows by combining Proposition 4.2 and Lemma 5.2.

The first(2p—1) of these are represented in maximal filtration (on the hot&axis),
so their images in the upper right hand corner must be repiegdy permanent cycles
(u1t~1)°t" in the Tate spectral sequenge°(C,,, £/p).

The image of the last class,, in the upper right hand corner could either be repre-
sented by in bidegreg0, 2p — 1) or by u,¢~" in bidegreg2p — 1,0). However, the last
class supports a differentidl’” (u,t7) = u;t""~?),, by Lemma 5.5 above. This only
leaves the other possibility, th&t (¢, ) is represented by in E~(C,, (/p). O

We proceed to determine the differential structuréir{C,,, ¢/p), making use of the
permanent cycles identified above.
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Proposition 5.7. TheC,-Tate spectral sequence ¥\(1)-homotopy fofl’HH (¢/p) has
E3(C,,0/p) = E(uy, &, ) @ P(t*! tus) .
It has differentials generated by
AP 2RR (P = g
for 0 < i < p, d2° (t*=P") = t* ), andd?”’ 1 (ust~7") = t,. The subsequent terms are

2= 3(C 0 /p) = E(ug, o) @ F{t™" | 0 < i < p} ® P(t*7)
® E(uy, &, X)) @ P(tFP tpy)
E*¥HYC,, 0/p) = Blur, \o) @ F,{t 7 | 0 < i < p} @ P(t*)
@ E(uy, &1, ) @ P(P tps)
B +2(C, 0)p) = E(ur, \o) @ F{t ™| 0 < i < p} @ P(t*7")
® E(é1, ) ® P(tipz) :

The last term can be rewritten as
E=(Cy t/p) = (E(w) @ F{t™"| 0 <i < p} @ E(&)) @ E(\) ® Pt

Proof. We have already identified the?- and £3-terms above. Th&?3-term (5.2) is gen-
erated oveE3((Jp, ¢) by anF,-basis forE(é; ), so the next possible differential is induced
by d?(t'~?) = t\,. But multiplication by, is trivial in V(1),THH (¢/p), by Proposi-
tion 4.2, soE3(C,, {/p) = E**1(C,, ¢/p). This term is generated ovéir+!(C,, () by
P,(t™") ® E(e). Herel,t~* ... t'"7 ande, are permanent cycles, by Lemma 5.6. Any
dr-differential befored?”” must therefore originate on a clasge, for 0 < i < p, and be
of even lengthr, since these classes lie in even columns. For bidegreengabe first
possibility isr = 2p? — 2p + 2, SOE3(C,, {/p) = E**~22(C,, {/p).

Multiplication by v, acts trivially onV (1), THH (¢) andV (1), THH (¢)!°» for degree
reasons, and therefore also Bii1).THH ({/p) andV (1), THH (¢/p)!“> by the module
structure. The class, maps totu, in the S'-Tate spectral sequence foras recalled
above, so multiplication by, is represented by multiplication Iy, in the C,-Tate spec-
tral sequence fof/p. Applied to the permanent cyclés; ¢~1)°t % in degrees< (2p — 2),
this implies that the products

tg - (ugt 1)t

must be infinite cycles representing zero, i.e., they mukitid®y differentials. In the cases
0=1,0 <i<p-—2,these classes in odd columns cannot be hit by differerdfadsld
length, such ag?***!, so the only possibility is

d2p272p+2(tp*p2 C(utYEE) = s - (T
for 0 < i < p — 2. By the module structure (consider multiplicationy it follows that

AP AR (P e ) =y -t
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for 0 < ¢ < p. Hence we can compute from (5.2) that

E (G, 0/p) = E(u) @ P(E7) @ F{t™ | 0 < i < p} ® E(Xy)
® E(u)) @ P(t*P) @ BE(8) @ E(\y) ® P(tus).

This is generated OVG@QPH(CP,E) by the permanent cyclelst—,...,t'"? andée, so
the next differential is induced by’ (t»-7*) = t»),. This leaves

EZHYC, 0)p) = E(uy) @ PEP)@F,{t 7 | 0 <i < p} @ E(\,)
@ B(u) @ P(t*7°) @ E(&) @ E(\s) ® P(tus).
Finally, 2"+ (uyt ") = tu, applies, and leaves
E+2(C, )p) = E(u) @ PEP)@F,{t 7" | 0 < i < p} @ E(\y)
& P(t*") @ E(e) ® E(\y).
For bidegree reasong?*+2 = [, O
Proposition 5.8. The comparison map; takes the classes
e, €1, Ay @and g in V(1),THH (¢/p)
to classes i/ (1), THH (¢/p)“» represented by
(ut 1)t~ &1, Ay andt ™" in E>(C,, 0/p),
up to a unit factor ink,, respectively. Thus
V(1).THH(/p)'” = Fp{1, €0, o, €opo - - -, > €1} ® E(Ag) ® P(pi5")

and T, induces an identificatio (1), THH (¢/p)[u;'] = V(1),THH(¢/p)*“». In par-
ticular, I'; factors as the algebraic localization map and identificatio

Ly V(1).THH(¢/p) — V(1).THH(¢/p)[uy '] = V(1).THH(¢/p)'"
and is(2p — 2)-coconnected.

Proof. The image undef’; of the classeq, €, po, €ofto), - - - ,;/5‘1 andé; was given in
Lemma 5.6, and the action on the classgsand p» is given in the proof of [ARO2,
Th. 5.5]. The structure o¥ (1), THH ({/p)'“r is then immediate from thé&>-term in
Proposition 5.7. The top class not in the imagé ofs €1 \opty t, indegreg2p —2). O

Recall that
TF(B;p) = holim THH(B)%"

TR(B;p) = holim THH(B)%"
are defined as the homotopy limits over the Frobenius ancettaation maps
F,R: THH(B)®" — THH(B)%"

respectively.
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Corollary 5.9. The comparison maps
T,: THH(¢/p)“" — THH({/p)"“"
I.: THH((/p)S»—' — THH((/p)'Cr
forn > 1, and
I: TF(¢/p;p) — THH((/p)""
[ TF(¢/p;p) — THH(L/p)"™'
all induce(2p — 2)-coconnected homomorphisms (il )-homotopy.

