ALGEBRAIC K-THEORY OF THE FIRST MORAVA K-THEORY

CHRISTIAN AUSONI AND JOHN ROGNES

1. INTRODUCTION

In this paper we continue the investigation from [AR02] and [Aus10] of the algebraic K-
theory of topological K-theory and related S-algebras. Let ¢, be the p-complete Adams
summand of connective complex K-theory, and let ¢/p = k(1) be the first connective
Morava K-theory. It has a unique S-algebra structure [Ang], and we show in Section 2
that ¢/p is an (,-algebra (in uncountably many ways), so that K (¢/p) is a K (¢,)-module
spectrum.

Let V(1) = S/(p, v1) be the type 2 Smith-Toda complex. It is a homotopy commutative
ring spectrum for p > 5, with a preferred periodic class vy € V/(1),. We write V(1).(X) =
m(V (1) A X) for the V(1)-homotopy of a spectrum X. Multiplication by vy makes
V(1).(X) a P(vg)-module, where P(vy) denotes the polynomial algebra over F,, generated
by V3.

We computed the V(1)-homotopy of K(¢,) in [AR02], showing that it is essentially
a free P(vg)-module on (4p + 4) generators. In particular, there are preferred classes
A, Ag € V(1)K ({,) generating an exterior subalgebra E(A, A2). Hence V(1)K (¢/p)
is an E(A, A2) ® P(vy)-module. The following is our main result, corresponding to
Theorem 7.10 in the body of the paper.

Theorem 1.1. Let p > 5 be a prime and let {/p = k(1) be the first connective Morava
K -theory spectrum. There is an isomorphism of E(Ai, Aa) ® P(ve)-modules

V(l)*K(g/p) = P('UQ) & E(€1> &® Fp{l, 8)\2, )\2,8’02}
® P(vy) ® E(dlogv,) @ F{t%vy | 0 < d < p* — p,p1d}
® P(vy) @ BE(6) @ F,{t")y | 0 < d < p}.

Here |>‘1| = |€1| = 2p— 1; |/\2| = 2p2 - 17 |U2| = 2p2 - 27 |d10g’01| = 17 |a| = -1
and |t| = —2. This is a free P(vy)-module of rank (2p* — 2p + 8) and of zero Fuler
characteristic.

We prove this theorem by means of the cyclotomic trace map [BHM93| to topological
cyclic homology T'C'(¢/p). Along the way we evaluate V(1),THH ({/p), where THH
denotes topological Hochschild homology, as well as V' (1).7C(¢/p), see Proposition 4.6
and Theorem 7.8.

Let L, be the p-complete Adams summand of periodic complex K-theory, and let
L/p = K(1) be the first periodic Morava K-theory. The localization cofiber sequence
K(Z) — K(ku) — K(KU) of Blumberg and Mandell [BM08] has the mod p Adams
analogue

K(Z/p) — K(t/p) — K(L/p).
Using Quillen’s computation [Qui72] of K(Z/p), we obtain the following consequence:
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Corollary 1.2. Let p > 5 be a prime and let L/p = K (1) be the first Morava K -theory
spectrum. There is an isomorphism of E(\, o) @ P(vi')-modules

V(1).K(L/p)lvy 1 = V(1)K (E/p)lvy ]
If the relation Ay = vy dlogvy holds in V(1)K (L/p), then there is an isomorphism of
E(dlog vy, A1) ® P(vy)-modules
V(1).K(L/p) = P(ve) ® E(€1) @ Fp{1,0\s,dlogvy, Ova}
@ P(vy) ® E(dlogvy) @ Fp{t%v, | 0 < d < p* — p,p{d}
@ P(vy) ® E(&) @ F{t"vydlogv, | 0 < d < p},

where the degrees of the generators are as in Theorem 1.1. This is a free P(vy)-module
of rank (2p? — 2p + 8) and of zero Euler characteristic.

Our far-reaching aim is to conceptually understand the algebraic K-theory of £, and
other commutative S-algebras in terms of localization and Galois descent, in the same
way as we understand the algebraic K-theory of rings of integers in (local) number fields
or more general regular rings. The first task is to relate K (¢,) to the algebraic K-theory
of its “residue fields” and “fraction field”, for which we expect a description in terms of
Galois cohomology to exist, starting with the Galois theory for commutative S-algebras
developed by the second author [Rog08]. The residue rings of ¢, appear to be ¢/p, HZ,
and HZ/p, while the fraction field ff(¢,) appears to be a localization of L, away from
L/p, less drastic than the algebraic localization L,[p~'] = LQ,. So far we do not have a
proper definition of this S-algebraic fraction field, but by analogy with the localization
sequence above, we expect that its algebraic K-theory appears in a localization cofiber
sequence

K(L/p) — K(Lp) — K(ff (6)),
where the transfer map on the left is a K(L,)-module map. Taking this as a preliminary
definition of the symbol K(ff(¢,)), we can use our computations to evaluate its V' (1)-
homotopy:

Theorem 1.3. Let p > 5 be a prime, and define K(ff(¢,)) as the homotopy cofiber above.
There is an isomorphism of P(vy"')-modules

V(1)K (ff (6,))[v;'] = P(vy') @ A,

where
A, = E(0vy,dlog p, dlog vy)

® E(dlogv,) @ F,{t"\; | 0 < d < p}
@© E(dlogv;) @ F {t%vydlogp | 0 < d < p* — p,p1d}
@ E(dlogp) @ F,{t* Xy | 0 < d < p}.

Here |dlogp| = 1, and the degrees of the other classes are as in Theorem 1.1. The
localization homomorphism

V(1)K (£)) = V(L)K(fF(6))[vs ]
1S5 an isomorphism in degrees * > 2p.

In particular, the homotopy cofiber K(ff(¢,)) cannot be equivalent to the K(Q,)-
module K (LQ,), since V(1),K(Q,) is a torsion P(vy)-module.
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We may now conjecturally interpret V(1)K (ff (¢,))[vy'] in terms of Galois descent.
Indeed, the second author conjectured that if 2; is an S-algebraic “separable closure” of
ff(€,), then there is a homotopy equivalence

LK(Q)K(Ql) ~ E2 .

Here Es is Morava’s second E-theory [GHO04], with coefficients (Es), = W(F2)[[u1]][u™"],
and Ly denotes Bousfield localization with respect to the second Morava K-theory
K(2), with coefficients K (2), = F,[v5"]. The vy-periodic V (1)-homotopy groups of K (£2;)
will then be given by
V(1)K ()[vy "] = Fpe[u™].

We would expect to have a corresponding Galois descent spectral sequence

E7y = Hey(ff (6,):Fpe(t/2)) = V(D) K (6)) 03]
If this spectral sequence collapses at 2 when p > 5, as is the case for p-adic number fields
when p > 3, we get a conjectural description of the Galois cohomology of ff (¢,) with coef-
ficients in F,2(¢/2), for all even t. Promisingly, this fits very well with the example of the
Galois cohomology of Q, with coefficients in F,(¢/2), with the difference that the absolute
Galois group of ff(¢,) has p-cohomological dimension 3 instead of 2. Also, by analogy
with Tate—Poitou duality [Tat63] in the Galois cohomology of local number fields, there
appears to be a perfect arithmetic duality pairing in the conjectural Galois cohomology
of ff(£,), with fundamental class dual to dvs - dlog p - dlog vy in HE,,(ff (¢,); Fp2(2)). This
indicates that ff(¢,) ought to be a form of S-algebraic two-dimensional local field, mixing
three different residue characteristics. We elaborate more on this in [AR].

The paper is organized as follows. In Section 2 we fix our notations, show that ¢/p
admits the structure of an associative ¢,-algebra, and give a similar discussion for ku/p
and the periodic versions L/p and KU/p. Section 3 contains the computation of the mod p
homology of THH ({/p), and in Section 4 we evaluate its V' (1)-homotopy. In Section 5 we
show that the Cpn-fixed points and Cpn-homotopy fixed points of TTHH (¢/p) are closely
related, and use this to inductively determine their V' (1)-homotopy in Section 6. Finally,
in Section 7 we achieve the computation of TC(¢/p) and K (¢/p) in V(1)-homotopy.

2. BASE CHANGE SQUARES OF S-ALGEBRAS

We fix some notations. Let p be a prime, even or odd for now. Write X(,) and X,
for the p-localization and the p-completion, respectively, of any spectrum or abelian
group X. Let ku and KU be the connective and the periodic complex K-theory spectra,
with homotopy rings ku, = Z[u| and KU, = Z[u*!], where |u| = 2. Let £ = BP(1)
and L = E(1) be the p-local Adams summands, with £, = Z,[vi] and L, = Z,[vi],
where |v1] = 2p — 2. The inclusion ¢ — ku, maps vy to uP~'. Alternate notations in the

p-complete cases are KU, = E; and L, = E(1). These ring spectra are all commutative
S-algebras, in the sense that each admits a unique F,, ring spectrum structure. See
[BRO5] for proofs of uniqueness in the periodic cases.

Let ku/p and KU /p be the connective and periodic mod p complex K-theory spectra,
with coefficients (ku/p), = Z/plu] and (KU/p). = Z/plu*!]. These are 2-periodic ver-
sions of the first Morava K-theory spectra ¢/p = k(1) and L/p = K(1), with (¢/p). =
Z/p[vi] and (L/p), = Z/p[vi']. Each of these can be constructed as the cofiber of the
multiplication by p map, as a module over the corresponding commutative S-algebra.

For example, there is a cofiber sequence of ku-modules ku = ku 2 ku /.
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Let HR be the Eilenberg-Mac Lane spectrum of a ring R. When R is associative, HR
admits a unique associative S-algebra structure, and when R is commutative, H R admits
a unique commutative S-algebra structure. The zeroth Postnikov section defines unique
maps of commutative S-algebras 7: ku — HZ and 7: { — HZ,), which can be followed
by unique commutative S-algebra maps to HZ/p.

The ku-module spectrum ku/p does not admit the structure of a commutative ku-
algebra. It cannot even be an Fy or Hs ring spectrum, since the homomorphism induced
in mod p homology by the resulting map n: ku/p — HZ/p of Hy ring spectra would
not commute with the homology operation Q'(7) = 71 in the target H.(HZ/p;F,)
[BMMS86, I11.2.3]. Similar remarks apply for KU/p, {/p and L/p. Associative algebra
structures, or A, ring spectrum structures, are easier to come by. The following result
is a direct application of the methods of [Laz01, §§9-11]. We adapt the notation of
[BJ02, §3] to provide some details in our case.

