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1. Introduction

In this paper we continue the investigation from [AR02] and [Aus10] of the algebraic K-
theory of topological K-theory and related S-algebras. Let ℓp be the p-complete Adams
summand of connective complex K-theory, and let ℓ/p = k(1) be the first connective
Morava K-theory. It has a unique S-algebra structure [Ang], and we show in Section 2
that ℓ/p is an ℓp-algebra (in uncountably many ways), so that K(ℓ/p) is a K(ℓp)-module
spectrum.

Let V (1) = S/(p, v1) be the type 2 Smith–Toda complex. It is a homotopy commutative
ring spectrum for p ≥ 5, with a preferred periodic class v2 ∈ V (1)∗. We write V (1)∗(X) =
π∗(V (1) ∧ X) for the V (1)-homotopy of a spectrum X. Multiplication by v2 makes
V (1)∗(X) a P (v2)-module, where P (v2) denotes the polynomial algebra over Fp generated
by v2.

We computed the V (1)-homotopy of K(ℓp) in [AR02], showing that it is essentially
a free P (v2)-module on (4p + 4) generators. In particular, there are preferred classes
λ1, λ2 ∈ V (1)∗K(ℓp) generating an exterior subalgebra E(λ1, λ2). Hence V (1)∗K(ℓ/p)
is an E(λ1, λ2) ⊗ P (v2)-module. The following is our main result, corresponding to
Theorem 7.10 in the body of the paper.

Theorem 1.1. Let p ≥ 5 be a prime and let ℓ/p = k(1) be the first connective Morava
K-theory spectrum. There is an isomorphism of E(λ1, λ2) ⊗ P (v2)-modules

V (1)∗K(ℓ/p) ∼= P (v2) ⊗ E(ǭ1) ⊗ Fp{1, ∂λ2, λ2, ∂v2}

⊕ P (v2) ⊗ E(dlog v1) ⊗ Fp{t
dv2 | 0 < d < p2 − p, p ∤ d}

⊕ P (v2) ⊗ E(ǭ1) ⊗ Fp{t
dpλ2 | 0 < d < p} .

Here |λ1| = |ǭ1| = 2p − 1, |λ2| = 2p2 − 1, |v2| = 2p2 − 2, | dlog v1| = 1, |∂| = −1
and |t| = −2. This is a free P (v2)-module of rank (2p2 − 2p + 8) and of zero Euler
characteristic.

We prove this theorem by means of the cyclotomic trace map [BHM93] to topological
cyclic homology TC(ℓ/p). Along the way we evaluate V (1)∗THH(ℓ/p), where THH
denotes topological Hochschild homology, as well as V (1)∗TC(ℓ/p), see Proposition 4.6
and Theorem 7.8.

Let Lp be the p-complete Adams summand of periodic complex K-theory, and let
L/p = K(1) be the first periodic Morava K-theory. The localization cofiber sequence
K(Z) → K(ku) → K(KU) of Blumberg and Mandell [BM08] has the mod p Adams
analogue

K(Z/p) → K(ℓ/p) → K(L/p) .

Using Quillen’s computation [Qui72] of K(Z/p), we obtain the following consequence:
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Corollary 1.2. Let p ≥ 5 be a prime and let L/p = K(1) be the first Morava K-theory
spectrum. There is an isomorphism of E(λ1, λ2) ⊗ P (v±1

2 )-modules

V (1)∗K(L/p)[v−1
2 ] ∼= V (1)∗K(ℓ/p)[v−1

2 ] .

If the relation λ2 = v2 dlog v1 holds in V (1)∗K(L/p), then there is an isomorphism of
E(dlog v1, λ1) ⊗ P (v2)-modules

V (1)∗K(L/p) ∼= P (v2) ⊗ E(ǭ1) ⊗ Fp{1, ∂λ2, dlog v1, ∂v2}

⊕ P (v2) ⊗ E(dlog v1) ⊗ Fp{t
dv2 | 0 < d < p2 − p, p ∤ d}

⊕ P (v2) ⊗ E(ǭ1) ⊗ Fp{t
dpv2 dlog v1 | 0 < d < p} ,

where the degrees of the generators are as in Theorem 1.1. This is a free P (v2)-module
of rank (2p2 − 2p + 8) and of zero Euler characteristic.

Our far-reaching aim is to conceptually understand the algebraic K-theory of ℓp and
other commutative S-algebras in terms of localization and Galois descent, in the same
way as we understand the algebraic K-theory of rings of integers in (local) number fields
or more general regular rings. The first task is to relate K(ℓp) to the algebraic K-theory
of its “residue fields” and “fraction field”, for which we expect a description in terms of
Galois cohomology to exist, starting with the Galois theory for commutative S-algebras
developed by the second author [Rog08]. The residue rings of ℓp appear to be ℓ/p, HZp

and HZ/p, while the fraction field ff (ℓp) appears to be a localization of Lp away from
L/p, less drastic than the algebraic localization Lp[p

−1] = LQp. So far we do not have a
proper definition of this S-algebraic fraction field, but by analogy with the localization
sequence above, we expect that its algebraic K-theory appears in a localization cofiber
sequence

K(L/p) → K(Lp) → K(ff (ℓp)) ,

where the transfer map on the left is a K(Lp)-module map. Taking this as a preliminary
definition of the symbol K(ff (ℓp)), we can use our computations to evaluate its V (1)-
homotopy:

Theorem 1.3. Let p ≥ 5 be a prime, and define K(ff (ℓp)) as the homotopy cofiber above.
There is an isomorphism of P (v±1

2 )-modules

V (1)∗K(ff (ℓp))[v
−1
2 ] ∼= P (v±1

2 ) ⊗ Λ∗

where
Λ∗

∼= E(∂v2, dlog p, dlog v1)

⊕ E(dlog v1) ⊗ Fp{t
dλ1 | 0 < d < p}

⊕ E(dlog v1) ⊗ Fp{t
dv2 dlog p | 0 < d < p2 − p, p ∤ d}

⊕ E(dlog p) ⊗ Fp{t
dpλ2 | 0 < d < p} .

Here | dlog p | = 1, and the degrees of the other classes are as in Theorem 1.1. The
localization homomorphism

V (1)∗K(ff (ℓp)) → V (1)∗K(ff (ℓp))[v
−1
2 ]

is an isomorphism in degrees ∗ ≥ 2p.

In particular, the homotopy cofiber K(ff (ℓp)) cannot be equivalent to the K(Qp)-
module K(LQp), since V (1)∗K(Qp) is a torsion P (v2)-module.
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We may now conjecturally interpret V (1)∗K(ff (ℓp))[v
−1
2 ] in terms of Galois descent.

Indeed, the second author conjectured that if Ω1 is an S-algebraic “separable closure” of
ff (ℓp), then there is a homotopy equivalence

LK(2)K(Ω1) ≃ E2 .

Here E2 is Morava’s second E-theory [GH04], with coefficients (E2)∗ = W(Fp2)[[u1]][u
±1],

and LK(2) denotes Bousfield localization with respect to the second Morava K-theory
K(2), with coefficients K(2)∗ = Fp[v

±1
2 ]. The v2-periodic V (1)-homotopy groups of K(Ω1)

will then be given by
V (1)∗K(Ω1)[v

−1
2 ] ∼= Fp2 [u±1].

We would expect to have a corresponding Galois descent spectral sequence

E2
s,t = H−s

Gal(ff (ℓp); Fp2(t/2)) =⇒ V (1)s+tK(ff (ℓp))[v
−1
2 ] .

If this spectral sequence collapses at E2 when p ≥ 5, as is the case for p-adic number fields
when p ≥ 3, we get a conjectural description of the Galois cohomology of ff (ℓp) with coef-
ficients in Fp2(t/2), for all even t. Promisingly, this fits very well with the example of the
Galois cohomology of Qp with coefficients in Fp(t/2), with the difference that the absolute
Galois group of ff (ℓp) has p-cohomological dimension 3 instead of 2. Also, by analogy
with Tate–Poitou duality [Tat63] in the Galois cohomology of local number fields, there
appears to be a perfect arithmetic duality pairing in the conjectural Galois cohomology
of ff (ℓp), with fundamental class dual to ∂v2 · dlog p · dlog v1 in H3

Gal(ff (ℓp); Fp2(2)). This
indicates that ff (ℓp) ought to be a form of S-algebraic two-dimensional local field, mixing
three different residue characteristics. We elaborate more on this in [AR].

The paper is organized as follows. In Section 2 we fix our notations, show that ℓ/p
admits the structure of an associative ℓp-algebra, and give a similar discussion for ku/p
and the periodic versions L/p and KU/p. Section 3 contains the computation of the mod p
homology of THH(ℓ/p), and in Section 4 we evaluate its V (1)-homotopy. In Section 5 we
show that the Cpn-fixed points and Cpn-homotopy fixed points of THH(ℓ/p) are closely
related, and use this to inductively determine their V (1)-homotopy in Section 6. Finally,
in Section 7 we achieve the computation of TC(ℓ/p) and K(ℓ/p) in V (1)-homotopy.

2. Base change squares of S-algebras

We fix some notations. Let p be a prime, even or odd for now. Write X(p) and Xp

for the p-localization and the p-completion, respectively, of any spectrum or abelian
group X. Let ku and KU be the connective and the periodic complex K-theory spectra,
with homotopy rings ku∗ = Z[u] and KU∗ = Z[u±1], where |u| = 2. Let ℓ = BP 〈1〉
and L = E(1) be the p-local Adams summands, with ℓ∗ = Z(p)[v1] and L∗ = Z(p)[v

±1
1 ],

where |v1| = 2p− 2. The inclusion ℓ → ku(p) maps v1 to up−1. Alternate notations in the

p-complete cases are KUp = E1 and Lp = Ê(1). These ring spectra are all commutative
S-algebras, in the sense that each admits a unique E∞ ring spectrum structure. See
[BR05] for proofs of uniqueness in the periodic cases.

Let ku/p and KU/p be the connective and periodic mod p complex K-theory spectra,
with coefficients (ku/p)∗ = Z/p[u] and (KU/p)∗ = Z/p[u±1]. These are 2-periodic ver-
sions of the first Morava K-theory spectra ℓ/p = k(1) and L/p = K(1), with (ℓ/p)∗ =
Z/p[v1] and (L/p)∗ = Z/p[v±1

1 ]. Each of these can be constructed as the cofiber of the
multiplication by p map, as a module over the corresponding commutative S-algebra.

For example, there is a cofiber sequence of ku-modules ku
p
−→ ku

i
−→ ku/p.
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Let HR be the Eilenberg–Mac Lane spectrum of a ring R. When R is associative, HR
admits a unique associative S-algebra structure, and when R is commutative, HR admits
a unique commutative S-algebra structure. The zeroth Postnikov section defines unique
maps of commutative S-algebras π : ku → HZ and π : ℓ → HZ(p), which can be followed
by unique commutative S-algebra maps to HZ/p.

The ku-module spectrum ku/p does not admit the structure of a commutative ku-
algebra. It cannot even be an E2 or H2 ring spectrum, since the homomorphism induced
in mod p homology by the resulting map π : ku/p → HZ/p of H2 ring spectra would
not commute with the homology operation Q1(τ̄0) = τ̄1 in the target H∗(HZ/p; Fp)
[BMMS86, III.2.3]. Similar remarks apply for KU/p, ℓ/p and L/p. Associative algebra
structures, or A∞ ring spectrum structures, are easier to come by. The following result
is a direct application of the methods of [Laz01, §§9–11]. We adapt the notation of
[BJ02, §3] to provide some details in our case.

Proposition 2.1. The ku-module spectrum ku/p admits the structure of an associative
ku-algebra, but the structure is not unique. Similar statements hold for KU/p as a KU-
algebra, ℓ/p as an ℓ-algebra and L/p as an L-algebra.

Proof. We construct ku/p as the (homotopy) limit of its Postnikov tower of associative
ku-algebras P 2m−2 = ku/(p, um), with coefficient rings ku/(p, um)∗ = ku∗/(p, u

m) for
m ≥ 1. To start the induction, P 0 = HZ/p is a ku-algebra via i◦π : ku → HZ → HZ/p.
Assume inductively for m ≥ 1 that P = P 2m−2 has been constructed. We will define P 2m

by a (homotopy) pullback diagram

P 2m //

²²

P

in1

²²

P
d

// P ∨ Σ2m+1HZ/p

in the category of associative ku-algebras. Here

d ∈ ADer2m+1
ku (P,HZ/p) ∼= THH2m+2

ku (P,HZ/p)

is an associative ku-algebra derivation of P with values in Σ2m+1HZ/p, and the group of
such can be identified with the indicated topological Hochschild cohomology group of P
over ku. We recall that these are the homotopy groups (cohomologically graded) of the
function spectrum FP∧kuP op(P,HZ/p). The composite map pr2 ◦ d : P → Σ2m+1HZ/p of
ku-modules, where pr2 projects onto the second wedge summand, is restricted to equal
the ku-module Postnikov k-invariant of ku/p in

H2m+1
ku (P ; Z/p) = π0Fku(P, Σ2m+1HZ/p) .