Proof. This follows from a theorem of Tsalidis [Tsa98, Th. 2.4] anepdsition 5.8
above, just like in [ARO2, Th. 5.7]. See also [BBLNR, Ex. 10.2] O

6 Higher fixed points
Letn > 1. Write v, (i) for the p-adic valuation of. Define a numerical functiop(—) by

p2k —1) = (P* T+ 1)/(p+1) =p™" —p* T+ —p+1
p(2k) = (P2 =) /(p* = 1) = p* + P p?
for k > 0, sop(—1) = 1 andp(0) = 0. For even argumentg(2k) = r(2k) as defined in
[ARO2, Def. 2.5].
In all of the following spectral sequences we know that ti, andé; are infinite
cycles. For\, andé; this follows from theC),»-fixed point analogue of diagram (5.1),

by [ARO2, Prop. 2.8] and Lemma 5.4. Fous it follows from [ARO2, Prop. 4.8], by
naturality.

Theorem 6.1. TheC,.-Tate spectral sequence in(1)-homotopy foll’ HH (¢/p) begins

E2(Cpn,€/p) = E(Un, /\2) ® ]Fp{l, €0, Mo, GQ/LO, .. ,,ugfl, El} ® P(til, ,LLQ)

and converges tvgl)*THH(f/p)th". It is a module spectral sequence over the algebra
spectral sequence™*(C,«, ¢) converging toV/ (1), THH (£):“»"
There is an initiald?-differential generated by

d*(eoptg ') = tug

for 0 < i < p. Next, there ar@n families of even length differentials generated by
d2p(2k—1)(tp2""1—p2’“+i E) = (tm)p(%—fi) L

for v,(i) = 2k — 2, foreachk = 1,...,n,and

1

(J2P(2K) (tp”“‘l—pg’“) = Ay - 2 )p(%—?)

(tpe
foreachk = 1,...,n. Finally, there is a differential of odd length generated by

d2p(2n)+1(un . t—pQ") - (wz)p(%—Z)H .
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We shall prove Theorem 6.1 by induction anThe base case = 1 was covered
by Proposition 5.7. We can therefore assume that Theoremmofd$ for some fixeah >
1, and must prove the corresponding statement:.fer 1. First we make the following
deduction.

Corollary 6.2. The initial differential in theC,,.-Tate spectral sequence ¥(1)-homoto-
py forTHH (¢/p) leaves

E3(Cpn, £)p) = E(un, &, M) @ Pt tpy) .
The nex2n families of differentials leave the intermediate terms
E*OHYC /) = Eup, M) @ F{t71 | 0 <i < p} @ P(t*P)
B E(tn, €1, Xa) @ P(t*P tuy)
(form = 1),

E2Cm=0F (L 1)) = B(un, X)) @ F{t ™ | 0 < i < p} @ P(t*7)

® P Eun, Xo) @ Fp{t! | j € Z, v,(j) = 2k — 2} ® Pyop—s) (tpso)
k=2

m—1

& @D Eun, ) 8 F{hs | j € Z, v,(j) = 2k — 1} ® Poaus)(tysz)
k=2

® E(uy, €1, \) @ P(t7P

2m—1

7tp“2)

form=2,...,n,and
EQP(2m)+1(Cp’n, g/p> _ E(un, )\2) ® Fp{t*i ’ O0<i< p} & P(tip2)

&P E(un, ho) @ Fp{t7 | j € Z, v,(j) = 2k — 2} ® Ppan_s)(t112)
k=2

& @D Elun, @) ©F,{tha | § € Z, 0,(j) = 2k — 1} © Pans) (tpa)

k=2
D E(tn, €1, Aa) @ Pt tu)

form = 1,...,n. The final differential leaves thB*(>")+2 = E>~-term, equal to
E>(Cyn, £/p) = Eup, X)) @ F{t 7| 0 < i < p} @ P(t*")

® P E(un, Xo) @F{t | j € Z, v,(j) = 2k — 2} ® Pyop—s) (t12)
k=2

&P E(un, @) @ F{t! Ay | j € Z, v0,(j) = 2k — 1} @ Pyaps)(t2)
k=2

@ E(1,X0) ® P(tip%) ® Ppan—2)11(tpsa) .
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Proof. The statements about -, £2(V+1- and E*(2+1-terms are clear from Propo-
sition 5.7. For eaclm = 2, ..., n we proceed by a secondary induction. The differential

d2p(2m71)<tp2m‘1fp2m+i ) = (tm)p@mf?») f

for v,(i) = 2m — 2 is non-trivial only on the summand

2m—2

E(Un, E17 )\2) ® P<tip 7t/'L2)

of the E2rCGm=2)+1 — E2p(2m=1)_term, with homology
B, 22) @ B {7 | J € Z, 1y(j) = 2m — 2} © Pram-o)(t12)
@ E(tn, &1, X)) @ P tps) .
This gives the state???m—D+1_term. Similarly, the differential
J2r(2m) (tPQ’”"l—me) = Ao T (tm)p(?m—?)

is non-trivial only on the summand

2m—1

E('U,n, Ela )\2) ® P(tip 7tu2)

of the E2rCm—1)+1 — E20(2m)_term, with homology

E(un, &) @ Fp{t/ X2 | j € Z, vy(j) = 2m — 1} @ Pyam—2)(tu2)
© B(un, @1, 2) ® P(ET" 1)

This gives the statef?*(>™)+1-term. The final differential
d2p(2n)+l(un . t—p%) - (tm)p(2n—2)+1
is non-trivial only on the summand
E(un, &, X0) @ Pt tu)
of the E2¢(m)+1_term, with homology
E(&1,\) © P(ET™) @ Pyan-2)41 (i) -

This gives the state#?(>»)+2-term. At this stage there is no room for any further differ-
entials, since the spectral sequence is concentrated im@wea horizontal band than the
vertical height of the following differentials. O

Next we compare the’,.-Tate spectral sequence with tbg.-homotopy fixed point
spectral sequence obtained by restricting #feterm to the second quadrant € 0,
t > 0). It is algebraically easier to handle the latter after rtimg 12, which can be
interpreted as comparirlgd H (¢/p) with its C,,-Tate construction.



