# ALGEBRAIC $K$-THEORY OF THE FIRST MORAVA $K$-THEORY 

CHRISTIAN AUSONI AND JOHN ROGNES

## 1. Introduction

In this paper we continue the investigation from [AR02] and [Aus10] of the algebraic $K$ theory of topological $K$-theory and related $S$-algebras. Let $\ell_{p}$ be the $p$-complete Adams summand of connective complex $K$-theory, and let $\ell / p=k(1)$ be the first connective Morava $K$-theory. It has a unique $S$-algebra structure [Ang], and we show in Section 2 that $\ell / p$ is an $\ell_{p}$-algebra (in uncountably many ways), so that $K(\ell / p)$ is a $K\left(\ell_{p}\right)$-module spectrum.

Let $V(1)=S /\left(p, v_{1}\right)$ be the type 2 Smith-Toda complex. It is a homotopy commutative ring spectrum for $p \geq 5$, with a preferred periodic class $v_{2} \in V(1)_{*}$. We write $V(1)_{*}(X)=$ $\pi_{*}(V(1) \wedge X)$ for the $V(1)$-homotopy of a spectrum $X$. Multiplication by $v_{2}$ makes $V(1)_{*}(X)$ a $P\left(v_{2}\right)$-module, where $P\left(v_{2}\right)$ denotes the polynomial algebra over $\mathbb{F}_{p}$ generated by $v_{2}$.

We computed the $V(1)$-homotopy of $K\left(\ell_{p}\right)$ in [AR02], showing that it is essentially a free $P\left(v_{2}\right)$-module on $(4 p+4)$ generators. In particular, there are preferred classes $\lambda_{1}, \lambda_{2} \in V(1)_{*} K\left(\ell_{p}\right)$ generating an exterior subalgebra $E\left(\lambda_{1}, \lambda_{2}\right)$. Hence $V(1)_{*} K(\ell / p)$ is an $E\left(\lambda_{1}, \lambda_{2}\right) \otimes P\left(v_{2}\right)$-module. The following is our main result, corresponding to Theorem 7.10 in the body of the paper.

Theorem 1.1. Let $p \geq 5$ be a prime and let $\ell / p=k(1)$ be the first connective Morava $K$-theory spectrum. There is an isomorphism of $E\left(\lambda_{1}, \lambda_{2}\right) \otimes P\left(v_{2}\right)$-modules

$$
\begin{aligned}
V(1)_{*} K(\ell / p) \cong & P\left(v_{2}\right) \otimes E\left(\bar{\epsilon}_{1}\right) \otimes \mathbb{F}_{p}\left\{1, \partial \lambda_{2}, \lambda_{2}, \partial v_{2}\right\} \\
& \oplus P\left(v_{2}\right) \otimes E\left(\operatorname{dlog} v_{1}\right) \otimes \mathbb{F}_{p}\left\{t^{d} v_{2} \mid 0<d<p^{2}-p, p \nmid d\right\} \\
& \oplus P\left(v_{2}\right) \otimes E\left(\bar{\epsilon}_{1}\right) \otimes \mathbb{F}_{p}\left\{t^{d p} \lambda_{2} \mid 0<d<p\right\} .
\end{aligned}
$$

Here $\left|\lambda_{1}\right|=\left|\bar{\epsilon}_{1}\right|=2 p-1,\left|\lambda_{2}\right|=2 p^{2}-1,\left|v_{2}\right|=2 p^{2}-2,\left|\operatorname{dlog} v_{1}\right|=1,|\partial|=-1$ and $|t|=-2$. This is a free $P\left(v_{2}\right)$-module of rank $\left(2 p^{2}-2 p+8\right)$ and of zero Euler characteristic.

We prove this theorem by means of the cyclotomic trace map [BHM93] to topological cyclic homology $T C(\ell / p)$. Along the way we evaluate $V(1)_{*} T H H(\ell / p)$, where $T H H$ denotes topological Hochschild homology, as well as $V(1)_{*} T C(\ell / p)$, see Proposition 4.6 and Theorem 7.8.
Let $L_{p}$ be the $p$-complete Adams summand of periodic complex $K$-theory, and let $L / p=K(1)$ be the first periodic Morava $K$-theory. The localization cofiber sequence $K(\mathbb{Z}) \rightarrow K(k u) \rightarrow K(K U)$ of Blumberg and Mandell [BM08] has the mod $p$ Adams analogue

$$
K(\mathbb{Z} / p) \rightarrow K(\ell / p) \rightarrow K(L / p) .
$$

Using Quillen's computation [Qui72] of $K(\mathbb{Z} / p)$, we obtain the following consequence:

[^0]Corollary 1.2. Let $p \geq 5$ be a prime and let $L / p=K(1)$ be the first Morava $K$-theory spectrum. There is an isomorphism of $E\left(\lambda_{1}, \lambda_{2}\right) \otimes P\left(v_{2}^{ \pm 1}\right)$-modules

$$
V(1)_{*} K(L / p)\left[v_{2}^{-1}\right] \cong V(1)_{*} K(\ell / p)\left[v_{2}^{-1}\right] .
$$

If the relation $\lambda_{2}=v_{2} \operatorname{dlog} v_{1}$ holds in $V(1)_{*} K(L / p)$, then there is an isomorphism of $E\left(\operatorname{dlog} v_{1}, \lambda_{1}\right) \otimes P\left(v_{2}\right)$-modules

$$
\begin{aligned}
V(1)_{*} K(L / p) \cong & P\left(v_{2}\right) \otimes E\left(\bar{\epsilon}_{1}\right) \otimes \mathbb{F}_{p}\left\{1, \partial \lambda_{2}, \operatorname{dlog} v_{1}, \partial v_{2}\right\} \\
& \oplus P\left(v_{2}\right) \otimes E\left(\operatorname{dlog} v_{1}\right) \otimes \mathbb{F}_{p}\left\{t^{d} v_{2} \mid 0<d<p^{2}-p, p \nmid d\right\} \\
& \oplus P\left(v_{2}\right) \otimes E\left(\bar{\epsilon}_{1}\right) \otimes \mathbb{F}_{p}\left\{t^{d p} v_{2} \operatorname{dlog} v_{1} \mid 0<d<p\right\}
\end{aligned}
$$

where the degrees of the generators are as in Theorem 1.1. This is a free $P\left(v_{2}\right)$-module of rank $\left(2 p^{2}-2 p+8\right)$ and of zero Euler characteristic.

Our far-reaching aim is to conceptually understand the algebraic $K$-theory of $\ell_{p}$ and other commutative $S$-algebras in terms of localization and Galois descent, in the same way as we understand the algebraic $K$-theory of rings of integers in (local) number fields or more general regular rings. The first task is to relate $K\left(\ell_{p}\right)$ to the algebraic $K$-theory of its "residue fields" and "fraction field", for which we expect a description in terms of Galois cohomology to exist, starting with the Galois theory for commutative $S$-algebras developed by the second author [Rog08]. The residue rings of $\ell_{p}$ appear to be $\ell / p, H \mathbb{Z}_{p}$ and $H \mathbb{Z} / p$, while the fraction field $f f\left(\ell_{p}\right)$ appears to be a localization of $L_{p}$ away from $L / p$, less drastic than the algebraic localization $L_{p}\left[p^{-1}\right]=L \mathbb{Q}_{p}$. So far we do not have a proper definition of this $S$-algebraic fraction field, but by analogy with the localization sequence above, we expect that its algebraic $K$-theory appears in a localization cofiber sequence

$$
K(L / p) \rightarrow K\left(L_{p}\right) \rightarrow K\left(f f\left(\ell_{p}\right)\right)
$$

where the transfer map on the left is a $K\left(L_{p}\right)$-module map. Taking this as a preliminary definition of the symbol $K\left(f f\left(\ell_{p}\right)\right)$, we can use our computations to evaluate its $V(1)$ homotopy:

Theorem 1.3. Let $p \geq 5$ be a prime, and define $K\left(f f\left(\ell_{p}\right)\right)$ as the homotopy cofiber above. There is an isomorphism of $P\left(v_{2}^{ \pm 1}\right)$-modules

$$
V(1)_{*} K\left(f f\left(\ell_{p}\right)\right)\left[v_{2}^{-1}\right] \cong P\left(v_{2}^{ \pm 1}\right) \otimes \Lambda_{*}
$$

where

$$
\begin{aligned}
\Lambda_{*} \cong & E\left(\partial v_{2}, \operatorname{dlog} p, \operatorname{dlog} v_{1}\right) \\
& \oplus E\left(\operatorname{dlog} v_{1}\right) \otimes \mathbb{F}_{p}\left\{t^{d} \lambda_{1} \mid 0<d<p\right\} \\
& \oplus E\left(\operatorname{dlog} v_{1}\right) \otimes \mathbb{F}_{p}\left\{t^{d} v_{2} \operatorname{dlog} p \mid 0<d<p^{2}-p, p \nmid d\right\} \\
& \oplus E(\operatorname{dlog} p) \otimes \mathbb{F}_{p}\left\{t^{d p} \lambda_{2} \mid 0<d<p\right\} .
\end{aligned}
$$

Here $|\operatorname{dlog} p|=1$, and the degrees of the other classes are as in Theorem 1.1. The localization homomorphism

$$
V(1)_{*} K\left(f f\left(\ell_{p}\right)\right) \rightarrow V(1)_{*} K\left(f f\left(\ell_{p}\right)\right)\left[v_{2}^{-1}\right]
$$

is an isomorphism in degrees $* \geq 2 p$.
In particular, the homotopy cofiber $K\left(f f\left(\ell_{p}\right)\right)$ cannot be equivalent to the $K\left(\mathbb{Q}_{p}\right)$ module $K\left(L \mathbb{Q}_{p}\right)$, since $V(1)_{*} K\left(\mathbb{Q}_{p}\right)$ is a torsion $P\left(v_{2}\right)$-module.

We may now conjecturally interpret $V(1)_{*} K\left(f f\left(\ell_{p}\right)\right)\left[v_{2}^{-1}\right]$ in terms of Galois descent. Indeed, the second author conjectured that if $\Omega_{1}$ is an $S$-algebraic "separable closure" of $f f\left(\ell_{p}\right)$, then there is a homotopy equivalence

$$
L_{K(2)} K\left(\Omega_{1}\right) \simeq E_{2}
$$

Here $E_{2}$ is Morava's second $E$-theory [GH04], with coefficients $\left(E_{2}\right)_{*}=\mathbb{W}\left(\mathbb{F}_{p^{2}}\right)\left[\left[u_{1}\right]\right]\left[u^{ \pm 1}\right]$, and $L_{K(2)}$ denotes Bousfield localization with respect to the second Morava $K$-theory $K(2)$, with coefficients $K(2)_{*}=\mathbb{F}_{p}\left[v_{2}^{ \pm 1}\right]$. The $v_{2}$-periodic $V(1)$-homotopy groups of $K\left(\Omega_{1}\right)$ will then be given by

$$
V(1)_{*} K\left(\Omega_{1}\right)\left[v_{2}^{-1}\right] \cong \mathbb{F}_{p^{2}}\left[u^{ \pm 1}\right] .
$$

We would expect to have a corresponding Galois descent spectral sequence

$$
E_{s, t}^{2}=H_{G a l}^{-s}\left(f f\left(\ell_{p}\right) ; \mathbb{F}_{p^{2}}(t / 2)\right) \Longrightarrow V(1)_{s+t} K\left(f f\left(\ell_{p}\right)\right)\left[v_{2}^{-1}\right]
$$

If this spectral sequence collapses at $E^{2}$ when $p \geq 5$, as is the case for $p$-adic number fields when $p \geq 3$, we get a conjectural description of the Galois cohomology of $f f\left(\ell_{p}\right)$ with coefficients in $\mathbb{F}_{p^{2}}(t / 2)$, for all even $t$. Promisingly, this fits very well with the example of the Galois cohomology of $\mathbb{Q}_{p}$ with coefficients in $\mathbb{F}_{p}(t / 2)$, with the difference that the absolute Galois group of $f f\left(\ell_{p}\right)$ has $p$-cohomological dimension 3 instead of 2 . Also, by analogy with Tate-Poitou duality [Tat63] in the Galois cohomology of local number fields, there appears to be a perfect arithmetic duality pairing in the conjectural Galois cohomology of $f f\left(\ell_{p}\right)$, with fundamental class dual to $\partial v_{2} \cdot \operatorname{dlog} p \cdot \operatorname{dlog} v_{1}$ in $H_{G a l}^{3}\left(f f\left(\ell_{p}\right) ; \mathbb{F}_{p^{2}}(2)\right)$. This indicates that $f f\left(\ell_{p}\right)$ ought to be a form of $S$-algebraic two-dimensional local field, mixing three different residue characteristics. We elaborate more on this in $[A R]$.

The paper is organized as follows. In Section 2 we fix our notations, show that $\ell / p$ admits the structure of an associative $\ell_{p}$-algebra, and give a similar discussion for $k u / p$ and the periodic versions $L / p$ and $K U / p$. Section 3 contains the computation of the $\bmod p$ homology of $T H H(\ell / p)$, and in Section 4 we evaluate its $V(1)$-homotopy. In Section 5 we show that the $C_{p^{n}}$-fixed points and $C_{p^{n}}$-homotopy fixed points of $T H H(\ell / p)$ are closely related, and use this to inductively determine their $V(1)$-homotopy in Section 6. Finally, in Section 7 we achieve the computation of $T C(\ell / p)$ and $K(\ell / p)$ in $V(1)$-homotopy.

## 2. Base change squares of $S$-algebras

We fix some notations. Let $p$ be a prime, even or odd for now. Write $X_{(p)}$ and $X_{p}$ for the $p$-localization and the $p$-completion, respectively, of any spectrum or abelian group $X$. Let $k u$ and $K U$ be the connective and the periodic complex $K$-theory spectra, with homotopy rings $k u_{*}=\mathbb{Z}[u]$ and $K U_{*}=\mathbb{Z}\left[u^{ \pm 1}\right]$, where $|u|=2$. Let $\ell=B P\langle 1\rangle$ and $L=E(1)$ be the $p$-local Adams summands, with $\ell_{*}=\mathbb{Z}_{(p)}\left[v_{1}\right]$ and $L_{*}=\mathbb{Z}_{(p)}\left[v_{1}^{ \pm 1}\right]$, where $\left|v_{1}\right|=2 p-2$. The inclusion $\ell \rightarrow k u_{(p)}$ maps $v_{1}$ to $u^{p-1}$. Alternate notations in the $p$-complete cases are $K U_{p}=E_{1}$ and $L_{p}=\widehat{E(1)}$. These ring spectra are all commutative $S$-algebras, in the sense that each admits a unique $E_{\infty}$ ring spectrum structure. See [BR05] for proofs of uniqueness in the periodic cases.

Let $k u / p$ and $K U / p$ be the connective and periodic mod $p$ complex $K$-theory spectra, with coefficients $(k u / p)_{*}=\mathbb{Z} / p[u]$ and $(K U / p)_{*}=\mathbb{Z} / p\left[u^{ \pm 1}\right]$. These are 2-periodic versions of the first Morava $K$-theory spectra $\ell / p=k(1)$ and $L / p=K(1)$, with $(\ell / p)_{*}=$ $\mathbb{Z} / p\left[v_{1}\right]$ and $(L / p)_{*}=\mathbb{Z} / p\left[v_{1}^{ \pm 1}\right]$. Each of these can be constructed as the cofiber of the multiplication by $p$ map, as a module over the corresponding commutative $S$-algebra. For example, there is a cofiber sequence of $k u$-modules $k u \xrightarrow{p} k u \xrightarrow{i} k u / p$.

Let $H R$ be the Eilenberg-Mac Lane spectrum of a ring $R$. When $R$ is associative, $H R$ admits a unique associative $S$-algebra structure, and when $R$ is commutative, $H R$ admits a unique commutative $S$-algebra structure. The zeroth Postnikov section defines unique maps of commutative $S$-algebras $\pi: k u \rightarrow H \mathbb{Z}$ and $\pi: \ell \rightarrow H \mathbb{Z}_{(p)}$, which can be followed by unique commutative $S$-algebra maps to $H \mathbb{Z} / p$.

The $k u$-module spectrum $k u / p$ does not admit the structure of a commutative $k u$ algebra. It cannot even be an $E_{2}$ or $H_{2}$ ring spectrum, since the homomorphism induced in $\bmod p$ homology by the resulting map $\pi: k u / p \rightarrow H \mathbb{Z} / p$ of $H_{2}$ ring spectra would not commute with the homology operation $Q^{1}\left(\bar{\tau}_{0}\right)=\bar{\tau}_{1}$ in the target $H_{*}\left(H \mathbb{Z} / p ; \mathbb{F}_{p}\right)$ [BMMS86, III.2.3]. Similar remarks apply for $K U / p, \ell / p$ and $L / p$. Associative algebra structures, or $A_{\infty}$ ring spectrum structures, are easier to come by. The following result is a direct application of the methods of [Laz01, $\S \S 9-11]$. We adapt the notation of [BJ02, §3] to provide some details in our case.