We compute that π∗(P∧kuP op) = ku∗/(p, u
m)⊗E(τ0, τ1,m), where |τ0| = 1, |τ1,m| = 2m+1

and E(−) denotes the exterior algebra on the given generators. (For p = 2, the use of
the opposite product is essential here [Ang08, §3].) The function spectrum description of
topological Hochschild cohomology leads to the spectral sequence

E∗∗
2 = Ext∗∗π∗(P∧kuP op)(π∗(P ), Z/p)

∼= Z/p[y0, y1,m]

=⇒ THH∗
ku(P,HZ/p) ,

where y0 and y1,m have cohomological bidegrees (1, 1) and (1, 2m + 1), respectively. The
spectral sequence collapses at E2 = E∞, since it is concentrated in even total degrees. In
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particular,

ADer2m+1
ku (P,HZ/p) ∼= Fp{y1,m, ym+1

0 } .

Additively, H2m+1
ku (P ; Z/p) ∼= Fp{Q1,m} is generated by a class dual to τ1,m, which is the

image of y1,m under left composition with pr2. It equals the ku-module k-invariant of
ku/p. Thus there are precisely p choices d = y1,m+αym+1

0 , with α ∈ Fp, for how to extend
any given associative ku-algebra structure on P = P 2m−2 to one on P 2m = ku/(p, um+1).
In the limit, we find that there are an uncountable number of associative ku-algebra
structures on ku/p = holimm P 2m, each indexed by a sequence of choices α ∈ Fp for all
m ≥ 1.

The periodic spectrum KU/p can be obtained from ku/p by Bousfield KU -localization
in the category of ku-modules [EKMM97, VIII.4], which makes it an associative KU -
algebra. The classification of periodic S-algebra structures is the same as in the connective
case, since the original ku-algebra structure on ku/p can be recovered from that on KU/p
by a functorial passage to the connective cover. To construct ℓ/p as an associative ℓ-
algebra, or L/p as an associative L-algebra, replace u by v1 in these arguments. ¤

By varying the ground S-algebra, we obtain the same conclusions about ku/p as a
ku(p)-algebra or kup-algebra, and about ℓ/p as an ℓp-algebra.

For each choice of ku-algebra structure on ku/p, the zeroth Postnikov section π : ku/p →
HZ/p is a ku-algebra map, with the unique ku-algebra structure on the target. Hence
there is a commutative square of associative ku-algebras

ku
i

//

π

²²

ku/p

π

²²

HZ
i

// HZ/p

and similarly in the p-local and p-complete cases. In view of the weak equivalence HZ∧ku

ku/p ≃ HZ/p, this square expresses the associative HZ-algebra HZ/p as the base change
of the associative ku-algebra ku/p along π : ku → HZ. Likewise, there is a commutative
square of associative ℓp-algebras

(2.2) ℓp
i

//

π

²²

ℓ/p

π

²²

HZp
i

// HZ/p

that expresses HZ/p as the base change of ℓ/p along ℓp → HZp, and similarly in the
p-local case. By omission of structure, these squares are also diagrams of S-algebras and
S-algebra maps.

3. Topological Hochschild homology

We shall compute the V (1)-homotopy of the topological Hochschild homology THH(−)
and topological cyclic homology TC(−) of the S-algebras in diagram (2.2), for primes p ≥
5. Passing to connective covers, this also computes the V (1)-homotopy of the algebraic
K-theory spectra appearing in that square. With these coefficients, or more generally,
after p-adic completion, the functors THH and TC are insensitive to p-completion in
the argument, so we shall simplify the notation slightly by working with the associative
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S-algebras ℓ and HZ(p) in place of ℓp and HZp. For ordinary rings R we almost always
shorten notations like THH(HR) to THH(R).

The computations follow the strategy of [Bök], [BM94], [BM95] and [HM97] for HZ/p
and HZ, and of [MS93] and [AR02] for ℓ. See also [AR05, §§4–7] for further discussion of
the THH-part of such computations. In this section we shall compute the mod p homo-
logy of the topological Hochschild homology of ℓ/p as a module over the corresponding
homology for ℓ, for any odd prime p.

We write E(x) = Fp[x]/(x2) for the exterior algebra, P (x) = Fp[x] for the polynomial
algebra and P (x±1) = Fp[x, x−1] for the Laurent polynomial algebra on one generator x,
and similarly for a list of generators. We will also write Γ(x) = Fp{γi(x) | i ≥ 0} for the
divided power algebra, with γi(x) · γj(x) = (i, j)γi+j(x), where (i, j) = (i + j)!/i!j! is the
binomial coefficient. We use the obvious abbreviations γ0(x) = 1 and γ1(x) = x. Finally,
we write Ph(x) = Fp[x]/(xh) for the truncated polynomial algebra of height h, and recall
the isomorphism Γ(x) ∼= Pp(γpe(x) | e ≥ 0) in characteristic p.

We write H∗(−) for homology with mod p coefficients. It takes values in A∗-comodules,
where A∗ is the dual Steenrod algebra [Mil58]. Explicitly (for p odd),

A∗ = P (ξ̄k | k ≥ 1) ⊗ E(τ̄k | k ≥ 0)

with coproduct

ψ(ξ̄k) =
∑

i+j=k

ξ̄i ⊗ ξ̄pi

j

and
ψ(τ̄k) = 1 ⊗ τ̄k +

∑

i+j=k

τ̄i ⊗ ξ̄pi

j .

Here ξ̄0 = 1, ξ̄k = χ(ξk) has degree 2(pk − 1) and τ̄k = χ(τk) has degree 2pk − 1,
where χ is the canonical conjugation [MM65]. Then the zeroth Postnikov sections induce
identifications

H∗(HZ(p)) = P (ξ̄k | k ≥ 1) ⊗ E(τ̄k | k ≥ 1)

H∗(ℓ) = P (ξ̄k | k ≥ 1) ⊗ E(τ̄k | k ≥ 2)

H∗(ℓ/p) = P (ξ̄k | k ≥ 1) ⊗ E(τ̄0, τ̄k | k ≥ 2)

as A∗-comodule subalgebras of H∗(HZ/p) = A∗. We often make use of the following
A∗-comodule coactions

ν(τ̄0) = 1 ⊗ τ̄0 + τ̄0 ⊗ 1

ν(ξ̄1) = 1 ⊗ ξ̄1 + ξ̄1 ⊗ 1

ν(τ̄1) = 1 ⊗ τ̄1 + τ̄0 ⊗ ξ̄1 + τ̄1 ⊗ 1

ν(ξ̄2) = 1 ⊗ ξ̄2 + ξ̄1 ⊗ ξ̄p
1 + ξ̄2 ⊗ 1

ν(τ̄2) = 1 ⊗ τ̄2 + τ̄0 ⊗ ξ̄2 + τ̄1 ⊗ ξ̄p
1 + τ̄2 ⊗ 1 .

The Bökstedt spectral sequences

E2
∗∗(B) = HH∗(H∗(B)) =⇒ H∗(THH(B))

for the commutative S-algebras B = HZ/p, HZ(p) and ℓ begin

E2
∗∗(Z/p) = A∗ ⊗ E(σξ̄k | k ≥ 1) ⊗ Γ(στ̄k | k ≥ 0)

E2
∗∗(Z(p)) = H∗(HZ(p)) ⊗ E(σξ̄k | k ≥ 1) ⊗ Γ(στ̄k | k ≥ 1)

E2
∗∗(ℓ) = H∗(ℓ) ⊗ E(σξ̄k | k ≥ 1) ⊗ Γ(στ̄k | k ≥ 2) .
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They are (graded) commutative A∗-comodule algebra spectral sequences, and there are
differentials

dp−1(γjστ̄k) = σξ̄k+1 · γj−pστ̄k

for j ≥ p and k ≥ 0, see [Bök], [Hun96] or [Aus05, 4.3], leaving

E∞
∗∗(Z/p) = A∗ ⊗ Pp(στ̄k | k ≥ 0)

E∞
∗∗(Z(p)) = H∗(HZ(p)) ⊗ E(σξ̄1) ⊗ Pp(στ̄k | k ≥ 1)

E∞
∗∗(ℓ) = H∗(ℓ) ⊗ E(σξ̄1, σξ̄2) ⊗ Pp(στ̄k | k ≥ 2) .

The inclusion of 0-simplices η : B → THH(B) is split for commutative B by the augmen-
tation ǫ : THH(B) → B. Thus there are unique representatives in Bökstedt filtration 1,
with zero augmentation, for each of the classes σx. They correspond to 1 ⊗ x − x ⊗ 1 in
the Hochschild complex, or just 1 ⊗ x in the normalized Hochschild complex. There are
multiplicative extensions (στ̄k)

p = στ̄k+1 for k ≥ 0, see [AR05, 5.9], so

(3.1)

H∗(THH(Z/p)) = A∗ ⊗ P (στ̄0)

H∗(THH(Z(p))) = H∗(HZ(p)) ⊗ E(σξ̄1) ⊗ P (στ̄1)

H∗(THH(ℓ)) = H∗(ℓ) ⊗ E(σξ̄1, σξ̄2) ⊗ P (στ̄2)

as A∗-comodule algebras. The A∗-comodule coactions are given by

(3.2)

ν(στ̄0) = 1 ⊗ στ̄0

ν(σξ̄1) = 1 ⊗ σξ̄1

ν(στ̄1) = 1 ⊗ στ̄1 + τ̄0 ⊗ σξ̄1

ν(σξ̄2) = 1 ⊗ σξ̄2

ν(στ̄2) = 1 ⊗ στ̄2 + τ̄0 ⊗ σξ̄2 .

The natural map π∗ : THH(ℓ) → THH(Z(p)) induced by π : ℓ → Z(p) takes σξ̄2 to 0 and
στ̄2 to (στ̄1)

p. The natural map i∗ : THH(Z(p)) → THH(Z/p) induced by i : Z(p) → Z/p
takes σξ̄1 to 0 and στ̄1 to (στ̄0)

p.
The Bökstedt spectral sequence for the associative S-algebra B = ℓ/p begins

E2
∗∗(ℓ/p) = H∗(ℓ/p) ⊗ E(σξ̄k | k ≥ 1) ⊗ Γ(στ̄0, στ̄k | k ≥ 2) .

It is an A∗-comodule module spectral sequence over the Bökstedt spectral sequence for ℓ,
since the ℓ-algebra multiplication ℓ ∧ ℓ/p → ℓ/p is a map of associative S-algebras.
However, it is not itself an algebra spectral sequence, since the product on ℓ/p is not
commutative enough to induce a natural product structure on THH(ℓ/p). Nonetheless,
we will use the algebra structure present at the E2-term to help in naming classes.

The map π : ℓ/p → HZ/p induces an injection of Bökstedt spectral sequence E2-terms,
so there are differentials generated algebraically by

dp−1(γjστ̄k) = σξ̄k+1 · γj−pστ̄k

for j ≥ p, k = 0 or k ≥ 2, leaving

(3.3) E∞
∗∗(ℓ/p) = H∗(ℓ/p) ⊗ E(σξ̄2) ⊗ Pp(στ̄0, στ̄k | k ≥ 2)

as an A∗-comodule module over E∞
∗∗(ℓ). In order to obtain H∗(THH(ℓ/p)), we need

to resolve the A∗-comodule and H∗(THH(ℓ))-module extensions. This is achieved in
Lemma 3.6 below.
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The natural map π∗ : E∞
∗∗(ℓ/p) → E∞

∗∗(Z/p) is an isomorphism in total degrees ≤
(2p − 2) and injective in total degrees ≤ (2p2 − 2). The first class in the kernel is σξ̄2.
Hence there are unique classes

1 , τ̄0 , στ̄0 , τ̄0στ̄0 , . . . , (στ̄0)
p−1

in degrees 0 ≤ ∗ ≤ 2p − 2 of H∗(THH(ℓ/p)), mapping to classes with the same names
in H∗(THH(Z/p)). More concisely, these are the monomials τ̄ δ

0 (στ̄0)
i for 0 ≤ δ ≤ 1 and

0 ≤ i ≤ p − 1, except that the degree (2p − 1) case (δ, i) = (1, p − 1) is omitted. The
A∗-comodule coaction on these classes is given by the same formulas in H∗(THH(ℓ/p))
as in H∗(THH(Z/p)), cf. (3.2).

There is also a class ξ̄1 in degree (2p − 2) of H∗(THH(ℓ/p)) mapping to a class with
the same name, and same A∗-coaction, in H∗(THH(Z/p)).

In degree (2p − 1), π∗ is a map of extensions from

0 → Fp{ξ̄1τ̄0} → H2p−1(THH(ℓ/p)) → Fp{τ̄0(στ̄0)
p−1} → 0

to

0 → Fp{τ̄1, ξ̄1τ̄0} → H2p−1(THH(Z/p)) → Fp{τ̄0(στ̄0)
p−1} → 0 .

The latter extension is canonically split by the augmentation ǫ : THH(Z/p) → HZ/p,
which uses the commutativity of the S-algebra HZ/p.

In degree 2p, the map π∗ goes from

H2p(THH(ℓ/p)) = Fp{ξ̄1στ̄0}

to

0 → Fp{τ̄0τ̄1} → H2p(THH(Z/p)) → Fp{στ̄1, ξ̄1στ̄0} → 0 .

Again the latter extension is canonically split.

Lemma 3.4. There is a unique class y in H2p−1(THH(ℓ/p)) that is represented by
τ̄0(στ̄0)

p−1 in E∞
p−1,p(ℓ/p) and maps by π∗ to τ̄0(στ̄0)

p−1 − τ̄1 in H∗(THH(Z/p)).