24 Christian Ausoni, John Rognes

In general, there is a commutative diagram

THH(B)%" L THH(B)%" L>THH(B)M%”*1 (6.1)

oLk [
n 1

THH(B)" s THH (B! 2" (p* THH (B)Cr )"t

Herep: THH ()" is a notation for thes*-spectrum obtained from th#' /C,,-spectrum

THH (B)°» via thep-th root isomorphism, : S* — S'/C,, andG,,_, is the comparison

map from theC,,.-1-fixed points to the’,,.-1-homotopy fixed points of;THH (B)"“?,

in view of the identification

(p;THH (B)'»)“n-t = THH(B)'“" .

We are of course considering the ca8e= ¢/p. In V(1)-homotopy all four maps
with labels containing™ are (2p — 2)-coconnected, by Corollary 5.9, €6, , is at least
(2p — 1)-coconnected. (We shall see in Lemma 6.8 that).G,,_; is an isomorphism in
all degrees.) By Proposition 5.8 the miapprecisely invertg:,, so theE2-term of theC'yn-
homotopy fixed point spectral sequencé/ifil)-homotopy forTHH (¢/p)“» is obtained
by inverting i, in E2(C,n, ¢/p). We denote this spectral sequenceilgyf E*(C,n, ¢/p),
even though in later terms only a powergfis present.

Theorem 6.3.TheC,»-homotopy fixed point spectral sequepge E*(C,n, £/p) in V(1)-
homotopy fol’HH (¢/p)'“» begins

M51E2<Cp"7€/p) = E(uTw >\2) & Fp{lu €0, [0, E0MO; - - - 7”8717 El} ® P(t7 :uétl)

and converges t&/ (1), (psTHH (¢/p)'»)"», which receives d2p — 2)-coconnected
map ([, )% fromV (1), THH (¢/p)">". There is an initiaki?-differential generated by

d*(eopy ') = tug
for 0 < i < p. Next, there ar@n families of even length differentials generated by
_ 2k, 2k—1, : _ . B .
J2r(2k 1)<M1§ pF T4 61) - (tm)p(zk 1) 'M%
for v,(j) = 2k — 2, foreachk = 1,...,n, and
)= g (b))
for eachk = 1,... n. Finally, there is a differential of odd length generated by
d2p(2n)+1(un ) ,ﬂgz") - (tu2>p(2n)+1.

Proof. The differential pattern follows from Theorem 6.1 by natityavith respect to the
maps of spectral sequences

1 k—1

2k 2k—
d2p(2k) (M]QD p

~ thn

— * ry * ho o~ *
113 " E*(Cypn, £/p) —— E*(Cyn, £/p) £ E*(Cy, /)

induced byf“}fcp" and R". The first invertsu, and the second inverts at the level of
E?-terms. We are also using that,, the image of,, multiplies as an infinite cycle in all
of these spectral sequences. O
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Corollary 6.4. The initial differential in theC,,»-homotopy fixed point spectral sequence
in V(1)-homotopy folTHH (¢/p)!“» leaves

i3 B (Cye €)= B o) ® By | 0 < i < p} © P
© E(Un, E17 )\2) ® P(/"L;:17 t,LLQ) .

The nextn families of differentials leave the intermediate terms

py BTN (Con 0p) = E(un, Ao) @ Fp{pg | 0 < i < p} @ P(u3")

D @E(um A2) ® Fp{,ug | J € Z, vp(j) = 2k — 2} @ Ppak—1)(tpe)

k=1
m—1
&P E(un, @) @ Fp{dapid | j € Z, v,(j) = 2k — 1} ® Ppiany (t12)
k=1
B Eun,@1,%) ® P tpa)

and

piy VBN (O D) = B, M) @ Fp{ph | 0 < < p} @ P(uih)

& P Eun, o) @ Fp{pid | j € Z, 0p(j) = 2k — 2} ® Ppiapy) (t12)
k=1

&P E(un, &) @ Fp{dapth | j € Z, vp(j) = 2k — 1} ® Ppay (tp12)
k=1

D E(U’TH Elv )‘2) ® P(:u;tp ma tﬂ2>
form = 1,...,n. The final differential leaves th8%*"+2 = E>-term, equal to
1y LB (Cyn, £/p) = E(un, Ao) @ Fy{pig | 0 < i < p} @ P(u3™)

& @D Blun, ho) @ Fy {1} | j € L. v,(j) = 2 — 2} & Py (L)
k=1

& P E(un, &) @ Fp{hapth | j € Z, v,(j) = 2k — 1} ® Byian (tp12)
k=1

2n
D E(Eb )‘2) ® P(M;tp ) ® Pp(2n)+1<tﬂ2) .