Proposition 2.1. The ku-module spectrum ku/p admits the structure of an associative
ku-algebra, but the structure is not unique. Similar statements hold for KU/p as a KU -
algebra, {/p as an (-algebra and L/p as an L-algebra.

Proof. We construct ku/p as the (homotopy) limit of its Postnikov tower of associative
ku-algebras P?™~2% = ku/(p,u™), with coefficient rings ku/(p,u™), = ku./(p,u™) for
m > 1. To start the induction, P° = HZ/p is a ku-algebra viaion: ku — HZ — HZ/p.
Assume inductively for m > 1 that P = P?™~2 has been constructed. We will define P?™
by a (homotopy) pullback diagram

pm———— P

L

P—2= PVvS™LIHT/p

in the category of associative ku-algebras. Here
d € ADer;™ (P, HZ/p) 2 THH"**(P, HZ/p)

is an associative ku-algebra derivation of P with values in X*"*1HZ/p, and the group of
such can be identified with the indicated topological Hochschild cohomology group of P
over ku. We recall that these are the homotopy groups (cohomologically graded) of the
function spectrum Fpp,, por (P, HZ/p). The composite map prood: P — X*" T HZ /p of
ku-modules, where pro projects onto the second wedge summand, is restricted to equal
the ku-module Postnikov k-invariant of ku/p in

HI™ NPy Z)p) = moFru (P, S*" T HZ/p) .

We compute that 7, (P Ay P?) = kus/(p, u™)QE (10, T1,m ), where |15| = 1, |71m| = 2m+1
and F(—) denotes the exterior algebra on the given generators. (For p = 2, the use of
the opposite product is essential here [Ang08, §3].) The function spectrum description of
topological Hochschild cohomology leads to the spectral sequence

E5" = Ext pa,, por)(m(P), Z/p)
= Z/pYo, Y1,m]
— THH; (P, HZ/p),

where yo and y; ,,, have cohomological bidegrees (1,1) and (1,2m + 1), respectively. The
spectral sequence collapses at Fy = F, since it is concentrated in even total degrees. In
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particular,
ADer;™ N (P, HZ/p) = Fpl{yrm, v}

Additively, H;™ " (P; Z/p) = Fp{Q1.m} is generated by a class dual to 7y ,,, which is the
image of y; ,, under left composition with pry. It equals the ku-module k-invariant of
ku/p. Thus there are precisely p choices d = y; ,, +ayy™!, with a € F,, for how to extend
any given associative ku-algebra structure on P = P?"2 to one on P*™ = ku/(p,u™").
In the limit, we find that there are an uncountable number of associative ku-algebra
structures on ku/p = holim,, P*™, each indexed by a sequence of choices a € F,, for all
m > 1.

The periodic spectrum K U/p can be obtained from ku/p by Bousfield KU-localization
in the category of ku-modules [EKMMO97, VIIL.4], which makes it an associative KU-
algebra. The classification of periodic S-algebra structures is the same as in the connective
case, since the original ku-algebra structure on ku/p can be recovered from that on KU/p
by a functorial passage to the connective cover. To construct ¢/p as an associative /-
algebra, or L/p as an associative L-algebra, replace u by v; in these arguments. U

By varying the ground S-algebra, we obtain the same conclusions about ku/p as a
kuy-algebra or ku,-algebra, and about ¢/p as an {,-algebra.

For each choice of ku-algebra structure on ku/p, the zeroth Postnikov section 7: ku/p —
HZ/p is a ku-algebra map, with the unique ku-algebra structure on the target. Hence
there is a commutative square of associative ku-algebras

ku%ku/p

HZ—ZQHZ/p

and similarly in the p-local and p-complete cases. In view of the weak equivalence HZ Ay,
ku/p ~ HZ/p, this square expresses the associative HZ-algebra HZ/p as the base change
of the associative ku-algebra ku/p along 7: ku — HZ. Likewise, there is a commutative
square of associative £,-algebras

(2.2) by ——0/p

HZ,— HZJp

that expresses HZ/p as the base change of ¢/p along ¢, — HZ,, and similarly in the
p-local case. By omission of structure, these squares are also diagrams of S-algebras and
S-algebra maps.

3. ToPOLOGICAL HOCHSCHILD HOMOLOGY

We shall compute the V' (1)-homotopy of the topological Hochschild homology TH H (—)
and topological cyclic homology T'C(—) of the S-algebras in diagram (2.2), for primes p >
5. Passing to connective covers, this also computes the V' (1)-homotopy of the algebraic
K-theory spectra appearing in that square. With these coefficients, or more generally,
after p-adic completion, the functors THH and T'C' are insensitive to p-completion in
the argument, so we shall simplify the notation slightly by working with the associative
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S-algebras ¢ and HZ,) in place of £, and HZ,. For ordinary rings R we almost always
shorten notations like THH(HR) to THH(R).

The computations follow the strategy of [Bok], [BM94], [BM95] and [HM97| for HZ/p
and HZ, and of [MS93] and [AR02] for ¢. See also [AR05, §§4-7] for further discussion of
the T'H H-part of such computations. In this section we shall compute the mod p homo-
logy of the topological Hochschild homology of ¢/p as a module over the corresponding
homology for ¢, for any odd prime p.

We write E(z) = F,[z]/(x?) for the exterior algebra, P(x) = F,[z| for the polynomial
algebra and P(a*!) = F,[z,2™!] for the Laurent polynomial algebra on one generator z,
and similarly for a list of generators. We will also write I'(x) = F,{7;(z) | ¢ > 0} for the
divided power algebra, with v;(z) - v;(z) = (4, j)vi+;(2), where (4, 5) = (i + j)!/i!j! is the
binomial coefficient. We use the obvious abbreviations vy(z) = 1 and ;(z) = x. Finally,
we write P, (z) = F,[z]/(z") for the truncated polynomial algebra of height h, and recall
the isomorphism I'(x) = Py(7y,e(x) | e > 0) in characteristic p.

We write H,(—) for homology with mod p coefficients. It takes values in A,-comodules,
where A, is the dual Steenrod algebra [Mil58]. Explicitly (for p odd),

A, =P | k>1) Q@ E(R | k> 0)

with coproduct _

(&) =Y &od

i+j=k
and .
(T =10%+ > el
i+j=Fk

Here & = 1, & = x(&) has degree 2(p* — 1) and 7, = x(7) has degree 2p* — 1,
where y is the canonical conjugation [MMG65]. Then the zeroth Postnikov sections induce

identifications _
H.(HZg)) = P(& | k=1 Te | k> 1)

) ® E(
H. ()= P(& | k>1) @ E(7 | k > 2)
H.(t/p) = P& | k> 1)@ E(7o, 7k | k > 2)

as A,-comodule subalgebras of H,(HZ/p) = A.. We often make use of the following
A,-comodule coactions

<

(7o) =107 +7®1
E)=10+6®1
V() =1@n+706+n®1
(&) =10&6L+6408+601
V(R) =107 +7H @6 +7 R +R® 1.
The Bokstedt spectral sequences
E;.(B) = HH.(H.(B)) = H.(THH(B))
for the commutative S-algebras B = HZ/p, HZ ) and { begin
E2(Z/p) = A ® E(0& | k = 1) ® (o7 | k > 0)
E:(Zy)) = H.(HZ,)) @ E(0&, | k> 1) @ (o7 | k> 1)
E () =H,(0)@E(c& |k>1) @ (o7 | k> 2).

<

To

v
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They are (graded) commutative A,-comodule algebra spectral sequences, and there are
differentials

AP (Yj0Tk) = 0&ki1 - Vj—pOTh

for 7 > p and k > 0, see [Bok], [Hun96] or [Aus05, 4.3], leaving

EX(Z]p) = A, @ Py(oTy, | k> 0)

EX(Zy) = H(HZy) ® E(0&) ® Py(o7 | k> 1)

EX(0) = H.({) ® E(0&1,08) ® Py(o7 | k> 2).

The inclusion of 0-simplices n: B — T'H H(B) is split for commutative B by the augmen-
tation e: THH(B) — B. Thus there are unique representatives in Bokstedt filtration 1,
with zero augmentation, for each of the classes ox. They correspond to 1 ® r — 2z ® 1 in

the Hochschild complex, or just 1 ® z in the normalized Hochschild complex. There are
multiplicative extensions (07x)P = 07,41 for k > 0, see [ARO5, 5.9], so

H(THH(Z]p)) = A, ® P(0o7To)
(3.1) H.(THH(Z))) = H.(HZ)) ® E(0&) ® P(o7)
H.(THH(()) = H,({) ® E(c&,,0&) ® P(oT)

as A,-comodule algebras. The A,-comodule coactions are given by

v(oTy) = 1® o7

v(c&) =1®0&
(3.2) v(om) =1®0m + 7 ® 0&;

V(o) =1® 0

v(oT) =1Q 0% + 7 ® &y
The natural map 7.: THH({) — THH(Z,)) induced by 7: ¢ — Z,) takes 0& to 0 and
0Ty to (o71)P. The natural map i,.: THH(Z)) — THH(Z/p) induced by i: Zgy — Z/p

takes 0&; to 0 and o7y to (07)P.
The Bokstedt spectral sequence for the associative S-algebra B = ¢/p begins

E2.(0/p) = H,(l/p) @ E(c&, | k> 1)@ (07,07 | k> 2).

It is an A,-comodule module spectral sequence over the Bokstedt spectral sequence for Z,
since the f-algebra multiplication ¢ A ¢/p — ¢/p is a map of associative S-algebras.
However, it is not itself an algebra spectral sequence, since the product on ¢/p is not
commutative enough to induce a natural product structure on T'H H(¢/p). Nonetheless,
we will use the algebra structure present at the E?-term to help in naming classes.

The map 7: ¢/p — HZ/p induces an injection of Bokstedt spectral sequence E?-terms,
so there are differentials generated algebraically by

"N (Vj0Tk) = 041+ Vj—pOTh
for 7 > p, k=0 or k > 2, leaving
(3.3) B (/p) = Ho(0p) © E(0&) @ Pyloy, o7 | k > 2)

as an A,-comodule module over E°(¢). In order to obtain H,.(THH({/p)), we need
to resolve the A,-comodule and H,.(THH (¢))-module extensions. This is achieved in
Lemma 3.6 below.
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The natural map m,: E({/p) — EZ(Z/p) is an isomorphism in total degrees <
(2p — 2) and injective in total degrees < (2p® — 2). The first class in the kernel is c&,.
Hence there are unique classes

_ _ _ — \p—1
1, 7o, 0T, To0To , --- , (0T9)

in degrees 0 < % < 2p — 2 of H,(THH({/p)), mapping to classes with the same names
in H,(THH(Z/p)). More concisely, these are the monomials 7¢(c7)" for 0 < § < 1 and
0 <i < p-—1, except that the degree (2p — 1) case (9,i) = (1,p — 1) is omitted. The
A,-comodule coaction on these classes is given by the same formulas in H,(THH (¢/p))
as in H,(THH(Z/p)), cf. (3.2).