Proposition 2.1. The ku-module spectrum $k u / p$ admits the structure of an associative $k u$-algebra, but the structure is not unique. Similar statements hold for $K U / p$ as a $K U$ algebra, $\ell / p$ as an $\ell$-algebra and $L / p$ as an L-algebra.
Proof. We construct $k u / p$ as the (homotopy) limit of its Postnikov tower of associative $k u$-algebras $P^{2 m-2}=k u /\left(p, u^{m}\right)$, with coefficient rings $k u /\left(p, u^{m}\right)_{*}=k u_{*} /\left(p, u^{m}\right)$ for $m \geq 1$. To start the induction, $P^{0}=H \mathbb{Z} / p$ is a $k u$-algebra via $i \circ \pi: k u \rightarrow H \mathbb{Z} \rightarrow H \mathbb{Z} / p$. Assume inductively for $m \geq 1$ that $P=P^{2 m-2}$ has been constructed. We will define $P^{2 m}$ by a (homotopy) pullback diagram

in the category of associative $k u$-algebras. Here

$$
d \in \operatorname{ADer}_{k u}^{2 m+1}(P, H \mathbb{Z} / p) \cong T H H_{k u}^{2 m+2}(P, H \mathbb{Z} / p)
$$

is an associative $k u$-algebra derivation of $P$ with values in $\Sigma^{2 m+1} H \mathbb{Z} / p$, and the group of such can be identified with the indicated topological Hochschild cohomology group of $P$ over $k u$. We recall that these are the homotopy groups (cohomologically graded) of the function spectrum $F_{P \wedge_{k u} P^{o p}}(P, H \mathbb{Z} / p)$. The composite map $p r_{2} \circ d: P \rightarrow \Sigma^{2 m+1} H \mathbb{Z} / p$ of $k u$-modules, where $p r_{2}$ projects onto the second wedge summand, is restricted to equal the $k u$-module Postnikov $k$-invariant of $k u / p$ in

$$
H_{k u}^{2 m+1}(P ; \mathbb{Z} / p)=\pi_{0} F_{k u}\left(P, \Sigma^{2 m+1} H \mathbb{Z} / p\right)
$$

We compute that $\pi_{*}\left(P \wedge_{k u} P^{o p}\right)=k u_{*} /\left(p, u^{m}\right) \otimes E\left(\tau_{0}, \tau_{1, m}\right)$, where $\left|\tau_{0}\right|=1,\left|\tau_{1, m}\right|=2 m+1$ and $E(-)$ denotes the exterior algebra on the given generators. (For $p=2$, the use of the opposite product is essential here [Ang08, §3].) The function spectrum description of topological Hochschild cohomology leads to the spectral sequence

$$
\begin{aligned}
E_{2}^{* *} & =\operatorname{Ext}_{\pi_{*}\left(P \wedge_{k u} P o p\right)}^{* *}\left(\pi_{*}(P), \mathbb{Z} / p\right) \\
& \cong \mathbb{Z} / p\left[y_{0}, y_{1, m}\right] \\
& \Longrightarrow T H H_{k u}^{*}(P, H \mathbb{Z} / p),
\end{aligned}
$$

where $y_{0}$ and $y_{1, m}$ have cohomological bidegrees $(1,1)$ and $(1,2 m+1)$, respectively. The spectral sequence collapses at $E_{2}=E_{\infty}$, since it is concentrated in even total degrees. In
particular,

$$
\operatorname{ADer}_{k u}^{2 m+1}(P, H \mathbb{Z} / p) \cong \mathbb{F}_{p}\left\{y_{1, m}, y_{0}^{m+1}\right\}
$$

Additively, $H_{k u}^{2 m+1}(P ; \mathbb{Z} / p) \cong \mathbb{F}_{p}\left\{Q_{1, m}\right\}$ is generated by a class dual to $\tau_{1, m}$, which is the image of $y_{1, m}$ under left composition with $p r_{2}$. It equals the $k u$-module $k$-invariant of $k u / p$. Thus there are precisely $p$ choices $d=y_{1, m}+\alpha y_{0}^{m+1}$, with $\alpha \in \mathbb{F}_{p}$, for how to extend any given associative $k u$-algebra structure on $P=P^{2 m-2}$ to one on $P^{2 m}=k u /\left(p, u^{m+1}\right)$. In the limit, we find that there are an uncountable number of associative $k u$-algebra structures on $k u / p=\operatorname{holim}_{m} P^{2 m}$, each indexed by a sequence of choices $\alpha \in \mathbb{F}_{p}$ for all $m \geq 1$.

The periodic spectrum $K U / p$ can be obtained from $k u / p$ by Bousfield $K U$-localization in the category of $k u$-modules [EKMM97, VIII.4], which makes it an associative $K U$ algebra. The classification of periodic $S$-algebra structures is the same as in the connective case, since the original $k u$-algebra structure on $k u / p$ can be recovered from that on $K U / p$ by a functorial passage to the connective cover. To construct $\ell / p$ as an associative $\ell$ algebra, or $L / p$ as an associative $L$-algebra, replace $u$ by $v_{1}$ in these arguments.

By varying the ground $S$-algebra, we obtain the same conclusions about $k u / p$ as a $k u_{(p)}$-algebra or $k u_{p}$-algebra, and about $\ell / p$ as an $\ell_{p}$-algebra.

For each choice of $k u$-algebra structure on $k u / p$, the zeroth Postnikov section $\pi: k u / p \rightarrow$ $H \mathbb{Z} / p$ is a $k u$-algebra map, with the unique $k u$-algebra structure on the target. Hence there is a commutative square of associative $k u$-algebras

and similarly in the $p$-local and $p$-complete cases. In view of the weak equivalence $H \mathbb{Z} \wedge_{k u}$ $k u / p \simeq H \mathbb{Z} / p$, this square expresses the associative $H \mathbb{Z}$-algebra $H \mathbb{Z} / p$ as the base change of the associative $k u$-algebra $k u / p$ along $\pi: k u \rightarrow H \mathbb{Z}$. Likewise, there is a commutative square of associative $\ell_{p}$-algebras

that expresses $H \mathbb{Z} / p$ as the base change of $\ell / p$ along $\ell_{p} \rightarrow H \mathbb{Z}_{p}$, and similarly in the $p$-local case. By omission of structure, these squares are also diagrams of $S$-algebras and $S$-algebra maps.

## 3. Topological Hochschild homology

We shall compute the $V(1)$-homotopy of the topological Hochschild homology TH H (-) and topological cyclic homology $T C(-)$ of the $S$-algebras in diagram (2.2), for primes $p \geq$ 5. Passing to connective covers, this also computes the $V(1)$-homotopy of the algebraic $K$-theory spectra appearing in that square. With these coefficients, or more generally, after $p$-adic completion, the functors $T H H$ and $T C$ are insensitive to $p$-completion in the argument, so we shall simplify the notation slightly by working with the associative
$S$-algebras $\ell$ and $H \mathbb{Z}_{(p)}$ in place of $\ell_{p}$ and $H \mathbb{Z}_{p}$. For ordinary rings $R$ we almost always shorten notations like $T H H(H R)$ to $T H H(R)$.

The computations follow the strategy of [Bök], [BM94], [BM95] and [HM97] for $H \mathbb{Z} / p$ and $H \mathbb{Z}$, and of [MS93] and [AR02] for $\ell$. See also [AR05, $\S \S 4-7]$ for further discussion of the $T H H$-part of such computations. In this section we shall compute the $\bmod p$ homology of the topological Hochschild homology of $\ell / p$ as a module over the corresponding homology for $\ell$, for any odd prime $p$.

We write $E(x)=\mathbb{F}_{p}[x] /\left(x^{2}\right)$ for the exterior algebra, $P(x)=\mathbb{F}_{p}[x]$ for the polynomial algebra and $P\left(x^{ \pm 1}\right)=\mathbb{F}_{p}\left[x, x^{-1}\right]$ for the Laurent polynomial algebra on one generator $x$, and similarly for a list of generators. We will also write $\Gamma(x)=\mathbb{F}_{p}\left\{\gamma_{i}(x) \mid i \geq 0\right\}$ for the divided power algebra, with $\gamma_{i}(x) \cdot \gamma_{j}(x)=(i, j) \gamma_{i+j}(x)$, where $(i, j)=(i+j)!/ i!j!$ is the binomial coefficient. We use the obvious abbreviations $\gamma_{0}(x)=1$ and $\gamma_{1}(x)=x$. Finally, we write $P_{h}(x)=\mathbb{F}_{p}[x] /\left(x^{h}\right)$ for the truncated polynomial algebra of height $h$, and recall the isomorphism $\Gamma(x) \cong P_{p}\left(\gamma_{p^{e}}(x) \mid e \geq 0\right)$ in characteristic $p$.

We write $H_{*}(-)$ for homology with $\bmod p$ coefficients. It takes values in $A_{*}$-comodules, where $A_{*}$ is the dual Steenrod algebra [Mil58]. Explicitly (for $p$ odd),

$$
A_{*}=P\left(\bar{\xi}_{k} \mid k \geq 1\right) \otimes E\left(\bar{\tau}_{k} \mid k \geq 0\right)
$$

with coproduct

$$
\psi\left(\bar{\xi}_{k}\right)=\sum_{i+j=k} \bar{\xi}_{i} \otimes \bar{\xi}_{j}^{p^{i}}
$$

and

$$
\psi\left(\bar{\tau}_{k}\right)=1 \otimes \bar{\tau}_{k}+\sum_{i+j=k} \bar{\tau}_{i} \otimes \bar{\xi}_{j}^{p^{i}}
$$

Here $\bar{\xi}_{0}=1, \bar{\xi}_{k}=\chi\left(\xi_{k}\right)$ has degree $2\left(p^{k}-1\right)$ and $\bar{\tau}_{k}=\chi\left(\tau_{k}\right)$ has degree $2 p^{k}-1$, where $\chi$ is the canonical conjugation [MM65]. Then the zeroth Postnikov sections induce identifications

$$
\begin{aligned}
H_{*}\left(H \mathbb{Z}_{(p)}\right) & =P\left(\bar{\xi}_{k} \mid k \geq 1\right) \otimes E\left(\bar{\tau}_{k} \mid k \geq 1\right) \\
H_{*}(\ell) & =P\left(\bar{\xi}_{k} \mid k \geq 1\right) \otimes E\left(\bar{\tau}_{k} \mid k \geq 2\right) \\
H_{*}(\ell / p) & =P\left(\bar{\xi}_{k} \mid k \geq 1\right) \otimes E\left(\bar{\tau}_{0}, \bar{\tau}_{k} \mid k \geq 2\right)
\end{aligned}
$$

as $A_{*}$-comodule subalgebras of $H_{*}(H \mathbb{Z} / p)=A_{*}$. We often make use of the following $A_{*}$-comodule coactions

$$
\begin{aligned}
& \nu\left(\bar{\tau}_{0}\right)=1 \otimes \bar{\tau}_{0}+\bar{\tau}_{0} \otimes 1 \\
& \nu\left(\bar{\xi}_{1}\right)=1 \otimes \bar{\xi}_{1}+\bar{\xi}_{1} \otimes 1 \\
& \nu\left(\bar{\tau}_{1}\right)=1 \otimes \bar{\tau}_{1}+\bar{\tau}_{0} \otimes \bar{\xi}_{1}+\bar{\tau}_{1} \otimes 1 \\
& \nu\left(\bar{\xi}_{2}\right)=1 \otimes \bar{\xi}_{2}+\bar{\xi}_{1} \otimes \bar{\xi}_{1}^{p}+\bar{\xi}_{2} \otimes 1 \\
& \nu\left(\bar{\tau}_{2}\right)=1 \otimes \bar{\tau}_{2}+\bar{\tau}_{0} \otimes \bar{\xi}_{2}+\bar{\tau}_{1} \otimes \bar{\xi}_{1}^{p}+\bar{\tau}_{2} \otimes 1 .
\end{aligned}
$$

The Bökstedt spectral sequences

$$
E_{* *}^{2}(B)=H H_{*}\left(H_{*}(B)\right) \Longrightarrow H_{*}(T H H(B))
$$

for the commutative $S$-algebras $B=H \mathbb{Z} / p, H \mathbb{Z}_{(p)}$ and $\ell$ begin

$$
\begin{aligned}
E_{* *}^{2}(\mathbb{Z} / p) & =A_{*} \otimes E\left(\sigma \bar{\xi}_{k} \mid k \geq 1\right) \otimes \Gamma\left(\sigma \bar{\tau}_{k} \mid k \geq 0\right) \\
E_{* *}^{2}\left(\mathbb{Z}_{(p)}\right) & =H_{*}\left(H \mathbb{Z}_{(p)}\right) \otimes E\left(\sigma \bar{\xi}_{k} \mid k \geq 1\right) \otimes \Gamma\left(\sigma \bar{\tau}_{k} \mid k \geq 1\right) \\
E_{* *}^{2}(\ell) & =H_{*}(\ell) \otimes E\left(\sigma \bar{\xi}_{k} \mid k \geq 1\right) \otimes \Gamma\left(\sigma \bar{\tau}_{k} \mid k \geq 2\right) .
\end{aligned}
$$

They are (graded) commutative $A_{*}$-comodule algebra spectral sequences, and there are differentials

$$
d^{p-1}\left(\gamma_{j} \sigma \bar{\tau}_{k}\right)=\sigma \bar{\xi}_{k+1} \cdot \gamma_{j-p} \sigma \bar{\tau}_{k}
$$

for $j \geq p$ and $k \geq 0$, see [Bök], [Hun96] or [Aus05, 4.3], leaving

$$
\begin{aligned}
E_{* *}^{\infty}(\mathbb{Z} / p) & =A_{*} \otimes P_{p}\left(\sigma \bar{\tau}_{k} \mid k \geq 0\right) \\
E_{* *}^{\infty}\left(\mathbb{Z}_{(p)}\right) & =H_{*}\left(H \mathbb{Z}_{(p)}\right) \otimes E\left(\sigma \bar{\xi}_{1}\right) \otimes P_{p}\left(\sigma \bar{\tau}_{k} \mid k \geq 1\right) \\
E_{* *}^{\infty}(\ell) & =H_{*}(\ell) \otimes E\left(\sigma \bar{\xi}_{1}, \sigma \bar{\xi}_{2}\right) \otimes P_{p}\left(\sigma \bar{\tau}_{k} \mid k \geq 2\right) .
\end{aligned}
$$

The inclusion of 0 -simplices $\eta: B \rightarrow T H H(B)$ is split for commutative $B$ by the augmentation $\epsilon: \operatorname{THH}(B) \rightarrow B$. Thus there are unique representatives in Bökstedt filtration 1, with zero augmentation, for each of the classes $\sigma x$. They correspond to $1 \otimes x-x \otimes 1$ in the Hochschild complex, or just $1 \otimes x$ in the normalized Hochschild complex. There are multiplicative extensions $\left(\sigma \bar{\tau}_{k}\right)^{p}=\sigma \bar{\tau}_{k+1}$ for $k \geq 0$, see [AR05, 5.9], so

$$
\begin{align*}
H_{*}(T H H(\mathbb{Z} / p)) & =A_{*} \otimes P\left(\sigma \bar{\tau}_{0}\right) \\
H_{*}\left(T H H\left(\mathbb{Z}_{(p)}\right)\right) & =H_{*}\left(H \mathbb{Z}_{(p)}\right) \otimes E\left(\sigma \bar{\xi}_{1}\right) \otimes P\left(\sigma \bar{\tau}_{1}\right)  \tag{3.1}\\
H_{*}(T H H(\ell)) & =H_{*}(\ell) \otimes E\left(\sigma \bar{\xi}_{1}, \sigma \bar{\xi}_{2}\right) \otimes P\left(\sigma \bar{\tau}_{2}\right)
\end{align*}
$$

as $A_{*}$-comodule algebras. The $A_{*}$-comodule coactions are given by

$$
\begin{align*}
& \nu\left(\sigma \bar{\tau}_{0}\right)=1 \otimes \sigma \bar{\tau}_{0} \\
& \nu\left(\sigma \bar{\xi}_{1}\right)=1 \otimes \sigma \bar{\xi}_{1} \\
& \nu\left(\sigma \bar{\tau}_{1}\right)=1 \otimes \sigma \bar{\tau}_{1}+\bar{\tau}_{0} \otimes \sigma \bar{\xi}_{1}  \tag{3.2}\\
& \nu\left(\sigma \bar{\xi}_{2}\right)=1 \otimes \sigma \bar{\xi}_{2} \\
& \nu\left(\sigma \bar{\tau}_{2}\right)=1 \otimes \sigma \bar{\tau}_{2}+\bar{\tau}_{0} \otimes \sigma \bar{\xi}_{2} .
\end{align*}
$$

The natural map $\pi_{*}: T H H(\ell) \rightarrow T H H\left(\mathbb{Z}_{(p)}\right)$ induced by $\pi: \ell \rightarrow \mathbb{Z}_{(p)}$ takes $\sigma \bar{\xi}_{2}$ to 0 and $\sigma \bar{\tau}_{2}$ to $\left(\sigma \bar{\tau}_{1}\right)^{p}$. The natural map $i_{*}: T H H\left(\mathbb{Z}_{(p)}\right) \rightarrow T H H(\mathbb{Z} / p)$ induced by $i: \mathbb{Z}_{(p)} \rightarrow \mathbb{Z} / p$ takes $\sigma \bar{\xi}_{1}$ to 0 and $\sigma \bar{\tau}_{1}$ to $\left(\sigma \bar{\tau}_{0}\right)^{p}$.

The Bökstedt spectral sequence for the associative $S$-algebra $B=\ell / p$ begins

$$
E_{* *}^{2}(\ell / p)=H_{*}(\ell / p) \otimes E\left(\sigma \bar{\xi}_{k} \mid k \geq 1\right) \otimes \Gamma\left(\sigma \bar{\tau}_{0}, \sigma \bar{\tau}_{k} \mid k \geq 2\right)
$$

It is an $A_{*}$-comodule module spectral sequence over the Bökstedt spectral sequence for $\ell$, since the $\ell$-algebra multiplication $\ell \wedge \ell / p \rightarrow \ell / p$ is a map of associative $S$-algebras. However, it is not itself an algebra spectral sequence, since the product on $\ell / p$ is not commutative enough to induce a natural product structure on $T H H(\ell / p)$. Nonetheless, we will use the algebra structure present at the $E^{2}$-term to help in naming classes.

The map $\pi: \ell / p \rightarrow H \mathbb{Z} / p$ induces an injection of Bökstedt spectral sequence $E^{2}$-terms, so there are differentials generated algebraically by

$$
d^{p-1}\left(\gamma_{j} \sigma \bar{\tau}_{k}\right)=\sigma \bar{\xi}_{k+1} \cdot \gamma_{j-p} \sigma \bar{\tau}_{k}
$$

for $j \geq p, k=0$ or $k \geq 2$, leaving

$$
\begin{equation*}
E_{* *}^{\infty}(\ell / p)=H_{*}(\ell / p) \otimes E\left(\sigma \bar{\xi}_{2}\right) \otimes P_{p}\left(\sigma \bar{\tau}_{0}, \sigma \bar{\tau}_{k} \mid k \geq 2\right) \tag{3.3}
\end{equation*}
$$

as an $A_{*}$-comodule module over $E_{* *}^{\infty}(\ell)$. In order to obtain $H_{*}(T H H(\ell / p))$, we need to resolve the $A_{*}$-comodule and $H_{*}^{*}(T H H(\ell))$-module extensions. This is achieved in Lemma 3.6 below.