Proof. The computation of thé&?3-term from theE?-term is straightforward. The rest of
the proof goes by a secondary inductionren= 1,...,n, very much like the proof of
Corollary 6.2. The differential

_ 2m __ 2m—1_ ; _ . — ;
J2e2m 1)(%#27 P +j .61) - (tﬂ2)p(2 1) 'M%
for v,(7) = 2m — 2 is non-trivial only on the summand

E<un7 Ela )\2> & P(M;:me_27 t/“LQ)
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of the £ = E?W-term (form = 1), resp. thep?(?m=2+1 — E2@m—1)_term (for
m = 2,...,n). Its homology is

E(un, Xo) @ Fp{iid | § € Z, vp(§) = 2m — 2} @ Pyam_1)(tua)
® Eun, €1,%) ® Py tpsa)

which gives the state@??m-1+1term. The differential

2m—1

2m __ . _2m
T S R A

—1

(tp)*™
is non-trivial only on the summand
2m—1

E(Un,gl,)\g) ® P(uétp 7t,u2)

of the E2rCm—1+1 — E20(2m)_term, leaving
E(un, &) @ Fp{dapth | j € Z, vp(j) = 2m — 1} @ Pyamy (tpso)
@ E(un7 E17 >\2) ® P<u§p2m7 t/vb2> .
This gives the state@???™)+1_term. The final differential
PO - ) = () O
is non-trivial only on the summand
2n
E(tn, &1, X)) @ P57 tps)

of the £ +1term, with homology

E(Elﬁ )‘2) ® P(Mg:p ") ® Pp(?n)—&—l(t,uQ) .

This gives the stated??(>"+2-term. There is no room for any further differentials, since
the spectral sequence is concentrated in a narrower \dséind than the horizontal width
of the following differentials, s@?(?"+2 = g, O

Proof of Theorem 6.1To make the inductive step t6),.+1, we use that the firstl"-
differential of odd length in&*(C,., ¢/p) occurs forr = 7, = 2p(2n) + 1. It follows
from [AR02, Lem. 5.2] that the termg”(C,., ¢/p) and E"(C,ni1, £/p) are isomorphic
for r < 2p(2n) + 1, via the Frobenius map (taking to ¢’) in even columns and the
Verschiebung map (taking,t to u,,t') in odd columns. Furthermore, the differential
d?*mM+1 is zero in the latter spectral sequence. This proves theopditteorem 6.1 for
n + 1 that concerns the differentials leading up to the term

E2CO2(C 0 0)p) = E(tngr, o) @ F{t 7| 0 < i < p} @ P(t*7")

©® EB E(tni1,\2) @ F{t’ | j € Z, vp(j) = 2k — 2} ® Ppap—s)(tps2)
h=2 (6.2)

& D Blunr, @) @ Fp {1 | € Z, 0(j) = 2% — 1} © P o (t10)
k=2

S E('Lbn+1, g17 >\2> ® P(tip2n7 t/'L2> .
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Next we use the following commutative diagram, where we eldbte THH (B) to
T(B) for typographical reasons:

(pT(B)" )hC" T(B)"° T(B)Cr L (B) G (6.3)
piT(B)Or L T(B) ———T(B) — % g T(B)>.

The horizontal maps all indug@p — 2)-coconnected maps ¥i(1)-homotopy forB =
¢/p. EachF' is a Frobenius map, forgetting invariance undéf,a-action. Thus the map
I',1 to the right induces an isomorphism Bf \,) ® P(v5)-modules in all degrees >
(2p — 2) from V (1), THH (¢/p)“»", implicitly identified to the left with the abutment of
py "E*(Chn, €/p), 10 V(1), THH(é/p)tC »+1 which is the abutment oE*(Cpni1,0/p).
The diagram above ensures that the |somorph|sm inducé_hyis compatible with the
one induced b)f“l. By Proposition 5.8 it takeg, A, andu, to €1, Ay and+—?’ up to a unit
factor inIF,, respectively, and similarly for monomials in these classe

We focus on the summand

E(un, A2) @ Fp{pth | j € Z, vp(j) = 2n = 2} @ Poon—1)(tpsa)

in py ' E°(Cyn, £/p), abutting toV (1), THH (¢/p)“»" in degrees> (2p—2). Inthe P(v,)-
module structure on the abutment, each claswith v,(j) = 2n — 2, j > 0, generates
a copy of P,2,—1)(v2), since there are no permanent cycles in the same total dagree
y = (tug)*@ =1 . 1 that have lower (= more negative) homotopy fixed point filtnat
See Lemma 6.5 below for the elementary verification. {e,)-module isomorphism
induced byl',,; must take this to a copy 201y (v2) IN V(1) THH(¢/p)' >+, gen-
erated byt 7.

Writing ¢ = —p?j, we deduce that for,(:) = 2n, ¢ < 0, the infinite cyclez =
(tug)P"=1) .t must represent zero in the abutment, and must therefore by &idiffer-
entialz = d"(x) in the C,»+1-Tate spectral sequence. Here 2p(2n) + 2.

Sincez generates a free copy &f(tu,) in the £2/(?"+2-term displayed in (6.2), and
d" is P(tus)-linear, the class: cannot be annihilated by any power #f,. This means
thatz must be contained in the summand

E(upy1,€,A2) ® P(tip%, tis)

of E22M+2(C .1 (/p). By an elementary check of bidegrees, see Lemma 6.6 below, the
only possibility is that: has vertical degre@p — 1), so that we have differentials

dzp(2n+1) (tp2n+l 2n+2+’b = ) - (t,u@) (2TL—1) . t’b

for all i < 0 with v,(i) = 2n. The case$ > 0 follow by the module structure over the
C,n+1-Tate spectral sequence forThe remaining two differentials,

(b))

d2p(2n+2) (tp2n+17p2n+2) - )\2 . tp2n+1
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and

d2p(2n+2)+1(un+1 .t7p2"+2> - (wz)p(zn)ﬂ

are also present in th€,.+:-Tate spectral sequence forsee [ARO2, Th. 6.1], hence
follow in the present case by the module structure. With #éshave established the
complete differential pattern asserted by Theorem 6.1. O

Lemma 6.5. For j € Z with v,(j) = 2n — 2, wheren > 1, there are no classes in
iy P E>=(Cyn, £/p) in the same total degree gs= (tu,)??"~Y . 1} that have lower homo-
topy fixed point filtration.