Proof. This follows from naturality of the suspension operator σ and the multiplica-
tive relation (στ̄0)

p = στ̄1 in H∗(THH(Z/p)). A class y in H2p−1(THH(ℓ/p)) repre-
sented by τ̄0(στ̄0)

p−1 is determined modulo ξ̄1τ̄0. Its image in H2p−1(THH(Z/p)) thus
has the form ατ̄1 + τ̄0(στ̄0)

p−1 modulo ξ̄1τ̄0, for some α ∈ Fp. The suspension σy lies
in H2p(THH(ℓ/p)) = Fp{ξ̄1στ̄0}, so its image in H2p(THH(Z/p)) is 0 modulo τ̄0τ̄1

and ξ̄1στ̄0. It is also the suspension of ατ̄1 + τ̄0(στ̄0)
p−1 modulo ξ̄1τ̄0, which equals

σ(ατ̄1) + (στ̄0)
p = (α + 1)στ̄1. In particular, the coefficient (α + 1) of στ̄1 is 0, so

α = −1. ¤

Remark 3.5. For p = 2 this can alternatively be read off from the explicit form [Wür91]
of the commutator for the product µ in ℓ/p. The coequalizer C of the two maps

ℓ/p ∧ ℓ/p
µ

//

µτ
// ℓ/p

maps to (the 1-skeleton of) THH(ℓ/p). The commutator µ − µτ factors as

ℓ/p ∧ ℓ/p
β∧β
−−→ Σℓ/p ∧ Σℓ/p

µ
−→ Σ2ℓ/p

v1−→ ℓ/p
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where β is the mod p Bockstein associated to the cofiber sequence ℓ
p
−→ ℓ

i
−→ ℓ/p and the

cofiber of v1 is HZ/p. We get a map of cofiber sequences

ℓ/p ∧ ℓ/p
µ−µτ

//

µ(β∧β)
²²

ℓ/p // C

²²

Σ2ℓ/p
v1

// ℓ/p // HZ/p ,

so there is a class in H3(C) that maps to ξ̄1 ⊗ ξ̄1 in H2(ℓ/p ∧ ℓ/p) and to ξ̄1σξ̄1 in
H3(THH(ℓ/p)), which also maps to ξ̄2 in the cofiber of v1, i.e., whose A∗-coaction contains
the term ξ̄2 ⊗ 1. (The classes τ̄0 and τ̄1 go by the names ξ̄1 and ξ̄2 at p = 2.)

For odd primes there is a similar interpretation of how the non-commutativity of the
product on ℓ/p provides an obstruction to splitting off the 0-simplices from the (p − 1)-
skeleton of THH(ℓ/p), where the cyclic permutation of the p factors in the (p−1)-simplex
τ̄0(στ̄0)

p−1, represented by the Hochschild cycle τ̄0 ⊗ · · · ⊗ τ̄0, plays a similar role to the
twist map τ above.

Let
H∗(THH(ℓ))/(σξ̄1) ∼= H∗(ℓ) ⊗ E(σξ̄2) ⊗ P (στ̄2)

denote the quotient algebra of H∗(THH(ℓ)) by the ideal generated by σξ̄1.

Lemma 3.6. There is an isomorphism of H∗(THH(ℓ))-modules

H∗(THH(ℓ/p)) ∼= H∗(THH(ℓ))/(σξ̄1) ⊗ Fp{1, τ̄0, στ̄0, τ̄0στ̄0, . . . , (στ̄0)
p−1, y} .

Hence H∗(THH(ℓ/p)) is a free module of rank 2p over H∗(THH(ℓ))/(σξ̄1), generated by
classes

1 , τ̄0 , στ̄0 , τ̄0στ̄0 , . . . , (στ̄0)
p−1 , y

in degrees 0 through 2p − 1. These generators are represented in E∞
∗∗(ℓ/p) by the classes

1 , τ̄0 , στ̄0 , τ̄0στ̄0 , . . . , (στ̄0)
p−1 , τ̄0(στ̄0)

p−1 ,

and map under π∗ to classes with the same names in H∗(THH(Z/p)), except for y, which
maps to

τ̄0(στ̄0)
p−1 − τ̄1 .

The A∗-comodule coactions are given by

ν((στ̄0)
i) = 1 ⊗ (στ̄0)

i

for 0 ≤ i ≤ p − 1,
ν(τ̄0(στ̄0)

i) = 1 ⊗ τ̄0(στ̄0)
i + τ̄0 ⊗ (στ̄0)

i

for 0 ≤ i ≤ p − 2, and

ν(y) = 1 ⊗ y + τ̄0 ⊗ (στ̄0)
p−1 − τ̄0 ⊗ ξ̄1 − τ̄1 ⊗ 1 .

Proof. H∗(ℓ/p) is freely generated as a module over H∗(ℓ) by 1 and τ̄0, and the classes
σξ̄2 and στ̄2 in H∗(THH(ℓ)) induce multiplication by the same symbols in E∞

∗∗(ℓ/p), as
given in (3.3). This generates all of E∞

∗∗(ℓ/p) from the 2p classes τ̄ δ
0 (στ̄0)

i for 0 ≤ δ ≤ 1
and 0 ≤ i ≤ p − 1.

We claim that multiplication by σξ̄1 acts trivially on H∗(THH(ℓ/p)). It suffices to
verify this on the module generators τ̄ δ

0 (στ̄0)
i, for which the product with σξ̄1 remains in

the range of degrees where the map to H∗(THH(Z/p)) is injective. The action of σξ̄1 is
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trivial on H∗(THH(Z/p)), since dp−1(γpστ̄0) = σξ̄1 and ǫ(σξ̄1) = 0, and this implies the
claim.

The A∗-comodule coaction on each module generator, including y, is determined by
that on its image under π∗. In the latter case, the thing to check is that

(1 ⊗ π∗)(ν(y)) = ν(π∗(y)) = ν(τ̄0(στ̄0)
p−1 − τ̄1)

= 1 ⊗ τ̄0(στ̄0)
p−1 + τ̄0 ⊗ (στ̄0)

p−1 − 1 ⊗ τ̄1 − τ̄0 ⊗ ξ̄1 − τ̄1 ⊗ 1

equals
(1 ⊗ π∗)(1 ⊗ y + τ̄0 ⊗ (στ̄0)

p−1 − τ̄0 ⊗ ξ̄1 − τ̄1 ⊗ 1) .

¤

We note that these results do not visibly depend on the particular choice of ℓ-algebra
structure on ℓ/p.

4. Passage to V (1)-homotopy

For p ≥ 5 the Smith–Toda complex V (1) = S ∪p e1 ∪α1
e2p−1 ∪p e2p is a homotopy

commutative ring spectrum [Smi70], [Oka84]. It is defined as the mapping cone of the
Adams self-map v1 : Σ2p−2V (0) → V (0) of the mod p Moore spectrum V (0) = S ∪p e1.
Hence there is a cofiber sequence

Σ2p−2V (0)
v1−→ V (0)

i1−→ V (1)
j1
−→ Σ2p−1V (0) .

The composite map β1,1 = i1j1 : V (1) → Σ2p−1V (1) defines the primary v1-Bockstein
homomorphism, acting naturally on V (1)∗(X).

In this section we compute V (1)∗THH(ℓ/p) as a module over V (1)∗THH(ℓ), for any
prime p ≥ 5. The unique ring spectrum map from V (1) to HZ/p induces the identification

H∗(V (1)) = E(τ0, τ1)

(no conjugations) as A∗-comodule subalgebras of A∗. Here

ν(τ0) = 1 ⊗ τ0 + τ0 ⊗ 1

ν(τ1) = 1 ⊗ τ1 + ξ1 ⊗ τ0 + τ1 ⊗ 1 .

For each ℓ-algebra B, V (1) ∧ THH(B) is a module spectrum over V (1) ∧ THH(ℓ) and
thus over V (1) ∧ ℓ ≃ HZ/p, so H∗(V (1) ∧ THH(B)) is a sum of copies of A∗ as an A∗-
comodule. In particular, V (1)∗THH(B) = π∗(V (1) ∧ THH(B)) is naturally identified
with the subgroup of A∗-comodule primitives in

H∗(V (1) ∧ THH(B)) ∼= H∗(V (1)) ⊗ H∗(THH(B))

with the diagonal A∗-comodule coaction. We write v ∧ x for the image of v ⊗ x under
this identification, with v ∈ H∗(V (1)) and x ∈ H∗(THH(B)). Let

(4.1)

ǫ0 = 1 ∧ τ̄0 + τ0 ∧ 1

ǫ1 = 1 ∧ τ̄1 + τ0 ∧ ξ̄1 + τ1 ∧ 1

λ1 = 1 ∧ σξ̄1

λ2 = 1 ∧ σξ̄2

µ0 = 1 ∧ στ̄0

µ1 = 1 ∧ στ̄1 + τ0 ∧ σξ̄1

µ2 = 1 ∧ στ̄2 + τ0 ∧ σξ̄2 .
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These are all A∗-comodule primitive, where defined. By a dimension count,

(4.2)

V (1)∗THH(Z/p) = E(ǫ0, ǫ1) ⊗ P (µ0)

V (1)∗THH(Z(p)) = E(ǫ1) ⊗ E(λ1) ⊗ P (µ1)

V (1)∗THH(ℓ) = E(λ1, λ2) ⊗ P (µ2)

as commutative Fp-algebras. The map π : ℓ → HZ(p) takes λ2 to 0 and µ2 to µp
1. The

map i : HZ(p) → HZ/p takes λ1 to 0 and µ1 to µp
0. Note that µ2 ∈ V (1)2p2THH(ℓ) was

simply denoted µ in [AR02].
In degrees ≤ (2p − 2) of H∗(V (1) ∧ THH(ℓ/p)) the classes

(4.3) µi
0 := 1 ∧ (στ̄0)

i

for 0 ≤ i ≤ p − 1 and

(4.4) ǫ0µ
i
0 := 1 ∧ τ̄0(στ̄0)

i + τ0 ∧ (στ̄0)
i

for 0 ≤ i ≤ p − 2 are A∗-comodule primitive, hence lift uniquely to V (1)∗THH(ℓ/p).
These map to the classes ǫδ

0µ
i
0 in V (1)∗THH(Z/p) for 0 ≤ δ ≤ 1 and 0 ≤ i ≤ p − 1,

except that the degree bound excludes the top case of ǫ0µ
p−1
0 .

In degree (2p− 1) of H∗(V (1)∧ THH(ℓ/p)) we have generators 1∧ ξ̄1τ̄0, τ0 ∧ (στ̄0)
p−1,

τ0 ∧ ξ̄1, τ1 ∧ 1 and 1 ∧ y. These have coactions

ν(1 ∧ ξ̄1τ̄0) = 1 ⊗ 1 ∧ ξ̄1τ̄0 + τ̄0 ⊗ 1 ∧ ξ̄1 + ξ̄1 ⊗ 1 ∧ τ̄0 + ξ̄1τ̄0 ⊗ 1 ∧ 1

ν(τ0 ∧ (στ̄0)
p−1) = 1 ⊗ τ0 ∧ (στ̄0)

p−1 + τ0 ⊗ 1 ∧ (στ̄0)
p−1

ν(τ0 ∧ ξ̄1) = 1 ⊗ τ0 ∧ ξ̄1 + τ0 ⊗ 1 ∧ ξ̄1 + ξ̄1 ⊗ τ0 ∧ 1 + ξ̄1τ0 ⊗ 1 ∧ 1

ν(τ1 ∧ 1) = 1 ⊗ τ1 ∧ 1 + ξ1 ⊗ τ0 ∧ 1 + τ1 ⊗ 1 ∧ 1

and
ν(1 ∧ y) = 1 ⊗ 1 ∧ y + τ̄0 ⊗ 1 ∧ (στ̄0)

p−1 − τ̄0 ⊗ 1 ∧ ξ̄1 − τ̄1 ⊗ 1 ∧ 1 .

Hence the sum

(4.5) ǭ1 := 1 ∧ y + τ0 ∧ (στ̄0)
p−1 − τ0 ∧ ξ̄1 − τ1 ∧ 1

is A∗-comodule primitive. Its image under π∗ in H∗(V (1) ∧ THH(Z/p)) is

ǫ0µ
p−1
0 − ǫ1 = 1 ∧ τ̄0(στ̄0)

p−1 + τ0 ∧ (στ̄0)
p−1 − 1 ∧ τ̄1 − τ0 ∧ ξ̄1 − τ1 ∧ 1 .

Let
V (1)∗THH(ℓ)/(λ1) ∼= E(λ2) ⊗ P (µ2)

be the quotient algebra of V (1)∗THH(ℓ) by the ideal generated by λ1.

Proposition 4.6. There is an isomorphism of V (1)∗THH(ℓ)-modules

V (1)∗THH(ℓ/p) = V (1)∗THH(ℓ)/(λ1) ⊗ Fp{1, ǫ0, µ0, ǫ0µ0, . . . , µ
p−1
0 , ǭ1} ,

where the classes µi
0, ǫ0µ

i
0 and ǭ1 are defined in (4.3), (4.4) and (4.5) above. Multiplication

by λ1 is 0, so this is a free module on the 2p generators

1 , ǫ0 , µ0 , ǫ0µ0 , . . . , µp−1
0 , ǭ1

over V (1)∗THH(ℓ)/(λ1). The map π∗ to V (1)∗THH(Z/p) takes ǫδ
0µ

i
0 in degree 0 ≤

δ + 2i ≤ 2p − 2 to ǫδ
0µ

i
0, and takes ǭ1 in degree (2p − 1) to ǫ0µ

p−1
0 − ǫ1.