The natural map $\pi_{*}: E_{* *}^{\infty}(\ell / p) \rightarrow E_{* *}^{\infty}(\mathbb{Z} / p)$ is an isomorphism in total degrees $\leq$ $(2 p-2)$ and injective in total degrees $\leq\left(2 p^{2}-2\right)$. The first class in the kernel is $\sigma \bar{\xi}_{2}$. Hence there are unique classes

$$
1, \bar{\tau}_{0}, \sigma \bar{\tau}_{0}, \bar{\tau}_{0} \sigma \bar{\tau}_{0}, \ldots,\left(\sigma \bar{\tau}_{0}\right)^{p-1}
$$

in degrees $0 \leq * \leq 2 p-2$ of $H_{*}(T H H(\ell / p))$, mapping to classes with the same names in $H_{*}(T H H(\mathbb{Z} / p))$. More concisely, these are the monomials $\bar{\tau}_{0}^{\delta}\left(\sigma \bar{\tau}_{0}\right)^{i}$ for $0 \leq \delta \leq 1$ and $0 \leq i \leq p-1$, except that the degree $(2 p-1)$ case $(\delta, i)=(1, p-1)$ is omitted. The $A_{*}$-comodule coaction on these classes is given by the same formulas in $H_{*}(T H H(\ell / p))$ as in $H_{*}(T H H(\mathbb{Z} / p))$, cf. (3.2).

There is also a class $\bar{\xi}_{1}$ in degree $(2 p-2)$ of $H_{*}(T H H(\ell / p))$ mapping to a class with the same name, and same $A_{*}$-coaction, in $H_{*}(T H H(\mathbb{Z} / p))$.

In degree $(2 p-1), \pi_{*}$ is a map of extensions from

$$
0 \rightarrow \mathbb{F}_{p}\left\{\bar{\xi}_{1} \bar{\tau}_{0}\right\} \rightarrow H_{2 p-1}(T H H(\ell / p)) \rightarrow \mathbb{F}_{p}\left\{\bar{\tau}_{0}\left(\sigma \bar{\tau}_{0}\right)^{p-1}\right\} \rightarrow 0
$$

to

$$
0 \rightarrow \mathbb{F}_{p}\left\{\bar{\tau}_{1}, \bar{\xi}_{1} \bar{\tau}_{0}\right\} \rightarrow H_{2 p-1}(T H H(\mathbb{Z} / p)) \rightarrow \mathbb{F}_{p}\left\{\bar{\tau}_{0}\left(\sigma \bar{\tau}_{0}\right)^{p-1}\right\} \rightarrow 0
$$

The latter extension is canonically split by the augmentation $\epsilon: \operatorname{THH}(\mathbb{Z} / p) \rightarrow H \mathbb{Z} / p$, which uses the commutativity of the $S$-algebra $H \mathbb{Z} / p$.

In degree $2 p$, the map $\pi_{*}$ goes from

$$
H_{2 p}(T H H(\ell / p))=\mathbb{F}_{p}\left\{\bar{\xi}_{1} \sigma \bar{\tau}_{0}\right\}
$$

to

$$
0 \rightarrow \mathbb{F}_{p}\left\{\bar{\tau}_{0} \bar{\tau}_{1}\right\} \rightarrow H_{2 p}(T H H(\mathbb{Z} / p)) \rightarrow \mathbb{F}_{p}\left\{\sigma \bar{\tau}_{1}, \bar{\xi}_{1} \sigma \bar{\tau}_{0}\right\} \rightarrow 0
$$

Again the latter extension is canonically split.
Lemma 3.4. There is a unique class $y$ in $H_{2 p-1}(T H H(\ell / p))$ that is represented by $\bar{\tau}_{0}\left(\sigma \bar{\tau}_{0}\right)^{p-1}$ in $E_{p-1, p}^{\infty}(\ell / p)$ and maps by $\pi_{*}$ to $\bar{\tau}_{0}\left(\sigma \bar{\tau}_{0}\right)^{p-1}-\bar{\tau}_{1}$ in $H_{*}(T H H(\mathbb{Z} / p))$.
Proof. This follows from naturality of the suspension operator $\sigma$ and the multiplicative relation $\left(\sigma \bar{\tau}_{0}\right)^{p}=\sigma \bar{\tau}_{1}$ in $H_{*}(T H H(\mathbb{Z} / p))$. A class $y$ in $H_{2 p-1}(T H H(\ell / p))$ represented by $\bar{\tau}_{0}\left(\sigma \bar{\tau}_{0}\right)^{p-1}$ is determined modulo $\bar{\xi}_{1} \bar{\tau}_{0}$. Its image in $H_{2 p-1}(T H H(\mathbb{Z} / p))$ thus has the form $\alpha \bar{\tau}_{1}+\bar{\tau}_{0}\left(\sigma \bar{\tau}_{0}\right)^{p-1}$ modulo $\bar{\xi}_{1} \bar{\tau}_{0}$, for some $\alpha \in \mathbb{F}_{p}$. The suspension $\sigma y$ lies in $H_{2 p}(T H H(\ell / p))=\mathbb{F}_{p}\left\{\bar{\xi}_{1} \sigma \bar{\tau}_{0}\right\}$, so its image in $H_{2 p}(T H H(\mathbb{Z} / p))$ is 0 modulo $\bar{\tau}_{0} \bar{\tau}_{1}$ and $\bar{\xi}_{1} \sigma \bar{\tau}_{0}$. It is also the suspension of $\alpha \bar{\tau}_{1}+\bar{\tau}_{0}\left(\sigma \bar{\tau}_{0}\right)^{p-1}$ modulo $\bar{\xi}_{1} \bar{\tau}_{0}$, which equals $\sigma\left(\alpha \bar{\tau}_{1}\right)+\left(\sigma \bar{\tau}_{0}\right)^{p}=(\alpha+1) \sigma \bar{\tau}_{1}$. In particular, the coefficient $(\alpha+1)$ of $\sigma \bar{\tau}_{1}$ is 0 , so $\alpha=-1$.

Remark 3.5. For $p=2$ this can alternatively be read off from the explicit form [Wür91] of the commutator for the product $\mu$ in $\ell / p$. The coequalizer $C$ of the two maps

$$
\ell / p \wedge \ell / p \underset{\mu \tau}{\mu} \ell / p
$$

maps to (the 1-skeleton of) THH( $\ell / p)$. The commutator $\mu-\mu \tau$ factors as

$$
\ell / p \wedge \ell / p \xrightarrow{\beta \wedge \beta} \Sigma \ell / p \wedge \Sigma \ell / p \xrightarrow{\mu} \Sigma^{2} \ell / p \xrightarrow{v_{1}} \ell / p
$$

where $\beta$ is the $\bmod p$ Bockstein associated to the cofiber sequence $\ell \xrightarrow{p} \ell \xrightarrow{i} \ell / p$ and the cofiber of $v_{1}$ is $H \mathbb{Z} / p$. We get a map of cofiber sequences

so there is a class in $H_{3}(C)$ that maps to $\bar{\xi}_{1} \otimes \bar{\xi}_{1}$ in $H_{2}(\ell / p \wedge \ell / p)$ and to $\bar{\xi}_{1} \sigma \bar{\xi}_{1}$ in $H_{3}(T H H(\ell / p))$, which also maps to $\bar{\xi}_{2}$ in the cofiber of $v_{1}$, i.e., whose $A_{*}$-coaction contains the term $\bar{\xi}_{2} \otimes 1$. (The classes $\bar{\tau}_{0}$ and $\bar{\tau}_{1}$ go by the names $\bar{\xi}_{1}$ and $\bar{\xi}_{2}$ at $p=2$.)

For odd primes there is a similar interpretation of how the non-commutativity of the product on $\ell / p$ provides an obstruction to splitting off the 0 -simplices from the $(p-1)$ skeleton of $\operatorname{THH}(\ell / p)$, where the cyclic permutation of the $p$ factors in the $(p-1)$-simplex $\bar{\tau}_{0}\left(\sigma \bar{\tau}_{0}\right)^{p-1}$, represented by the Hochschild cycle $\bar{\tau}_{0} \otimes \cdots \otimes \bar{\tau}_{0}$, plays a similar role to the twist map $\tau$ above.

Let

$$
H_{*}(T H H(\ell)) /\left(\sigma \bar{\xi}_{1}\right) \cong H_{*}(\ell) \otimes E\left(\sigma \bar{\xi}_{2}\right) \otimes P\left(\sigma \bar{\tau}_{2}\right)
$$

denote the quotient algebra of $H_{*}(T H H(\ell))$ by the ideal generated by $\sigma \bar{\xi}_{1}$.
Lemma 3.6. There is an isomorphism of $H_{*}(T H H(\ell))$-modules

$$
H_{*}(T H H(\ell / p)) \cong H_{*}(T H H(\ell)) /\left(\sigma \bar{\xi}_{1}\right) \otimes \mathbb{F}_{p}\left\{1, \bar{\tau}_{0}, \sigma \bar{\tau}_{0}, \bar{\tau}_{0} \sigma \bar{\tau}_{0}, \ldots,\left(\sigma \bar{\tau}_{0}\right)^{p-1}, y\right\}
$$

Hence $H_{*}(T H H(\ell / p))$ is a free module of rank $2 p$ over $H_{*}(T H H(\ell)) /\left(\sigma \bar{\xi}_{1}\right)$, generated by classes

$$
1, \bar{\tau}_{0}, \sigma \bar{\tau}_{0}, \bar{\tau}_{0} \sigma \bar{\tau}_{0}, \ldots,\left(\sigma \bar{\tau}_{0}\right)^{p-1}, y
$$

in degrees 0 through $2 p-1$. These generators are represented in $E_{* *}^{\infty}(\ell / p)$ by the classes

$$
1, \bar{\tau}_{0}, \sigma \bar{\tau}_{0}, \bar{\tau}_{0} \sigma \bar{\tau}_{0}, \ldots,\left(\sigma \bar{\tau}_{0}\right)^{p-1}, \bar{\tau}_{0}\left(\sigma \bar{\tau}_{0}\right)^{p-1}
$$

and map under $\pi_{*}$ to classes with the same names in $H_{*}(T H H(\mathbb{Z} / p))$, except for $y$, which maps to

$$
\bar{\tau}_{0}\left(\sigma \bar{\tau}_{0}\right)^{p-1}-\bar{\tau}_{1}
$$

The $A_{*}$-comodule coactions are given by

$$
\nu\left(\left(\sigma \bar{\tau}_{0}\right)^{i}\right)=1 \otimes\left(\sigma \bar{\tau}_{0}\right)^{i}
$$

for $0 \leq i \leq p-1$,

$$
\nu\left(\bar{\tau}_{0}\left(\sigma \bar{\tau}_{0}\right)^{i}\right)=1 \otimes \bar{\tau}_{0}\left(\sigma \bar{\tau}_{0}\right)^{i}+\bar{\tau}_{0} \otimes\left(\sigma \bar{\tau}_{0}\right)^{i}
$$

for $0 \leq i \leq p-2$, and

$$
\nu(y)=1 \otimes y+\bar{\tau}_{0} \otimes\left(\sigma \bar{\tau}_{0}\right)^{p-1}-\bar{\tau}_{0} \otimes \bar{\xi}_{1}-\bar{\tau}_{1} \otimes 1
$$

Proof. $H_{*}(\ell / p)$ is freely generated as a module over $H_{*}(\ell)$ by 1 and $\bar{\tau}_{0}$, and the classes $\sigma \bar{\xi}_{2}$ and $\sigma \bar{\tau}_{2}$ in $H_{*}(T H H(\ell))$ induce multiplication by the same symbols in $E_{* *}^{\infty}(\ell / p)$, as given in (3.3). This generates all of $E_{* *}^{\infty}(\ell / p)$ from the $2 p$ classes $\bar{\tau}_{0}^{\delta}\left(\sigma \bar{\tau}_{0}\right)^{i}$ for $0 \leq \delta \leq 1$ and $0 \leq i \leq p-1$.

We claim that multiplication by $\sigma \bar{\xi}_{1}$ acts trivially on $H_{*}(T H H(\ell / p))$. It suffices to verify this on the module generators $\bar{\tau}_{0}^{\delta}\left(\sigma \bar{\tau}_{0}\right)^{i}$, for which the product with $\sigma \bar{\xi}_{1}$ remains in the range of degrees where the map to $H_{*}(T H H(\mathbb{Z} / p))$ is injective. The action of $\sigma \bar{\xi}_{1}$ is
trivial on $H_{*}(T H H(\mathbb{Z} / p))$, since $d^{p-1}\left(\gamma_{p} \sigma \bar{\tau}_{0}\right)=\sigma \bar{\xi}_{1}$ and $\epsilon\left(\sigma \bar{\xi}_{1}\right)=0$, and this implies the claim.

The $A_{*}$-comodule coaction on each module generator, including $y$, is determined by that on its image under $\pi_{*}$. In the latter case, the thing to check is that

$$
\begin{aligned}
\left(1 \otimes \pi_{*}\right)(\nu(y)) & =\nu\left(\pi_{*}(y)\right)=\nu\left(\bar{\tau}_{0}\left(\sigma \bar{\tau}_{0}\right)^{p-1}-\bar{\tau}_{1}\right) \\
& =1 \otimes \bar{\tau}_{0}\left(\sigma \bar{\tau}_{0}\right)^{p-1}+\bar{\tau}_{0} \otimes\left(\sigma \bar{\tau}_{0}\right)^{p-1}-1 \otimes \bar{\tau}_{1}-\bar{\tau}_{0} \otimes \bar{\xi}_{1}-\bar{\tau}_{1} \otimes 1
\end{aligned}
$$

equals

$$
\left(1 \otimes \pi_{*}\right)\left(1 \otimes y+\bar{\tau}_{0} \otimes\left(\sigma \bar{\tau}_{0}\right)^{p-1}-\bar{\tau}_{0} \otimes \bar{\xi}_{1}-\bar{\tau}_{1} \otimes 1\right) .
$$

We note that these results do not visibly depend on the particular choice of $\ell$-algebra structure on $\ell / p$.

## 4. Passage to $V(1)$-homotopy

For $p \geq 5$ the Smith-Toda complex $V(1)=S \cup_{p} e^{1} \cup_{\alpha_{1}} e^{2 p-1} \cup_{p} e^{2 p}$ is a homotopy commutative ring spectrum [Smi70], [Oka84]. It is defined as the mapping cone of the Adams self-map $v_{1}: \Sigma^{2 p-2} V(0) \rightarrow V(0)$ of the mod $p$ Moore spectrum $V(0)=S \cup_{p} e^{1}$. Hence there is a cofiber sequence

$$
\Sigma^{2 p-2} V(0) \xrightarrow{v_{1}} V(0) \xrightarrow{i_{1}} V(1) \xrightarrow{j_{1}} \Sigma^{2 p-1} V(0) .
$$

The composite map $\beta_{1,1}=i_{1} j_{1}: V(1) \rightarrow \Sigma^{2 p-1} V(1)$ defines the primary $v_{1}$-Bockstein homomorphism, acting naturally on $V(1)_{*}(X)$.

In this section we compute $V(1)_{*} T H H(\ell / p)$ as a module over $V(1)_{*} T H H(\ell)$, for any prime $p \geq 5$. The unique ring spectrum map from $V(1)$ to $H \mathbb{Z} / p$ induces the identification

$$
H_{*}(V(1))=E\left(\tau_{0}, \tau_{1}\right)
$$

(no conjugations) as $A_{*}$-comodule subalgebras of $A_{*}$. Here

$$
\begin{aligned}
& \nu\left(\tau_{0}\right)=1 \otimes \tau_{0}+\tau_{0} \otimes 1 \\
& \nu\left(\tau_{1}\right)=1 \otimes \tau_{1}+\xi_{1} \otimes \tau_{0}+\tau_{1} \otimes 1
\end{aligned}
$$

For each $\ell$-algebra $B, V(1) \wedge T H H(B)$ is a module spectrum over $V(1) \wedge T H H(\ell)$ and thus over $V(1) \wedge \ell \simeq H \mathbb{Z} / p$, so $H_{*}(V(1) \wedge T H H(B))$ is a sum of copies of $A_{*}$ as an $A_{*^{-}}$ comodule. In particular, $V(1)_{*} T H H(B)=\pi_{*}(V(1) \wedge T H H(B))$ is naturally identified with the subgroup of $A_{*}$-comodule primitives in

$$
H_{*}(V(1) \wedge T H H(B)) \cong H_{*}(V(1)) \otimes H_{*}(T H H(B))
$$

with the diagonal $A_{*}$-comodule coaction. We write $v \wedge x$ for the image of $v \otimes x$ under this identification, with $v \in H_{*}(V(1))$ and $x \in H_{*}(T H H(B))$. Let

$$
\begin{aligned}
& \epsilon_{0}=1 \wedge \bar{\tau}_{0}+\tau_{0} \wedge 1 \\
& \epsilon_{1}=1 \wedge \bar{\tau}_{1}+\tau_{0} \wedge \bar{\xi}_{1}+\tau_{1} \wedge 1 \\
& \lambda_{1}=1 \wedge \sigma \bar{\xi}_{1} \\
& \lambda_{2}=1 \wedge \sigma \bar{\xi}_{2} \\
& \mu_{0}=1 \wedge \sigma \bar{\tau}_{0} \\
& \mu_{1}=1 \wedge \sigma \bar{\tau}_{1}+\tau_{0} \wedge \sigma \bar{\xi}_{1} \\
& \mu_{2}=1 \wedge \sigma \bar{\tau}_{2}+\tau_{0} \wedge \sigma \bar{\xi}_{2} .
\end{aligned}
$$

These are all $A_{*}$-comodule primitive, where defined. By a dimension count,

$$
\begin{align*}
V(1)_{*} T H H(\mathbb{Z} / p) & =E\left(\epsilon_{0}, \epsilon_{1}\right) \otimes P\left(\mu_{0}\right) \\
V(1)_{*} T H H\left(\mathbb{Z}_{(p)}\right) & =E\left(\epsilon_{1}\right) \otimes E\left(\lambda_{1}\right) \otimes P\left(\mu_{1}\right)  \tag{4.2}\\
V(1)_{*} T H H(\ell) & =E\left(\lambda_{1}, \lambda_{2}\right) \otimes P\left(\mu_{2}\right)
\end{align*}
$$

as commutative $\mathbb{F}_{p^{-}}$algebras. The map $\pi: \ell \rightarrow H \mathbb{Z}_{(p)}$ takes $\lambda_{2}$ to 0 and $\mu_{2}$ to $\mu_{1}^{p}$. The $\operatorname{map} i: H \mathbb{Z}_{(p)} \rightarrow H \mathbb{Z} / p$ takes $\lambda_{1}$ to 0 and $\mu_{1}$ to $\mu_{0}^{p}$. Note that $\mu_{2} \in V(1)_{2 p^{2}} T H H(\ell)$ was simply denoted $\mu$ in [AR02].