Proof. The total degree af is 2(p*" ™2 — p*" ™! + p — 1) + 2p%j = (2p — 2) mod 2p*",
which is even.

Looking at the formula fopi, ' E*°(C,, ¢/p) in Corollary 6.4, the classes of lower
filtration thany all lie in the terms

E(un, &) @ Fp{dapiy | j € Z, (i) = 2n — 1} ® Pyany (tpe2)

and
2n
E<€1’ )‘2) ® P(/j’;tp ) ® Pp(2n)+1 (tMQ) .

Those in even total degree and of lower filtration thyaare
UnXg - o (t2)e,  Eg - py(tpa)
with v,(i) =2n — 1, p(2n — 1) < e < p(2n), and
ps(tpo), @ - p(tis)

with v, (i) > 2n, p(2n — 1) < e < p(2n).

The total degree ofi,, \y - 11 (tus)® for v,(i) = 2n — 1is (—1) + (2p* — 1) + 2p?i +
(2p* —2)e = (2p* — 2)(e+1) mod 2p*". For this to agree with the total degreeyofve
must have2p — 2) = (2p* —2)(e+1) mod 2p*", so(e+1) =1/(1+p) mod p** and
e = p(2n —1) —1 mod p*". There is no such with p(2n — 1) < e < p(2n).

The total degree ofi A\ - i (tuz)€ for v, (i) = 2n — 1is (2p — 1) + (2p* — 1) + 2p*i +
(2p* — 2)e = 2p + (2p* — 2)(e + 1) mod 2p*". To agree with that of, we must have
(2p—2) =2p+ (2p* — 2)(e + 1) mod 2p*", so(e +1) = 1/(1 — p?) mod p** and
e = p(2n) mod p*". There is no such with p(2n — 1) < e < p(2n).

The total degree ofi(tu2)¢ for vy(i) > 2n is 2p* + (2p* — 2)e = (2p* — 2)e
mod 2p*". To agree with that of, we must havé2p — 2) = (2p? — 2)e mod 2p**, so
e=1/(1+p)=p(2n—1) mod p*. There is no such with p(2n — 1) < e < p(2n).

The total degree ofi Ay - ub(tus)® for v,(i) > 2nis (2p — 1) + (2p* — 1) + 2p%i +
(2p* — 2)e. To agree modul@p** with that ofy, we must have = p(2n) mod p**. The
only suche with p(2n —1) < e < p(2n) ise = p(2n). Butin that case, the total degree of
E1 e - (o) is 2p+2p%i + (2p* — 2) (p(2n) + 1) = 2(p*" ™2+ p—1) +2p*. To be equal
to that ofy, we must havep?i + 2p*" ! = 2p?j, which is impossible fop, (i) > 2n and
vp(j) = 2n — 2. O
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Lemma 6.6. For v,(i) = 2n,n > 1 andz = (tuy)??*~Y . i, the only class in
E(upy1,€, ) ® P(tip2n, tps)

that can support a non-zero differentidl(z) = z for r > 2p(2n) + 2 is (a unit times)

T = tp2n+1_p2n+2+i . El '
Proof. The classz has total degre€2p? — 2)p(2n — 1) — 2i = 2p*"2 — 2p 1
2p — 2 —2i = (2p — 2) mod 2p*", which is even, and vertical degrég®p(2n — 1).
Hencer has odd total degree, and vertical degree at ri@st(2n — 1) — 2p(2n) — 1 =

2pPn T2 9p?ntl ... 293 — 1. This leaves the possibilities
Unir (), &8 (L), Ao (tpo)®
with v,(j) > 2nand0 <e < p** —p*" ' — ... —p=p(2n —1) — p(2n — 2) — 1, and
Un 1617 - T (tn)*
withv,(j) > 2nand0 <e<p* —p* ' —... —p—1=p2n—1) — p(2n — 2) — 2.

The total degree of must be one more than the total degree dience is congruent
to (2p — 1) modulo2p?.

The total degree af,, 1 -t/ (tu2)¢ is —1—2j+(2p*—2)e = —1+(2p*—2)e mod 2p*".
To have(2p — 1) = —1 + (2p? — 2)e mod 2p** we must havee = —p/(1 — p?) =
p?" —p?"~1 — ... —p mod p?*, which does not happen ferin the allowable range.

The total degree ofy - 7 (tu2) is (2p? — 1) — 25 + (2p* —2)e = (2p? — 1) + (2p* —2)e
mod 2p®". To have(2p — 1) = (2p* — 1) + (2p* — 2)e mod 2p*" we must have =
—p/(1+p) =p(2n—1) —1 mod p*", which does not happen.

The total degree of,, 161 Mo -7 (tp2)¢ is —1+ (2p—1)+ (2p* — 1) — 25+ (2p* — 2)e =
(2p—1)+ (2p* — 2)(e+1) mod 2p*". Tohave(2p —1) = (2p — 1) + (2p* —2)(e + 1)
mod 2p*" we must havde + 1) = 0 mod p**, soe = p** — 1 mod p**, which does
not happen.