Proof. Additively, this follows by another dimension count. The multiplication by λ1 is
0 for degree and filtration reasons: λ1 has Bökstedt filtration 1 and cannot map to ǭ1 in
Bökstedt filtration (p − 1). Similarly in higher degrees. ¤
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5. The Cp-Tate construction

Let C = Cpn denote the cyclic group of order pn, considered as a closed subgroup
of the circle group S1. For each spectrum X with C-action, XhC = EC+ ∧C X and
XhC = F (EC+, X)C denote its homotopy orbit and homotopy fixed point spectra, as

usual. We now write X tC = [ẼC ∧ F (EC+, X)]C for the C-Tate construction on X,

which was denoted tC(X)C in [GM95] and Ĥ(C,X) in [AR02]. There are C-homotopy
fixed point and C-Tate spectral sequences in V (1)-homotopy for X, with

E2
s,t(C,X) = H−s

gp (C; V (1)t(X)) =⇒ V (1)s+t(X
hC)

and

Ê2
s,t(C,X) = Ĥ−s

gp (C; V (1)t(X)) =⇒ V (1)s+t(X
tC) .

We write H∗
gp(Cpn ; Fp) = E(un) ⊗ P (t) and Ĥ∗

gp(Cpn ; Fp) = E(un) ⊗ P (t±1) with un in
degree 1 and t in degree 2. So un, t and x ∈ V (1)t(X) have bidegree (−1, 0), (−2, 0)
and (0, t) in either spectral sequence, respectively. See [HM03, §4.3] for proofs of the
multiplicative properties of these spectral sequences.

We are principally interested in the case when X = THH(B), with the S1-action given
by the cyclic structure. It is a cyclotomic spectrum, in the sense of [HM97], leading to
the commutative diagram

THH(B)hCpn

N
// THH(B)Cpn R

//

Γn

²²

THH(B)C
pn−1

Γ̂n

²²

THH(B)hCpn

Nh
// THH(B)hCpn Rh

// THH(B)tCpn

of horizontal cofiber sequences. We abbreviate Ê2
∗∗(C, THH(B)) to Ê2

∗∗(C,B), etc.
When B is a commutative S-algebra, this is a commutative algebra spectral sequence,
and when B is an associative A-algebra, with A commutative, then Ê∗(C,B) is a module

spectral sequence over Ê∗(C,A). The map Rh corresponds to the inclusion E2
∗∗(C,B) →

Ê2
∗∗(C,B) from the second quadrant to the upper half-plane, for connective B.
In this section we compute V (1)∗THH(ℓ/p)tCp by means of the Cp-Tate spectral se-

quence in V (1)-homotopy for THH(ℓ/p). In Propositions 5.8 and 5.9 we show that the

comparison map Γ̂1 : V (1)∗THH(ℓ/p) → V (1)∗THH(ℓ/p)tCp is (2p−2)-coconnected and
can be identified with the algebraic localization homomorphism that inverts µ2.

First we recall the structure of the Cp-Tate spectral sequence for THH(Z/p), with
V (0)- and V (1)-coefficients. We have V (0)∗THH(Z/p) = E(ǫ0) ⊗ P (µ0), and with an
obvious notation the E2-terms are

Ê2
∗∗(Cp, Z/p; V (0)) = E(u1) ⊗ P (t±1) ⊗ E(ǫ0) ⊗ P (µ0)

Ê2
∗∗(Cp, Z/p) = E(u1) ⊗ P (t±1) ⊗ E(ǫ0, ǫ1) ⊗ P (µ0) .

In each C-Tate spectral sequence we have a first differential

d2(x) = t · σx ,

see e.g. [Rog98, 3.3]. We easily deduce σǫ0 = µ0 and σǫ1 = µp
0 from (4.1), so

Ê3
∗∗(Cp, Z/p; V (0)) = E(u1) ⊗ P (t±1)

Ê3
∗∗(Cp, Z/p) = E(u1) ⊗ P (t±1) ⊗ E(ǫ0µ

p−1
0 − ǫ1) .
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Thus the V (0)-homotopy spectral sequence collapses at Ê3 = Ê∞. By naturality with

respect to the map i1 : V (0) → V (1), all the classes on the horizontal axis of Ê3(Cp, Z/p)

are infinite cycles, so also the latter spectral sequence collapses at Ê3
∗∗(Cp, Z/p).

We know from [HM97, Prop. 5.3] that the comparison map

Γ̂1 : V (0)∗THH(Z/p) → V (0)∗THH(Z/p)tCp

takes ǫδ
0µ

i
0 to (u1t

−1)δt−i, for all 0 ≤ δ ≤ 1, i ≥ 0. In particular, the integral map

Γ̂1 : π∗THH(Z/p) → π∗THH(Z/p)tCp is (−2)-coconnected, meaning that it induces an
injection in degree (−2) and an isomorphism in all higher degrees. From this we can

deduce the following behavior of the comparison map Γ̂1 in V (1)-homotopy.

Lemma 5.1. The map

Γ̂1 : V (1)∗THH(Z/p) → V (1)∗THH(Z/p)tCp

takes the classes ǫδ
0µ

i
0 from V (0)∗THH(Z/p), for 0 ≤ δ ≤ 1 and i ≥ 0, to classes

represented in Ê∞
∗∗(Cp, Z/p) by (u1t

−1)δt−i (on the horizontal axis).

Furthermore, it takes the class ǫ0µ
p−1
0 − ǫ1 in degree (2p − 1) to a class represented by

ǫ0µ
p−1
0 − ǫ1 (on the vertical axis).

Proof. The classes ǫδ
0µ

i
0 are in the image from V (0)-homotopy, and we recalled above

that they are detected by (u1t
−1)δt−i in the V (0)-homotopy Cp-Tate spectral sequence

for THH(Z/p). By naturality along i1 : V (0) → V (1), they are detected by the same

(nonzero) classes in the V (1)-homotopy spectral sequence Ê∞
∗∗(Cp, Z/p).

To find the representative for Γ̂1(ǫ0µ
p−1
0 − ǫ1) in degree (2p − 1), we appeal to the

cyclotomic trace map from algebraic K-theory, or more precisely, to the commutative
diagram

(5.2) K(B)

tr

((QQQQQQQQQQQQQ

tr1

²²

tr

wwoooooooooooo

THH(B) THH(B)Cp
R

//

Γ1

²²

F
oo THH(B)

Γ̂1

²²

THH(B)hCp
Rh

//

ggOOOOOOOOOOO

THH(B)tCp .

The Bökstedt trace map tr : K(B) → THH(B) admits a preferred lift trn through each
fixed point spectrum THH(B)Cpn , which homotopy equalizes the iterated restriction and
Frobenius maps Rn and F n to THH(B), see [BHM93, 2.5]. In particular, the circle
action and the σ-operator act trivially on classes in the image of tr.

In the case B = HZ/p we know that K(Z/p)p ≃ HZp, so V (1)∗K(Z/p) = E(ǭ1), where
the v1-Bockstein of ǭ1 is −1. The Bökstedt trace image tr(ǭ1) ∈ V (1)∗THH(Z/p) lies in
Fp{ǫ1, ǫ0µ

p−1
0 }, has v1-Bockstein tr(−1) = −1 and suspends by σ to 0. Hence

tr(ǭ1) = ǫ0µ
p−1
0 − ǫ1 .

As we recalled above, the map Γ̂1 : π∗THH(Z/p) → π∗THH(Z/p)tCp is (−2)-coconnected,
so the corresponding map in V (1)-homotopy is at least (2p − 2)-coconnected. Thus it
takes ǫ0µ

p−1
0 − ǫ1 to a nonzero class in V (1)∗THH(Z/p)tCp, represented somewhere in

total degree (2p − 1) of Ê∞
∗∗(Cp, Z/p), in the lower right hand corner of the diagram.
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Going down the middle of the diagram, we reach a class (Γ1 ◦ tr1)(ǭ1), represented in
total degree (2p − 1) of the left half-plane Cp-homotopy fixed point spectral sequence
E∞

∗∗(Cp, Z/p). Its image under the edge homomorphism to V (1)∗THH(Z/p) equals (F ◦

tr1)(ǭ1) = tr(ǭ1), hence (Γ1 ◦ tr1)(ǭ1) is represented by ǫ0µ
p−1
0 − ǫ1 in E∞

0,2p−1(Cp, Z/p). Its

image under Rh in the Cp-Tate spectral sequence is the generator of Ê∞
0,2p−1(Cp, Z/p) =

Fp{ǫ0µ
p−1
0 − ǫ1}, hence that generator is the E∞-representative of Γ̂1(ǫ0µ

p−1
0 − ǫ1). ¤

We can lift the algebraic K-theory class ǭ1 to ℓ/p.

Definition 5.3. The (2p−2)-connected map π : ℓ/p → HZ/p induces a (2p−1)-connected
map V (1)∗K(ℓ/p) → V (1)∗K(Z/p) = E(ǭ1), by [BM94, 10.9]. We can therefore choose a
class

ǭK
1 ∈ V (1)2p−1K(ℓ/p)

that maps to the generator ǭ1 in V (1)2p−1K(Z/p) ∼= Z/p.

Lemma 5.4. The Bökstedt trace tr : V (1)∗K(ℓ/p) → V (1)∗THH(ℓ/p) takes ǭK
1 to ǭ1.

Proof. In the commutative square

V (1)∗K(ℓ/p)

π∗

²²

tr
// V (1)∗THH(ℓ/p)

π∗

²²

V (1)∗K(Z/p)
tr

// V (1)∗THH(Z/p)

the trace image tr(ǭK
1 ) in V (1)∗THH(ℓ/p) must map under π∗ to tr(ǭ1) = ǫ0µ

p−1
0 − ǫ1 in

V (1)∗THH(Z/p), which by Proposition 4.6 characterizes it as being equal to the class ǭ1.
Hence tr(ǭK

1 ) = ǭ1. ¤

Next we turn to the Cp-Tate spectral sequence Ê∗(Cp, ℓ/p) in V (1)-homotopy for
THH(ℓ/p). Its E2-term is

Ê2
∗∗(Cp, ℓ/p) = E(u1) ⊗ P (t±1) ⊗ Fp{1, ǫ0, µ0, ǫ0µ0, . . . , µ

p−1
0 , ǭ1} ⊗ E(λ2) ⊗ P (µ2) .

We have d2(x) = t · σx, where

σ(ǫδ
0µ

i−1
0 ) =

{
µi

0 for δ = 1, 0 < i < p,

0 otherwise

is readily deduced from (4.1), and σ(ǭ1) = 0 since ǭ1 is in the image of tr. Thus

(5.5) Ê3
∗∗(Cp, ℓ/p) = E(u1) ⊗ P (t±1) ⊗ E(ǭ1) ⊗ E(λ2) ⊗ P (tµ2) .

We prefer to use tµ2 rather than µ2 as a generator, since it represents multiplication by
v2 in all module spectral sequences over E∗(S1, ℓ), by [AR02, 4.8].

To proceed, we shall use that Ê∗(Cp, ℓ/p) is a module over the spectral sequence for
THH(ℓ). We therefore recall the structure of the latter spectral sequence, from [AR02,
5.5]. It begins

Ê2
∗∗(Cp, ℓ) = E(u1) ⊗ P (t±1) ⊗ E(λ1, λ2) ⊗ P (µ2) .

The classes λ1, λ2 and tµ2 are infinite cycles, and the differentials

d2p(t1−p) = tλ1

d2p2

(tp−p2

) = tpλ2

d2p2+1(u1t
−p2

) = tµ2
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(up to units in Fp, which we will always suppress) leave the terms

Ê2p+1
∗∗ (Cp, ℓ) = E(u1, λ1, λ2) ⊗ P (t±p, tµ2)

Ê2p2+1
∗∗ (Cp, ℓ) = E(u1, λ1, λ2) ⊗ P (t±p2

, tµ2)

Ê2p2+2
∗∗ (Cp, ℓ) = E(λ1, λ2) ⊗ P (t±p2

)

with Ê2p2+2 = Ê∞, converging to V (1)∗THH(ℓ)tCp . The comparison map Γ̂1 takes λ1,

λ2 and µ2 to λ1, λ2 and t−p2

, respectively, inducing the algebraic localization map and
identification

Γ̂1 : V (1)∗THH(ℓ) → V (1)∗THH(ℓ)[µ−1
2 ] ∼= V (1)∗THH(ℓ)tCp .

Lemma 5.6. In Ê∗(Cp, ℓ/p), the class u1t
−p supports the nonzero differential

d2p2

(u1t
−p) = u1t

p2−pλ2 ,

and does not survive to the E∞-term.

Proof. In Ê∗(Cp, ℓ), there is such a nonzero differential. By naturality along i : ℓ → ℓ/p,

it follows that there is also such a differential in Ê∗(Cp, ℓ/p). It remains to argue that the
target is nonzero. Considering the E3-term in (5.5), the only possible source of a previous

differential hitting u1t
p2−pλ2 is ǭ1. But ǭ1 is in an even column and u1t

p2−pλ2 is in an
odd column. By naturality with respect to the Frobenius (group restriction) map from

the S1-Tate spectral sequence to the Cp-Tate spectral sequence, which takes Ê2
∗∗(S

1, B)

isomorphically to the even columns of Ê2
∗∗(Cp, B), any such differential from an even to

an odd column must be zero. ¤

To determine the map Γ̂1 we use naturality with respect to the map π : ℓ/p → HZ/p.