In degrees $\leq(2 p-2)$ of $H_{*}(V(1) \wedge T H H(\ell / p))$ the classes

$$
\begin{equation*}
\mu_{0}^{i}:=1 \wedge\left(\sigma \bar{\tau}_{0}\right)^{i} \tag{4.3}
\end{equation*}
$$

for $0 \leq i \leq p-1$ and

$$
\begin{equation*}
\epsilon_{0} \mu_{0}^{i}:=1 \wedge \bar{\tau}_{0}\left(\sigma \bar{\tau}_{0}\right)^{i}+\tau_{0} \wedge\left(\sigma \bar{\tau}_{0}\right)^{i} \tag{4.4}
\end{equation*}
$$

for $0 \leq i \leq p-2$ are $A_{*}$-comodule primitive, hence lift uniquely to $V(1)_{*} T H H(\ell / p)$. These map to the classes $\epsilon_{0}^{\delta} \mu_{0}^{i}$ in $V(1)_{*} T H H(\mathbb{Z} / p)$ for $0 \leq \delta \leq 1$ and $0 \leq i \leq p-1$, except that the degree bound excludes the top case of $\epsilon_{0} \mu_{0}^{p-1}$.
In degree $(2 p-1)$ of $H_{*}(V(1) \wedge T H H(\ell / p))$ we have generators $1 \wedge \bar{\xi}_{1} \bar{\tau}_{0}, \tau_{0} \wedge\left(\sigma \bar{\tau}_{0}\right)^{p-1}$, $\tau_{0} \wedge \bar{\xi}_{1}, \tau_{1} \wedge 1$ and $1 \wedge y$. These have coactions

$$
\begin{aligned}
\nu\left(1 \wedge \bar{\xi}_{1} \bar{\tau}_{0}\right) & =1 \otimes 1 \wedge \bar{\xi}_{1} \bar{\tau}_{0}+\bar{\tau}_{0} \otimes 1 \wedge \bar{\xi}_{1}+\bar{\xi}_{1} \otimes 1 \wedge \bar{\tau}_{0}+\bar{\xi}_{1} \bar{\tau}_{0} \otimes 1 \wedge 1 \\
\nu\left(\tau_{0} \wedge\left(\sigma \bar{\tau}_{0}\right)^{p-1}\right) & =1 \otimes \tau_{0} \wedge\left(\sigma \bar{\tau}_{0}\right)^{p-1}+\tau_{0} \otimes 1 \wedge\left(\sigma \bar{\tau}_{0}\right)^{p-1} \\
\nu\left(\tau_{0} \wedge \bar{\xi}_{1}\right) & =1 \otimes \tau_{0} \wedge \bar{\xi}_{1}+\tau_{0} \otimes 1 \wedge \bar{\xi}_{1}+\bar{\xi}_{1} \otimes \tau_{0} \wedge 1+\bar{\xi}_{1} \tau_{0} \otimes 1 \wedge 1 \\
\nu\left(\tau_{1} \wedge 1\right) & =1 \otimes \tau_{1} \wedge 1+\xi_{1} \otimes \tau_{0} \wedge 1+\tau_{1} \otimes 1 \wedge 1
\end{aligned}
$$

and

$$
\nu(1 \wedge y)=1 \otimes 1 \wedge y+\bar{\tau}_{0} \otimes 1 \wedge\left(\sigma \bar{\tau}_{0}\right)^{p-1}-\bar{\tau}_{0} \otimes 1 \wedge \bar{\xi}_{1}-\bar{\tau}_{1} \otimes 1 \wedge 1
$$

Hence the sum

$$
\begin{equation*}
\bar{\epsilon}_{1}:=1 \wedge y+\tau_{0} \wedge\left(\sigma \bar{\tau}_{0}\right)^{p-1}-\tau_{0} \wedge \bar{\xi}_{1}-\tau_{1} \wedge 1 \tag{4.5}
\end{equation*}
$$

is $A_{*}$-comodule primitive. Its image under $\pi_{*}$ in $H_{*}(V(1) \wedge T H H(\mathbb{Z} / p))$ is

$$
\epsilon_{0} \mu_{0}^{p-1}-\epsilon_{1}=1 \wedge \bar{\tau}_{0}\left(\sigma \bar{\tau}_{0}\right)^{p-1}+\tau_{0} \wedge\left(\sigma \bar{\tau}_{0}\right)^{p-1}-1 \wedge \bar{\tau}_{1}-\tau_{0} \wedge \bar{\xi}_{1}-\tau_{1} \wedge 1
$$

Let

$$
V(1)_{*} T H H(\ell) /\left(\lambda_{1}\right) \cong E\left(\lambda_{2}\right) \otimes P\left(\mu_{2}\right)
$$

be the quotient algebra of $V(1)_{*} T H H(\ell)$ by the ideal generated by $\lambda_{1}$.
Proposition 4.6. There is an isomorphism of $V(1)_{*} T H H(\ell)$-modules

$$
V(1)_{*} T H H(\ell / p)=V(1)_{*} T H H(\ell) /\left(\lambda_{1}\right) \otimes \mathbb{F}_{p}\left\{1, \epsilon_{0}, \mu_{0}, \epsilon_{0} \mu_{0}, \ldots, \mu_{0}^{p-1}, \bar{\epsilon}_{1}\right\},
$$

where the classes $\mu_{0}^{i}$, $\epsilon_{0} \mu_{0}^{i}$ and $\bar{\epsilon}_{1}$ are defined in (4.3), (4.4) and (4.5) above. Multiplication by $\lambda_{1}$ is 0 , so this is a free module on the $2 p$ generators

$$
1, \epsilon_{0}, \mu_{0}, \epsilon_{0} \mu_{0}, \ldots, \mu_{0}^{p-1}, \bar{\epsilon}_{1}
$$

over $V(1)_{*} T H H(\ell) /\left(\lambda_{1}\right)$. The map $\pi_{*}$ to $V(1)_{*} T H H(\mathbb{Z} / p)$ takes $\epsilon_{0}^{\delta} \mu_{0}^{i}$ in degree $0 \leq$ $\delta+2 i \leq 2 p-2$ to $\epsilon_{0}^{\delta} \mu_{0}^{i}$, and takes $\bar{\epsilon}_{1}$ in degree $(2 p-1)$ to $\epsilon_{0} \mu_{0}^{p-1}-\epsilon_{1}$.

Proof. Additively, this follows by another dimension count. The multiplication by $\lambda_{1}$ is 0 for degree and filtration reasons: $\lambda_{1}$ has Bökstedt filtration 1 and cannot map to $\bar{\epsilon}_{1}$ in Bökstedt filtration $(p-1)$. Similarly in higher degrees.

## 5. The $C_{p}$-Tate construction

Let $C=C_{p^{n}}$ denote the cyclic group of order $p^{n}$, considered as a closed subgroup of the circle group $S^{1}$. For each spectrum $X$ with $C$-action, $X_{h C}=E C_{+} \wedge_{C} X$ and $X^{h C}=F\left(E C_{+}, X\right)^{C}$ denote its homotopy orbit and homotopy fixed point spectra, as usual. We now write $X^{t C}=\left[\widetilde{E C} \wedge F\left(E C_{+}, X\right)\right]^{C}$ for the $C$-Tate construction on $X$, which was denoted $t_{C}(X)^{C}$ in [GM95] and $\hat{\mathbb{H}}(C, X)$ in [AR02]. There are $C$-homotopy fixed point and $C$-Tate spectral sequences in $V(1)$-homotopy for $X$, with

$$
E_{s, t}^{2}(C, X)=H_{g p}^{-s}\left(C ; V(1)_{t}(X)\right) \Longrightarrow V(1)_{s+t}\left(X^{h C}\right)
$$

and

$$
\hat{E}_{s, t}^{2}(C, X)=\hat{H}_{g p}^{-s}\left(C ; V(1)_{t}(X)\right) \Longrightarrow V(1)_{s+t}\left(X^{t C}\right)
$$

We write $H_{g p}^{*}\left(C_{p^{n}} ; \mathbb{F}_{p}\right)=E\left(u_{n}\right) \otimes P(t)$ and $\hat{H}_{g p}^{*}\left(C_{p^{n}} ; \mathbb{F}_{p}\right)=E\left(u_{n}\right) \otimes P\left(t^{ \pm 1}\right)$ with $u_{n}$ in degree 1 and $t$ in degree 2. So $u_{n}, t$ and $x \in V(1)_{t}(X)$ have bidegree $(-1,0),(-2,0)$ and $(0, t)$ in either spectral sequence, respectively. See [HM03, §4.3] for proofs of the multiplicative properties of these spectral sequences.

We are principally interested in the case when $X=T H H(B)$, with the $S^{1}$-action given by the cyclic structure. It is a cyclotomic spectrum, in the sense of [HM97], leading to the commutative diagram

of horizontal cofiber sequences. We abbreviate $\hat{E}_{* *}^{2}(C, T H H(B))$ to $\hat{E}_{* *}^{2}(C, B)$, etc. When $B$ is a commutative $S$-algebra, this is a commutative algebra spectral sequence, and when $B$ is an associative $A$-algebra, with $A$ commutative, then $\hat{E}^{*}(C, B)$ is a module spectral sequence over $\hat{E}^{*}(C, A)$. The map $R^{h}$ corresponds to the inclusion $E_{* *}^{2}(C, B) \rightarrow$ $\hat{E}_{* *}^{2}(C, B)$ from the second quadrant to the upper half-plane, for connective $B$.

In this section we compute $V(1)_{*} T H H(\ell / p)^{t C_{p}}$ by means of the $C_{p}$-Tate spectral sequence in $V(1)$-homotopy for $T H H(\ell / p)$. In Propositions 5.8 and 5.9 we show that the comparison map $\hat{\Gamma}_{1}: V(1)_{*} T H H(\ell / p) \rightarrow V(1)_{*} T H H(\ell / p)^{t C_{p}}$ is $(2 p-2)$-coconnected and can be identified with the algebraic localization homomorphism that inverts $\mu_{2}$.

First we recall the structure of the $C_{p}$-Tate spectral sequence for $T H H(\mathbb{Z} / p)$, with $V(0)$ - and $V(1)$-coefficients. We have $V(0)_{*} T H H(\mathbb{Z} / p)=E\left(\epsilon_{0}\right) \otimes P\left(\mu_{0}\right)$, and with an obvious notation the $E^{2}$-terms are

$$
\begin{aligned}
\hat{E}_{* *}^{2}\left(C_{p}, \mathbb{Z} / p ; V(0)\right) & =E\left(u_{1}\right) \otimes P\left(t^{ \pm 1}\right) \otimes E\left(\epsilon_{0}\right) \otimes P\left(\mu_{0}\right) \\
\hat{E}_{* *}^{2}\left(C_{p}, \mathbb{Z} / p\right) & =E\left(u_{1}\right) \otimes P\left(t^{ \pm 1}\right) \otimes E\left(\epsilon_{0}, \epsilon_{1}\right) \otimes P\left(\mu_{0}\right) .
\end{aligned}
$$

In each $C$-Tate spectral sequence we have a first differential

$$
d^{2}(x)=t \cdot \sigma x
$$

see e.g. [Rog98, 3.3]. We easily deduce $\sigma \epsilon_{0}=\mu_{0}$ and $\sigma \epsilon_{1}=\mu_{0}^{p}$ from (4.1), so

$$
\begin{aligned}
\hat{E}_{* *}^{3}\left(C_{p}, \mathbb{Z} / p ; V(0)\right) & =E\left(u_{1}\right) \otimes P\left(t^{ \pm 1}\right) \\
\hat{E}_{* *}^{3}\left(C_{p}, \mathbb{Z} / p\right) & =E\left(u_{1}\right) \otimes P\left(t^{ \pm 1}\right) \otimes E\left(\epsilon_{0} \mu_{0}^{p-1}-\epsilon_{1}\right) .
\end{aligned}
$$

Thus the $V(0)$-homotopy spectral sequence collapses at $\hat{E}^{3}=\hat{E}^{\infty}$. By naturality with respect to the map $i_{1}: V(0) \rightarrow V(1)$, all the classes on the horizontal axis of $\hat{E}^{3}\left(C_{p}, \mathbb{Z} / p\right)$ are infinite cycles, so also the latter spectral sequence collapses at $\hat{E}_{* *}^{3}\left(C_{p}, \mathbb{Z} / p\right)$.

We know from [HM97, Prop. 5.3] that the comparison map

$$
\hat{\Gamma}_{1}: V(0)_{*} T H H(\mathbb{Z} / p) \rightarrow V(0)_{*} T H H(\mathbb{Z} / p)^{t C_{p}}
$$

takes $\epsilon_{0}^{\delta} \mu_{0}^{i}$ to $\left(u_{1} t^{-1}\right)^{\delta} t^{-i}$, for all $0 \leq \delta \leq 1, i \geq 0$. In particular, the integral map $\hat{\Gamma}_{1}: \pi_{*} T H H(\mathbb{Z} / p) \rightarrow \pi_{*} T H H(\mathbb{Z} / p)^{t C_{p}}$ is $(-2)$-coconnected, meaning that it induces an injection in degree $(-2)$ and an isomorphism in all higher degrees. From this we can deduce the following behavior of the comparison map $\hat{\Gamma}_{1}$ in $V(1)$-homotopy.

Lemma 5.1. The map

$$
\hat{\Gamma}_{1}: V(1)_{*} T H H(\mathbb{Z} / p) \rightarrow V(1)_{*} T H H(\mathbb{Z} / p)^{t C_{p}}
$$

takes the classes $\epsilon_{0}^{\delta} \mu_{0}^{i}$ from $V(0)_{*} T H H(\mathbb{Z} / p)$, for $0 \leq \delta \leq 1$ and $i \geq 0$, to classes represented in $\hat{E}_{* *}^{\infty}\left(C_{p}, \mathbb{Z} / p\right)$ by $\left(u_{1} t^{-1}\right)^{\delta} t^{-i}$ (on the horizontal axis).

Furthermore, it takes the class $\epsilon_{0} \mu_{0}^{p-1}-\epsilon_{1}$ in degree $(2 p-1)$ to a class represented by $\epsilon_{0} \mu_{0}^{p-1}-\epsilon_{1}$ (on the vertical axis).

Proof. The classes $\epsilon_{0}^{\delta} \mu_{0}^{i}$ are in the image from $V(0)$-homotopy, and we recalled above that they are detected by $\left(u_{1} t^{-1}\right)^{\delta} t^{-i}$ in the $V(0)$-homotopy $C_{p}$-Tate spectral sequence for $\operatorname{THH}(\mathbb{Z} / p)$. By naturality along $i_{1}: V(0) \rightarrow V(1)$, they are detected by the same (nonzero) classes in the $V(1)$-homotopy spectral sequence $\hat{E}_{* *}^{\infty}\left(C_{p}, \mathbb{Z} / p\right)$.

To find the representative for $\hat{\Gamma}_{1}\left(\epsilon_{0} \mu_{0}^{p-1}-\epsilon_{1}\right)$ in degree ( $2 p-1$ ), we appeal to the cyclotomic trace map from algebraic $K$-theory, or more precisely, to the commutative diagram


The Bökstedt trace map $\operatorname{tr}: K(B) \rightarrow T H H(B)$ admits a preferred lift $t r_{n}$ through each fixed point spectrum $T H H(B)^{C_{p^{n}}}$, which homotopy equalizes the iterated restriction and Frobenius maps $R^{n}$ and $F^{n}$ to $T H H(B)$, see [BHM93, 2.5]. In particular, the circle action and the $\sigma$-operator act trivially on classes in the image of tr .

In the case $B=H \mathbb{Z} / p$ we know that $K(\mathbb{Z} / p)_{p} \simeq H \mathbb{Z}_{p}$, so $V(1)_{*} K(\mathbb{Z} / p)=E\left(\bar{\epsilon}_{1}\right)$, where the $v_{1}$-Bockstein of $\bar{\epsilon}_{1}$ is -1 . The Bökstedt trace image $\operatorname{tr}\left(\bar{\epsilon}_{1}\right) \in V(1)_{*} T H H(\mathbb{Z} / p)$ lies in $\mathbb{F}_{p}\left\{\epsilon_{1}, \epsilon_{0} \mu_{0}^{p-1}\right\}$, has $v_{1}$-Bockstein $\operatorname{tr}(-1)=-1$ and suspends by $\sigma$ to 0 . Hence

$$
\operatorname{tr}\left(\bar{\epsilon}_{1}\right)=\epsilon_{0} \mu_{0}^{p-1}-\epsilon_{1} .
$$

As we recalled above, the map $\hat{\Gamma}_{1}: \pi_{*} T H H(\mathbb{Z} / p) \rightarrow \pi_{*} T H H(\mathbb{Z} / p)^{t C_{p}}$ is (-2)-coconnected, so the corresponding map in $V(1)$-homotopy is at least $(2 p-2)$-coconnected. Thus it takes $\epsilon_{0} \mu_{0}^{p-1}-\epsilon_{1}$ to a nonzero class in $V(1)_{*} T H H(\mathbb{Z} / p)^{t C_{p}}$, represented somewhere in total degree $(2 p-1)$ of $\hat{E}_{* *}^{\infty}\left(C_{p}, \mathbb{Z} / p\right)$, in the lower right hand corner of the diagram.

Going down the middle of the diagram, we reach a class $\left(\Gamma_{1} \circ t r_{1}\right)\left(\bar{\epsilon}_{1}\right)$, represented in total degree $(2 p-1)$ of the left half-plane $C_{p}$-homotopy fixed point spectral sequence $E_{* *}^{\infty}\left(C_{p}, \mathbb{Z} / p\right)$. Its image under the edge homomorphism to $V(1)_{*} T H H(\mathbb{Z} / p)$ equals ( $F \circ$ $\left.\operatorname{tr}_{1}\right)\left(\bar{\epsilon}_{1}\right)=\operatorname{tr}\left(\bar{\epsilon}_{1}\right)$, hence $\left(\Gamma_{1} \circ \operatorname{tr} r_{1}\right)\left(\bar{\epsilon}_{1}\right)$ is represented by $\epsilon_{0} \mu_{0}^{p-1}-\epsilon_{1}$ in $E_{0,2 p-1}^{\infty}\left(C_{p}, \mathbb{Z} / p\right)$. Its image under $R^{h}$ in the $C_{p}$-Tate spectral sequence is the generator of $\hat{E}_{0,2 p-1}^{\infty}\left(C_{p}, \mathbb{Z} / p\right)=$ $\mathbb{F}_{p}\left\{\epsilon_{0} \mu_{0}^{p-1}-\epsilon_{1}\right\}$, hence that generator is the $E^{\infty}$-representative of $\hat{\Gamma}_{1}\left(\epsilon_{0} \mu_{0}^{p-1}-\epsilon_{1}\right)$.