The total degree of; - t7(tu2)¢is (2p — 1) — 25 + (2p* —2)e = (2p — 1) + (2p? — 2)e
mod 2p**. To have(2p — 1) = (2p — 1) + (2p* — 2)e mod 2p**, we must have = 0
mod p**, soe = 0 is the only possibility in the allowable range. In that caseheck of
total degrees shows that we must have p>*+1 — p?n+2 4, O

Corollary 6.7. V(1),THH (¢/p)“»" is finite in each degree.
Proof. This is clear by inspection of the>-term in Corollary 6.2. O

Lemma 6.8. The map&,, induces an isomorphism
V(1).THH (£/p)"“ = V(1) (pyTHH(¢/p)' )"

in all degrees. In the limit over the Frobenius maps there is a map~ inducing an
isomorphism

V(1).THH((/p)"S" = V(1).(psTHH(¢/p)!Cr)"" . (6.4)
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Proof. As remarked after diagram (6.1}, induces an isomorphism i¥vi(1)-homotopy
above degre€2p — 2). The permanent cycle "™ in E“(Cpnﬂ,f) acts invertibly on
E®(Cyuer, £/p), and its image, (t7"""*) = 18" in 113  E*(C,», ¢) acts invertibly on
py ' E=(Cyn, £/p). Therefore the module action derived from thalgebra structure on
¢/p ensures that?,, induces isomorphisms ivi(1)-homotopy in all degrees. O]

Theorem 6.9. The isomorphisn(6.4) admits the following description at the associated
graded level:

(a) The associated graded &f(1),THH (¢/p)**" for the S'-Tate spectral sequence is
E>(S",t/p) = EQw) @ Fy{t™| 0 < < p} @ P(t*7")
& D Ee) @ F,{t1 | j € Z, v,(j) = 2k — 2} @ Pyass) (tp12)

k>2
P E@) @F{t! s | j € Z, vy(j) = 2k — 1} @ Pyaps)(tyi2)

k>2

® E(é1, M) ® Pltpy) .

(b) The associated graded df (1), THH (¢/p)"S" for the S*-homotopy fixed point
spectral sequence maps by2 — 2)-coconnected map to

' EX(SY0/p) = E(h2) @ Fylpig | 0 < i < p} @ P(u3 ")
S2 @EOQ) R Fp{1th | j € Z, vp(j) = 2k — 2} © Ppap—1(tpi2)

k>1

& P EE) @ Fp{daiid | j € Z, v,(j) = 2k — 1} ® Py (tpaa)

k>1

® E(e1,X2) @ P(tps) .

(c) The isomorphism frora) to (b) induced byG takest ™ to 4 for 0 < i < p and¢’
to 1 for i+ p?j = 0, up to a unit factor inF,,. Furthermore, it takes multiples lay,
Ag O tuo in the source to the same multiples in the target, up to a aeiok inF,.

Proof. Claims (a) and (b) follow by passage to the limit ovefrom Corollaries 6.2
and 6.4. Claim (c) follows by passage to the same limit fronfoneulas for the isomor-
phism induced by',,; 1, which were given below diagram (6.3). O

7 Topological cyclic homology
By definition, there is a fiber sequence

TC(B;p) & TF(B;p) “— TF(B;p) — XTC(B;p)
inducing a long exact sequence

L V). TC(B;p) S V(). TF(B;p) 25 v(1),TFB;p) > ... (7.1)
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in V(1)-homotopy. By Corollary 5.9, there af@p — 2)-coconnected mapBb and T’

from V (1), TF(¢/p;p) to V (1), THH (¢/p)">" andV (1), THH (¢/p)*s", respectively. We
modelV (1), TF({/p; p) in degrees> (2p — 2) by the magl to the S'-Tate construction.
Then, by diagram (6.1)R. is modeled in the same range of degrees by the chain of maps
below:

V(1),THH(B)*' V(1),THH(B)"S' L. V(1),THH(B)*"

\ l(f‘l)hsl

V(1).(psTHH(B)!r)hS" |
Here R" induces a map of spectral sequences
E*(R"): E*(S', B) — E*(S', B)

(abutting toR"), which at theE2-term equals the inclusion that algebraically invetts
WhenB = (/p, the left hand mayg- is an isomorphism by Lemma 6.8, and the middle
(wrong-way) map ig2p — 2)-coconnected.

Proposition 7.1. In degrees> (2p — 2), the homomorphism
E*(R"): BX(S*,4/p) — E=(S",¢/p)
maps
(@) E(€,\2) ® P(tus) identically to the same expression;

(b) E()\Q) ®Fp{u2_]} X Pp(gkfl) (t,LLQ) SurjeCtively OntCE()\Q) ®]Fp{tj} &® Pp(gkfg) (t,UQ)
foreachk > 2, j = dp?*~2,0 < d < p?> —pandp { d;

(€) E(&)@F,{Nafis” } @ Ppag (tu2) surjectively ontaZ (€;) @F, {t/ o} @ Pyap o) (L)
for eachk > 2, j = dp?*~! and0 < d < p;

(d) the remaining terms to zero.

Notice that in the statements (b) and (c) above, we abuséigotand indentify the
components of degree 2p — 2 of E=(S',¢/p) and u; ' E>(S*,¢/p), using Theo-
rem 6.9(b).

Proof. Consider the summands &7 (S, ¢/p) and E=(S*, ¢/p) given in Theorem 6.9.
Clearly, the first termE(A\g) ® F{u | 0 < i < p} ® P(uz) goes to zero (these classes
are hit byd*-differentials), and the last tertfi(e;, \2) ® P(tu2) maps identically to the
same term. This proves (a) and part of (d).