There is also a class & in degree (2p — 2) of H,(THH (¢/p)) mapping to a class with
the same name, and same A,-coaction, in H.(THH (Z/p)).

In degree (2p — 1), m, is a map of extensions from
0 — F &m0} — Hapos(THH(E/p) = Fy{mo(070) '} — 0

to
0 — Fp{n,&70} — Hay 1(THH(Z/p)) — Fp{7o(070)? '} — 0.

The latter extension is canonically split by the augmentation e: THH (Z/p) — HZ/p,
which uses the commutativity of the S-algebra HZ/p.
In degree 2p, the map m, goes from

Hyy(THH(0/p)) = Fp{&1070}
to
0 — F {7071} — Hop(THH(Z/p)) — F{o7,E107} — 0.

Again the latter extension is canonically split.

Lemma 3.4. There is a unique class y in Hyp «(THH({/p)) that is represented by
To(oTo)P~ in B, (£/p) and maps by m. to To(omy)P~ ' — 71 in H(THH(Z/p)).

p—Lp

Proof. This follows from naturality of the suspension operator ¢ and the multiplica-
tive relation (07)? = o7 in H. (THH(Z/p)). A class y in Hyp (THH({/p)) repre-
sented by 7(c7)P~! is determined modulo & 7. Its image in Hy, (THH(Z/p)) thus
has the form a7 + 7o(07)?~! modulo &7, for some o € F,. The suspension oy lies
in Hop(THH({/p)) = F{& 07}, so its image in Hop(THH(Z/p)) is 0 modulo 77
and &o07. It is also the suspension of a7 + 70(070)?P~! modulo &7, which equals
o(at) + (07)? = (a + 1)o7. In particular, the coefficient (o + 1) of o7y is 0, so
a=—1. U

Remark 3.5. For p = 2 this can alternatively be read off from the explicit form [Wiir91]
of the commutator for the product p in ¢/p. The coequalizer C' of the two maps

m
t/pAL/p %7 t/p
maps to (the 1-skeleton of) THH (¢/p). The commutator pu — pr factors as

tpntlp 25 sefp ase)p B S20p 2 tfp
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where 3 is the mod p Bockstein associated to the cofiber sequence ¢ 2 ¢ Ny /p and the
cofiber of vy is HZ/p. We get a map of cofiber sequences

Cpneip = 0 )p c
o) |
¥20/p ——{/p HZ/p,

so there is a class in H3(C) that maps to & ® & in Hy(¢/p A £/p) and to & o0& in
Hs(THH(¢/p)), which also maps to & in the cofiber of vy, i.e., whose A,-coaction contains
the term & ® 1. (The classes 7, and 7, go by the names &, and & at p = 2.)

For odd primes there is a similar interpretation of how the non-commutativity of the
product on ¢/p provides an obstruction to splitting off the O-simplices from the (p — 1)-
skeleton of TTH H(¢/p), where the cyclic permutation of the p factors in the (p—1)-simplex
To(079)P~1, represented by the Hochschild cycle 7y ® - - ® Ty, plays a similar role to the
twist map 7 above.

Let
H.(THH(())/(0&) = H.(0) ® E(0&2) ® P(o7)
denote the quotient algebra of H,(THH (¢)) by the ideal generated by o¢;.

Lemma 3.6. There is an isomorphism of H.(THH (¢))-modules
H.(THH({/p)) 2 H(THH(())/(c&) @ F {1, %, 070, 0070, - - -, (070)" ", y} .
Hence H,(THH ({/p)) is a free module of rank 2p over H.(THH (¢))/(c&,), generated by
classes
1 ; 7__0 ) 0-7_—0 ) 7_—00-7_—0 PEEICIRI (0-7_—(])])_1 )
in degrees 0 through 2p — 1. These generators are represented in E2S({/p) by the classes
1 y 7_'0 y 0'7_'0 y ’7_'00'7_'0 g eee <0'7_'0)p71 y 7—_0(0_7—_0)1071’

and map under T, to classes with the same names in H.(THH(Z/p)), except fory, which
maps to
7—.()(0.,7—_0)17—1 — 7_'1 .
The A,-comodule coactions are given by
v((07)") = 1® (07)"
for0<i1<p-—1,
v(To(07)") = 1@ 7o(070)" + To @ (07)"

for0<i<p—2, and

V(y) == 1®y+7_'0®(0'7_'0)p71 —7_'0®51 —7_'1®1

Proof. H.(¢/p) is freely generated as a module over H,(¢) by 1 and 7, and the classes
o0& and o7, in H,(THH({)) induce multiplication by the same symbols in E%(¢/p), as
given in (3.3). This generates all of E%(¢/p) from the 2p classes 74 (07)" for 0 < 6 < 1
and 0 <7<p-—1.

We claim that multiplication by &, acts trivially on H,(THH({/p)). It suffices to

verify this on the module generators 7{(07)?, for which the product with o&; remains in
the range of degrees where the map to H,(T'HH(Z/p)) is injective. The action of o&; is
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trivial on H,(THH(Z/p)), since d*~}(v,07) = &, and €(0;) = 0, and this implies the
claim.

The A,-comodule coaction on each module generator, including y, is determined by
that on its image under m,. In the latter case, the thing to check is that

(1@ m)(v(y) = v(r(y) = v(To(on) ™ —7)
=17 '+ 7R (R)P ' —-107 -6 -7 ®1
equals B
11)1y+ 7 (o) ' -7 @& -7 ®1).
O

We note that these results do not visibly depend on the particular choice of f-algebra
structure on ¢/p.

4. PASSAGE TO V(1)-HOMOTOPY

For p > 5 the Smith-Toda complex V(1) = S U, e! U,, €' U, €% is a homotopy
commutative ring spectrum [Smi70], [Oka84]. It is defined as the mapping cone of the
Adams self-map vy: ¥272V(0) — V(0) of the mod p Moore spectrum V(0) = S U, e'.
Hence there is a cofiber sequence

2217 (0) 25 V(0) 5 V(1) L 52-1Y(0)
The composite map 311 = i1j1: V(1) — Y71V (1) defines the primary v;-Bockstein
homomorphism, acting naturally on V(1).(X).

In this section we compute V (1), THH ({/p) as a module over V (1), THH ({), for any
prime p > 5. The unique ring spectrum map from V(1) to HZ/p induces the identification
H,(V(1)) = E(70,71)

(no conjugations) as A,-comodule subalgebras of A,. Here
V(ﬂ)) = 1®T0+T0®1
vin)=1@n+&@n+nel.
For each (-algebra B, V(1) NTHH(B) is a module spectrum over V(1) ATHH (¢) and
thus over V(1) Al ~ HZ/p, so H.(V(1) NTHH(B)) is a sum of copies of A, as an A,-
comodule. In particular, V(1),THH(B) = m.(V(1) AN THH(B)) is naturally identified
with the subgroup of A,-comodule primitives in
H.(V(1) A\THH(B)) = H.(V(1)) ® H.(THH(B))
with the diagonal A,-comodule coaction. We write v A x for the image of v ® x under
this identification, with v € H,(V (1)) and x € H,(THH(B)). Let
60:1/\’7'0+Tg/\1
a=1A"+10ANE+TIAL

)\1 =1A 051
(4.1) A =1A0&
o =1AoTy

p=1A07 + 79 Aok
po=1AN0T+1A0E.
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These are all A,-comodule primitive, where defined. By a dimension count,
V(1).THH(Z/p) = E(eo, 1) © P(p0)
(4.2) V(1).THH(Zy) = E(e1) © E(A) © P(p)
V(D).THH({) = E(A, \2) ® P(u2)

as commutative Fp-algebras. The map m: ¢ — HZ, takes Ay to 0 and o to pf. The
map i : HZ,) — HZ/p takes A to 0 and p; to pf. Note that po € V(1)9,2THH({) was
simply denoted p in [AR02].

In degrees < (2p — 2) of H.(V(1) NTHH({/p)) the classes

(4.3) ph =1A (07
for 0 <i:<p-—1and
(4.4) coply == 1 A To(0T)" + 70 A (070)’

for 0 <1 < p—2 are A, comodule primitive, hence lift uniquely to V(1),T
These map to the classes €ju in V(1),THH(Z/p) for 0 < <land 0 <i < p— 1,
except that the degree bound excludes the top case of eyuf = B
In degree (2p — 1) of H.(V(1) NTHH (¢/p)) we have generators 1 A&7y, 7o A (070)P ™,
ToAN&, 71 Al and 1 A y. These have coactions
VIANGT) =1 1IAET +T0@IAG+ERTIAT+ TR 1AL
V(oA (0R)P ) =107 A (07)P P + 70 @ 1A (07)P
(7’0/\51) —1®7'0/\§1+T0®1/\514-51@7’0/\1—'—517'0@1/\1
vimAl) =1 A1+ A1+ 1AL
and B
vVIAY) =1 1Ay + T @1A(07)P ' —FH@1IAE - Q1AL
Hence the sum
(45) gl2:1/\y+70/\(0'7_'0)p_1—7'0/\€1—7'1/\]_
is A.-comodule primitive. Its image under 7, in H.(V (1) ATHH(Z/p)) is
eoug_l — €1 = 1 /\77'0(0'77'0)17_1 + 710N (077'0)13_1 -1 NT1 —To /\51 A 1.
Let
V(D). THH(()/(M) = E(X2) ® P(u2)
be the quotient algebra of V (1), T"HH (¢) by the ideal generated by A;.