We can lift the algebraic $K$-theory class $\bar{\epsilon}_{1}$ to $\ell / p$.
Definition 5.3. The ( $2 p-2$ )-connected map $\pi: \ell / p \rightarrow H \mathbb{Z} / p$ induces a ( $2 p-1$ )-connected $\operatorname{map} V(1)_{*} K(\ell / p) \rightarrow V(1)_{*} K(\mathbb{Z} / p)=E\left(\bar{\epsilon}_{1}\right)$, by [BM94, 10.9]. We can therefore choose a class

$$
\bar{\epsilon}_{1}^{K} \in V(1)_{2 p-1} K(\ell / p)
$$

that maps to the generator $\bar{\epsilon}_{1}$ in $V(1)_{2 p-1} K(\mathbb{Z} / p) \cong \mathbb{Z} / p$.
Lemma 5.4. The Bökstedt trace tr : V $(1)_{*} K(\ell / p) \rightarrow V(1)_{*} T H H(\ell / p)$ takes $\bar{\epsilon}_{1}^{K}$ to $\bar{\epsilon}_{1}$.
Proof. In the commutative square

the trace image $\operatorname{tr}\left(\bar{\epsilon}_{1}^{K}\right)$ in $V(1)_{*} T H H(\ell / p)$ must map under $\pi_{*}$ to $\operatorname{tr}\left(\bar{\epsilon}_{1}\right)=\epsilon_{0} \mu_{0}^{p-1}-\epsilon_{1}$ in $V(1)_{*} T H H(\mathbb{Z} / p)$, which by Proposition 4.6 characterizes it as being equal to the class $\bar{\epsilon}_{1}$. Hence $\operatorname{tr}\left(\bar{\epsilon}_{1}^{K}\right)=\bar{\epsilon}_{1}$.

Next we turn to the $C_{p}$-Tate spectral sequence $\hat{E}^{*}\left(C_{p}, \ell / p\right)$ in $V(1)$-homotopy for $T H H(\ell / p)$. Its $E^{2}$-term is

$$
\hat{E}_{* *}^{2}\left(C_{p}, \ell / p\right)=E\left(u_{1}\right) \otimes P\left(t^{ \pm 1}\right) \otimes \mathbb{F}_{p}\left\{1, \epsilon_{0}, \mu_{0}, \epsilon_{0} \mu_{0}, \ldots, \mu_{0}^{p-1}, \bar{\epsilon}_{1}\right\} \otimes E\left(\lambda_{2}\right) \otimes P\left(\mu_{2}\right)
$$

We have $d^{2}(x)=t \cdot \sigma x$, where

$$
\sigma\left(\epsilon_{0}^{\delta} \mu_{0}^{i-1}\right)= \begin{cases}\mu_{0}^{i} & \text { for } \delta=1,0<i<p \\ 0 & \text { otherwise }\end{cases}
$$

is readily deduced from (4.1), and $\sigma\left(\bar{\epsilon}_{1}\right)=0$ since $\bar{\epsilon}_{1}$ is in the image of tr. Thus

$$
\begin{equation*}
\hat{E}_{* *}^{3}\left(C_{p}, \ell / p\right)=E\left(u_{1}\right) \otimes P\left(t^{ \pm 1}\right) \otimes E\left(\bar{\epsilon}_{1}\right) \otimes E\left(\lambda_{2}\right) \otimes P\left(t \mu_{2}\right) \tag{5.5}
\end{equation*}
$$

We prefer to use $t \mu_{2}$ rather than $\mu_{2}$ as a generator, since it represents multiplication by $v_{2}$ in all module spectral sequences over $E^{*}\left(S^{1}, \ell\right)$, by [AR02, 4.8].
To proceed, we shall use that $\hat{E}^{*}\left(C_{p}, \ell / p\right)$ is a module over the spectral sequence for $T H H(\ell)$. We therefore recall the structure of the latter spectral sequence, from [AR02, 5.5]. It begins

$$
\hat{E}_{* *}^{2}\left(C_{p}, \ell\right)=E\left(u_{1}\right) \otimes P\left(t^{ \pm 1}\right) \otimes E\left(\lambda_{1}, \lambda_{2}\right) \otimes P\left(\mu_{2}\right)
$$

The classes $\lambda_{1}, \lambda_{2}$ and $t \mu_{2}$ are infinite cycles, and the differentials

$$
\begin{aligned}
d^{2 p}\left(t^{1-p}\right) & =t \lambda_{1} \\
d^{2 p^{2}}\left(t^{p-p^{2}}\right) & =t^{p} \lambda_{2} \\
d^{2 p^{2}+1}\left(u_{1} t^{-p^{2}}\right) & =t \mu_{2}
\end{aligned}
$$

(up to units in $\mathbb{F}_{p}$, which we will always suppress) leave the terms

$$
\begin{aligned}
\hat{E}_{* *}^{2 p+1}\left(C_{p}, \ell\right) & =E\left(u_{1}, \lambda_{1}, \lambda_{2}\right) \otimes P\left(t^{ \pm p}, t \mu_{2}\right) \\
\hat{E}_{* *}^{2 p^{2}+1}\left(C_{p}, \ell\right) & =E\left(u_{1}, \lambda_{1}, \lambda_{2}\right) \otimes P\left(t^{ \pm p^{2}}, t \mu_{2}\right) \\
\hat{E}_{* *}^{2 p^{2}+2}\left(C_{p}, \ell\right) & =E\left(\lambda_{1}, \lambda_{2}\right) \otimes P\left(t^{ \pm p^{2}}\right)
\end{aligned}
$$

with $\hat{E}^{2 p^{2}+2}=\hat{E}^{\infty}$, converging to $V(1)_{*} T H H(\ell)^{t C_{p}}$. The comparison map $\hat{\Gamma}_{1}$ takes $\lambda_{1}$, $\lambda_{2}$ and $\mu_{2}$ to $\lambda_{1}, \lambda_{2}$ and $t^{-p^{2}}$, respectively, inducing the algebraic localization map and identification

$$
\hat{\Gamma}_{1}: V(1)_{*} T H H(\ell) \rightarrow V(1)_{*} T H H(\ell)\left[\mu_{2}^{-1}\right] \cong V(1)_{*} T H H(\ell)^{t C_{p}} .
$$

Lemma 5.6. In $\hat{E}^{*}\left(C_{p}, \ell / p\right)$, the class $u_{1} t^{-p}$ supports the nonzero differential

$$
d^{2 p^{2}}\left(u_{1} t^{-p}\right)=u_{1} t^{p^{2}-p} \lambda_{2},
$$

and does not survive to the $E^{\infty}$-term.
Proof. In $\hat{E}^{*}\left(C_{p}, \ell\right)$, there is such a nonzero differential. By naturality along $i: \ell \rightarrow \ell / p$, it follows that there is also such a differential in $\hat{E}^{*}\left(C_{p}, \ell / p\right)$. It remains to argue that the target is nonzero. Considering the $E^{3}$-term in (5.5), the only possible source of a previous differential hitting $u_{1} t^{p^{2}-p} \lambda_{2}$ is $\bar{\epsilon}_{1}$. But $\bar{\epsilon}_{1}$ is in an even column and $u_{1} t^{p^{2}-p} \lambda_{2}$ is in an odd column. By naturality with respect to the Frobenius (group restriction) map from the $S^{1}$-Tate spectral sequence to the $C_{p}$-Tate spectral sequence, which takes $\hat{E}_{* *}^{2}\left(S^{1}, B\right)$ isomorphically to the even columns of $\hat{E}_{* *}^{2}\left(C_{p}, B\right)$, any such differential from an even to an odd column must be zero.

To determine the map $\hat{\Gamma}_{1}$ we use naturality with respect to the map $\pi: \ell / p \rightarrow H \mathbb{Z} / p$.
Lemma 5.7. The classes $1, \epsilon_{0}, \mu_{0}, \epsilon_{0} \mu_{0}, \ldots, \mu_{0}^{p-1}$ and $\bar{\epsilon}_{1}$ in $V(1)_{*} T H H(\ell / p)$ map under $\hat{\Gamma}_{1}$ to classes in $V(1)_{*} T H H(\ell / p)^{t C_{p}}$ that are represented in $\hat{E}_{* *}^{\infty}\left(C_{p}, \ell / p\right)$ by the permanent cycles $\left(u_{1} t^{-1}\right)^{\delta} t^{-i}$ (on the horizontal axis) in degrees $\leq(2 p-2)$, and by the permanent cycle $\bar{\epsilon}_{1}$ (on the vertical axis) in degree $(2 p-1)$.

Proof. In the commutative square

the classes $\epsilon_{0}^{\delta} \mu_{0}^{i}$ in the upper left hand corner map to classes in the lower right hand corner that are represented by $\left(u_{1} t^{-1}\right)^{\delta} t^{-i}$ in degrees $\leq(2 p-2)$, and $\bar{\epsilon}_{1}$ maps to $\epsilon_{0} \mu_{0}^{p-1}-\epsilon_{1}$ in degree $(2 p-1)$. This follows by combining Proposition 4.6 and Lemma 5.1.

The first $(2 p-1)$ of these are represented in maximal filtration (on the horizontal axis), so their images in the upper right hand corner must be represented by permanent cycles $\left(u_{1} t^{-1}\right)^{\delta} t^{-i}$ in the Tate spectral sequence $\hat{E}_{* *}^{\infty}\left(C_{p}, \ell / p\right)$.

The image of the last class, $\bar{\epsilon}_{1}$, in the upper right hand corner could either be represented by $\bar{\epsilon}_{1}$ in bidegree $(0,2 p-1)$ or by $u_{1} t^{-p}$ in bidegree $(2 p-1,0)$. However, the last class supports a differential $d^{2 p^{2}}\left(u_{1} t^{-p}\right)=u_{1} t^{p^{2}-p} \lambda_{2}$, by Lemma 5.6 above. This only leaves the other possibility, that $\hat{\Gamma}_{1}\left(\bar{\epsilon}_{1}\right)$ is represented by $\bar{\epsilon}_{1}$ in $\hat{E}_{* *}^{\infty}\left(C_{p}, \ell / p\right)$.

We proceed to determine the differential structure in $\hat{E}^{*}\left(C_{p}, \ell / p\right)$, making use of the permanent cycles identified above.

Proposition 5.8. The $C_{p}$-Tate spectral sequence in $V(1)$-homotopy for $T H H(\ell / p)$ has

$$
\hat{E}_{* *}^{3}\left(C_{p}, \ell / p\right)=E\left(u_{1}, \bar{\epsilon}_{1}, \lambda_{2}\right) \otimes P\left(t^{ \pm 1}, t \mu_{2}\right)
$$

It has differentials generated by

$$
d^{2 p^{2}-2 p+2}\left(t^{p-p^{2}} \cdot t^{-i} \bar{\epsilon}_{1}\right)=t \mu_{2} \cdot t^{-i}
$$

for $0<i<p, d^{2 p^{2}}\left(t^{p-p^{2}}\right)=t^{p} \lambda_{2}$ and $d^{2 p^{2}+1}\left(u_{1} t^{-p^{2}}\right)=t \mu_{2}$. The following terms are

$$
\begin{gathered}
\hat{E}_{* *}^{2 p^{2}-2 p+3}\left(C_{p}, \ell / p\right)=E\left(u_{1}, \lambda_{2}\right) \otimes \mathbb{F}_{p}\left\{t^{-i} \mid 0<i<p\right\} \otimes P\left(t^{ \pm p}\right) \\
\oplus E\left(u_{1}, \bar{\epsilon}_{1}, \lambda_{2}\right) \otimes P\left(t^{ \pm p}, t \mu_{2}\right) \\
\hat{E}_{* *}^{2 p^{2}+1}\left(C_{p}, \ell / p\right)=E\left(u_{1}, \lambda_{2}\right) \otimes \mathbb{F}_{p}\left\{t^{-i} \mid 0<i<p\right\} \otimes P\left(t^{ \pm p^{2}}\right) \\
\oplus E\left(u_{1}, \bar{\epsilon}_{1}, \lambda_{2}\right) \otimes P\left(t^{ \pm p^{2}}, t \mu_{2}\right) \\
\hat{E}_{* *}^{2 p^{2}+2}\left(C_{p}, \ell / p\right)=E\left(u_{1}, \lambda_{2}\right) \otimes \mathbb{F}_{p}\left\{t^{-i} \mid 0<i<p\right\} \otimes P\left(t^{ \pm p^{2}}\right) \\
\oplus E\left(\bar{\epsilon}_{1}, \lambda_{2}\right) \otimes P\left(t^{ \pm p^{2}}\right)
\end{gathered}
$$

The last term can be rewritten as

$$
\hat{E}^{\infty}\left(C_{p}, \ell / p\right)=\left(E\left(u_{1}\right) \otimes \mathbb{F}_{p}\left\{t^{-i} \mid 0<i<p\right\} \oplus E\left(\bar{\epsilon}_{1}\right)\right) \otimes E\left(\lambda_{2}\right) \otimes P\left(t^{ \pm p^{2}}\right)
$$

Proof. We have already identified the $E^{2}$ - and $E^{3}$-terms above. The $E^{3}$-term (5.5) is generated over $\hat{E}^{3}\left(C_{p}, \ell\right)$ by an $\mathbb{F}_{p}$-basis for $E\left(\bar{\epsilon}_{1}\right)$, so the next possible differential is induced by $d^{2 p}\left(t^{1-p}\right)=t \lambda_{1}$. But multiplication by $\lambda_{1}$ is trivial in $V(1)_{*} T H H(\ell / p)$, by Proposition 4.6, so $\hat{E}^{3}\left(C_{p}, \ell / p\right)=\hat{E}^{2 p+1}\left(C_{p}, \ell / p\right)$. This term is generated over $\hat{E}^{2 p+1}\left(C_{p}, \ell\right)$ by $P_{p}\left(t^{-1}\right) \otimes E\left(\bar{\epsilon}_{1}\right)$. Here $1, t^{-1}, \ldots, t^{1-p}$ and $\bar{\epsilon}_{1}$ are permanent cycles, by Lemma 5.7. Any $d^{r}$-differential before $d^{2 p^{2}}$ must therefore originate on a class $t^{-i} \bar{\epsilon}_{1}$ for $0<i<p$, and be of even length $r$, since these classes lie in even columns. For bidegree reasons, the first possibility is $r=2 p^{2}-2 p+2$, so $\hat{E}^{3}\left(C_{p}, \ell / p\right)=\hat{E}^{2 p^{2}-2 p+2}\left(C_{p}, \ell / p\right)$.

Multiplication by $v_{2}$ acts trivially on $V(1)_{*} T H H(\ell)$ and $V(1)_{*} T H H(\ell)^{t C_{p}}$ for degree reasons, and therefore also on $V(1)_{*} T H H(\ell / p)$ and $V(1)_{*} T H H(\ell / p)^{t C_{p}}$ by the module structure. The class $v_{2}$ maps to $t \mu_{2}$ in the $S^{1}$-Tate spectral sequence for $\ell$, as recalled above, so multiplication by $v_{2}$ is represented by multiplication by $t \mu_{2}$ in the $C_{p}$-Tate spectral sequence for $\ell / p$. Applied to the permanent cycles $\left(u_{1} t^{-1}\right)^{\delta} t^{-i}$ in degrees $\leq$ $(2 p-2)$, this implies that the products

$$
t \mu_{2} \cdot\left(u_{1} t^{-1}\right)^{\delta} t^{-i}
$$

must be infinite cycles representing zero, i.e., they must be hit by differentials. In the cases $\delta=1,0 \leq i \leq p-2$, these classes in odd columns cannot be hit by differentials of odd length, such as $d^{2 p^{2}+1}$, so the only possibility is

$$
d^{2 p^{2}-2 p+2}\left(t^{p-p^{2}} \cdot\left(u_{1} t^{-1}\right) t^{-i} \bar{\epsilon}_{1}\right)=t \mu_{2} \cdot\left(u_{1} t^{-1}\right) t^{-i}
$$

for $0 \leq i \leq p-2$. By the module structure (consider multiplication by $u_{1}$ ) it follows that

$$
d^{2 p^{2}-2 p+2}\left(t^{p-p^{2}} \cdot t^{-i} \bar{\epsilon}_{1}\right)=t \mu_{2} \cdot t^{-i}
$$

for $0<i<p$. Hence we can compute from (5.5) that

$$
\begin{array}{r}
\hat{E}_{* *}^{2 p^{2}-2 p+3}\left(C_{p}, \ell / p\right)=E\left(u_{1}\right) \otimes P\left(t^{ \pm p}\right) \otimes \mathbb{F}_{p}\left\{t^{-i} \mid 0<i<p\right\} \otimes E\left(\lambda_{2}\right) \\
\oplus E\left(u_{1}\right) \otimes P\left(t^{ \pm p}\right) \otimes E\left(\bar{\epsilon}_{1}\right) \otimes E\left(\lambda_{2}\right) \otimes P\left(t \mu_{2}\right)
\end{array}
$$

This is generated over $\hat{E}^{2 p+1}\left(C_{p}, \ell\right)$ by the permanent cycles $1, t^{-1}, \ldots, t^{1-p}$ and $\bar{\epsilon}_{1}$, so the next differential is induced by $d^{2 p^{2}}\left(t^{p-p^{2}}\right)=t^{p} \lambda_{2}$. This leaves

$$
\begin{array}{r}
\hat{E}_{* *}^{2 p^{2}+1}\left(C_{p}, \ell / p\right)=E\left(u_{1}\right) \otimes P\left(t^{ \pm p^{2}}\right) \otimes \mathbb{F}_{p}\left\{t^{-i} \mid 0<i<p\right\} \otimes E\left(\lambda_{2}\right) \\
\oplus E\left(u_{1}\right) \otimes P\left(t^{ \pm p^{2}}\right) \otimes E\left(\bar{\epsilon}_{1}\right) \otimes E\left(\lambda_{2}\right) \otimes P\left(t \mu_{2}\right)
\end{array}
$$

Finally, $d^{2 p^{2}+1}\left(u_{1} t^{-p^{2}}\right)=t \mu_{2}$ applies, and leaves

$$
\begin{gathered}
\hat{E}_{* *}^{2 p^{2}+2}\left(C_{p}, \ell / p\right)=E\left(u_{1}\right) \otimes P\left(t^{ \pm p^{2}}\right) \otimes \mathbb{F}_{p}\left\{t^{-i} \mid 0<i<p\right\} \otimes E\left(\lambda_{2}\right) \\
\oplus P\left(t^{ \pm p^{2}}\right) \otimes E\left(\bar{\epsilon}_{1}\right) \otimes E\left(\lambda_{2}\right)
\end{gathered}
$$

For bidegree reasons, $\hat{E}^{2 p^{2}+2}=\hat{E}^{\infty}$.
Proposition 5.9. The comparison map $\hat{\Gamma}_{1}$ takes the classes $\epsilon_{0}^{\delta} \mu_{0}^{i}, \bar{\epsilon}_{1}, \lambda_{2}$ and $\mu_{2}$ in $V(1)_{*} T H H(\ell / p)$ to classes in $V(1)_{*} T H H(\ell / p)^{t C_{p}}$ represented by $\left(u_{1} t^{-1}\right)^{\delta} t^{-i}, \bar{\epsilon}_{1}, \lambda_{2}$ and $t^{-p^{2}}$ in $\hat{E}_{* *}^{\infty}\left(C_{p}, \ell / p\right)$, respectively. Thus

$$
V(1)_{*} T H H(\ell / p)^{t C_{p}} \cong \mathbb{F}_{p}\left\{1, \epsilon_{0}, \mu_{0}, \epsilon_{0} \mu_{0}, \ldots, \mu_{0}^{p-1}, \bar{\epsilon}_{1}\right\} \otimes E\left(\lambda_{2}\right) \otimes P\left(\mu_{2}^{ \pm 1}\right)
$$

and $\hat{\Gamma}_{1}$ factors as the algebraic localization map and identification

$$
\hat{\Gamma}_{1}: V(1)_{*} T H H(\ell / p) \rightarrow V(1)_{*} T H H(\ell / p)\left[\mu_{2}^{-1}\right] \cong V(1)_{*} T H H(\ell / p)^{t C_{p}} .
$$

In particular, this map is $(2 p-2)$-coconnected.
Proof. The action of the map $\hat{\Gamma}_{1}$ on the classes $1, \epsilon_{0}, \mu_{0}, \epsilon_{0} \mu_{0}, \ldots, \mu_{0}^{p-1}$ and $\bar{\epsilon}_{1}$ was given in Lemma 5.7, and the action on the classes $\lambda_{2}$ and $\mu_{2}$ was already recalled from [AR02]. The structure of $V(1)_{*} T H H(\ell / p)^{t C_{p}}$ is then immediate from the $E^{\infty}$-term in Proposition 5.8. The top class not in the image of $\hat{\Gamma}_{1}$ is $\bar{\epsilon}_{1} \lambda_{2} \mu_{2}^{-1}$, in degree $(2 p-2)$.