For eachk > 1 andj = dp?*~2 with p 1 d, the termE(\) @ F, {1157} @ Pyar_1)(ti2)
maps to the terniy(\2) @ F,{t/} ® P,21_3)(tp2), except that the target is zero for= 1.
In symbols, the element]u,” (t12)" maps to the element)t’ (tu,) 7. If d < 0, then
the t-exponent in the target is bounded abovedp¥*—2 + p(2k — 3) < 0, so the target
lives in the right half-plane and is essentially not hit by #ource, which lives in the
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left half-plane. Ifd > p? — p, then the total degree in the source is bounded above by
(2p? — 1) — 2dp** + p(2k — 1)(2p® — 2) < 2p — 2, so the source lives in total degree
< (2p—2) and will be disregarded. f < d < p*—p, thenp(2k—1) —dp?*~2 > p(2k—3)
and—dp?*~2 < 0, so the source surjects onto the target. This proves (b) aradp(d).
Lastly, for eachk > 1 andj = dp**~! with p 1 d, the termE(&,) @ F,{\o5”} @
Py (ti2) maps to the ternE (&) ® F{t/ X2} @ P,x_2)(tp2). The target is zero for
k=1.1f d <0, thendp?~! + p(2k — 2) < 0 so the target lives in the right half-plane. If
d > p,then(2p — 1) + (2p* — 1) — 2dp* T + p(2k)(2p* — 2) < 2p — 2, so the source
lives in total degree< (2p — 2). If 0 < d < p, thenp(2k) — dp**~! > p(2k — 2) and
—dp*~1 < 0, so the source surjects onto the target. This proves (c)demaining
part of (d). H

Definition 7.2. Let
A= E(él, /\2) & P(tug)
Br = E\) @ F,{t%" 7 |0 < d < p* —p,pt d} ® Pyar_s(tu)
Ck = E(€1> & Fp{tdp%_l)\g | O0<d< p} & Pp(gk_g) (t,LLQ)

for £ > 2 and letD be the span of the remaining monomialsAfP (S, ¢/p). Let B =
@Dz0 BrandC = P, Cr. ThenE>(S*, (/p) =A@ B& C @ D.

Proposition 7.3. In degrees> (2p — 2), there are closed subgroup% = E(é, ) ®

P(vs), Bg, C, and D in V(1) TF(¢/p; p), represented by the subgrougs B, C; and

D of E>(S',¢/p), respectively, such that the homomorphiBm= V' (1), R induced by
the restriction mapR

(a) is the identity OM;

(b) maps§k+1 surjectively ontaB;, for all k > 2;

(c) maps(j”kH surjectively onta’), for all k > 2;

(d) is zero on§2, 52 andD.
In these degrees/(1),TF({/p:p) 2 A® B® C & D, whereB = [Lss B, andC =
[Tiss Ci- )

Proof. The proof is the same as the proof of [AR02, Thm. 7.7], excegttiththe present
paper we work with the Tate mod@HH (¢/p)*S" for TF(¢/p; p), in place of the homo-
topy fixed point modell’HH (¢/p)"*". The computations are made ¥ 1)-homotopy,
and we disregard all classes in total degree®p — 2). For example with this conven-
tion we write ;' E=(S*, ¢/p) = E>(S',¢/p), using the same abuse of notation as in
Proposition 7.1.

In these terms, the restriction homomorphignis given at the level of7>°-terms as
the composite of the isomorphism

G.: BX(S",0/p) — py "E=(S",¢/p) = E=(S",{/p)
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and the map

E>(RM): E®(S*,¢/p) — E=(S*,¢/p).
As an endomorphism af>(S*, ¢/p), this compositeE>(R")G, is the identity onA,
mapsB;, onto B, andCy,, onto C}, for all £ > 2, and is zero om3;, Cy and D, by
Theorem 6.9(c) and Proposition 7.1. The task is to find cldgesdof these groups to
V(1).TF(¢/p;p) such thatR, has similar properties.

Let A = E(e, \) ® P(vy) € V(1),TF({/p;p) be the (degreewise finite, hence
closed) subalgebra generated by the images of the clessas andv, in V(1)K (¢/p).
ThenA lifts A and consists of classes in the image of the trace map ¥, K (¢/p).
HenceR, is the identity onA.

We fix k£ > 2 and choose, for alb > 0, a subgrougB;! C By, as follows. We take

BY = By, Nker(E*(R"G,)

B, for k = 2,
=VEN) e P RO e PRl L, () fork >3,

iy~ 1 p(2k—5)
0<d<p?—p, ptd

where P?(tus) = Fp{(tus)°|a < ¢ < b}. We proceed by induction on for n > 1,
choosing a subgroup? of By, mapping isomorphically ont@; ' under E><(R")G,
(such a group exists by Theorem 6.9(c) and Proposition )j.Mte then have

k—2
B.=PB;,.
n=0
By the argument given on top of page 31 of [AR02], we can chooge éﬂ of BY with
BY c im(R,) Nker(R,)

in V(1).TF(¢/p;p). By induction onn > 1, we choose a liftB? C im(R,) of By
mapping isomorphically ont&; ' underR.. Such a choice is possible since the image
of R, onV (1).TF(¢/p; p) equals the image of its restrictionita (R, ), see [ARO2, p. 30].
Now

is a (degreewise finite, hence closed) lift®f with R, (B,) = 0 andR,(B},) = B,_, for
k > 3.
To constructC}, we proceed as foB;, above, starting witl®) = C;, and

CY = Cp Nker(E*(RMG,)
=E@&)® P Fa7"

0<d<p

2k—2)—1
)\2} ® Pde§2k73_|)_p(2k_4)(tu2)

for & > 3, and using Theorem 6.9(c) and Proposition 7.1(c) to chags®er n > 1.
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It remains to construcD. By Proposition 7.1(d), the isomorphisé, mapsD into
ker( E°(R")). By [AR02, Lem. 7.3] the representatives i (S*, ¢/p) of the kernel of
R" equal the kernel of2>(R"). It follows that the representatives (5", ¢/p) of
the kernel ofR, are mapped isomorphically &, to ker(£>(R")). Hence we can pick
a vector space basis fdp, choose a representative lar(R,) C V(1).TF(¢/p;p) of
each basis element, and 1Bt ¢ V/(1),TF(¢/p;p) be the closure of the vector space
spanned by these chosen representatives. This closunetéred inker(R,) sinceR, is
continuous. Hence, is zero onD. O