Proposition 4.6. There is an isomorphism of V (1), T H H (¢)-modules
V(1).THH(t/p) =V (1), THH(()/(A1) ® Fp{1, €0, 1o, €ofto - - -, pthy &1}

where the classes ub, oy and € are defined in (4.3), (4.4) and (4.5) above. Multiplication
by A1 is 0, so this is a free module on the 2p generators

17 € , Mo, €ofo , "'7”8717€1
over V(1), THH({)/(\1). The map 7. to V(1),THH(Z/p) takes eiui in degree 0 <
6+ 2i <2p—2 to ul, and takes € in degree (2p — 1) to ol ' — €.
Proof. Additively, this follows by another dimension count. The multiplication by A; is

0 for degree and filtration reasons: \; has Bokstedt filtration 1 and cannot map to € in
Bokstedt filtration (p — 1). Similarly in higher degrees. O
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5. THE C,-TATE CONSTRUCTION

Let C' = Cpn denote the cyclic group of order p", considered as a closed subgroup
of the circle group S!. For each spectrum X with C-action, X, = EC. Ac X and
X" = F(EC, X)¢ denote its homotopy orbit and homotopy fixed point spectra, as
usual. We now write X“ = [EC' A F(EC,, X)]|¢ for the C-Tate construction on X,

which was denoted to(X)¢ in [GM95] and H(C, X) in [AR02]. There are C-homotopy
fixed point and C-Tate spectral sequences in V' (1)-homotopy for X, with

E2(C,X) = Hy (C;V(1):(X)) = V(1) gre(X")
and

EZ(C,X) = H (C;V(1)i(X)) = V(1)s34(X*) .
We write H,(Cpo; Fy) = E(u,) ® P(t) and H:,(CpnsFp) = E(u,) ® P(t!) with w, in
degree 1 and ¢ in degree 2. So u,, t and x € V(1);(X) have bidegree (—1,0), (—2,0)
and (0,1) in either spectral sequence, respectively. See [HMO3, §4.3] for proofs of the
multiplicative properties of these spectral sequences.

We are principally interested in the case when X = T'H H(B), with the S'-action given

by the cyclic structure. It is a cyclotomic spectrum, in the sense of [HM97], leading to
the commutative diagram

THH(B)ne,n —— THH(B) " — THH(B)

|~ I

THH(B)no,. - THH(B)" —2s THH(B)!C

of horizontal cofiber sequences. We abbreviate E2 (C,THH(B)) to E2(C,B), etc.
When B is a commutative S-algebra, this is a commutative algebra spectral sequence,
and when B is an associative A-algebra, with A commutative, then E*(C, B) is a module
spectral sequence over E*(C, A). The map R" corresponds to the inclusion E2, (C, B) —
Ef*(C, B) from the second quadrant to the upper half-plane, for connective B.

In this section we compute V (1), THH (¢/p)!°> by means of the C,-Tate spectral se-
quence in V' (1)-homotopy for THH (¢/p). In Propositions 5.8 and 5.9 we show that the
comparison map I'y: V(1),THH(¢/p) — V(1),.THH({/p)!°» is (2p — 2)-coconnected and
can be identified with the algebraic localization homomorphism that inverts ps.

First we recall the structure of the C,-Tate spectral sequence for THH(Z/p), with
V(0)- and V (1)-coefficients. We have V(0).THH(Z/p) = E(e) ® P(uo), and with an

obvious notation the E*-terms are
E?.(Cp Z/p;V(0)) = E(ur) ® P(t*) ® E(eo) ® P(po)
E2.(Cp 2 fp) = Elur) ® P(E) @ Eleg, 1) & Pljug).
In each C-Tate spectral sequence we have a first differential
d*(r) =t ox,
see e.g. [Rog98, 3.3]. We easily deduce ey = 9 and oe; = pf from (4.1), so
EL(Cp Z/p; V(0)) = E(ur) ® P(*)
E},(Cy, Z/p) = E(w) ® P(t*) ® E(eopf * — 1)
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Thus the V(0)-homotopy spectral sequence collapses at E?® = E*. By naturality with
respect to the map i;: V(0) — V/(1), all the classes on the horizontal axis of E3(C,,Z/p)

are infinite cycles, so also the latter spectral sequence collapses at Ei’*(C’p, Z/p).
We know from [HM97, Prop. 5.3] that the comparison map

Py V(0).THH(Z/p) — V(0),THH(Z/p)'

takes €Qub to (uyt~1)°t~% for all 0 < 6 < 1, 4 > 0. In particular, the integral map
I'y: m,THH(Z/p) — m,THH(Z/p)°r is (—2)-coconnected, meaning that it induces an
injection in degree (—2) and an isomorphism in all higher degrees. From this we can
deduce the following behavior of the comparison map I'; in V(1)-homotopy.

Lemma 5.1. The map
I': V().THH(Z/p) — V(1),THH(Z/p)*°

takes the classes ejui from V(0),THH(Z/p), for 0 < 6 < 1 and i > 0, to classes
represented in E°(C,, Z/p) by (uyt=")%t~" (on the horizontal ais).

Furthermore, it takes the class eoug_l — €1 in degree (2p — 1) to a class represented by
eopth " — €1 (on the vertical axis).

Proof. The classes €)u} are in the image from V(0)-homotopy, and we recalled above
that they are detected by (u;t~1)°t~* in the V(0)-homotopy C,-Tate spectral sequence
for THH(Z/p). By naturality along i;: V(0) — V(1), they are detected by the same
(nonzero) classes in the V(1)-homotopy spectral sequence E(C,, Z/p).

To find the representative for fl(eougfl — €1) in degree (2p — 1), we appeal to the
cyclotomic trace map from algebraic K-theory, or more precisely, to the commutative
diagram

(5.2) K(B)

THH(B)" EELAN THH(B)!*.

The Bokstedt trace map tr: K (B) — THH(B) admits a preferred lift ¢r,, through each
fixed point spectrum TH H(B)“", which homotopy equalizes the iterated restriction and
Frobenius maps R™ and F" to TH H(B), see [BHM93, 2.5]. In particular, the circle
action and the o-operator act trivially on classes in the image of tr.

In the case B = HZ/p we know that K(Z/p), ~ HZ,, so V(1).K(Z/p) = E(&), where
the v;-Bockstein of €; is —1. The Bokstedt trace image tr(e) € V(1) THH(Z/p) lies in
F,{e1, eoi '}, has v1-Bockstein tr(—1) = —1 and suspends by ¢ to 0. Hence

t?"(gl) = eoug_l — €1.

As we recalled above, the map I'y: m,THH(Z/p) — m,THH(Z/p)'°» is (—2)-coconnected,
so the correspondlng map in V(1)-homotopy is at least (2p — 2)-coconnected. Thus it
takes el " — € to a nonzero class in V(1),THH(Z/p)!°, represented somewhere in
total degree (2p — 1) of EX(C,,Z/p), in the lower right hand corner of the diagram.
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Going down the middle of the diagram, we reach a class (I'y o try)(€), represented in
total degree (2p — 1) of the left half-plane C,-homotopy fixed point spectral sequence
EX(C,,Z/p). Its image under the edge homomorphism to V(1),THH(Z/p) equals (F o
tr)(€) = tr(€), hence (I'y otry)(€ ) is represented by eoug_l —ein E5%, 1(Cp, Z/p). Its
image under R" in the C,-Tate spectral sequence is the generator of Eggp_l((?p, Z]p) =
F,{eoph " — €1}, hence that generator is the E®-representative of 'y (eou ' —¢1). [

We can lift the algebraic K-theory class € to ¢/p.

Definition 5.3. The (2p—2)-connected map 7: ¢/p — HZ/p induces a (2p—1)-connected
map V(1).K(¢/p) — V(1).K(Z/p) = E(& ), by [BM94, 10.9]. We can therefore choose a
class

& € V(1)1 K(¢/p)
that maps to the generator € in V' (1)s, 1 K(Z/p) = Z/p.

Lemma 5.4. The Bokstedt trace tr: V(1),K({/p) — V(1),THH({/p) takes X to €.

Proof. In the commutative square

V(1).K(¢/p) =" V(1).THH((/p)

V(1)K (Z/p) == V().THH(Z/p)
the trace image tr(é%) in V(1),THH({/p) must map under 7, to tr(¢) = eoul) ' — €, in
V(1).THH(Z/p), which by Proposition 4.6 characterizes it as being equal to the class €;.
Hence tr(el) = €. O

Next we turn to the C,-Tate spectral sequence E*(Cp,f/p) in V(1)-homotopy for
THH({/p). Tts E*term is

Ef*(opag/p> - E(“l) & P(til) ® IFp{l? €0, Mo, €EoMto, - - - 7/'1’8717 El} ® E<)\2) ® P(u?) .

We have d?(x) =t - oz, where

P py ford=1,0<1i<p,
ol(e =
(coro ) {O otherwise

is readily deduced from (4.1), and o(€;) = 0 since € is in the image of ¢r. Thus
(5.5) E3.(Cyo /p) = E(w) @ P(t2) @ E(&) @ () @ Pltyn) .

We prefer to use tus rather than ps as a generator, since it represents multiplication by
vy in all module spectral sequences over E*(S?, (), by [AR02, 4.8].

To proceed, we shall use that E*(C’p,ﬁ /p) is a module over the spectral sequence for
THH(¢). We therefore recall the structure of the latter spectral sequence, from [AR02,
5.5]. It begins

E2.(Cp, ) = E(u1) ® P(t) @ E(A, Ao) © P(us) .
The classes A1, Ay and tus are infinite cycles, and the differentials
dP(tP) =t
4P (77°) = P ),
d2p2+1(u1t_p2) = tuy
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(up to units in [F,, which we will always suppress) leave the terms
EZH(C,, 0) = B(ur, i, Aa) @ P(EP, i)
B Y0, 0) = Bur, A, Ao) @ P tuy)
E°*2(C,, 0) = E(\, Ao) @ P(t*7°)

with E2°+2 = E> converging to V (1), THH(£)!°». The comparison map I'; takes A,
Ay and s to Ay, Ap and t‘pg, respectively, inducing the algebraic localization map and
identification

D VQ)LTHH(C) — V(). THH() [y = V(1) THH()Cr .
Lemma 5.6. In E*(C’p,ﬁ/p), the class u t™P supports the nonzero differential
4z’ (urt™?) = ultpz_p/\g ,
and does not survive to the E>°-term.

Proof. In E*(Cp, 0), there is such a nonzero differential. By naturality along i: ¢ — {/p,
it follows that there is also such a differential in £*(C,, ¢/p). It remains to argue that the
target is nonzero. Considering the E3-term in (5.5), the only possible source of a previous
differential hitting ultpz_p)\g is €. But € is in an even column and ultp2_p)\2 is in an
odd column. By naturality with respect to the Frobenius (group restriction) map from
the S'-Tate spectral sequence to the Cp-Tate spectral sequence, which takes Ef*(Sl, B)
isomorphically to the even columns of E’f*(C’p, B), any such differential from an even to
an odd column must be zero. U

To determine the map I'; we use naturality with respect to the map m: ¢ /p — HZ/p.