Lemma 5.7. The classes 1, ǫ0, µ0, ǫ0µ0, . . . , µ
p−1
0 and ǭ1 in V (1)∗THH(ℓ/p) map under Γ̂1

to classes in V (1)∗THH(ℓ/p)tCp that are represented in Ê∞
∗∗(Cp, ℓ/p) by the permanent

cycles (u1t
−1)δt−i (on the horizontal axis) in degrees ≤ (2p − 2), and by the permanent

cycle ǭ1 (on the vertical axis) in degree (2p − 1).

Proof. In the commutative square

V (1)∗THH(ℓ/p)
Γ̂1

//

π∗

²²

V (1)∗THH(ℓ/p)tCp

π∗

²²

V (1)∗THH(Z/p)
Γ̂1

// V (1)∗THH(Z/p)tCp

the classes ǫδ
0µ

i
0 in the upper left hand corner map to classes in the lower right hand corner

that are represented by (u1t
−1)δt−i in degrees ≤ (2p − 2), and ǭ1 maps to ǫ0µ

p−1
0 − ǫ1 in

degree (2p − 1). This follows by combining Proposition 4.6 and Lemma 5.1.
The first (2p−1) of these are represented in maximal filtration (on the horizontal axis),

so their images in the upper right hand corner must be represented by permanent cycles
(u1t

−1)δt−i in the Tate spectral sequence Ê∞
∗∗(Cp, ℓ/p).

The image of the last class, ǭ1, in the upper right hand corner could either be rep-
resented by ǭ1 in bidegree (0, 2p − 1) or by u1t

−p in bidegree (2p − 1, 0). However, the

last class supports a differential d2p2

(u1t
−p) = u1t

p2−pλ2, by Lemma 5.6 above. This only

leaves the other possibility, that Γ̂1(ǭ1) is represented by ǭ1 in Ê∞
∗∗(Cp, ℓ/p). ¤
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We proceed to determine the differential structure in Ê∗(Cp, ℓ/p), making use of the
permanent cycles identified above.

Proposition 5.8. The Cp-Tate spectral sequence in V (1)-homotopy for THH(ℓ/p) has

Ê3
∗∗(Cp, ℓ/p) = E(u1, ǭ1, λ2) ⊗ P (t±1, tµ2) .

It has differentials generated by

d2p2−2p+2(tp−p2

· t−iǭ1) = tµ2 · t
−i

for 0 < i < p, d2p2

(tp−p2

) = tpλ2 and d2p2+1(u1t
−p2

) = tµ2. The following terms are

Ê2p2−2p+3
∗∗ (Cp, ℓ/p) = E(u1, λ2) ⊗ Fp{t

−i | 0 < i < p} ⊗ P (t±p)

⊕ E(u1, ǭ1, λ2) ⊗ P (t±p, tµ2)

Ê2p2+1
∗∗ (Cp, ℓ/p) = E(u1, λ2) ⊗ Fp{t

−i | 0 < i < p} ⊗ P (t±p2

)

⊕ E(u1, ǭ1, λ2) ⊗ P (t±p2

, tµ2)

Ê2p2+2
∗∗ (Cp, ℓ/p) = E(u1, λ2) ⊗ Fp{t

−i | 0 < i < p} ⊗ P (t±p2

)

⊕ E(ǭ1, λ2) ⊗ P (t±p2

) .

The last term can be rewritten as

Ê∞(Cp, ℓ/p) =
(
E(u1) ⊗ Fp{t

−i | 0 < i < p} ⊕ E(ǭ1)
)
⊗ E(λ2) ⊗ P (t±p2

) .

Proof. We have already identified the E2- and E3-terms above. The E3-term (5.5) is

generated over Ê3(Cp, ℓ) by an Fp-basis for E(ǭ1), so the next possible differential is
induced by d2p(t1−p) = tλ1. But multiplication by λ1 is trivial in V (1)∗THH(ℓ/p), by

Proposition 4.6, so Ê3(Cp, ℓ/p) = Ê2p+1(Cp, ℓ/p). This term is generated over Ê2p+1(Cp, ℓ)
by Pp(t

−1)⊗E(ǭ1). Here 1, t−1, . . . , t1−p and ǭ1 are permanent cycles, by Lemma 5.7. Any

dr-differential before d2p2

must therefore originate on a class t−iǭ1 for 0 < i < p, and be
of even length r, since these classes lie in even columns. For bidegree reasons, the first
possibility is r = 2p2 − 2p + 2, so Ê3(Cp, ℓ/p) = Ê2p2−2p+2(Cp, ℓ/p).

Multiplication by v2 acts trivially on V (1)∗THH(ℓ) and V (1)∗THH(ℓ)tCp for degree
reasons, and therefore also on V (1)∗THH(ℓ/p) and V (1)∗THH(ℓ/p)tCp by the module
structure. The class v2 maps to tµ2 in the S1-Tate spectral sequence for ℓ, as recalled
above, so multiplication by v2 is represented by multiplication by tµ2 in the Cp-Tate
spectral sequence for ℓ/p. Applied to the permanent cycles (u1t

−1)δt−i in degrees ≤
(2p − 2), this implies that the products

tµ2 · (u1t
−1)δt−i

must be infinite cycles representing zero, i.e., they must be hit by differentials. In the
cases δ = 1, 0 ≤ i ≤ p − 2, these classes in odd columns cannot be hit by differentials of
odd length, such as d2p2+1, so the only possibility is

d2p2−2p+2(tp−p2

· (u1t
−1)t−iǭ1) = tµ2 · (u1t

−1)t−i

for 0 ≤ i ≤ p− 2. By the module structure (consider multiplication by u1) it follows that

d2p2−2p+2(tp−p2

· t−iǭ1) = tµ2 · t
−i
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for 0 < i < p. Hence we can compute from (5.5) that

Ê2p2−2p+3
∗∗ (Cp, ℓ/p) = E(u1) ⊗ P (t±p) ⊗ Fp{t

−i | 0 < i < p} ⊗ E(λ2)

⊕ E(u1) ⊗ P (t±p) ⊗ E(ǭ1) ⊗ E(λ2) ⊗ P (tµ2) .

This is generated over Ê2p+1(Cp, ℓ) by the permanent cycles 1, t−1, . . . , t1−p and ǭ1, so the

next differential is induced by d2p2

(tp−p2

) = tpλ2. This leaves

Ê2p2+1
∗∗ (Cp, ℓ/p) = E(u1) ⊗ P (t±p2

) ⊗ Fp{t
−i | 0 < i < p} ⊗ E(λ2)

⊕ E(u1) ⊗ P (t±p2

) ⊗ E(ǭ1) ⊗ E(λ2) ⊗ P (tµ2) .

Finally, d2p2+1(u1t
−p2

) = tµ2 applies, and leaves

Ê2p2+2
∗∗ (Cp, ℓ/p) = E(u1) ⊗ P (t±p2

) ⊗ Fp{t
−i | 0 < i < p} ⊗ E(λ2)

⊕ P (t±p2

) ⊗ E(ǭ1) ⊗ E(λ2) .

For bidegree reasons, Ê2p2+2 = Ê∞. ¤

Proposition 5.9. The comparison map Γ̂1 takes the classes ǫδ
0µ

i
0, ǭ1, λ2 and µ2 in

V (1)∗THH(ℓ/p) to classes in V (1)∗THH(ℓ/p)tCp represented by (u1t
−1)δt−i, ǭ1, λ2 and

t−p2

in Ê∞
∗∗(Cp, ℓ/p), respectively. Thus

V (1)∗THH(ℓ/p)tCp ∼= Fp{1, ǫ0, µ0, ǫ0µ0, . . . , µ
p−1
0 , ǭ1} ⊗ E(λ2) ⊗ P (µ±1

2 )

and Γ̂1 factors as the algebraic localization map and identification

Γ̂1 : V (1)∗THH(ℓ/p) → V (1)∗THH(ℓ/p)[µ−1
2 ] ∼= V (1)∗THH(ℓ/p)tCp .

In particular, this map is (2p − 2)-coconnected.

Proof. The action of the map Γ̂1 on the classes 1, ǫ0, µ0, ǫ0µ0, . . . , µ
p−1
0 and ǭ1 was given in

Lemma 5.7, and the action on the classes λ2 and µ2 was already recalled from [AR02]. The
structure of V (1)∗THH(ℓ/p)tCp is then immediate from the E∞-term in Proposition 5.8.

The top class not in the image of Γ̂1 is ǭ1λ2µ
−1
2 , in degree (2p − 2). ¤

Recall that
TF (B) = holim

n,F
THH(B)Cpn

TR(B) = holim
n,R

THH(B)Cpn

are defined as the homotopy limits over the Frobenius and the restriction maps

F,R : THH(B)Cpn → THH(B)C
pn−1 ,

respectively.

Corollary 5.10. The comparison maps

Γn : THH(ℓ/p)Cpn → THH(ℓ/p)hCpn

Γ̂n : THH(ℓ/p)C
pn−1 → THH(ℓ/p)tCpn

for n ≥ 1, and

Γ: TF (ℓ/p) → THH(ℓ/p)hS1

Γ̂ : TF (ℓ/p) → THH(ℓ/p)tS1

all induce (2p − 2)-coconnected maps on V (1)-homotopy.
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Proof. This follows from a theorem of Tsalidis [Tsa98] and Proposition 5.9 above, just
like in [AR02, 5.7]. See also [BBLNR]. ¤

6. Higher fixed points

Let n ≥ 1. Write vp(i) for the p-adic valuation of i. Define a numerical function ρ(−)
by

ρ(2k − 1) = (p2k+1 + 1)/(p + 1) = p2k − p2k−1 + · · · − p + 1

ρ(2k) = (p2k+2 − p2)/(p2 − 1) = p2k + p2k−2 + · · · + p2

for k ≥ 0, so ρ(−1) = 1 and ρ(0) = 0. For even arguments, ρ(2k) = r(2k) as defined in
[AR02, 2.5].

In all of the following spectral sequences we know that λ2, tµ2 and ǭ1 are infinite
cycles. For λ2 and ǭ1 this follows from the Cpn-fixed point analogue of diagram (5.2), by
[AR02, 2.8] and Lemma 5.4. For tµ2 it follows from [AR02, 4.8], by naturality.

Theorem 6.1. The Cpn-Tate spectral sequence in V (1)-homotopy for THH(ℓ/p) begins

Ê2
∗∗(Cpn , ℓ/p) = E(un, λ2) ⊗ Fp{1, ǫ0, µ0, ǫ0µ0, . . . , µ

p−1
0 , ǭ1} ⊗ P (t±1, µ2)

and converges to V (1)∗THH(ℓ/p)tCpn . It is a module spectral sequence over the algebra

spectral sequence Ê∗(Cpn , ℓ) converging to V (1)∗THH(ℓ)tCpn .
There is an initial d2-differential generated by

d2(ǫ0µ
i−1
0 ) = tµi

0

for 0 < i < p. Next, there are 2n families of even length differentials generated by

d2ρ(2k−1)(tp
2k−1−p2k+i · ǭ1) = (tµ2)

ρ(2k−3) · ti

for vp(i) = 2k − 2, for each k = 1, . . . , n, and

d2ρ(2k)(tp
2k−1−p2k

) = λ2 · t
p2k−1

· (tµ2)
ρ(2k−2)

for each k = 1, . . . , n. Finally, there is a differential of odd length generated by

d2ρ(2n)+1(un · t−p2n

) = (tµ2)
ρ(2n−2)+1 .

We shall prove Theorem 6.1 by induction on n. The base case n = 1 is covered by
Proposition 5.8. We can therefore assume that Theorem 6.1 holds for some fixed n ≥ 1.
First we make the following deduction.

Corollary 6.2. The initial differential in the Cpn-Tate spectral sequence in V (1)-homotopy
for THH(ℓ/p) leaves

Ê3
∗∗(Cpn , ℓ/p) = E(un, ǭ1, λ2) ⊗ P (t±1, tµ2) .

The next 2n families of differentials leave the intermediate terms

Ê2ρ(1)+1
∗∗ (Cpn , ℓ/p) = E(un, λ2) ⊗ Fp{t

−i | 0 < i < p} ⊗ P (t±p)

⊕ E(un, ǭ1, λ2) ⊗ P (t±p, tµ2)
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(for m = 1),

Ê2ρ(2m−1)+1
∗∗ (Cpn , ℓ/p) = E(un, λ2) ⊗ Fp{t

−i | 0 < i < p} ⊗ P (t±p2

)

⊕

m⊕

k=2

E(un, λ2) ⊗ Fp{t
j | vp(j) = 2k − 2} ⊗ Pρ(2k−3)(tµ2)

⊕
m−1⊕

k=2

E(un, ǭ1) ⊗ Fp{t
jλ2 | vp(j) = 2k − 1} ⊗ Pρ(2k−2)(tµ2)

⊕ E(un, ǭ1, λ2) ⊗ P (t±p2m−1

, tµ2)

for m = 2, . . . , n, and

Ê2ρ(2m)+1
∗∗ (Cpn , ℓ/p) = E(un, λ2) ⊗ Fp{t

−i | 0 < i < p} ⊗ P (t±p2

)

⊕

m⊕

k=2

E(un, λ2) ⊗ Fp{t
j | vp(j) = 2k − 2} ⊗ Pρ(2k−3)(tµ2)

⊕
m⊕

k=2

E(un, ǭ1) ⊗ Fp{t
jλ2 | vp(j) = 2k − 1} ⊗ Pρ(2k−2)(tµ2)

⊕ E(un, ǭ1, λ2) ⊗ P (t±p2m

, tµ2)

for m = 1, . . . , n. The final differential leaves the E2ρ(2n)+2 = E∞-term, equal to

Ê∞
∗∗(Cpn , ℓ/p) = E(un, λ2) ⊗ Fp{t

−i | 0 < i < p} ⊗ P (t±p2

)

⊕
n⊕

k=2

E(un, λ2) ⊗ Fp{t
j | vp(j) = 2k − 2} ⊗ Pρ(2k−3)(tµ2)

⊕
n⊕

k=2

E(un, ǭ1) ⊗ Fp{t
jλ2 | vp(j) = 2k − 1} ⊗ Pρ(2k−2)(tµ2)

⊕ E(ǭ1, λ2) ⊗ P (t±p2n

) ⊗ Pρ(2n−2)+1(tµ2) .