Proposition 7.4. In degrees> (2p — 2) there are isomorphisms
ker(R, — 1) 2 A® liin By, & liin Ch
= FE(é1,\2) @ P(vq)
®EN\) @F,{t"|0<d<p*—p,ptd} @ P(vy)
O E@) @F,{t")y |0 < d < p}® P(vq)
andcok(R, — 1) = A = E(&, \2) ® P(vs). Hence there is an isomorphism
V(1).TC(¢/p;p) = E(0, €1, X2) ® P(v2)
O EN)@F,{t"|0<d<p*—p,ptd} @ P(v)
©E@E) @F,{t%)\y |0 < d < p}® P(v)
in these degrees, whetehas degree-1 and represents the image btinder the connect-
ing mapad in (7.1).
Proof. By Proposition 7.3, the homomorphisR) — 1 is zero onA and an isomorphism
on D. Furthermore, there is an exact sequence

0—>hmBk—>HBk HBk—>hm By, — 0

k>2 k>2

and similarly for theC's. The derived limit on the right vanishes since e&hl surjects
onto B;,.. _ _
Multiplication by ¢y, in eachB;, is realized by multiplication by, in B,. EachBy, is
a sum of2(p — 1)? cyclic P(v;)-modules, and since(2k — 3) grows to infinity withk
their limit is a freeP(v,)-module of the same rank, with the indicated generatbesd
ti), for 0 < d < p? — p, p 1 d. The argument for thé€"s is practically the same.
The long exact sequence (7.1) yields the short exact sequenc

0— S cok(R, — 1) & V(1),TC(/p;p) = ker(R, — 1) — 0,
from which the formula for the middle term follows. O

Remark 7.5. A more obvious set of/(\,) ®P(Ug) -module generators fdim;, 3;, would
be the classel€P’ in By 2 B,, for0 < d < p?—p, ptd. We have a commutative diagram

TF((/p; p) ——— THH((/p)s"

| -

THH (£/p)% S5 (o5 THH (¢/p)!r)Cr
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Under the left-hand canonical mapw(¢/p; p) — THH ({/p)“», modeled here by
FG: THH((/p)"" — (o THH(([p)' )" — (o THH(¢/p)'*")" ,

the clasg?” maps to the class, . Since we are only concerned with degree&p — 2)
we may equally well use its,-power multiple(tus)? - u;* = t¢ as generator, with the
advantage that it is in the image of the localization map

THH(/p)"*" — (pyTHH ((/p)*“")" .

Hence the class denoted in lim; By is chosen so as to map undErF(Qp;p) —
THH (¢/p)"“r tot?in E>=(C,, ¢/p). Similarly, the class denotegd’ \, in lim; C}, is cho-
sen so as to map td° )\, in E>°(C,, (/p).

Themapr: (/p — Z/pis (2p—2)-connected, hence induc&p— 1)-connected maps
m: K({/p) — K(Z/p) andr,.: V(1),TC(¢/p;p) — V(1).TC(Z/p;p), by [BM94,
Prop. 10.9] and [Dun97, p. 224]. Hef®C(Z/p;p) ~ HZ, vV % 'HZ, and we have
an isomorphism/ (1), TC(Z/p; p) = E(0, € ), So we can recove¥ (1), 7C(¢/p;p) in
degrees< (2p — 2) from this map.

Theorem 7.6. There is an isomorphism @t(v,)-modules

V(1).TC(¢/p;p) = P(vy) @ E(D, €1, Xa)
® P(vy) ® E(dlogvy) @ F{t%v, | 0 < d < p* — p,p1d}
@ P(vp) ® B(&) @ F,{t"X2 | 0 < d < p}

wheredlog v, -t9v, = t?)\,. The degrees a®| = —1, |&1| = |A1| = 2p—1, | \s| = 2p*—1,
lvg| = 2p* — 2, |t| = —2 and| dlog v, | = 1.

The notationllog v, for the multiplierv, '\, is suggested by the relation - dlog p =
ALin V(0).TC(Z)|Q; p).

Proof. Only the additive generator$ for 0 < d < p? — p, p { d from Proposition 7.4 do

not appear in/(1),.7C(¢/p; p), but their multiples by\, and positive powers af, do.
This leads to the given formula, whet®g v, - t4v, must be read a'\,. O

By [HM97, Th. C] the cyclotomic trace map of [BHM93] induces c@fitsequences
K(B,), =5 TC(B;p), X' HZ, — SK(B,),
for each connective-algebraB with 7(B,) = Z, or Z/p, and thus long exact sequences
= V(1)K (B) X5 V(1) TC(B;p) L2 'E@) — ... .

This uses the identificationd’ (Z,)r = W(Z/p)r = Z, of Frobenius coinvariants of
rings of Witt vectors, and applies in particular i8r= HZ,), HZ/p, ¢ and{/p.
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Theorem 7.7. There is an isomorphism @t(v,)-modules

V(l)*K(g/p) = P(’Uz) &® E(gl) X Fp{l, 8)\2, )\2, 81)2}
® P(vy) ® E(dlogvy) @ Fp{t%v, | 0 < d < p* — p,p{d}
© P(vy) ® B(&) @ F,{t%\y | 0 < d < p}.

This is a freeP(vy)-module of rank2p* — 2p + 8) and of zero Euler characteristic.

Proof. In the caseB = Z/p, K(Z/p), ~ HZ, and the mapy is split surjective up to

homotopy. So the induced homomorphismit6l).X ' HZ, = X' E(,) is surjective.

Sincer: ¢/p — Z/p induces &2p — 1)-connected map in topological cyclic homology,

andX ' E(,) is concentrated in degrees(2p — 2), it follows by naturality that also in

the caseB = ¢/p the mapg induces a surjection i (1)-homotopy. The kernel of the

surjectionP(vy) ® E(0, €, \2) — Y~LE(€;) gives the first row in the asserted formula.
]
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