Recall that

$$
\begin{aligned}
& T F(B)=\underset{n, F}{\operatorname{holim}} T H H(B)^{C_{p^{n}}} \\
& T R(B)=\underset{n, R}{\operatorname{holim}} T H H(B)^{C_{p^{n}}}
\end{aligned}
$$

are defined as the homotopy limits over the Frobenius and the restriction maps

$$
F, R: T H H(B)^{C_{p^{n}}} \rightarrow \operatorname{THH}(B)^{C_{p^{n-1}}},
$$

respectively.
Corollary 5.10. The comparison maps

$$
\begin{aligned}
& \Gamma_{n}: T H H(\ell / p)^{C_{p^{n}}} \rightarrow T H H(\ell / p)^{h C_{p^{n}}} \\
& \hat{\Gamma}_{n}: T H H(\ell / p)^{C_{p^{n-1}}} \rightarrow T H H(\ell / p)^{t C_{p^{n}}}
\end{aligned}
$$

for $n \geq 1$, and

$$
\begin{aligned}
& \Gamma: T F(\ell / p) \rightarrow T H H(\ell / p)^{h S^{1}} \\
& \hat{\Gamma}: T F(\ell / p) \rightarrow T H H(\ell / p)^{t S^{1}}
\end{aligned}
$$

all induce $(2 p-2)$-coconnected maps on $V(1)$-homotopy.

Proof. This follows from a theorem of Tsalidis [Tsa98] and Proposition 5.9 above, just like in [AR02, 5.7]. See also [BBLNR].

## 6. Higher fixed points

Let $n \geq 1$. Write $v_{p}(i)$ for the $p$-adic valuation of $i$. Define a numerical function $\rho(-)$ by

$$
\begin{aligned}
\rho(2 k-1) & =\left(p^{2 k+1}+1\right) /(p+1)=p^{2 k}-p^{2 k-1}+\cdots-p+1 \\
\rho(2 k) & =\left(p^{2 k+2}-p^{2}\right) /\left(p^{2}-1\right)=p^{2 k}+p^{2 k-2}+\cdots+p^{2}
\end{aligned}
$$

for $k \geq 0$, so $\rho(-1)=1$ and $\rho(0)=0$. For even arguments, $\rho(2 k)=r(2 k)$ as defined in [AR02, 2.5].

In all of the following spectral sequences we know that $\lambda_{2}, t \mu_{2}$ and $\bar{\epsilon}_{1}$ are infinite cycles. For $\lambda_{2}$ and $\bar{\epsilon}_{1}$ this follows from the $C_{p^{n}}$-fixed point analogue of diagram (5.2), by [AR02, 2.8] and Lemma 5.4. For $t \mu_{2}$ it follows from [AR02, 4.8], by naturality.

Theorem 6.1. The $C_{p^{n}}$-Tate spectral sequence in $V(1)$-homotopy for $T H H(\ell / p)$ begins

$$
\hat{E}_{* *}^{2}\left(C_{p^{n}}, \ell / p\right)=E\left(u_{n}, \lambda_{2}\right) \otimes \mathbb{F}_{p}\left\{1, \epsilon_{0}, \mu_{0}, \epsilon_{0} \mu_{0}, \ldots, \mu_{0}^{p-1}, \bar{\epsilon}_{1}\right\} \otimes P\left(t^{ \pm 1}, \mu_{2}\right)
$$

and converges to $V(1)_{*} T H H(\ell / p)^{t C_{p^{n}}}$. It is a module spectral sequence over the algebra spectral sequence $\hat{E}^{*}\left(C_{p^{n}}, \ell\right)$ converging to $V(1)_{*} T H H(\ell)^{t C_{p^{n}}}$.

There is an initial $d^{2}$-differential generated by

$$
d^{2}\left(\epsilon_{0} \mu_{0}^{i-1}\right)=t \mu_{0}^{i}
$$

for $0<i<p$. Next, there are $2 n$ families of even length differentials generated by

$$
d^{2 \rho(2 k-1)}\left(t^{p^{2 k-1}-p^{2 k}+i} \cdot \bar{\epsilon}_{1}\right)=\left(t \mu_{2}\right)^{\rho(2 k-3)} \cdot t^{i}
$$

for $v_{p}(i)=2 k-2$, for each $k=1, \ldots, n$, and

$$
d^{2 \rho(2 k)}\left(t^{p^{2 k-1}-p^{2 k}}\right)=\lambda_{2} \cdot t^{p^{2 k-1}} \cdot\left(t \mu_{2}\right)^{\rho(2 k-2)}
$$

for each $k=1, \ldots, n$. Finally, there is a differential of odd length generated by

$$
d^{2 \rho(2 n)+1}\left(u_{n} \cdot t^{-p^{2 n}}\right)=\left(t \mu_{2}\right)^{\rho(2 n-2)+1} .
$$

We shall prove Theorem 6.1 by induction on $n$. The base case $n=1$ is covered by Proposition 5.8. We can therefore assume that Theorem 6.1 holds for some fixed $n \geq 1$. First we make the following deduction.

Corollary 6.2. The initial differential in the $C_{p^{n}}$-Tate spectral sequence in $V(1)$-homotopy for THH ( $\ell / p$ ) leaves

$$
\hat{E}_{* *}^{3}\left(C_{p^{n}}, \ell / p\right)=E\left(u_{n}, \bar{\epsilon}_{1}, \lambda_{2}\right) \otimes P\left(t^{ \pm 1}, t \mu_{2}\right)
$$

The next $2 n$ families of differentials leave the intermediate terms

$$
\begin{aligned}
\hat{E}_{* *}^{2 \rho(1)+1}\left(C_{p^{n}}, \ell / p\right) & =E\left(u_{n}, \lambda_{2}\right) \otimes \mathbb{F}_{p}\left\{t^{-i} \mid 0<i<p\right\} \otimes P\left(t^{ \pm p}\right) \\
& \oplus E\left(u_{n}, \bar{\epsilon}_{1}, \lambda_{2}\right) \otimes P\left(t^{ \pm p}, t \mu_{2}\right)
\end{aligned}
$$

(for $m=1$ ),

$$
\begin{aligned}
\hat{E}_{* *}^{2 \rho(2 m-1)+1}\left(C_{p^{n}}, \ell / p\right) & =E\left(u_{n}, \lambda_{2}\right) \otimes \mathbb{F}_{p}\left\{t^{-i} \mid 0<i<p\right\} \otimes P\left(t^{ \pm p^{2}}\right) \\
& \oplus \bigoplus_{k=2}^{m} E\left(u_{n}, \lambda_{2}\right) \otimes \mathbb{F}_{p}\left\{t^{j} \mid v_{p}(j)=2 k-2\right\} \otimes P_{\rho(2 k-3)}\left(t \mu_{2}\right) \\
\oplus & \bigoplus_{k=2}^{m-1} E\left(u_{n}, \bar{\epsilon}_{1}\right) \otimes \mathbb{F}_{p}\left\{t^{j} \lambda_{2} \mid v_{p}(j)=2 k-1\right\} \otimes P_{\rho(2 k-2)}\left(t \mu_{2}\right) \\
& \oplus E\left(u_{n}, \bar{\epsilon}_{1}, \lambda_{2}\right) \otimes P\left(t^{ \pm p^{2 m-1}}, t \mu_{2}\right)
\end{aligned}
$$

for $m=2, \ldots, n$, and

$$
\begin{aligned}
\hat{E}_{* *}^{2 \rho(2 m)+1}\left(C_{p^{n}}, \ell / p\right)= & E\left(u_{n}, \lambda_{2}\right) \otimes \mathbb{F}_{p}\left\{t^{-i} \mid 0<i<p\right\} \otimes P\left(t^{ \pm p^{2}}\right) \\
& \oplus \bigoplus_{k=2}^{m} E\left(u_{n}, \lambda_{2}\right) \otimes \mathbb{F}_{p}\left\{t^{j} \mid v_{p}(j)=2 k-2\right\} \otimes P_{\rho(2 k-3)}\left(t \mu_{2}\right) \\
\oplus & \bigoplus_{k=2}^{m} E\left(u_{n}, \bar{\epsilon}_{1}\right) \otimes \mathbb{F}_{p}\left\{t^{j} \lambda_{2} \mid v_{p}(j)=2 k-1\right\} \otimes P_{\rho(2 k-2)}\left(t \mu_{2}\right) \\
& \oplus E\left(u_{n}, \bar{\epsilon}_{1}, \lambda_{2}\right) \otimes P\left(t^{ \pm p^{2 m}}, t \mu_{2}\right)
\end{aligned}
$$

for $m=1, \ldots, n$. The final differential leaves the $E^{2 \rho(2 n)+2}=E^{\infty}$-term, equal to

$$
\begin{aligned}
\hat{E}_{* *}^{\infty}\left(C_{p^{n}}, \ell / p\right)= & E\left(u_{n}, \lambda_{2}\right) \otimes \mathbb{F}_{p}\left\{t^{-i} \mid 0<i<p\right\} \otimes P\left(t^{ \pm p^{2}}\right) \\
& \oplus \bigoplus_{k=2}^{n} E\left(u_{n}, \lambda_{2}\right) \otimes \mathbb{F}_{p}\left\{t^{j} \mid v_{p}(j)=2 k-2\right\} \otimes P_{\rho(2 k-3)}\left(t \mu_{2}\right) \\
\oplus & \bigoplus_{k=2}^{n} E\left(u_{n}, \bar{\epsilon}_{1}\right) \otimes \mathbb{F}_{p}\left\{t^{j} \lambda_{2} \mid v_{p}(j)=2 k-1\right\} \otimes P_{\rho(2 k-2)}\left(t \mu_{2}\right) \\
& \oplus E\left(\bar{\epsilon}_{1}, \lambda_{2}\right) \otimes P\left(t^{ \pm p^{2 n}}\right) \otimes P_{\rho(2 n-2)+1}\left(t \mu_{2}\right)
\end{aligned}
$$

Proof. The statements about the $E^{3}-, E^{2 \rho(1)+1}$ - and $E^{2 \rho(2)+1}$-terms are clear from Proposition 5.8. For each $m=2, \ldots, n$ we proceed by a secondary induction. The differential

$$
d^{2 \rho(2 m-1)}\left(t^{p^{2 m-1}-p^{2 m}+i} \cdot \bar{\epsilon}_{1}\right)=\left(t \mu_{2}\right)^{\rho(2 m-3)} \cdot t^{i}
$$

for $v_{p}(i)=2 m-2$ is non-trivial only on the summand

$$
E\left(u_{n}, \bar{\epsilon}_{1}, \lambda_{2}\right) \otimes P\left(t^{ \pm p^{2 m-2}}, t \mu_{2}\right)
$$

of the $E^{2 \rho(2 m-2)+1}=E^{2 \rho(2 m-1)}$-term, with homology

$$
\begin{aligned}
& E\left(u_{n}, \lambda_{2}\right) \otimes \mathbb{F}_{p}\left\{t^{j} \mid v_{p}(j)=2 m-2\right\} \otimes P_{\rho(2 m-3)}\left(t \mu_{2}\right) \\
& \quad \oplus E\left(u_{n}, \bar{\epsilon}_{1}, \lambda_{2}\right) \otimes P\left(t^{ \pm p^{2 m-1}}, t \mu_{2}\right)
\end{aligned}
$$

This gives the stated $E^{2 \rho(2 m-1)+1}$-term. Similarly, the differential

$$
d^{2 \rho(2 m)}\left(t^{p^{2 m-1}-p^{2 m}}\right)=\lambda_{2} \cdot t^{p^{2 m-1}} \cdot\left(t \mu_{2}\right)^{\rho(2 m-2)}
$$

is non-trivial only on the summand

$$
E\left(u_{n}, \bar{\epsilon}_{1}, \lambda_{2}\right) \otimes P\left(t^{ \pm p^{2 m-1}}, t \mu_{2}\right)
$$

of the $E^{2 \rho(2 m-1)+1}=E^{2 \rho(2 m)}$-term, with homology

$$
\begin{aligned}
& E\left(u_{n}, \bar{\epsilon}_{1}\right) \otimes \mathbb{F}_{p}\left\{t^{j} \lambda_{2} \mid v_{p}(j)=2 m-1\right\} \otimes P_{\rho(2 m-2)}\left(t \mu_{2}\right) \\
& \quad \oplus E\left(u_{n}, \bar{\epsilon}_{1}, \lambda_{2}\right) \otimes P\left(t^{ \pm p^{2 m}}, t \mu_{2}\right) .
\end{aligned}
$$

This gives the stated $E^{2 \rho(2 m)+1}$-term. The final differential

$$
d^{2 \rho(2 n)+1}\left(u_{n} \cdot t^{-p^{2 n}}\right)=\left(t \mu_{2}\right)^{\rho(2 n-2)+1}
$$

is non-trivial only on the summand

$$
E\left(u_{n}, \bar{\epsilon}_{1}, \lambda_{2}\right) \otimes P\left(t^{ \pm p^{2 n}}, t \mu_{2}\right)
$$

of the $E^{2 \rho(2 n)+1}$-term, with homology

$$
E\left(\bar{\epsilon}_{1}, \lambda_{2}\right) \otimes P\left(t^{ \pm p^{2 n}}\right) \otimes P_{\rho(2 n-2)+1}\left(t \mu_{2}\right) .
$$

This gives the stated $E^{2 \rho(2 n)+2}$-term. At this stage there is no room for any further differentials, since the spectral sequence is concentrated in a narrower horizontal band than the vertical height of the following differentials.

Next we compare the $C_{p^{n}}$-Tate spectral sequence with the $C_{p^{n}}$-homotopy spectral sequence obtained by restricting the $E^{2}$-term to the second quadrant ( $s \leq 0, t \geq 0$ ). It is algebraically easier to handle the latter after inverting $\mu_{2}$, which can be interpreted as comparing $T H H(\ell / p)$ with its $C_{p}$-Tate construction.

In general, there is a commutative diagram

where $G_{n-1}$ is the comparison map from the $C_{p^{n-1}}$-fixed points to the $C_{p^{n-1}}$-homotopy fixed points of $T H H(B)^{t C_{p}}$, in view of the identification

$$
\left(T H H(B)^{t C_{p}}\right)^{C_{p^{n-1}}}=T H H(B)^{t C_{p^{n}}}
$$

We are of course considering the case $B=\ell / p$. In $V(1)$-homotopy all four maps with labels containing $\Gamma$ are $(2 p-2)$-coconnected, by Corollary 5.10 , so $G_{n-1}$ is at least ( $2 p-1$ )-coconnected. (We shall see in Lemma 6.11 that $V(1)_{*} G_{n-1}$ is an isomorphism in all degrees.) By Proposition 5.9 the map $\hat{\Gamma}_{1}$ precisely inverts $\mu_{2}$, so the $E^{2}$-term of the $C_{p^{n}}$-homotopy fixed point spectral sequence in $V(1)$-homotopy for $T H H(\ell / p)^{t C_{p}}$ is obtained by inverting $\mu_{2}$ in $E_{* *}^{2}\left(C_{p^{n}}, \ell / p\right)$. We denote it by $\mu_{2}^{-1} E^{*}\left(C_{p^{n}}, \ell / p\right)$, even though in later terms only a power of $\mu_{2}$ is present.