Lemma 5.7. The classes 1, €y, fio, €ofto, - - - ji - and & in V (1), THH({/p) map under I,
to classes in V(1),THH(/p)'r that are represented in E°(C,, (/p) by the permanent
cycles (uit™1)°t=% (on the horizontal axis) in degrees < (2p — 2), and by the permanent
cycle € (on the vertical axis) in degree (2p — 1).

Proof. In the commutative square

V().THH(L/p) " V(LT HH(/p)

V).THH(Z/p) s V(). THH(Z/p)

the classes €)uf in the upper left hand corner map to classes in the lower right hand corner
that are represented by (u1t~1)°t~% in degrees < (2p — 2), and & maps to ol " — € in
degree (2p — 1). This follows by combining Proposition 4.6 and Lemma 5.1.

The first (2p—1) of these are represented in maximal filtration (on the horizontal axis),
so their images in the upper right hand corner must be represented by permanent cycles
(u1t~1)°t " in the Tate spectral sequence E2°(C), £/p).

The image of the last class, €, in the upper right hand corner could either be rep-
resented by € in bidegree (0,2p — 1) or by w;¢t™? in bidegree (2p — 1,0). However, the
last class supports a differential d2p2(u1t_p) = ultp2_p)\2, by Lemma 5.6 above. This only
leaves the other possibility, that f‘l(él) is represented by € in EAf;f(Cp,K /D). O
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We proceed to determine the differential structure in E*(C’p,€ /p), making use of the
permanent cycles identified above.

Proposition 5.8. The C,-Tate spectral sequence in V (1)-homotopy for THH({/p) has
E2.(Cpyt/p) = E(ur, &1, 0) @ Pt tps) .
It has differentials generated by
AR ) =y
for 0 < i <p, d® (tPP") = t* Xy and d** T (ust™7") = tpuy. The following terms are
EZ =230 0/p) = Euy, ) @ F{t | 0 < i < p} @ P(t*7)
© E(uy, &1, A2) @ PP, )
EXHCyo tp) = Eur, b)) @ Fp{t7' [ 0 < i < p} @ P(t7")
® Elu1, &, h) @ P(t*7 1)
EZ*2(C, 0/p) = E(uy, \o) @ F,{t " | 0 <i < p} @ P(t*")
D E(6, \2) ® P(t*7°) .
The last term can be rewritten as
E=(Cy,t/p) = (B(w) @ F{t7 | 0 < i < p} @ E(&)) ® E(\) @ P(t*).

Proof. We have already identified the E?- and E3-terms above. The E3-term (5.5) is
generated over E3(C,,0) by an F,-basis for E(¢), so the next possible differential is
induced by d*(t!7P) = t\;. But multiplication by A; is trivial in V' (1), THH({/p), by
Proposition 4.6, so E3(C,, £/p) = E**1(C,, (/p). This term is generated over E2+1(C,, ()
by By(t™ ') ® E(€,). Here 1,¢71 ... t'"7 and € are permanent cycles, by Lemma 5.7. Any
dr-differential before d2»° must therefore originate on a class ¢ %€, for 0 < i < p, and be
of even length r, since these classes lie in even columns. For bidegree reasons, the first
possibility is 7 = 2p? — 2p + 2, so E3(C,, (/p) = E*°~2042(C, (/p).

Multiplication by vy acts trivially on V (1), THH (¢) and V (1), THH (¢)!“? for degree
reasons, and therefore also on V (1), THH (¢/p) and V (1), THH (¢/p)*“» by the module
structure. The class v, maps to tus in the S'-Tate spectral sequence for ¢, as recalled
above, so multiplication by vy is represented by multiplication by tus in the C),-Tate
spectral sequence for //p. Applied to the permanent cycles (u;t71)°t% in degrees <
(2p — 2), this implies that the products

t,ug . (ult_l)‘st_i

must be infinite cycles representing zero, i.e., they must be hit by differentials. In the
cases 0 = 1, 0 < i < p — 2, these classes in odd columns cannot be hit by differentials of
odd length, such as d?°*1, so the only possibility is

PP (7)) = g - ()
for 0 <i < p—2. By the module structure (consider multiplication by w;) it follows that

d2p2—2p+2 (tp—p2 . t—igl) _ t,uz X t—i
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for 0 < i < p. Hence we can compute from (5.5) that
B (Cy tfp) = E(w) @ P(EP) @ Fy{t7 | 0 < i < p} @ E(X)
® E(u) @ P(t*?) @ E(8) @ E(\s) ® P(tus).

This is generated over E2+1(C,, () by the permanent cycles 1,£71,... ¢!~ and &, so the
next differential is induced by d?” (t?~7") = t?\,. This leaves

B2 H(C, t/p) = B(w) @ P ) @ F{t 7| 0 <i < p} ® E(\o)
@ E(u) ® P(t*7) @ E(61) ® E(\) ® P(tps) .
Finally, d?°+1(uyt~7") = tu, applies, and leaves
EZ(Cy,t/p) = E(w) @ P(H*7) @ Fp{t ™ | 0 < i < p} @ E(\s)
& P(t*") @ E(&) ® E(\,).
For bidegree reasons, EF2*+2 = [ O

Proposition 5.9. The comparison map f‘1 takes the classes egué, €1, Ao and po in
V(1).THH({/p) to classes in V (1), THH({/p)Cr represented by (u1t=1)°t~, €, Xy and
t=7" in E2(C,, L/p), respectively. Thus

V(1) THH(/p)!“ = F,{1, €0, o, €ofto, - - - 1, &1} @ E(Xg) @ P(pit)
and Ty factors as the algebraic localization map and identification

Uy: V), THH((/p) — V1), THH({/p)[u3'] = V1), THH({/p) .

In particular, this map is (2p — 2)-coconnected.

Proof. The action of the map I, on the classes 1, e, 140, EQMLO, - - - ,,ugfl and €; was given in
Lemma 5.7, and the action on the classes Ay and p was already recalled from [AR02]. The
structure of V' (1), TH H (¢/p)!°" is then immediate from the E*°-term in Proposition 5.8.

The top class not in the image of T'; is E1\opty t, in degree (2p — 2). U
Recall that
TF(B) = hg}}ﬁm THH(B)%"
TR(B) = holim THH(B)%"
are defined as the homotopy limits over thé Frobenius and the restriction maps
F,R: THH(B)“" — THH(B)“",
respectively.
Corollary 5.10. The comparison maps
T,: THH((/p)" — THH({/p)"Cr
I.: THH((/p)S—t — THH({/p)"Cr
formn > 1, and
I': TF({/p) — THH((/p)""
I': TF((/p) — THH((/p)*
all induce (2p — 2)-coconnected maps on V (1)-homotopy.
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Proof. This follows from a theorem of Tsalidis [Tsa98] and Proposition 5.9 above, just
like in [AR02, 5.7]. See also [BBLNR]. O

6. HIGHER FIXED POINTS

Let n > 1. Write v,(¢) for the p-adic valuation of i. Define a numerical function p(—)

by
p2k —1) = (P +1)/(p+1) =p* —p* T+ —p+1
p(2k) = (P2 —p))/(0* = 1) =p™" +p* P 4+ p?

for £ > 0, so p(—1) = 1 and p(0) = 0. For even arguments, p(2k) = r(2k) as defined in
[AR02, 2.5).

In all of the following spectral sequences we know that Ao, tus and € are infinite
cycles. For Ay and € this follows from the Cpn-fixed point analogue of diagram (5.2), by
[AR02, 2.8] and Lemma 5.4. For tus, it follows from [AR02, 4.8], by naturality.

Theorem 6.1. The Cyn-Tate spectral sequence in V (1)-homotopy for THH ({/p) begins

Ez*(cpnug/p> - E(unu )‘2) & I[:‘]){17 €0, Ho, €oto, - - - 7”%))_17 E1} & P(ti17u2)

and converges to V (1), THH({/p)!“»". It is a module spectral sequence over the algebra
spectral sequence E*(Cyn, l) converging to V (1), THH (£)¢».
There is an initial d*-differential generated by

d*(eopty ') = thg
for 0 < i < p. Next, there are 2n families of even length differentials generated by
d2p(2k_1) (tp2k:71_p2k+i . El) — (tMQ)p(2k_3) . tl

for v,(i) =2k — 2, for each k =1,...,n, and

2P(2k) (tp%‘lfpz’“) — Ay pH (tm)p(?k*?)

for each k =1,... ,n. Finally, there is a differential of odd length generated by
d2p(2n)+1(un . t—pQ“) — (tug)p(2"_2)+1.

We shall prove Theorem 6.1 by induction on n. The base case n = 1 is covered by
Proposition 5.8. We can therefore assume that Theorem 6.1 holds for some fixed n > 1.
First we make the following deduction.

Corollary 6.2. The initial differential in the Cyn-Tate spectral sequence in 'V (1)-homotopy
for THH({/p) leaves

EAE*(CPH7 g/p> = E(una gl) )\2> & P(til, t,LLQ) .
The next 2n famailies of differentials leave the intermediate terms

Eff(l)+1<cp"a£/p) = E(un, )\2) ® Fp{tii | 0<i< p} ® P(tip)
© E(tn, €1, \2) @ Pt tuy)
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orm=1),
(.
B2 (G, p) = Blun, ho) @ Fp{t ™ | 0 < i < p} @ P(t*)

& @D Elun Ao) @ F,{ | 0,(j) = 2k — 2} © Prans (tp2)
k=2

m—1

© @ E(un, &) ® ]Fp{tj/\2 | vp(j) =2k -1} ® Pp(2k-2) (tuz)
k=2

©® E(Un, E17 )\2) &® P(tip

2m—1

7t:u2)
form=2,....n, and

E2CM T (Con, £/p) = Bun, o) @ Fp{t ™| 0 < i < p} @ P(£*")

© @ E(un, A2) @ Fp{t! | v,(j) = 2k — 2} ® Bpar—3)(thz)

k=2
¥ @ E(un, &) @ F {t' X5 | v,(j) =2k — 1} ® Ppor—2)(tp2)
k=2
@ E(Un, E17 )\2) ® P(tiPQmJ t,u2)
form =1,...,n. The final differential leaves the E*™"+2 = E>®_term, equal to

EX(Cyn 0/p) = E(tn, X)) @F,{t 77| 0 < i < p} @ P(t™")

® @E(um Ao) @ Fp{t! | v,(j) = 2k — 2} ® Ppar—3)(tpz)

k=2

© @D Eun, &) © Fy{t g | 0(j) = 2k — 1} @ Pyan—a) (1)
k=2

b E(El, )\2) X P(tip2n) () Pp(2n72)+1 (t,ug) .