Proof. The statements about the E3-, E2ρ(1)+1- and E2ρ(2)+1-terms are clear from Propo-
sition 5.8. For each m = 2, . . . , n we proceed by a secondary induction. The differential

d2ρ(2m−1)(tp
2m−1−p2m+i · ǭ1) = (tµ2)

ρ(2m−3) · ti

for vp(i) = 2m − 2 is non-trivial only on the summand

E(un, ǭ1, λ2) ⊗ P (t±p2m−2

, tµ2)

of the E2ρ(2m−2)+1 = E2ρ(2m−1)-term, with homology

E(un, λ2) ⊗ Fp{t
j | vp(j) = 2m − 2} ⊗ Pρ(2m−3)(tµ2)

⊕ E(un, ǭ1, λ2) ⊗ P (t±p2m−1

, tµ2) .

This gives the stated E2ρ(2m−1)+1-term. Similarly, the differential

d2ρ(2m)(tp
2m−1−p2m

) = λ2 · t
p2m−1

· (tµ2)
ρ(2m−2)

is non-trivial only on the summand

E(un, ǭ1, λ2) ⊗ P (t±p2m−1

, tµ2)
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of the E2ρ(2m−1)+1 = E2ρ(2m)-term, with homology

E(un, ǭ1) ⊗ Fp{t
jλ2 | vp(j) = 2m − 1} ⊗ Pρ(2m−2)(tµ2)

⊕ E(un, ǭ1, λ2) ⊗ P (t±p2m

, tµ2) .

This gives the stated E2ρ(2m)+1-term. The final differential

d2ρ(2n)+1(un · t−p2n

) = (tµ2)
ρ(2n−2)+1

is non-trivial only on the summand

E(un, ǭ1, λ2) ⊗ P (t±p2n

, tµ2)

of the E2ρ(2n)+1-term, with homology

E(ǭ1, λ2) ⊗ P (t±p2n

) ⊗ Pρ(2n−2)+1(tµ2) .

This gives the stated E2ρ(2n)+2-term. At this stage there is no room for any further
differentials, since the spectral sequence is concentrated in a narrower horizontal band
than the vertical height of the following differentials. ¤

Next we compare the Cpn-Tate spectral sequence with the Cpn-homotopy spectral se-
quence obtained by restricting the E2-term to the second quadrant (s ≤ 0, t ≥ 0). It is
algebraically easier to handle the latter after inverting µ2, which can be interpreted as
comparing THH(ℓ/p) with its Cp-Tate construction.

In general, there is a commutative diagram

(6.3) THH(B)Cpn R
//

Γn

²²

THH(B)C
pn−1

Γn−1
//

Γ̂n

²²

THH(B)hC
pn−1

Γ̂
hC

pn−1

1
²²

THH(B)hCpn Rh
// THH(B)tCpn

Gn−1
// (THH(B)tCp)hC

pn−1

where Gn−1 is the comparison map from the Cpn−1-fixed points to the Cpn−1-homotopy
fixed points of THH(B)tCp , in view of the identification

(THH(B)tCp)C
pn−1 = THH(B)tCpn .

We are of course considering the case B = ℓ/p. In V (1)-homotopy all four maps
with labels containing Γ are (2p − 2)-coconnected, by Corollary 5.10, so Gn−1 is at least
(2p − 1)-coconnected. (We shall see in Lemma 6.11 that V (1)∗Gn−1 is an isomorphism

in all degrees.) By Proposition 5.9 the map Γ̂1 precisely inverts µ2, so the E2-term of
the Cpn-homotopy fixed point spectral sequence in V (1)-homotopy for THH(ℓ/p)tCp is
obtained by inverting µ2 in E2

∗∗(Cpn , ℓ/p). We denote it by µ−1
2 E∗(Cpn , ℓ/p), even though

in later terms only a power of µ2 is present.

Theorem 6.4. The Cpn-homotopy fixed point spectral sequence µ−1
2 E∗(Cpn , ℓ/p) in V (1)-

homotopy for THH(ℓ/p)tCp begins

µ−1
2 E2

∗∗(Cpn , ℓ/p) = E(un, λ2) ⊗ Fp{1, ǫ0, µ0, ǫ0µ0, . . . , µ
p−1
0 , ǭ1} ⊗ P (t, µ±1

2 )

and converges to V (1)∗(THH(ℓ/p)tCp)hCpn , which receives a (2p − 2)-coconnected map

(Γ̂1)
hCpn from V (1)∗THH(ℓ/p)hCpn . There is an initial d2-differential generated by

d2(ǫ0µ
i−1
0 ) = tµi

0
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for 0 < i < p. Next, there are 2n families of even length differentials generated by

d2ρ(2k−1)(µp2k−p2k−1+j
2 · ǭ1) = (tµ2)

ρ(2k−1) · µj
2

for vp(j) = 2k − 2, for each k = 1, . . . , n, and

d2ρ(2k)(µp2k−p2k−1

2 ) = λ2 · µ
−p2k−1

2 · (tµ2)
ρ(2k)

for each k = 1, . . . , n. Finally, there is a differential of odd length generated by

d2ρ(2n)+1(un · µp2n

2 ) = (tµ2)
ρ(2n)+1 .

Proof. The differential pattern follows from Theorem 6.1 by naturality with respect to
the maps of spectral sequences

µ−1
2 E∗(Cpn , ℓ/p)

Γ̂
hCpn

1←−−− E∗(Cpn , ℓ/p)
Rh

−→ Ê∗(Cpn , ℓ/p)

induced by Γ̂
hCpn

1 and Rh. The first inverts µ2 and the second inverts t, at the level of
E2-terms. We are also using that tµ2, the image of v2, multiplies as an infinite cycle in
all of these spectral sequences. ¤

Corollary 6.5. The initial differential in the Cpn-homotopy fixed point spectral sequence
in V (1)-homotopy for THH(ℓ/p)tCp leaves

µ−1
2 E3

∗∗(Cpn , ℓ/p) = E(un, λ2) ⊗ Fp{µ
i
0 | 0 < i < p} ⊗ P (µ±1

2 )

⊕ E(un, ǭ1, λ2) ⊗ P (µ±1
2 , tµ2) .

The next 2n families of differentials leave the intermediate terms

µ−1
2 E2ρ(2m−1)+1

∗∗ (Cpn , ℓ/p) = E(un, λ2) ⊗ Fp{µ
i
0 | 0 < i < p} ⊗ P (µ±1

2 )

⊕

m⊕

k=1

E(un, λ2) ⊗ Fp{µ
j
2 | vp(j) = 2k − 2} ⊗ Pρ(2k−1)(tµ2)

⊕

m−1⊕

k=1

E(un, ǭ1) ⊗ Fp{λ2µ
j
2 | vp(j) = 2k − 1} ⊗ Pρ(2k)(tµ2)

⊕ E(un, ǭ1, λ2) ⊗ P (µ±p2m−1

2 , tµ2)

and

µ−1
2 E2ρ(2m)+1

∗∗ (Cpn , ℓ/p) = E(un, λ2) ⊗ Fp{µ
i
0 | 0 < i < p} ⊗ P (µ±1

2 )

⊕

m⊕

k=1

E(un, λ2) ⊗ Fp{µ
j
2 | vp(j) = 2k − 2} ⊗ Pρ(2k−1)(tµ2)

⊕
m⊕

k=1

E(un, ǭ1) ⊗ Fp{λ2µ
j
2 | vp(j) = 2k − 1} ⊗ Pρ(2k)(tµ2)

⊕ E(un, ǭ1, λ2) ⊗ P (µ±p2m

2 , tµ2)
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for m = 1, . . . , n. The final differential leaves the E2ρ(2n)+2 = E∞-term, equal to

µ−1
2 E∞

∗∗(Cpn , ℓ/p) = E(un, λ2) ⊗ Fp{µ
i
0 | 0 < i < p} ⊗ P (µ±1

2 )

⊕

n⊕

k=1

E(un, λ2) ⊗ Fp{µ
j
2 | vp(j) = 2k − 2} ⊗ Pρ(2k−1)(tµ2)

⊕
n⊕

k=1

E(un, ǭ1) ⊗ Fp{λ2µ
j
2 | vp(j) = 2k − 1} ⊗ Pρ(2k)(tµ2)

⊕ E(ǭ1, λ2) ⊗ P (µ±p2n

2 ) ⊗ Pρ(2n)+1(tµ2) .

Proof. The computation of the E3-term from the E2-term is straightforward. The rest
of the proof goes by a secondary induction on m = 1, . . . , n, very much like the proof of
Corollary 6.2. The differential

d2ρ(2m−1)(µp2m−p2m−1+j
2 · ǭ1) = (tµ2)

ρ(2m−1) · µj
2

for vp(j) = 2m − 2 is non-trivial only on the summand

E(un, ǭ1, λ2) ⊗ P (µ±p2m−2

2 , tµ2)

of the E3 = E2ρ(1)-term (for m = 1), resp. the E2ρ(2m−2)+1 = E2ρ(2m−1)-term (for m =
2, . . . , n). Its homology is

E(un, λ2) ⊗ Fp{µ
j
2 | vp(j) = 2m − 2} ⊗ Pρ(2m−1)(tµ2)

⊕ E(un, ǭ1, λ2) ⊗ P (µ±p2m−1

2 , tµ2) ,

which gives the stated E2ρ(2m−1)+1-term. The differential

d2ρ(2m)(µp2m−p2m−1

2 ) = λ2 · µ
−p2m−1

2 · (tµ2)
ρ(2m)

is non-trivial only on the summand

E(un, ǭ1, λ2) ⊗ P (µ±p2m−1

2 , tµ2)

of the E2ρ(2m−1)+1 = E2ρ(2m)-term, leaving

E(un, ǭ1) ⊗ Fp{λ2µ
j
2 | vp(j) = 2m − 1} ⊗ Pρ(2m)(tµ2)

⊕ E(un, ǭ1, λ2) ⊗ P (µ±p2m

2 , tµ2) .

This gives the stated E2ρ(2m)+1-term. The final differential

d2ρ(2n)+1(un · µp2n

2 ) = (tµ2)
ρ(2n)+1

is non-trivial only on the summand

E(un, ǭ1, λ2) ⊗ P (µ±p2n

2 , tµ2)

of the E2ρ(2n)+1-term, with homology

E(ǭ1, λ2) ⊗ P (µ±p2n

2 ) ⊗ Pρ(2n)+1(tµ2) .

This gives the stated E2ρ(2n)+2-term. There is no room for any further differentials, since
the spectral sequence is concentrated in a narrower vertical band than the horizontal
width of the following differentials, so E2ρ(2n)+2 = E∞. ¤
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Proof of Theorem 6.1. To make the inductive step to Cpn+1 , we use that the first dr-

differential of odd length in Ê∗(Cpn , ℓ/p) occurs for r = r0 = 2ρ(2n) + 1. It follows

from [AR02, 5.2] that the terms Êr(Cpn , ℓ/p) and Êr(Cpn+1 , ℓ/p) are isomorphic for r ≤
2ρ(2n)+1, via the Frobenius map (taking ti to ti) in even columns and the Verschiebung
map (taking unt

i to un+1t
i) in odd columns. Furthermore, the differential d2ρ(2n)+1 is

zero in the latter spectral sequence. This proves the part of Theorem 6.1 for n + 1 that
concerns the differentials leading up to the term

(6.6)

Ê2ρ(2n)+2(Cpn+1 , ℓ/p) = E(un+1, λ2) ⊗ Fp{t
−i | 0 < i < p} ⊗ P (t±p2

)

⊕
n⊕

k=2

E(un+1, λ2) ⊗ Fp{t
j | vp(j) = 2k − 2} ⊗ Pρ(2k−3)(tµ2)

⊕
n⊕

k=2

E(un+1, ǭ1) ⊗ Fp{t
jλ2 | vp(j) = 2k − 1} ⊗ Pρ(2k−2)(tµ2)

⊕ E(un+1, ǭ1, λ2) ⊗ P (t±p2n

, tµ2) .

Next we use the following commutative diagram, where we abbreviate THH(B) to
T (B):

(6.7) (T (B)tCp)hCpn

F

²²

T (B)hCpn
Γ̂

hCpn

1
oo

F

²²

T (B)Cpn
Γn

oo
Γ̂n+1

//

F

²²

T (B)tC
pn+1

F

²²

T (B)tCp T (B)
Γ̂1

oo T (B)
Γ̂1

// T (B)tCp

The horizontal maps all induce (2p − 2)-coconnected maps in V (1)-homotopy for B =
ℓ/p. Here F is the Frobenius map, forgetting part of the equivariance. Thus the map

Γ̂n+1 to the right induces an isomorphism of E(λ2) ⊗ P (v2)-modules in all degrees ∗ >
(2p − 2) from V (1)∗THH(ℓ/p)Cpn , implicitly identified to the left with the abutment of

µ−1
2 E∗(Cpn , ℓ/p), to V (1)∗THH(ℓ/p)tC

pn+1 , which is the abutment of Ê∗(Cpn+1 , ℓ/p). The

diagram above ensures that the isomorphism induced by Γ̂n+1 is compatible with the one
induced by Γ̂1. By Proposition 5.9 it takes ǭ1, λ2 and µ2 to ǭ1, λ2 and t−p2

, respectively,
and similarly for monomials in these classes.