Theorem 6.4. The $C_{p^{n}}$-homotopy fixed point spectral sequence $\mu_{2}^{-1} E^{*}\left(C_{p^{n}}, \ell / p\right)$ in $V(1)$ homotopy for THH $(\ell / p)^{t C_{p}}$ begins

$$
\mu_{2}^{-1} E_{* *}^{2}\left(C_{p^{n}}, \ell / p\right)=E\left(u_{n}, \lambda_{2}\right) \otimes \mathbb{F}_{p}\left\{1, \epsilon_{0}, \mu_{0}, \epsilon_{0} \mu_{0}, \ldots, \mu_{0}^{p-1}, \bar{\epsilon}_{1}\right\} \otimes P\left(t, \mu_{2}^{ \pm 1}\right)
$$

and converges to $V(1)_{*}\left(T H H(\ell / p)^{t C_{p}}\right)^{h C_{p^{n}}}$, which receives a $(2 p-2)$-coconnected map $\left(\hat{\Gamma}_{1}\right)^{h C_{p^{n}}}$ from $V(1)_{*} T H H(\ell / p)^{h C_{p^{n}}}$. There is an initial $d^{2}$-differential generated by

$$
d^{2}\left(\epsilon_{0} \mu_{0}^{i-1}\right)=t \mu_{0}^{i}
$$

for $0<i<p$. Next, there are $2 n$ families of even length differentials generated by

$$
d^{2 \rho(2 k-1)}\left(\mu_{2}^{p^{2 k}-p^{2 k-1}+j} \cdot \bar{\epsilon}_{1}\right)=\left(t \mu_{2}\right)^{\rho(2 k-1)} \cdot \mu_{2}^{j}
$$

for $v_{p}(j)=2 k-2$, for each $k=1, \ldots, n$, and

$$
d^{2 \rho(2 k)}\left(\mu_{2}^{p^{2 k}-p^{2 k-1}}\right)=\lambda_{2} \cdot \mu_{2}^{-p^{2 k-1}} \cdot\left(t \mu_{2}\right)^{\rho(2 k)}
$$

for each $k=1, \ldots, n$. Finally, there is a differential of odd length generated by

$$
d^{2 \rho(2 n)+1}\left(u_{n} \cdot \mu_{2}^{p^{2 n}}\right)=\left(t \mu_{2}\right)^{\rho(2 n)+1}
$$

Proof. The differential pattern follows from Theorem 6.1 by naturality with respect to the maps of spectral sequences

$$
\mu_{2}^{-1} E^{*}\left(C_{p^{n}}, \ell / p\right) \stackrel{\hat{\Gamma}_{1}^{h C_{p^{n}}}}{\rightleftarrows} E^{*}\left(C_{p^{n}}, \ell / p\right) \xrightarrow{R^{h}} \hat{E}^{*}\left(C_{p^{n}}, \ell / p\right)
$$

induced by $\hat{\Gamma}_{1}^{h C_{p^{n}}}$ and $R^{h}$. The first inverts $\mu_{2}$ and the second inverts $t$, at the level of $E^{2}$-terms. We are also using that $t \mu_{2}$, the image of $v_{2}$, multiplies as an infinite cycle in all of these spectral sequences.

Corollary 6.5. The initial differential in the $C_{p^{n}}$-homotopy fixed point spectral sequence in $V(1)$-homotopy for $T H H(\ell / p)^{t C_{p}}$ leaves

$$
\begin{gathered}
\mu_{2}^{-1} E_{* *}^{3}\left(C_{p^{n}}, \ell / p\right)=E\left(u_{n}, \lambda_{2}\right) \otimes \mathbb{F}_{p}\left\{\mu_{0}^{i} \mid 0<i<p\right\} \otimes P\left(\mu_{2}^{ \pm 1}\right) \\
\oplus E\left(u_{n}, \bar{\epsilon}_{1}, \lambda_{2}\right) \otimes P\left(\mu_{2}^{ \pm 1}, t \mu_{2}\right)
\end{gathered}
$$

The next $2 n$ families of differentials leave the intermediate terms

$$
\begin{aligned}
& \mu_{2}^{-1} E_{* *}^{2 \rho(2 m-1)+1}\left(C_{p^{n}}, \ell / p\right)=E\left(u_{n}, \lambda_{2}\right) \otimes \mathbb{F}_{p}\left\{\mu_{0}^{i} \mid 0<i<p\right\} \otimes P\left(\mu_{2}^{ \pm 1}\right) \\
& \oplus \bigoplus_{k=1}^{m} E\left(u_{n}, \lambda_{2}\right) \otimes \mathbb{F}_{p}\left\{\mu_{2}^{j} \mid v_{p}(j)=2 k-2\right\} \otimes P_{\rho(2 k-1)}\left(t \mu_{2}\right) \\
& \oplus \bigoplus_{k=1}^{m-1} E\left(u_{n}, \bar{\epsilon}_{1}\right) \otimes \mathbb{F}_{p}\left\{\lambda_{2} \mu_{2}^{j} \mid v_{p}(j)=2 k-1\right\} \otimes P_{\rho(2 k)}\left(t \mu_{2}\right) \\
& \oplus E\left(u_{n}, \bar{\epsilon}_{1}, \lambda_{2}\right) \otimes P\left(\mu_{2}^{ \pm p^{2 m-1}}, t \mu_{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\mu_{2}^{-1} E_{* *}^{2 \rho(2 m)+1}\left(C_{p^{n}}, \ell / p\right)= & E\left(u_{n}, \lambda_{2}\right) \otimes \mathbb{F}_{p}\left\{\mu_{0}^{i} \mid 0<i<p\right\} \otimes P\left(\mu_{2}^{ \pm 1}\right) \\
& \oplus \bigoplus_{k=1}^{m} E\left(u_{n}, \lambda_{2}\right) \otimes \mathbb{F}_{p}\left\{\mu_{2}^{j} \mid v_{p}(j)=2 k-2\right\} \otimes P_{\rho(2 k-1)}\left(t \mu_{2}\right) \\
& \oplus \bigoplus_{k=1}^{m} E\left(u_{n}, \bar{\epsilon}_{1}\right) \otimes \mathbb{F}_{p}\left\{\lambda_{2} \mu_{2}^{j} \mid v_{p}(j)=2 k-1\right\} \otimes P_{\rho(2 k)}\left(t \mu_{2}\right) \\
& \oplus E\left(u_{n}, \bar{\epsilon}_{1}, \lambda_{2}\right) \otimes P\left(\mu_{2}^{ \pm p^{2 m}}, t \mu_{2}\right)
\end{aligned}
$$

for $m=1, \ldots, n$. The final differential leaves the $E^{2 \rho(2 n)+2}=E^{\infty}$-term, equal to

$$
\begin{aligned}
\mu_{2}^{-1} E_{* *}^{\infty}\left(C_{p^{n}}, \ell / p\right)= & E\left(u_{n}, \lambda_{2}\right) \otimes \mathbb{F}_{p}\left\{\mu_{0}^{i} \mid 0<i<p\right\} \otimes P\left(\mu_{2}^{ \pm 1}\right) \\
& \oplus \bigoplus_{k=1}^{n} E\left(u_{n}, \lambda_{2}\right) \otimes \mathbb{F}_{p}\left\{\mu_{2}^{j} \mid v_{p}(j)=2 k-2\right\} \otimes P_{\rho(2 k-1)}\left(t \mu_{2}\right) \\
& \oplus \bigoplus_{k=1}^{n} E\left(u_{n}, \bar{\epsilon}_{1}\right) \otimes \mathbb{F}_{p}\left\{\lambda_{2} \mu_{2}^{j} \mid v_{p}(j)=2 k-1\right\} \otimes P_{\rho(2 k)}\left(t \mu_{2}\right) \\
& \oplus E\left(\bar{\epsilon}_{1}, \lambda_{2}\right) \otimes P\left(\mu_{2}^{ \pm p^{2 n}}\right) \otimes P_{\rho(2 n)+1}\left(t \mu_{2}\right)
\end{aligned}
$$

Proof. The computation of the $E^{3}$-term from the $E^{2}$-term is straightforward. The rest of the proof goes by a secondary induction on $m=1, \ldots, n$, very much like the proof of Corollary 6.2. The differential

$$
d^{2 \rho(2 m-1)}\left(\mu_{2}^{p^{2 m}-p^{2 m-1}+j} \cdot \bar{\epsilon}_{1}\right)=\left(t \mu_{2}\right)^{\rho(2 m-1)} \cdot \mu_{2}^{j}
$$

for $v_{p}(j)=2 m-2$ is non-trivial only on the summand

$$
E\left(u_{n}, \bar{\epsilon}_{1}, \lambda_{2}\right) \otimes P\left(\mu_{2}^{ \pm p^{2 m-2}}, t \mu_{2}\right)
$$

of the $E^{3}=E^{2 \rho(1)}$-term (for $m=1$ ), resp. the $E^{2 \rho(2 m-2)+1}=E^{2 \rho(2 m-1)}$-term (for $m=$ $2, \ldots, n)$. Its homology is

$$
\begin{aligned}
& E\left(u_{n}, \lambda_{2}\right) \otimes \mathbb{F}_{p}\left\{\mu_{2}^{j} \mid v_{p}(j)=2 m-2\right\} \otimes P_{\rho(2 m-1)}\left(t \mu_{2}\right) \\
& \quad \oplus E\left(u_{n}, \bar{\epsilon}_{1}, \lambda_{2}\right) \otimes P\left(\mu_{2}^{ \pm p^{2 m-1}}, t \mu_{2}\right),
\end{aligned}
$$

which gives the stated $E^{2 \rho(2 m-1)+1}$-term. The differential

$$
d^{2 \rho(2 m)}\left(\mu_{2}^{p^{2 m}-p^{2 m-1}}\right)=\lambda_{2} \cdot \mu_{2}^{-p^{2 m-1}} \cdot\left(t \mu_{2}\right)^{\rho(2 m)}
$$

is non-trivial only on the summand

$$
E\left(u_{n}, \bar{\epsilon}_{1}, \lambda_{2}\right) \otimes P\left(\mu_{2}^{ \pm p^{2 m-1}}, t \mu_{2}\right)
$$

of the $E^{2 \rho(2 m-1)+1}=E^{2 \rho(2 m)}$-term, leaving

$$
\begin{aligned}
& E\left(u_{n}, \bar{\epsilon}_{1}\right) \otimes \mathbb{F}_{p}\left\{\lambda_{2} \mu_{2}^{j} \mid v_{p}(j)=2 m-1\right\} \otimes P_{\rho(2 m)}\left(t \mu_{2}\right) \\
& \quad \oplus E\left(u_{n}, \bar{\epsilon}_{1}, \lambda_{2}\right) \otimes P\left(\mu_{2}^{ \pm p^{2 m}}, t \mu_{2}\right)
\end{aligned}
$$

This gives the stated $E^{2 \rho(2 m)+1}$-term. The final differential

$$
d^{2 \rho(2 n)+1}\left(u_{n} \cdot \mu_{2}^{p^{2 n}}\right)=\left(t \mu_{2}\right)^{\rho(2 n)+1}
$$

is non-trivial only on the summand

$$
E\left(u_{n}, \bar{\epsilon}_{1}, \lambda_{2}\right) \otimes P\left(\mu_{2}^{ \pm p^{2 n}}, t \mu_{2}\right)
$$

of the $E^{2 \rho(2 n)+1}$-term, with homology

$$
E\left(\bar{\epsilon}_{1}, \lambda_{2}\right) \otimes P\left(\mu_{2}^{ \pm 2^{2 n}}\right) \otimes P_{\rho(2 n)+1}\left(t \mu_{2}\right)
$$

This gives the stated $E^{2 \rho(2 n)+2}$-term. There is no room for any further differentials, since the spectral sequence is concentrated in a narrower vertical band than the horizontal width of the following differentials, so $E^{2 \rho(2 n)+2}=E^{\infty}$.

Proof of Theorem 6.1. To make the inductive step to $C_{p^{n+1}}$, we use that the first $d^{r}$ differential of odd length in $\hat{E}^{*}\left(C_{p^{n}}, \ell / p\right)$ occurs for $r=r_{0}=2 \rho(2 n)+1$. It follows from [AR02, 5.2] that the terms $\hat{E}^{r}\left(C_{p^{n}}, \ell / p\right)$ and $\hat{E}^{r}\left(C_{p^{n+1}}, \ell / p\right)$ are isomorphic for $r \leq$ $2 \rho(2 n)+1$, via the Frobenius map (taking $t^{i}$ to $t^{i}$ ) in even columns and the Verschiebung map (taking $u_{n} t^{i}$ to $u_{n+1} t^{i}$ ) in odd columns. Furthermore, the differential $d^{2 \rho(2 n)+1}$ is zero in the latter spectral sequence. This proves the part of Theorem 6.1 for $n+1$ that concerns the differentials leading up to the term

$$
\hat{E}^{2 \rho(2 n)+2}\left(C_{p^{n+1}}, \ell / p\right)=E\left(u_{n+1}, \lambda_{2}\right) \otimes \mathbb{F}_{p}\left\{t^{-i} \mid 0<i<p\right\} \otimes P\left(t^{ \pm p^{2}}\right)
$$

$$
\begin{equation*}
\oplus \bigoplus_{k=2}^{n} E\left(u_{n+1}, \lambda_{2}\right) \otimes \mathbb{F}_{p}\left\{t^{j} \mid v_{p}(j)=2 k-2\right\} \otimes P_{\rho(2 k-3)}\left(t \mu_{2}\right) \tag{6.6}
\end{equation*}
$$

$$
\oplus \bigoplus_{k=2}^{n} E\left(u_{n+1}, \bar{\epsilon}_{1}\right) \otimes \mathbb{F}_{p}\left\{t^{j} \lambda_{2} \mid v_{p}(j)=2 k-1\right\} \otimes P_{\rho(2 k-2)}\left(t \mu_{2}\right)
$$

$$
\oplus E\left(u_{n+1}, \bar{\epsilon}_{1}, \lambda_{2}\right) \otimes P\left(t^{ \pm p^{2 n}}, t \mu_{2}\right)
$$

Next we use the following commutative diagram, where we abbreviate $\operatorname{THH}(B)$ to $T(B)$ :


The horizontal maps all induce $(2 p-2)$-coconnected maps in $V(1)$-homotopy for $B=$ $\ell / p$. Here $F$ is the Frobenius map, forgetting part of the equivariance. Thus the map $\hat{\Gamma}_{n+1}$ to the right induces an isomorphism of $E\left(\lambda_{2}\right) \otimes P\left(v_{2}\right)$-modules in all degrees $*>$ $(2 p-2)$ from $V(1)_{*} T H H(\ell / p)^{C_{p^{n}}}$, implicitly identified to the left with the abutment of $\mu_{2}^{-1} E^{*}\left(C_{p^{n}}, \ell / p\right)$, to $V(1)_{*} T H H(\ell / p)^{t C_{p^{n+1}}}$, which is the abutment of $\hat{E}^{*}\left(C_{p^{n+1}}, \ell / p\right)$. The diagram above ensures that the isomorphism induced by $\hat{\Gamma}_{n+1}$ is compatible with the one induced by $\hat{\Gamma}_{1}$. By Proposition 5.9 it takes $\bar{\epsilon}_{1}, \lambda_{2}$ and $\mu_{2}$ to $\bar{\epsilon}_{1}, \lambda_{2}$ and $t^{-p^{2}}$, respectively, and similarly for monomials in these classes.

We focus on the summand

$$
E\left(u_{n}, \lambda_{2}\right) \otimes \mathbb{F}_{p}\left\{\mu_{2}^{j} \mid v_{p}(j)=2 n-2\right\} \otimes P_{\rho(2 n-1)}\left(t \mu_{2}\right)
$$

in $\mu_{2}^{-1} E_{* *}^{\infty}\left(C_{p^{n}}, \ell / p\right)$, abutting to $V(1)_{*} T H H(\ell / p)^{C_{p^{n}}}$ in degrees $>(2 p-2)$. In the $P\left(v_{2}\right)$ module structure on the abutment, each class $\mu_{2}^{j}$ with $v_{p}(j)=2 n-2, j>0$, generates a copy of $P_{\rho(2 n-1)}\left(v_{2}\right)$, since there are no permanent cycles in the same total degree as $y=\left(t \mu_{2}\right)^{\rho(2 n-1)} \cdot \mu_{2}^{j}$ that have lower ( $=$ more negative) homotopy fixed point filtration. See Lemma 6.8 below for the elementary verification. The $P\left(v_{2}\right)$-module isomorphism induced by $\hat{\Gamma}_{n+1}$ must take this to a copy of $P_{\rho(2 n-1)}\left(v_{2}\right)$ in $V(1)_{*} T H H(\ell / p)^{t C_{p^{n+1}}}$, generated by $t^{-p^{2} j}$.

Writing $i=-p^{2} j$, we deduce that for $v_{p}(i)=2 n, i<0$, the infinite cycle $z=$ $\left(t \mu_{2}\right)^{\rho(2 n-1)} \cdot t^{i}$ must represent zero in the abutment, and must therefore be hit by a differential $z=d^{r}(x)$ in the $C_{p^{n+1}}$-Tate spectral sequence. Here $r \geq 2 \rho(2 n)+2$.

Since $z$ generates a free copy of $P\left(t \mu_{2}\right)$ in the $E^{2 \rho(2 n)+2}$-term displayed in (6.6), and $d^{r}$ is $P\left(t \mu_{2}\right)$-linear, the class $x$ cannot be annihilated by any power of $t \mu_{2}$. This means that $x$ must be contained in the summand

$$
E\left(u_{n+1}, \bar{\epsilon}_{1}, \lambda_{2}\right) \otimes P\left(t^{ \pm p^{2 n}}, t \mu_{2}\right)
$$

of $\hat{E}_{* *}^{2 \rho(2 n)+2}\left(C_{p^{n+1}}, \ell / p\right)$. By an elementary check of bidegrees, see Lemma 6.9 below, the only possibility is that $x$ has vertical degree $(2 p-1)$, so that we have differentials

$$
d^{2 \rho(2 n+1)}\left(t^{2 n+1}-p^{2 n+2}+i \cdot \bar{\epsilon}_{1}\right)=\left(t \mu_{2}\right)^{\rho(2 n-1)} \cdot t^{i}
$$

for all $i<0$ with $v_{p}(i)=2 n$. The cases $i>0$ follow by the module structure over the $C_{p^{n+1}}$ Tate spectral sequence for $\ell$. The remaining two differentials,

$$
d^{2 \rho(2 n+2)}\left(t^{p^{2 n+1}-p^{2 n+2}}\right)=\lambda_{2} \cdot t^{p^{2 n+1}} \cdot\left(t \mu_{2}\right)^{\rho(2 n)}
$$

and

$$
d^{2 \rho(2 n+2)+1}\left(u_{n+1} \cdot t^{-p^{2 n+2}}\right)=\left(t \mu_{2}\right)^{\rho(2 n)+1}
$$

are also present in the $C_{p^{n+1}}$-Tate spectral sequence for $\ell$, see [AR02, 6.1], hence follow in the present case by the module structure. With this we have established the complete differential pattern asserted by Theorem 6.1.