Proof. The statements about the E3-, E?(W+1_ and E2(J+1_terms are clear from Propo-
sition 5.8. For each m = 2,...,n we proceed by a secondary induction. The differential

d2p(2m*1)(tp2m*17p2m+i &) = (t/w)p(?mﬂ?) 'ti
for v,(i) = 2m — 2 is non-trivial only on the summand
E(uy, &, ) ® P(t**
of the E2(Cm=2+1 — [20(2m=1)_term with homology
E(un, A2) @ Fp{t! [ 0(j) = 2m — 2} @ Pyiam—3)(tp12)
D E(tn, &1, X)) @ P tps) .
This gives the stated E?®m™=D+1_term. Similarly, the differential
J2r(2m) (tpm‘l—pm) — Ay wm (t,u2)p(2m—2)

2m—2

7t:u2)

is non-trivial only on the summand

E(up, €1, ) ® P(t*?

2m—1

at:U“Q)
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of the E2Cm=D+1 — [20(m)_term  with homology
Blutn, @) @ Fp{#7 | () = 200 — 1} © Prpam (1)
D E(tn, &1, o) @ Pt tps) .
This gives the stated E?(>")*1_term. The final differential
d2p(2n)+1(un . t—pQ") _ (wz)p(%—QHl

is non-trivial only on the summand

E(tn, &, 0) @ P(t57™"  t15)
of the E2P?")*1_term, with homology

E(&1,0) @ P(t7") @ Pyonn)11(tus)

This gives the stated E2?(?"*+2_term. At this stage there is no room for any further
differentials, since the spectral sequence is concentrated in a narrower horizontal band
than the vertical height of the following differentials. O

Next we compare the Cpn-Tate spectral sequence with the Cp»-homotopy spectral se-
quence obtained by restricting the E%-term to the second quadrant (s < 0, ¢t > 0). It is
algebraically easier to handle the latter after inverting o, which can be interpreted as
comparing THH (¢/p) with its C,-Tate construction.

In general, there is a commutative diagram

I'n—
(6.3) THH(B)%" —"~ THH(B)% —— THH(B)"“m

~ ~hC
1—‘n lf‘n \Lrl " !

Gn—
THH(B)* s THH(B)!S "% (T H H(B)!Cr)"C

where G,,_; is the comparison map from the C,n-1-fixed points to the Cpn-1-homotopy
fixed points of THH(B)!“?, in view of the identification

(THH(B)'“r)%~ = THH(B)"“"" .

We are of course considering the case B = ¢/p. In V(1)-homotopy all four maps
with labels containing I" are (2p — 2)-coconnected, by Corollary 5.10, so G,,_1 is at least
(2p — 1)-coconnected. (We shall see in Lemma 6.11 that V(1),G,,—1 is an isomorphism

in all degrees.) By Proposition 5.9 the map I precisely inverts pip, so the E?-term of
the Cpn-homotopy fixed point spectral sequence in V(1)-homotopy for THH (¢/p)'“" is
obtained by inverting ji5 in E2,(Cpn, £/p). We denote it by ;' E*(Cyn, £/p), even though
in later terms only a power of py is present.

Theorem 6.4. The C,n-homotopy fized point spectral sequence iy E*(Cyn, €/p) in V(1)-
homotopy for THH ({/p)“» begins

115 B2 (Con, /D) = E(un, A2) @ Fp{1, €0, pio, €opto, - - - 1y €1} @ P(t, piz ")

and converges to V (1).(THH(£/p)'“»)"C"  which receives a (2p — 2)-coconnected map
(L) from V (1), THH({/p)"Cr. There is an initial d*-differential generated by

d*(eopy ') =t
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for 0 <1 < p. Next, there are 2n families of even length differentials generated by

o 2k _,2k—14 : _ i
J2r(2k 1)(M12) p2F 4 ,61) _ (tu2>ﬂ(2k 1) ',ujz

forv,(j) =2k — 2, for each k =1,...,n, and

d2p(2k)(lu§2k_,p2k4 -1 . )p(%)

_ 2k
) = Az iy ” (tho

for each k =1,...,n. Finally, there is a differential of odd length generated by
d2p(2n)+1<un . qu;”) _ (t,u2)p(2n)+1 '
Proof. The differential pattern follows from Theorem 6.1 by naturality with respect to
the maps of spectral sequences
AhC'pn

ry * h
MEIE*(CPWE/])) — F (Opnvg/p) R—> E (O:D”?g/p)

induced by f?c”n and R". The first inverts us and the second inverts ¢, at the level of
E%terms. We are also using that tus, the image of vo, multiplies as an infinite cycle in
all of these spectral sequences. Il

Corollary 6.5. The initial differential in the Cyn-homotopy fized point spectral sequence
in V (1)-homotopy for THH ({/p)!°r leaves

115 B2 (C, /D) = E(up, Ao) @ Fp{pth | 0 < i < p} @ P(uz")
D E(un, &1, \9) © P, tis) .

The next 2n families of differentials leave the intermediate terms

pz  EXCOTY(C 0 p) = B, Ao) @ Fp{puly | 0 < i < p} @ P(p3")

m

® D Eun, A2) © Fp{py | 0,(j) = 2k — 2} © Pyian—)(tps)
k=1

&P E(un, @) @ Fpf Mgt} | 0,(j) = 2k — 1} @ Pyian) (t1a2)
k=1
ip2m71

® E(un, €1, A2) @ P(juy o)
and

p3 B2 (C 0 p) = E(un, A2) @ Fp{py | 0 < i < p} @ P(1i3")

& @D Elun, ha) © B {1 | 0,(5) = 2 — 2} © Py (1)

k=1

& @D Elun, @) © Fy{hopsh | 0,(7) = 2k — 1} © Pyany (1)

k=1
2m
B E(un, €1, \2) ® P(pp” 1)
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form =1,...,n. The final differential leaves the E*P(?"+2 = E>_term, equal to
13 B (Cyn £/p) = B(un, Ao) @ Fy{pig | 0 < i < p} ® P(uy")

& D E(un, A2) @ Fp{p | 0,(j) = 2k — 2} © Pyiar—1)(thiz)
k=1

& P E(un, @) @ Fp{apth | vp(j) = 2k — 1} © Pyiary (tpso)
k=1

& B(f1,22) ® P(1t3"") @ Poany ()

Proof. The computation of the E3-term from the E?-term is straightforward. The rest
of the proof goes by a secondary induction on m = 1,...,n, very much like the proof of
Corollary 6.2. The differential

— 2m _ .2m—1
22 U(ug p

TE) = (b)Y
for v,(j) = 2m — 2 is non-trivial only on the summand
2m—2
E(un, &1, 00) © Py tus)

of the E% = E>W_term (for m = 1), resp. the E?(m=2+1 — p2Cm=1_term (for m =
2,...,n). Its homology is

E(un, M) ® Fp{ 18} | v5(j) = 2m — 2} © Pp(am-1y (tpr2)
@ E(“TL? Eh >\2) ® P(,ugip " Jt,u2) )
which gives the stated E?(m=D+1_term. The differential

()™

2m—1 _2m—1

2m
A2 () = Ny "
is non-trivial only on the summand
2m—1
E(una€17/\2) ®P(lu;:p 7tu2)
of the E2Cm=D+1 — [202m)_term, leaving
E(up, &) @ Fp{ i | 0(j) = 2m — 1} @ Pyiam) (t2)
@ E(un7 E17 >\2) ® P(,uétpzm7 t/'l’2> .
This gives the stated E2(>")*1_term. The final differential
d2p(2n)+l<un . ué’%) _ (tMQ)p(2n)+1
is non-trivial only on the summand
2n
E(Un, Ela )\2) ® P(/’l’;tp 7t,u2)
of the E?(?")*1_term, with homology
2n
E(&,%) ® P(pt3"") ® Py(any 1 (tha)

This gives the stated E?(?)*2_term. There is no room for any further differentials, since
the spectral sequence is concentrated in a narrower vertical band than the horizontal
width of the following differentials, so E2/(20)+2 = oo, O
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Proof of Theorem 6.1. To make the inductive step to Cpnt1, we use that the first d"-
differential of odd length in E’*(Cpn,é/p) occurs for r = rg = 2p(2n) + 1. It follows
from [AR02, 5.2] that the terms E"(Cyn, /p) and E7(Cyni1,£/p) are isomorphic for r <
2p(2n) +1, via the Frobenius map (taking ¢* to ¢') in even columns and the Verschiebung
map (taking u,t' to u,41t’) in odd columns. Furthermore, the differential d?(?™+! is
zero in the latter spectral sequence. This proves the part of Theorem 6.1 for n 4 1 that
concerns the differentials leading up to the term

E2CO2(C 0 0)p) = E(tngr, o) @ F{t 7| 0 < i < p} @ P(t*7")

® @D Euni, ha) @ F{t | vp(j) = 2k — 2} © Pyap—s) (th2)
k=2

© D Etni1, &) ©Fy{tg | 0(j) = 2k — 1} @ Pya— (1)
k=2

B Etnsr, €1, Ao) @ P tp1s) .