We focus on the summand

E(un, λ2) ⊗ Fp{µ
j
2 | vp(j) = 2n − 2} ⊗ Pρ(2n−1)(tµ2)

in µ−1
2 E∞

∗∗(Cpn , ℓ/p), abutting to V (1)∗THH(ℓ/p)Cpn in degrees > (2p−2). In the P (v2)-

module structure on the abutment, each class µj
2 with vp(j) = 2n − 2, j > 0, generates

a copy of Pρ(2n−1)(v2), since there are no permanent cycles in the same total degree as

y = (tµ2)
ρ(2n−1)·µj

2 that have lower (= more negative) homotopy fixed point filtration. See
Lemma 6.8 below for the elementary verification. The P (v2)-module isomorphism induced

by Γ̂n+1 must take this to a copy of Pρ(2n−1)(v2) in V (1)∗THH(ℓ/p)tC
pn+1 , generated by

t−p2j.
Writing i = −p2j, we deduce that for vp(i) = 2n, i < 0, the infinite cycle z =

(tµ2)
ρ(2n−1) · ti must represent zero in the abutment, and must therefore be hit by a

differential z = dr(x) in the Cpn+1-Tate spectral sequence. Here r ≥ 2ρ(2n) + 2.
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Since z generates a free copy of P (tµ2) in the E2ρ(2n)+2-term displayed in (6.6), and dr

is P (tµ2)-linear, the class x cannot be annihilated by any power of tµ2. This means that
x must be contained in the summand

E(un+1, ǭ1, λ2) ⊗ P (t±p2n

, tµ2)

of Ê
2ρ(2n)+2
∗∗ (Cpn+1 , ℓ/p). By an elementary check of bidegrees, see Lemma 6.9 below, the

only possibility is that x has vertical degree (2p − 1), so that we have differentials

d2ρ(2n+1)(tp
2n+1−p2n+2+i · ǭ1) = (tµ2)

ρ(2n−1) · ti

for all i < 0 with vp(i) = 2n. The cases i > 0 follow by the module structure over the
Cpn+1-Tate spectral sequence for ℓ. The remaining two differentials,

d2ρ(2n+2)(tp
2n+1−p2n+2

) = λ2 · t
p2n+1

· (tµ2)
ρ(2n)

and

d2ρ(2n+2)+1(un+1 · t
−p2n+2

) = (tµ2)
ρ(2n)+1

are also present in the Cpn+1-Tate spectral sequence for ℓ, see [AR02, 6.1], hence follow
in the present case by the module structure. With this we have established the complete
differential pattern asserted by Theorem 6.1. ¤

Lemma 6.8. For vp(j) = 2n − 2, n ≥ 1, there are no classes in µ−1
2 E∞

∗∗(Cpn , ℓ/p) in the

same total degree as y = (tµ2)
ρ(2n−1) · µj

2 that have lower homotopy fixed point filtration.

Proof. The total degree of y is 2(p2n+2 − p2n+1 + p − 1) + 2p2j ≡ (2p − 2) mod 2p2n,
which is even.

Looking at the formula for µ−1
2 E∞

∗∗(Cpn , ℓ/p) in Corollary 6.5, the classes of lower fil-
tration than y all lie in the terms

E(un, ǭ1) ⊗ Fp{λ2µ
i
2 | vp(i) = 2n − 1} ⊗ Pρ(2n)(tµ2)

and

E(ǭ1, λ2) ⊗ P (µ±p2n

2 ) ⊗ Pρ(2n)+1(tµ2) .

Those in even total degree and of lower filtration than y are

unλ2 · µ
i
2(tµ2)

e, ǭ1λ2 · µ
i
2(tµ2)

e

with vp(i) = 2n − 1, ρ(2n − 1) < e < ρ(2n), and

µi
2(tµ2)

e, ǭ1λ2 · µ
i
2(tµ2)

e

with vp(i) ≥ 2n, ρ(2n − 1) < e ≤ ρ(2n).
The total degree of unλ2·µ

i
2(tµ2)

e for vp(i) = 2n−1 is (−1)+(2p2−1)+2p2i+(2p2−2)e ≡
(2p2 − 2)(e + 1) mod 2p2n. For this to agree with the total degree of y, we must have
(2p−2) ≡ (2p2−2)(e+1) mod 2p2n, so (e+1) ≡ 1/(1+p) mod p2n and e ≡ ρ(2n−1)−1
mod p2n. There is no such e with ρ(2n − 1) < e < ρ(2n).

The total degree of ǭ1λ2 · µ
i
2(tµ2)

e for vp(i) = 2n − 1 is (2p − 1) + (2p2 − 1) + 2p2i +
(2p2 − 2)e ≡ 2p + (2p2 − 2)(e + 1) mod 2p2n. To agree with that of y, we must have
(2p−2) ≡ 2p+(2p2−2)(e+1) mod 2p2n, so (e+1) ≡ 1/(1−p2) mod p2n and e ≡ ρ(2n)
mod p2n. There is no such e with ρ(2n − 1) < e < ρ(2n).

The total degree of µi
2(tµ2)

e for vp(i) ≥ 2n is 2p2i + (2p2 − 2)e ≡ (2p2 − 2)e mod 2p2n.
To agree with that of y, we must have (2p−2) ≡ (2p2−2)e mod 2p2n, so e ≡ 1/(1+p) ≡
ρ(2n − 1) mod p2n. There is no such e with ρ(2n − 1) < e ≤ ρ(2n).
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The total degree of ǭ1λ2 ·µ
i
2(tµ2)

e for vp(i) ≥ 2n is (2p−1)+(2p2−1)+2p2i+(2p2−2)e.
To agree modulo 2p2n with that of y, we must have e ≡ ρ(2n) mod p2n. The only such
e with ρ(2n − 1) < e ≤ ρ(2n) is e = ρ(2n). But in that case, the total degree of
ǭ1λ2 · µ

i
2(tµ2)

e is 2p + 2p2i + (2p2 − 2)(ρ(2n) + 1) = 2(p2n+2 + p − 1) + 2p2i. To be equal
to that of y, we must have 2p2i + 2p2n+1 = 2p2j, which is impossible for vp(i) ≥ 2n and
vp(j) = 2n − 2. ¤

Lemma 6.9. For vp(i) = 2n, n ≥ 1 and z = (tµ2)
ρ(2n−1) · ti, the only class in

E(un+1, ǭ1, λ2) ⊗ P (t±p2n

, tµ2)

that can support a differential dr(x) = z for r ≥ 2ρ(2n) + 2 is (a unit times)

x = tp
2n+1−p2n+2+i · ǭ1 .

Proof. The class z has total degree (2p2−2)ρ(2n−1)−2i = 2p2n+2−2p2n+1+2p−2−2i ≡
(2p−2) mod 2p2n, which is even, and vertical degree 2p2ρ(2n−1). Hence x has odd total
degree, and vertical degree at most 2p2ρ(2n−1)−2ρ(2n)−1 = 2p2n+2−2p2n+1−· · ·−2p3−1.
This leaves the possibilities

un+1 · t
j(tµ2)

e, ǭ1 · t
j(tµ2)

e, λ2 · t
j(tµ2)

e

with vp(j) ≥ 2n and 0 ≤ e < p2n − p2n−1 − · · · − p = ρ(2n − 1) − ρ(2n − 2) − 1, and

un+1ǭ1λ2 · t
j(tµ2)

e

with vp(j) ≥ 2n and 0 ≤ e < p2n − p2n−1 − · · · − p − 1 = ρ(2n − 1) − ρ(2n − 2) − 2.
The total degree of x must be one more than the total degree of z, hence is congruent

to (2p − 1) modulo 2p2n.
The total degree of un+1 · t

j(tµ2)
e is −1− 2j +(2p2 − 2)e ≡ −1+ (2p2 − 2)e mod 2p2n.

To have (2p − 1) ≡ −1 + (2p2 − 2)e mod 2p2n we must have e ≡ −p/(1 − p2) ≡ p2n −
p2n−1 − · · · − p mod p2n, which does not happen for e in the allowable range.

The total degree of λ2 · t
j(tµ2)

e is (2p2 − 1) − 2j + (2p2 − 2)e ≡ (2p2 − 1) + (2p2 − 2)e
mod 2p2n. To have (2p − 1) ≡ (2p2 − 1) + (2p2 − 2)e mod 2p2n we must have e ≡
−p/(1 + p) ≡ ρ(2n − 1) − 1 mod p2n, which does not happen.

The total degree of un+1ǭ1λ2 · t
j(tµ2)

e is −1 + (2p− 1) + (2p2 − 1)− 2j + (2p2 − 2)e ≡
(2p − 1) + (2p2 − 2)(e + 1) mod 2p2n. To have (2p − 1) ≡ (2p − 1) + (2p2 − 2)(e + 1)
mod 2p2n we must have (e + 1) ≡ 0 mod p2n, so e ≡ p2n − 1 mod p2n, which does not
happen.

The total degree of ǭ1 · t
j(tµ2)

e is (2p − 1) − 2j + (2p2 − 2)e ≡ (2p − 1) + (2p2 − 2)e
mod 2p2n. To have (2p − 1) ≡ (2p − 1) + (2p2 − 2)e mod 2p2n, we must have e ≡ 0
mod p2n, so e = 0 is the only possibility in the allowable range. In that case, a check of
total degrees shows that we must have j = p2n+1 − p2n+2 + i. ¤

Corollary 6.10. V (1)∗THH(ℓ/p)Cpn is finite in each degree.

Proof. This is clear by inspection of the E∞-term in Corollary 6.2. ¤

Lemma 6.11. The map Gn induces an isomorphism

V (1)∗THH(ℓ/p)tC
pn+1

∼=
−→ V (1)∗(THH(ℓ/p)tCp)hCpn

in all degrees. In the limit over the Frobenius maps F , there is a map G inducing an
isomorphism

V (1)∗THH(ℓ/p)tS1 ∼=
−→ V (1)∗(THH(ℓ/p)tCp)hS1

.
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Proof. As remarked after diagram (6.3), Gn induces an isomorphism in V (1)-homotopy

above degree (2p − 2). The permanent cycle t−p2n+2

in Ê∞
∗∗(Cpn+1 , ℓ) acts invertibly on

Ê∞
∗∗(Cpn+1 , ℓ/p), and its image Gn(t−p2n+2

) = µp2n

2 in µ−1
2 E∞

∗∗(Cpn , ℓ) acts invertibly on
µ−1

2 E∞
∗∗(Cpn , ℓ/p). Therefore the module action derived from the ℓ-algebra structure on

ℓ/p ensures that Gn induces isomorphisms in V (1)-homotopy in all degrees. ¤

Theorem 6.12. (a) The associated graded of V (1)∗THH(ℓ/p)tS1

for the S1-Tate spectral
sequence is

Ê∞
∗∗(S

1, ℓ/p) = E(λ2) ⊗ Fp{t
−i | 0 < i < p} ⊗ P (t±p2

)

⊕
⊕

k≥2

E(λ2) ⊗ Fp{t
j | vp(j) = 2k − 2} ⊗ Pρ(2k−3)(tµ2)

⊕
⊕

k≥2

E(ǭ1) ⊗ Fp{t
jλ2 | vp(j) = 2k − 1} ⊗ Pρ(2k−2)(tµ2)

⊕ E(ǭ1, λ2) ⊗ P (tµ2) .

(b) The associated graded of V (1)∗THH(ℓ/p)hS1

for the S1-homotopy fixed point spec-
tral sequence maps by a (2p − 2)-coconnected map to

µ−1
2 E∞

∗∗(S
1, ℓ/p) = E(λ2) ⊗ Fp{µ

i
0 | 0 < i < p} ⊗ P (µ±1

2 )

⊕
⊕

k≥1

E(λ2) ⊗ Fp{µ
j
2 | vp(j) = 2k − 2} ⊗ Pρ(2k−1)(tµ2)

⊕
⊕

k≥1

E(ǭ1) ⊗ Fp{λ2µ
j
2 | vp(j) = 2k − 1} ⊗ Pρ(2k)(tµ2)

⊕ E(ǭ1, λ2) ⊗ P (tµ2) .

(c) The isomorphism from (a) to (b) induced by G takes t−i to µi
0 for 0 < i < p and

ti to µj
2 for i + p2j = 0. Furthermore, it takes multiples by ǭ1, λ2 or tµ2 in the source to

the same multiples in the target.

Proof. Claims (a) and (b) follow by passage to the limit over n from Corollaries 6.2
and 6.5. Claim (c) follows by passage to the same limit from the formulas for the iso-

morphism induced by Γ̂n+1, which were given below diagram (6.7). ¤

7. Topological cyclic homology

By definition, there is a fiber sequence

TC(B)
π
−→ TF (B)

R−1
−−→ TF (B)

inducing a long exact sequence

(7.1) . . .
∂
−→ V (1)∗TC(B)

π
−→ V (1)∗TF (B)

R−1
−−→ V (1)∗TF (B)

∂
−→ . . .

in V (1)-homotopy. By Corollary 5.10, there are (2p−2)-coconnected maps Γ and Γ̂ from

V (1)∗TF (ℓ/p) to V (1)∗THH(ℓ/p)hS1

and V (1)∗THH(ℓ/p)tS1

, respectively. We model

V (1)∗TF (ℓ/p) in degrees > (2p− 2) by the map Γ̂ to the S1-Tate construction. Then, by
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diagram (6.3), R is modeled in the same range of degrees by the chain of maps below.