(6.6)

Next we use the following commutative diagram, where we abbreviate THH(B) to

~ th'n

(6.7) (T(B)!Cr)hCom R T(B)"Com g T(B)C % T(B)‘“rm+!
T(B)¥*r <F1— (B) =——=T(B) # (B)tCr

The horizontal maps all induce (2p — 2)-coconnected maps in V(1)-homotopy for B =
¢/p. Here F is the Frobenius map, forgetting part of the equivariance. Thus the map
[,41 to the right induces an isomorphism of E()\y) ® P(vs)-modules in all degrees >
(2p — 2) from V(1) THH (¢/p)“»", implicitly identified to the left with the abutment of
115 L E*(Con, £/p), to V(1) THH(£/p)'%+ | which is the abutment of £*(Cns1,£/p). The
diagram above ensures that the isomorphism induced by an is compatible with the one
induced by . By Proposition 5.9 it takes €1, Ay and us to €, Ay and 7", respectively,
and similarly for monomials in these classes.
We focus on the summand

E(un, A2) ® ]Fp{ﬂg | vp(J) = 2n = 2} ® Bpan—1)(tp2)
in ;' B (Cpn, £/p), abutting to V(1) THH (¢/p)°" in degrees > (2p—2). In the P(vy)-

module structure on the abutment, each class ;2 with vp(j) = 2n — 2, j > 0, generates
a copy of P,2n—1)(v2), since there are no permanent cycles in the same total degree as
y = (tpz)??*=V. 1) that have lower (= more negative) homotopy fixed point filtration. See
Lemma 6.8 below for the elementary verification. The P(v2)-module isomorphism induced
by ['y1 must take this to a copy of Pyon-1)(v2) in V1), THH((/p)"“»m+, generated by
P,

Writing ¢ = —p?j, we deduce that for v,(i) = 2n, i < 0, the infinite cycle z =
(tu)P?"=1 . ¢ must represent zero in the abutment, and must therefore be hit by a
differential z = d"(x) in the Cpn+1-Tate spectral sequence. Here 7 > 2p(2n) + 2.
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Since z generates a free copy of P(tus) in the E%"+2_term displayed in (6.6), and d"
is P(tpuo)-linear, the class x cannot be annihilated by any power of tuy. This means that
x must be contained in the summand

E(U’n-l-la gla )‘2) ® P(tip2nv tl’LQ)

of B2 (2n)+2(0pn+1,€ /p). By an elementary check of bidegrees, see Lemma 6.9 below, the
only possibility is that x has vertical degree (2p — 1), so that we have differentials

dzp(2n+1) (tp2n+17p2n+2+i . 51) — (tl’bz)p@n*l) . tl

for all i < 0 with v,(i) = 2n. The cases ¢ > 0 follow by the module structure over the
Cpn+1-Tate spectral sequence for £. The remaining two differentials,

(2r(2n+2) (th”“—pQ"“) S (o))

and
n _n2n+2 n
d2p(2 +2)+1(Un+1 TP ) = (tu?)p(z )+1

are also present in the Cjn+1-Tate spectral sequence for ¢, see [AR02, 6.1], hence follow
in the present case by the module structure. With this we have established the complete
differential pattern asserted by Theorem 6.1. U

Lemma 6.8. For v,(j) = 2n —2, n > 1, there are no classes in py  EX(Cyn, £/p) in the

same total degree asy = (tuy)?*"~Y -,ug that have lower homotopy fixed point filtration.

Proof. The total degree of y is 2(p*"*™2 — p*"*1 +p — 1) + 2p*j = (2p — 2) mod 2p*",
which is even.

Looking at the formula for i, ' E2(Cyn,€/p) in Corollary 6.5, the classes of lower fil-
tration than y all lie in the terms

E(un, &) @ Fp{ Aoty | v,(1) = 2n — 1} @ Pyan (tpa)
and
E(&1,20) ® P(11" ) @ Pytany 41 (tia)

Those in even total degree and of lower filtration than y are

Uz - iy (tp2)®, @ - (L)
with v,(1) =2n — 1, p(2n — 1) < e < p(2n), and

py(tha)®, & Aa - py(tua)°

with v,(7) > 2n, p(2n — 1) < e < p(2n).

The total degree of w, Ao~ (tp2)¢ for vy(i) = 2n—11s (—1)+(2p*—1)+2p%i+(2p*—2)e =
(2p* — 2)(e + 1) mod 2p*". For this to agree with the total degree of y, we must have
(2p—2) = (2p?—2)(e+1) mod 2p**, s0 (e+1) = 1/(1+p) mod p*™ and e = p(2n—1)—1
mod p?*. There is no such e with p(2n — 1) < e < p(2n).

The total degree of € Ay - ph(tug)® for vy(i) = 2n — 1is (2p — 1) + (2p* — 1) + 2p%i +
(2p? — 2)e = 2p + (2p® — 2)(e + 1) mod 2p**. To agree with that of y, we must have
(2p—2) = 2p+(2p*—2)(e+1) mod 2p*", so (e+1) =1/(1—p*) mod p*" and e = p(2n)
mod p?*. There is no such e with p(2n — 1) < e < p(2n).

The total degree of pb(tus)¢ for v,(i) > 2n is 2p*i + (2p* — 2)e = (2p* — 2)e mod 2p*".
To agree with that of y, we must have (2p—2) = (2p*—2)e mod 2p*",soe = 1/(1+p) =
p(2n — 1) mod p?". There is no such e with p(2n — 1) < e < p(2n).
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The total degree of € g+ i (tus)® for vy(i) > 2nis (2p—1)+ (2p* — 1) +2p*i+ (2p* — 2)e.
To agree modulo 2p*" with that of y, we must have e = p(2n) mod p?". The only such
e with p(2n — 1) < e < p(2n) is e = p(2n). But in that case, the total degree of
€1 - b (tua)® is 2p + 2p% + (2p* — 2)(p(2n) + 1) = 2(p*" ™ + p — 1) + 2p?i. To be equal
to that of y, we must have 2p%i + 2p*" ™! = 2p?j, which is impossible for v,(i) > 2n and
vp(j) =2n —2. O

Lemma 6.9. For v,(i) = 2n, n > 1 and z = (tup)?® Y - £, the only class in

E(un+17 El? AQ) ® P<tip2n7 t/*LQ)
that can support a differential d"(x) = z for r > 2p(2n) + 2 is (a unit times)

- tp2n+17p2n+2+,i 'E
Proof. The class z has total degree (2p* —2)p(2n—1) —2i = 2p*" 2 —2p?" 1 4 2p—2 -2 =
(2p—2) mod 2p*", which is even, and vertical degree 2p?p(2n—1). Hence x has odd total
degree, and vertical degree at most 2p?p(2n—1)—2p(2n)—1 = 2p?"F2—2p?n 1 ... 2p3 1.
This leaves the possibilities

Uy -V (Epn), & - (tp2)®,  Ag -t (tpa)
with v,(j) > 2nand 0 <e<p™ —p** ' —-.. —p=p2n—1) — p(2n — 2) — 1, and

un+1€1)\2 -t (t,ug)e
with v,(j) >2nand 0 <e<p® —p** ™t —... —p—1=p2n—1) — p(2n — 2) — 2.

The total degree of x must be one more than the total degree of z, hence is congruent
to (2p — 1) modulo 2p*".

The total degree of w, 1 -7 (tu)® is —1 — 25 + (2p? —2)e = —1+ (2p* — 2)e mod 2p*".
To have (2p — 1) = —1 4 (2p? — 2)e mod 2p*™ we must have e = —p/(1 — p?) = p>" —
p?"~1 — ... —p mod p?", which does not happen for e in the allowable range.

The total degree of Ay - #7(tuz)¢ is (2p* — 1) — 25 + (2p* — 2)e = (2p* — 1) + (2p* — 2)e
mod 2p?". To have (2p — 1) = (2p* — 1) + (2p® — 2)e mod 2p*" we must have e =
—p/(1+p) =p(2n—1) —1 mod p**, which does not happen.

The total degree of wu, 16 Ae - #7 (L) is =1+ (2p — 1) + (2p? — 1) — 25 + (2p* — 2)e =
(2p — 1) + (2p* — 2)(e + 1) mod 2p*". To have (2p —1) = (2p — 1) + (2p* — 2)(e + 1)
mod 2p*" we must have (e +1) = 0 mod p*", so e = p** — 1 mod p**, which does not
happen.

The total degree of & - t/(tus)¢is (2p — 1) — 2j + (2p* — 2)e = (2p — 1) + (2p® — 2)e
mod 2p?". To have (2p — 1) = (2p — 1) + (2p* — 2)e mod 2p*"*, we must have e = 0
mod p?*, so e = 0 is the only possibility in the allowable range. In that case, a check of
total degrees shows that we must have j = p?"tt — p?n+2 4 g, O

Corollary 6.10. V(1),THH ({/p)°»" is finite in each degree.
Proof. This is clear by inspection of the E*°-term in Corollary 6.2. U

Lemma 6.11. The map G,, induces an isomorphism

[a)

V(). THH(/p)C = V(1) (THH({/p)Cr)rCrm

in all degrees. In the limit over the Frobenius maps F', there is a map G inducing an
1somorphism

V(D).THH((/p)'" = V(1)(THH(¢/p) )"
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Proof. As remarked after diagram (6.3), G,, induces an isomorphism in V'(1)-homotopy
above degree (2p — 2). The permanent cycle 7" in E2(Cyni1,£) acts invertibly on
Eff(Cpn+1,€/p), and its image G,(t7"") = ;#2’2" in ji; ' E%(Cyn, ¢) acts invertibly on
iy P EX(Cyn, £/p). Therefore the module action derived from the f-algebra structure on
¢/p ensures that G,, induces isomorphisms in V' (1)-homotopy in all degrees. O

Theorem 6.12. (a) The associated graded of V (1), THH(£/p)*S" for the S*-Tate spectral
sequence 18

EX(S",0/p) = E(A) @ F,{t7 | 0 <i < p} @ P(t*7)
&P ECw) @F{t | v,(j) = 2k — 2} @ Pyar—s) (t112)
k>2

o @ B(e) ® Fy{t'ds | v,(j) = 2k — 1} © Pyas (tp2)

k>2

© E(€1, A2) @ P(tus) .

(b) The associated graded of V(1),THH (£/p)">" for the S*-homotopy fized point spec-
tral sequence maps by a (2p — 2)-coconnected map to

puy EZ(S10/p) = () @ Fyplpg | 0 <i < p} @ P(uy ")
&P E() @ Fp{iih | v,(j) = 2k — 2} © Pyan—n(tpsa)

k>1

&P E@) @ Fpfhaith | 0,(j) = 2k — 1} @ Pyian) (t112)

k>1

© E(e1, A2) @ P(tps) .

(¢) The isomorphism from (a) to (b) induced by G takes t=* to pfy for 0 < i < p and
t' to uy for i+ p*j = 0. Furthermore, it takes multiples by €, Ao or tus in the source to
the same multiples in the target.

Proof. Claims (a) and (b) follow by passage to the limit over n from Corollaries 6.2
and 6.5. Claim (c) follows by passage to the same limit from the formulas for the iso-

A

morphism induced by I, 1, which were given below diagram (6.7). O

7. TOPOLOGICAL CYCLIC HOMOLOGY
By definition, there is a fiber sequence
TC(B) & TF(B) £ TF(B)
inducing a long exact sequence
(7.1) S va.reB) S v, TFB) EL v).TFB) S ..

in V' (1)-homotopy. By Corollary 5.10, there are (2p — 2)-coconnected maps I" and [ from
V(1).TF({/p) to V(1),THH(¢/p)*" and V (1), THH((/p)*s", respectively. We model
V(1).TF(¢/p) in degrees > (2p —2) by the map I to the S'-Tate construction. Then, by
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diagram (6.3), R is modeled in the same range of degrees by the chain of maps below.