V (1)∗THH(B)tS1

G

**TTTTTTTTTTTTTTTT

V (1)∗THH(B)hS1

(Γ̂1)hS1

²²

Rh
// V (1)∗THH(B)tS1

V (1)∗(THH(B)tCp)hS1

Here Rh induces a map of spectral sequences

E∗(Rh) : E∗(S1, B) → Ê∗(S1, B) ,

which at the E2-term equals the inclusion that algebraically inverts t. When B = ℓ/p,
the left hand map G is an isomorphism by Lemma 6.11, and the middle (wrong-way)
map is (2p − 2)-coconnected.

Proposition 7.2. In degrees > (2p − 2), the homomorphism

E∞(Rh) : E∞(S1, ℓ/p) → Ê∞(S1, ℓ/p)

maps
(a) E(ǭ1, λ2) ⊗ P (tµ2) identically to the same expression;
(b) E(λ2) ⊗ Fp{µ

−j
2 } ⊗ Pρ(2k−1)(tµ2) surjectively onto

E(λ2) ⊗ Fp{t
j} ⊗ Pρ(2k−3)(tµ2)

for each k ≥ 2, j = dp2k−2, 0 < d < p2 − p and p ∤ d;
(c) E(ǭ1) ⊗ Fp{λ2µ

−j
2 } ⊗ Pρ(2k)(tµ2) surjectively onto

E(ǭ1) ⊗ Fp{t
jλ2} ⊗ Pρ(2k−2)(tµ2)

for each k ≥ 2, j = dp2k−1 and 0 < d < p;
(d) the remaining terms to zero.

Proof. Consider the summands of E∞(S1, ℓ/p) and Ê∞(S1, ℓ/p), as given in Theorem 6.12.
Clearly, the first term E(λ2)⊗ Fp{µ

i
0 | 0 < i < p} ⊗ P (µ2) goes to zero (these classes are

hit by d2-differentials), and the last term E(ǭ1, λ2)⊗P (tµ2) maps identically to the same
term. This proves (a) and part of (d).

For each k ≥ 1 and j = dp2k−2 with p ∤ d, the term E(λ2) ⊗ Fp{µ
−j
2 } ⊗ Pρ(2k−1)(tµ2)

maps to the term E(λ2)⊗Fp{t
j}⊗Pρ(2k−3)(tµ2), except that the target is zero for k = 1.

In symbols, the element λδ
2µ

−j
2 (tµ2)

i maps to the element λδ
2t

j(tµ2)
i−j. If d < 0, then

the t-exponent in the target is bounded above by dp2k−2 + ρ(2k − 3) < 0, so the target
lives in the right half-plane and is essentially not hit by the source, which lives in the
left half-plane. If d > p2 − p, then the total degree in the source is bounded above by
(2p2−1)−2dp2k +ρ(2k−1)(2p2−2) < 2p−2, so the source lives in total degree < (2p−2)
and will be disregarded. If 0 < d < p2 − p, then ρ(2k − 1) − dp2k−2 > ρ(2k − 3) and
−dp2k−2 < 0, so the source surjects onto the target. This proves (b) and part of (d).

Lastly, for each k ≥ 1 and j = dp2k−1 with p ∤ d, the term E(ǭ1)⊗Fp{λ2µ
−j
2 }⊗Pρ(2k)(tµ2)

maps to the term E(ǭ1)⊗Fp{t
jλ2}⊗Pρ(2k−2)(tµ2). The target is zero for k = 1. If d < 0,

then dp2k−1 + ρ(2k − 2) < 0 so the target lives in the right half-plane. If d > p, then
(2p−1)+(2p2 −1)−2dp2k+1 +ρ(2k)(2p2−2) < 2p−2, so the source lives in total degree
< (2p− 2). If 0 < d < p, then ρ(2k)− dp2k−1 > ρ(2k− 2) and −dp2k−1 < 0, so the source
surjects onto the target. This proves (c) and the remaining part of (d). ¤
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Definition 7.3. Let
A = E(ǭ1, λ2) ⊗ P (tµ2)

Bk = E(λ2) ⊗ Fp{t
dp2k−2

| 0 < d < p2 − p, p ∤ d} ⊗ Pρ(2k−3)(tµ2)

Ck = E(ǭ1) ⊗ Fp{t
dp2k−1

λ2 | 0 < d < p} ⊗ Pρ(2k−2)(tµ2)

for k ≥ 2 and let D be the span of the remaining monomials in Ê∞(S1, ℓ/p). Let

B =
⊕

k≥2 Bk and C =
⊕

k≥2 Ck. Then Ê∞(S1, ℓ/p) = A ⊕ B ⊕ C ⊕ D.

Proposition 7.4. In degrees > (2p − 2), there are closed subgroups Ã = E(ǭ1, λ2) ⊗

P (v2), B̃k, C̃k and D̃ in V (1)∗TF (ℓ/p), represented by A, Bk, Ck and D in Ê∞(S1, ℓ/p),
respectively, such that the homomorphism induced by the restriction map R

(a) is the identity on Ã;

(b) maps B̃k+1 surjectively onto B̃k for all k ≥ 2;

(c) maps C̃k+1 surjectively onto C̃k for all k ≥ 2;

(d) is zero on B̃2, C̃2 and D̃.

In these degrees, V (1)∗TF (ℓ/p) ∼= Ã⊕B̃⊕C̃⊕D̃, where B̃ =
∏

k≥2 B̃k and C̃ =
∏

k≥2 C̃k.

Proof. In terms of the model THH(ℓ/p)tS1

for TF (ℓ/p), the restriction map R is given
in these degrees as the composite of the isomorphism G, computed in Theorem 6.12(c),

and the map Ê∞(Rh), computed in Proposition 7.2. This gives the desired formulas at
the level of E∞-terms. The rest of the argument is the same as that for Theorem 7.7 of
[AR02], using Corollary 6.10 to control the topologies, and will be omitted. ¤

Remark 7.5. Here we have followed the basic computational strategy of [BM94], [BM95]

and [AR02]. It would be interesting to have a more concrete construction of the lifts B̃k,

C̃k and D̃, in terms of de Rham–Witt operators R, F , V and d = σ, like in the algebraic
case of [HM97] and [HM03].

Proposition 7.6. In degrees > (2p − 2) there are isomorphisms

ker(R − 1) ∼= Ã ⊕ lim
k

B̃k ⊕ lim
k

C̃k

∼= E(ǭ1, λ2) ⊗ P (v2)

⊕ E(λ2) ⊗ Fp{t
d | 0 < d < p2 − p, p ∤ d} ⊗ P (v2)

⊕ E(ǭ1) ⊗ Fp{t
dpλ2 | 0 < d < p} ⊗ P (v2)

and cok(R − 1) ∼= Ã = E(ǭ1, λ2) ⊗ P (v2). Hence there is an isomorphism

V (1)∗TC(ℓ/p) ∼= E(∂, ǭ1, λ2) ⊗ P (v2)

⊕ E(λ2) ⊗ Fp{t
d | 0 < d < p2 − p, p ∤ d} ⊗ P (v2)

⊕ E(ǭ1) ⊗ Fp{t
dpλ2 | 0 < d < p} ⊗ P (v2)

in these degrees, where ∂ has degree −1 and represents the image of 1 under the connecting
map ∂ in (7.1).

Proof. By Proposition 7.4, the homomorphism R − 1 is zero on Ã and an isomorphism

on D̃. Furthermore, there is an exact sequence

0 → lim
k

B̃k →
∏

k≥2

B̃k
R−1
−−→

∏

k≥2

B̃k → lim1

k
B̃k → 0
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and similarly for the C’s. The derived limit on the right vanishes since each B̃k+1 surjects

onto B̃k.
Multiplication by tµ2 in each Bk is realized by multiplication by v2 in B̃k. Each B̃k is a

sum of 2(p− 1)2 cyclic P (v2)-modules, and since ρ(2k − 3) grows to infinity with k their
limit is a free P (v2)-module of the same rank, with the indicated generators td and tdλ2

for 0 < d < p2 − p, p ∤ d. The argument for the C’s is practically the same.
The long exact sequence (7.1) yields the short exact sequence

0 → Σ−1 cok(R − 1)
∂
−→ V (1)∗TC(ℓ/p)

π
−→ ker(R − 1) → 0 ,

from which the formula for the middle term follows. ¤

Remark 7.7. A more obvious set of E(λ2)⊗P (v2)-module generators for limk B̃k would be

the classes tdp2

in B2
∼= B̃2, for 0 < d < p2−p, p ∤ d. Under the canonical map TF (ℓ/p) →

THH(ℓ/p)Cp , modeled here by THH(ℓ/p)tS1

→ (THH(ℓ/p)tCp)hCp , these map to the
classes µ−d

2 . Since we are only concerned with degrees > (2p−2) we may equally well use
their v2-power multiplies (tµ2)

d · µ−d
2 = td as generators, with the advantage that these

are in the image of the localization map THH(ℓ/p)hCp → (THH(ℓ/p)tCp)hCp . Hence the

class denoted td in limk B̃k is chosen so as to map under TF (ℓ/p) → THH(ℓ/p)hCp to td

in E∞
∗∗(Cp; ℓ/p). Similarly, the class denoted tdpλ2 in limk C̃k is chosen so as to map to

tdpλ2 in E∞
∗∗(Cp; ℓ/p).

The map π : ℓ/p → Z/p is (2p − 2)-connected, hence induces (2p − 1)-connected maps
π∗ : K(ℓ/p) → K(Z/p) and π∗ : V (1)∗TC(ℓ/p) → V (1)∗TC(Z/p), by [BM94, 10.9] and
[Dun97]. Here TC(Z/p) ≃ HZp ∨ Σ−1HZp and V (1)∗TC(Z/p) ∼= E(∂, ǭ1), so we can
recover V (1)∗TC(ℓ/p) in degrees ≤ (2p − 2) from this map.

Theorem 7.8. There is an isomorphism of E(λ1, λ2) ⊗ P (v2)-modules

V (1)∗TC(ℓ/p) ∼= P (v2) ⊗ E(∂, ǭ1, λ2)

⊕ P (v2) ⊗ E(dlog v1) ⊗ Fp{t
dv2 | 0 < d < p2 − p, p ∤ d}

⊕ P (v2) ⊗ E(ǭ1) ⊗ Fp{t
dpλ2 | 0 < d < p}

where v2 · dlog v1 = λ2. The degrees are |∂| = −1, |ǭ1| = |λ1| = 2p− 1, |λ2| = 2p2 − 1 and
|v2| = 2p2 − 2. The formal multipliers have degrees |t| = −2 and | dlog v1| = 1.

The notation dlog v1 for the multiplier v−1
2 λ2 is suggested by the relation v1 ·dlog p = λ1

in V (0)∗TC(Z(p)|Q).

Proof. Only the additive generators td for 0 < d < p2 − p, p ∤ d from Proposition 7.6
do not appear in V (1)∗TC(ℓ/p), but their multiples by λ2 and positive powers of v2 do.
This leads to the given formula, where dlog v1 · t

dv2 must be read as tdλ2. ¤

By [HM97] the cyclotomic trace map of [BHM93] induces cofiber sequences

(7.9) K(Bp)p
trc
−→ TC(B)p

g
−→ Σ−1HZp

for each connective S-algebra B with π0(Bp) = Zp or Z/p, and thus long exact sequences

· · · → V (1)∗K(Bp)
trc
−→ V (1)∗TC(B)

g
−→ Σ−1E(ǭ1) → . . . .

This uses the identifications W (Zp)F
∼= W (Z/p)F

∼= Zp of Frobenius coinvariants of Witt
rings, and applies in particular for B = HZ(p), HZ/p, ℓ and ℓ/p.
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Theorem 7.10. There is an isomorphism of E(λ1, λ2) ⊗ P (v2)-modules

V (1)∗K(ℓ/p) ∼= P (v2) ⊗ E(ǭ1) ⊗ Fp{1, ∂λ2, λ2, ∂v2}

⊕ P (v2) ⊗ E(dlog v1) ⊗ Fp{t
dv2 | 0 < d < p2 − p, p ∤ d}

⊕ P (v2) ⊗ E(ǭ1) ⊗ Fp{t
dpλ2 | 0 < d < p} .

This is a free P (v2)-module of rank (2p2 − 2p + 8) and of zero Euler characteristic.

Proof. In the case B = Z/p, K(Z/p)p ≃ HZp and the map g is split surjective up to
homotopy. So the induced homomorphism to V (1)∗Σ

−1HZp = Σ−1E(ǭ1) is surjective.
Since π : ℓ/p → Z/p induces a (2p − 1)-connected map in topological cyclic homology,
and Σ−1E(ǭ1) is concentrated in degrees ≤ (2p − 2), it follows by naturality that also in
the case B = ℓ/p the map g induces a surjection in V (1)-homotopy. The kernel of the
surjection P (v2)⊗E(∂, ǭ1, λ2) → Σ−1E(ǭ1) gives the first row in the asserted formula. ¤
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