V(1),THH(B)* V(1).THH(B)"' —— v (1), THH(B)'S'
\ J(f‘l)hSI
V(1).(THH(B)')"'

Here R" induces a map of spectral sequences
E*(R"): E*(S*, B) — E*(S%, B),
which at the E?-term equals the inclusion that algebraically inverts . When B = {/p,

the left hand map G is an isomorphism by Lemma 6.11, and the middle (wrong-way)
map is (2p — 2)-coconnected.

Proposition 7.2. In degrees > (2p — 2), the homomorphism
E>(R"): E*(S",(/p) — E>(S",(/p)
maps

(a) E(&1,A2) ® P(tus) identically to the same expression;
(b) E(X2) @ Fyp{py”} ® Poar—1)(tpe) surjectively onto

E(X2) @ Fp{t/} ® Pyor—3)(tus)

for each k> 2, j = dp25*2, O<d<p*—pandptd;
(c) E(&) @ Fp{Aopiy” } @ Ppary(tpa) surjectively onto

E(&) @ Fp{t' Ao} ® Poog—)(th)

for each k> 2, j =dp**~! and 0 < d < p;
(d) the remaining terms to zero.

Proof. Consider the summands of E>(S", ¢/p) and E>~(S*,¢/p), as given in Theorem 6.12.
Clearly, the first term E(\y) @ Fp{ul | 0 < i < p} @ P(us) goes to zero (these classes are
hit by d?-differentials), and the last term E(&;, A\y) ® P(tus) maps identically to the same
term. This proves (a) and part of (d).

For each k > 1 and j = dp?*~2 with p { d, the term E(\2) ®@ Fy{ps”} @ Pyap_1)(tpia)
maps to the term E(X) @ Fp{t/} ® Pyax—3)(tp2), except that the target is zero for k = 1.
In symbols, the element A, (tu;)" maps to the element At/ (tus)" 7. If d < 0, then
the t-exponent in the target is bounded above by dp?*=2 + p(2k — 3) < 0, so the target
lives in the right half-plane and is essentially not hit by the source, which lives in the
left half-plane. If d > p? — p, then the total degree in the source is bounded above by
(2p? —1) —2dp®* + p(2k —1)(2p* —2) < 2p—2, so the source lives in total degree < (2p—2)
and will be disregarded. If 0 < d < p? — p, then p(2k — 1) — dp*~2 > p(2k — 3) and
—dp*~2 < 0, so the source surjects onto the target. This proves (b) and part of (d).

Lastly, for each k > 1 and j = dp~! with p { d, the term E(€)®F,{Nafis” }& Pyar) (t112)
maps to the term E(€) @ Fp{t/ Ao} ® Pyor—2)(tp2). The target is zero for k = 1. If d < 0,
then dp**~1 + p(2k — 2) < 0 so the target lives in the right half-plane. If d > p, then
(2p—1)+ (2p* — 1) — 2dp** 1 + p(2k) (2p* — 2) < 2p— 2, so the source lives in total degree
< (2p—2). If 0 < d < p, then p(2k) — dp**~* > p(2k —2) and —dp**~! < 0, so the source
surjects onto the target. This proves (¢) and the remaining part of (d). O
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Definition 7.3. Let
A=E(&, ) @ P(tus)
Br = EO) @ F,{t7" 7 |0 < d < p® —p,ptd} @ Pyops(tiss)
Cr = B(@) @ F,{t7" "Ny | 0 < d < p} © Pyap_a)(tpa)

for k > 2 and let D be the span of the remaining monomials in E>~(S*,¢/p). Let
B =@,.,Br and C = @, Cy. Then E*(S',{/p)=A®BaC®D.

Proposition 7.4. In degrees > (2p — 2), there are closed subgroups A= E(é,\) ®
P(vs), By, Cy, and D in V (1), TF((/p), represented by A, By, Cy, and D in E>(S*, {/p),
respectively, such that the homomorphism induced by the restriction map R

(a) is the identity on A;

(b) maps §k+1 surjectively onto By for all k > 2;

(c) maps Choi1 surjectively onto Cy for all k > 2;

(d) is zero on By, Cy and D.
In these degrees, V (1), TF((/p) = A® B&C&® D, where B = [Lso By, and C = [Liss Ch.
Proof. In terms of the model THH (£/p)**" for TF(¢/p), the restriction map R is given
in these degrees as the composite of the isomorphism G, computed in Theorem 6.12(c),
and the map E"’o(Rh), computed in Proposition 7.2. This gives the desired formulas at

the level of E*°-terms. The rest of the argument is the same as that for Theorem 7.7 of
[AR02], using Corollary 6.10 to control the topologies, and will be omitted. U

Remark 7.5. Here we have followed the basic computational strategy of [BM94], [BM95]
and [AR02]. It would be interesting to have a more concrete construction of the lifts By,

Cy and D, in terms of de Rham—-Witt operators R, F', V and d = o, like in the algebraic
case of [HM97] and [HMO3].

Proposition 7.6. In degrees > (2p — 2) there are isomorphisms
ker(R—1) = A lilgn By, @ liin Ch
= E(€1,A2) ® P(vg)
O EN)QF,{t'|0<d<p®—p,ptd} @ P(vy)
©EE) @F,{t%)\y | 0 < d < p} ® P(vs)
and cok(R — 1) = A = E(&,, \2) @ P(vy). Hence there is an isomorphism
V(1).TC(t/p) = E(9, &, A) © P(vg)
® E(X) @ Fp{t' |0 < d <p” —p,ptd} ® P(v)
® E(&) @ Fp{t" Xy | 0 < d < p} ® P(vy)

in these degrees, where O has degree —1 and represents the image of 1 under the connecting
map 0 in (7.1).

Proof. By Proposition 7.4, the homomorphism R — 1 is zero on A and an isomorphism
on D. Furthermore, there is an exact sequence
LS ~ R-1 ~ 15
0—>111£an — HBk —_— HBk —>hrgllBk — 0

k>2 k>2
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and similarly for the C"s. The derived limit on the right vanishes since each §k+1 surjects

onto By.

Multiplication by tus in each By is realized by multiplication by vs in Ek. Each Ek is a
sum of 2(p — 1)? cyclic P(vy)-modules, and since p(2k — 3) grows to infinity with & their
limit is a free P(vy)-module of the same rank, with the indicated generators ¢4 and 9\,
for 0 < d < p* — p, ptd. The argument for the C’s is practically the same.

The long exact sequence (7.1) yields the short exact sequence

0— S eok(R—1) S V(1),TC(/p) & ker(R—1) — 0,
from which the formula for the middle term follows. ]

Remark 7.7. A more obvious set of E(Ay)® P(v5)-module generators for limy, B, would be
the classes t%° in By & By, for 0 < d < p>—p, p {d. Under the canonical map TF(¢/p) —
THH(¢/p)®, modeled here by THH({/p)*S" — (THH({/p)°»)"», these map to the
classes 5 ?. Since we are only concerned with degrees > (2p —2) we may equally well use

their vo-power multiplies (tpg)? - uy® = t¢ as generators, with the advantage that these
are in the image of the localization map THH (¢/p)"“» — (THH (¢/p)!“»)"“». Hence the

class denoted t¢ in limy, By, is chosen so as to map under TE(¢/p) — THH (£/p)" to t*

in E2°(Cp; £/p). Similarly, the class denoted t% )y in limy, Cy is chosen so as to map to
t%® g in EX(Cy; £/p).

The map 7: {/p — Z/p is (2p — 2)-connected, hence induces (2p — 1)-connected maps
m.: K({/p) — K(Z/p) and 7, : V(1),TC(¢/p) — V(1).TC(Z/p), by [BM94, 10.9] and
[Dun97]. Here TC(Z/p) ~ HZ,V ¥ 'HZ, and V(1),TC(Z/p) = E(0,€), so we can
recover V (1), TC(¢/p) in degrees < (2p — 2) from this map.

Theorem 7.8. There is an isomorphism of E(A1, A\2) ® P(ve)-modules
V(1).TC(l/p) = P(v2) ® E(9, €1, A2)
® P(vy) @ B(dlogvy) @ Fy{t"; | 0 < d < p* = p,p d}
® P(vy) @ B(@) @ Fp{t%A; | 0 < d < p}

where vy - dlog vy = Ay. The degrees are |0| = —1, &1 = |M| =2p—1, |\o| = 2p* — 1 and
|vg| = 2p? — 2. The formal multipliers have degrees |t| = —2 and | dlogv,| = 1.

The notation dlog v; for the multiplier v, '\, is suggested by the relation v, -dlogp = A
in V(0).TC(Z)|Q).

Proof. Only the additive generators t¢ for 0 < d < p* — p, p 1 d from Proposition 7.6
do not appear in V(1),7C(¢/p), but their multiples by Ay and positive powers of vy do.
This leads to the given formula, where dlogv; - tv, must be read as t?\,. U

By [HM97] the cyclotomic trace map of [BHM93] induces cofiber sequences
(7.9) K(B,), %% TC(B), L 2 'HZ,
for each connective S-algebra B with 7y(B,) = Z, or Z/p, and thus long exact sequences
S V(),K(B) 25 V1), TCB) L S E@E) — ... .

This uses the identifications W(Z,)r = W(Z/p)r = Z, of Frobenius coinvariants of Witt
rings, and applies in particular for B = HZ,), HZ/p, { and {/p.
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Theorem 7.10. There is an isomorphism of E(\1, A\2) ® P(vy)-modules
V(l)*K(g/p) = P(UQ) & E<€1> & ]Fp{l, 8)\2, )\2, 32}2}

@ P(vy) @ E(dlogvy) @ Fy{t?vy |0 < d < p* —p,ptd}
® P(vy) @ BE(6) @ F,{t")y | 0 < d < p}.

This is a free P(vq)-module of rank (2p* — 2p + 8) and of zero Euler characteristic.

Proof. In the case B = Z/p, K(Z/p), ~ HZ, and the map g is split surjective up to
homotopy. So the induced homomorphism to V(1),X'HZ, = X7'E(&) is surjective.
Since 7: {/p — 7Z/p induces a (2p — 1)-connected map in topological cyclic homology,
and Y~1F (&) is concentrated in degrees < (2p — 2), it follows by naturality that also in
the case B = {¢/p the map ¢ induces a surjection in V' (1)-homotopy. The kernel of the
surjection P(ve) @ E(0, €, A2) — L 1E(& ) gives the first row in the asserted formula. O
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