Lemma 6.8. For $v_{p}(j)=2 n-2, n \geq 1$, there are no classes in $\mu_{2}^{-1} E_{* *}^{\infty}\left(C_{p^{n}}, \ell / p\right)$ in the same total degree as $y=\left(t \mu_{2}\right)^{\rho(2 n-1)} \cdot \mu_{2}^{j}$ that have lower homotopy fixed point filtration.
Proof. The total degree of $y$ is $2\left(p^{2 n+2}-p^{2 n+1}+p-1\right)+2 p^{2} j \equiv(2 p-2) \bmod 2 p^{2 n}$, which is even.
Looking at the formula for $\mu_{2}^{-1} E_{* *}^{\infty}\left(C_{p^{n}}, \ell / p\right)$ in Corollary 6.5, the classes of lower filtration than $y$ all lie in the terms

$$
E\left(u_{n}, \bar{\epsilon}_{1}\right) \otimes \mathbb{F}_{p}\left\{\lambda_{2} \mu_{2}^{i} \mid v_{p}(i)=2 n-1\right\} \otimes P_{\rho(2 n)}\left(t \mu_{2}\right)
$$

and

$$
E\left(\bar{\epsilon}_{1}, \lambda_{2}\right) \otimes P\left(\mu_{2}^{ \pm p^{2 n}}\right) \otimes P_{\rho(2 n)+1}\left(t \mu_{2}\right) .
$$

Those in even total degree and of lower filtration than $y$ are

$$
u_{n} \lambda_{2} \cdot \mu_{2}^{i}\left(t \mu_{2}\right)^{e}, \quad \bar{\epsilon}_{1} \lambda_{2} \cdot \mu_{2}^{i}\left(t \mu_{2}\right)^{e}
$$

with $v_{p}(i)=2 n-1, \rho(2 n-1)<e<\rho(2 n)$, and

$$
\mu_{2}^{i}\left(t \mu_{2}\right)^{e}, \quad \bar{\epsilon}_{1} \lambda_{2} \cdot \mu_{2}^{i}\left(t \mu_{2}\right)^{e}
$$

with $v_{p}(i) \geq 2 n, \rho(2 n-1)<e \leq \rho(2 n)$.
The total degree of $u_{n} \lambda_{2} \cdot \mu_{2}^{i}\left(t \mu_{2}\right)^{e}$ for $v_{p}(i)=2 n-1$ is $(-1)+\left(2 p^{2}-1\right)+2 p^{2} i+\left(2 p^{2}-2\right) e \equiv$ $\left(2 p^{2}-2\right)(e+1) \bmod 2 p^{2 n}$. For this to agree with the total degree of $y$, we must have $(2 p-2) \equiv\left(2 p^{2}-2\right)(e+1) \bmod 2 p^{2 n}$, so $(e+1) \equiv 1 /(1+p) \bmod p^{2 n}$ and $e \equiv \rho(2 n-1)-1$ $\bmod p^{2 n}$. There is no such $e$ with $\rho(2 n-1)<e<\rho(2 n)$.
The total degree of $\bar{\epsilon}_{1} \lambda_{2} \cdot \mu_{2}^{i}\left(t \mu_{2}\right)^{e}$ for $v_{p}(i)=2 n-1$ is $(2 p-1)+\left(2 p^{2}-1\right)+2 p^{2} i+$ $\left(2 p^{2}-2\right) e \equiv 2 p+\left(2 p^{2}-2\right)(e+1) \bmod 2 p^{2 n}$. To agree with that of $y$, we must have $(2 p-2) \equiv 2 p+\left(2 p^{2}-2\right)(e+1) \bmod 2 p^{2 n}$, so $(e+1) \equiv 1 /\left(1-p^{2}\right) \bmod p^{2 n}$ and $e \equiv \rho(2 n)$ $\bmod p^{2 n}$. There is no such $e$ with $\rho(2 n-1)<e<\rho(2 n)$.

The total degree of $\mu_{2}^{i}\left(t \mu_{2}\right)^{e}$ for $v_{p}(i) \geq 2 n$ is $2 p^{2} i+\left(2 p^{2}-2\right) e \equiv\left(2 p^{2}-2\right) e \bmod 2 p^{2 n}$. To agree with that of $y$, we must have $(2 p-2) \equiv\left(2 p^{2}-2\right) e \bmod 2 p^{2 n}$, so $e \equiv 1 /(1+p) \equiv$ $\rho(2 n-1) \bmod p^{2 n}$. There is no such $e$ with $\rho(2 n-1)<e \leq \rho(2 n)$.

The total degree of $\bar{\epsilon}_{1} \lambda_{2} \cdot \mu_{2}^{i}\left(t \mu_{2}\right)^{e}$ for $v_{p}(i) \geq 2 n$ is $(2 p-1)+\left(2 p^{2}-1\right)+2 p^{2} i+\left(2 p^{2}-2\right) e$. To agree modulo $2 p^{2 n}$ with that of $y$, we must have $e \equiv \rho(2 n) \bmod p^{2 n}$. The only such $e$ with $\rho(2 n-1)<e \leq \rho(2 n)$ is $e=\rho(2 n)$. But in that case, the total degree of $\bar{\epsilon}_{1} \lambda_{2} \cdot \mu_{2}^{i}\left(t \mu_{2}\right)^{e}$ is $2 p+2 p^{2} i+\left(2 p^{2}-2\right)(\rho(2 n)+1)=2\left(p^{2 n+2}+p-1\right)+2 p^{2} i$. To be equal to that of $y$, we must have $2 p^{2} i+2 p^{2 n+1}=2 p^{2} j$, which is impossible for $v_{p}(i) \geq 2 n$ and $v_{p}(j)=2 n-2$.
Lemma 6.9. For $v_{p}(i)=2 n, n \geq 1$ and $z=\left(t \mu_{2}\right)^{\rho(2 n-1)} \cdot t^{i}$, the only class in

$$
E\left(u_{n+1}, \bar{\epsilon}_{1}, \lambda_{2}\right) \otimes P\left(t^{ \pm p^{2 n}}, t \mu_{2}\right)
$$

that can support a differential $d^{r}(x)=z$ for $r \geq 2 \rho(2 n)+2$ is (a unit times)

$$
x=t^{p^{2 n+1}-p^{2 n+2}+i} \cdot \bar{\epsilon}_{1} .
$$

Proof. The class $z$ has total degree $\left(2 p^{2}-2\right) \rho(2 n-1)-2 i=2 p^{2 n+2}-2 p^{2 n+1}+2 p-2-2 i \equiv$ $(2 p-2) \bmod 2 p^{2 n}$, which is even, and vertical degree $2 p^{2} \rho(2 n-1)$. Hence $x$ has odd total degree, and vertical degree at most $2 p^{2} \rho(2 n-1)-2 \rho(2 n)-1=2 p^{2 n+2}-2 p^{2 n+1}-\cdots-2 p^{3}-1$. This leaves the possibilities

$$
u_{n+1} \cdot t^{j}\left(t \mu_{2}\right)^{e}, \quad \bar{\epsilon}_{1} \cdot t^{j}\left(t \mu_{2}\right)^{e}, \quad \lambda_{2} \cdot t^{j}\left(t \mu_{2}\right)^{e}
$$

with $v_{p}(j) \geq 2 n$ and $0 \leq e<p^{2 n}-p^{2 n-1}-\cdots-p=\rho(2 n-1)-\rho(2 n-2)-1$, and

$$
u_{n+1} \bar{\epsilon}_{1} \lambda_{2} \cdot t^{j}\left(t \mu_{2}\right)^{e}
$$

with $v_{p}(j) \geq 2 n$ and $0 \leq e<p^{2 n}-p^{2 n-1}-\cdots-p-1=\rho(2 n-1)-\rho(2 n-2)-2$.
The total degree of $x$ must be one more than the total degree of $z$, hence is congruent to $(2 p-1)$ modulo $2 p^{2 n}$.

The total degree of $u_{n+1} \cdot t^{j}\left(t \mu_{2}\right)^{e}$ is $-1-2 j+\left(2 p^{2}-2\right) e \equiv-1+\left(2 p^{2}-2\right) e \bmod 2 p^{2 n}$. To have $(2 p-1) \equiv-1+\left(2 p^{2}-2\right) e \bmod 2 p^{2 n}$ we must have $e \equiv-p /\left(1-p^{2}\right) \equiv p^{2 n}-$ $p^{2 n-1}-\cdots-p \bmod p^{2 n}$, which does not happen for $e$ in the allowable range.

The total degree of $\lambda_{2} \cdot t^{j}\left(t \mu_{2}\right)^{e}$ is $\left(2 p^{2}-1\right)-2 j+\left(2 p^{2}-2\right) e \equiv\left(2 p^{2}-1\right)+\left(2 p^{2}-2\right) e$ $\bmod 2 p^{2 n}$. To have $(2 p-1) \equiv\left(2 p^{2}-1\right)+\left(2 p^{2}-2\right) e \bmod 2 p^{2 n}$ we must have $e \equiv$ $-p /(1+p) \equiv \rho(2 n-1)-1 \bmod p^{2 n}$, which does not happen.

The total degree of $u_{n+1} \bar{\epsilon}_{1} \lambda_{2} \cdot t^{j}\left(t \mu_{2}\right)^{e}$ is $-1+(2 p-1)+\left(2 p^{2}-1\right)-2 j+\left(2 p^{2}-2\right) e \equiv$ $(2 p-1)+\left(2 p^{2}-2\right)(e+1) \bmod 2 p^{2 n}$. To have $(2 p-1) \equiv(2 p-1)+\left(2 p^{2}-2\right)(e+1)$ $\bmod 2 p^{2 n}$ we must have $(e+1) \equiv 0 \bmod p^{2 n}$, so $e \equiv p^{2 n}-1 \bmod p^{2 n}$, which does not happen.

The total degree of $\bar{\epsilon}_{1} \cdot t^{j}\left(t \mu_{2}\right)^{e}$ is $(2 p-1)-2 j+\left(2 p^{2}-2\right) e \equiv(2 p-1)+\left(2 p^{2}-2\right) e$ $\bmod 2 p^{2 n}$. To have $(2 p-1) \equiv(2 p-1)+\left(2 p^{2}-2\right) e \bmod 2 p^{2 n}$, we must have $e \equiv 0$ $\bmod p^{2 n}$, so $e=0$ is the only possibility in the allowable range. In that case, a check of total degrees shows that we must have $j=p^{2 n+1}-p^{2 n+2}+i$.
Corollary 6.10. $V(1)_{*} T H H(\ell / p)^{C_{p^{n}}}$ is finite in each degree.
Proof. This is clear by inspection of the $E^{\infty}$-term in Corollary 6.2.
Lemma 6.11. The map $G_{n}$ induces an isomorphism

$$
V(1)_{*} T H H(\ell / p)^{t C_{p^{n+1}}} \xlongequal{\cong} V(1)_{*}\left(T H H(\ell / p)^{t C_{p}}\right)^{h C_{p^{n}}}
$$

in all degrees. In the limit over the Frobenius maps $F$, there is a map $G$ inducing an isomorphism

$$
V(1)_{*} T H H(\ell / p)^{t S^{1}} \cong V(1)_{*}\left(T H H(\ell / p)^{t C_{p}}\right)^{h S^{1}} .
$$

Proof. As remarked after diagram (6.3), $G_{n}$ induces an isomorphism in $V(1)$-homotopy above degree $(2 p-2)$. The permanent cycle $t^{-p^{2 n+2}}$ in $\hat{E}_{* *}^{\infty}\left(C_{p^{n+1}}, \ell\right)$ acts invertibly on $\hat{E}_{* *}^{\infty}\left(C_{p^{n+1}}, \ell / p\right)$, and its image $G_{n}\left(t^{p^{2 n+2}}\right)=\mu_{2}^{p^{2 n}}$ in $\mu_{2}^{-1} E_{* *}^{\infty}\left(C_{p^{n}}, \ell\right)$ acts invertibly on $\mu_{2}^{-1} E_{* *}^{\infty}\left(C_{p^{n}}, \ell / p\right)$. Therefore the module action derived from the $\ell$-algebra structure on $\ell / p$ ensures that $G_{n}$ induces isomorphisms in $V(1)$-homotopy in all degrees.

Theorem 6.12. (a) The associated graded of $V(1)_{*} T H H(\ell / p)^{t S^{1}}$ for the $S^{1}$-Tate spectral sequence is

$$
\begin{aligned}
\hat{E}_{* *}^{\infty}\left(S^{1}, \ell / p\right)= & E\left(\lambda_{2}\right) \otimes \mathbb{F}_{p}\left\{t^{-i} \mid 0<i<p\right\} \otimes P\left(t^{ \pm p^{2}}\right) \\
& \oplus \bigoplus_{k \geq 2} E\left(\lambda_{2}\right) \otimes \mathbb{F}_{p}\left\{t^{j} \mid v_{p}(j)=2 k-2\right\} \otimes P_{\rho(2 k-3)}\left(t \mu_{2}\right) \\
& \oplus \bigoplus_{k \geq 2} E\left(\bar{\epsilon}_{1}\right) \otimes \mathbb{F}_{p}\left\{t^{j} \lambda_{2} \mid v_{p}(j)=2 k-1\right\} \otimes P_{\rho(2 k-2)}\left(t \mu_{2}\right) \\
& \oplus E\left(\bar{\epsilon}_{1}, \lambda_{2}\right) \otimes P\left(t \mu_{2}\right)
\end{aligned}
$$

(b) The associated graded of $V(1)_{*} T H H(\ell / p)^{h S^{1}}$ for the $S^{1}$-homotopy fixed point spectral sequence maps by a (2p-2)-coconnected map to

$$
\begin{aligned}
\mu_{2}^{-1} E_{* *}^{\infty}\left(S^{1}, \ell / p\right)= & E\left(\lambda_{2}\right) \otimes \mathbb{F}_{p}\left\{\mu_{0}^{i} \mid 0<i<p\right\} \otimes P\left(\mu_{2}^{ \pm 1}\right) \\
& \oplus \bigoplus_{k \geq 1} E\left(\lambda_{2}\right) \otimes \mathbb{F}_{p}\left\{\mu_{2}^{j} \mid v_{p}(j)=2 k-2\right\} \otimes P_{\rho(2 k-1)}\left(t \mu_{2}\right) \\
\oplus & \bigoplus_{k \geq 1} E\left(\bar{\epsilon}_{1}\right) \otimes \mathbb{F}_{p}\left\{\lambda_{2} \mu_{2}^{j} \mid v_{p}(j)=2 k-1\right\} \otimes P_{\rho(2 k)}\left(t \mu_{2}\right) \\
& \oplus E\left(\bar{\epsilon}_{1}, \lambda_{2}\right) \otimes P\left(t \mu_{2}\right)
\end{aligned}
$$

(c) The isomorphism from (a) to (b) induced by $G$ takes $t^{-i}$ to $\mu_{0}^{i}$ for $0<i<p$ and $t^{i}$ to $\mu_{2}^{j}$ for $i+p^{2} j=0$. Furthermore, it takes multiples by $\bar{\epsilon}_{1}, \lambda_{2}$ or $t \mu_{2}$ in the source to the same multiples in the target.

Proof. Claims (a) and (b) follow by passage to the limit over $n$ from Corollaries 6.2 and 6.5. Claim (c) follows by passage to the same limit from the formulas for the isomorphism induced by $\hat{\Gamma}_{n+1}$, which were given below diagram (6.7).

## 7. Topological cyclic homology

By definition, there is a fiber sequence

$$
T C(B) \xrightarrow{\pi} T F(B) \xrightarrow{R-1} T F(B)
$$

inducing a long exact sequence

$$
\begin{equation*}
\ldots \xrightarrow{\partial} V(1)_{*} T C(B) \xrightarrow{\pi} V(1)_{*} T F(B) \xrightarrow{R-1} V(1)_{*} T F(B) \xrightarrow{\partial} \ldots \tag{7.1}
\end{equation*}
$$

in $V(1)$-homotopy. By Corollary 5.10, there are ( $2 p-2$ )-coconnected maps $\Gamma$ and $\hat{\Gamma}$ from $V(1)_{*} T F(\ell / p)$ to $V(1)_{*} T H H(\ell / p)^{h S^{1}}$ and $V(1)_{*} T H H(\ell / p)^{t S^{1}}$, respectively. We model $V(1)_{*} T F(\ell / p)$ in degrees $>(2 p-2)$ by the map $\hat{\Gamma}$ to the $S^{1}$-Tate construction. Then, by
diagram (6.3), $R$ is modeled in the same range of degrees by the chain of maps below.


Here $R^{h}$ induces a map of spectral sequences

$$
E^{*}\left(R^{h}\right): E^{*}\left(S^{1}, B\right) \rightarrow \hat{E}^{*}\left(S^{1}, B\right)
$$

which at the $E^{2}$-term equals the inclusion that algebraically inverts $t$. When $B=\ell / p$, the left hand map $G$ is an isomorphism by Lemma 6.11, and the middle (wrong-way) map is $(2 p-2)$-coconnected.
Proposition 7.2. In degrees $>(2 p-2)$, the homomorphism

$$
E^{\infty}\left(R^{h}\right): E^{\infty}\left(S^{1}, \ell / p\right) \rightarrow \hat{E}^{\infty}\left(S^{1}, \ell / p\right)
$$

maps
(a) $E\left(\bar{\epsilon}_{1}, \lambda_{2}\right) \otimes P\left(t \mu_{2}\right)$ identically to the same expression;
(b) $E\left(\lambda_{2}\right) \otimes \mathbb{F}_{p}\left\{\mu_{2}^{-j}\right\} \otimes P_{\rho(2 k-1)}\left(t \mu_{2}\right)$ surjectively onto

$$
E\left(\lambda_{2}\right) \otimes \mathbb{F}_{p}\left\{t^{j}\right\} \otimes P_{\rho(2 k-3)}\left(t \mu_{2}\right)
$$

for each $k \geq 2, j=d p^{2 k-2}, 0<d<p^{2}-p$ and $p \nmid d$;
(c) $E\left(\bar{\epsilon}_{1}\right) \otimes \mathbb{F}_{p}\left\{\lambda_{2} \mu_{2}^{-j}\right\} \otimes P_{\rho(2 k)}\left(t \mu_{2}\right)$ surjectively onto

$$
E\left(\bar{\epsilon}_{1}\right) \otimes \mathbb{F}_{p}\left\{t^{j} \lambda_{2}\right\} \otimes P_{\rho(2 k-2)}\left(t \mu_{2}\right)
$$

for each $k \geq 2, j=d p^{2 k-1}$ and $0<d<p$;
(d) the remaining terms to zero.

Proof. Consider the summands of $E^{\infty}\left(S^{1}, \ell / p\right)$ and $\hat{E}^{\infty}\left(S^{1}, \ell / p\right)$, as given in Theorem 6.12. Clearly, the first term $E\left(\lambda_{2}\right) \otimes \mathbb{F}_{p}\left\{\mu_{0}^{i} \mid 0<i<p\right\} \otimes P\left(\mu_{2}\right)$ goes to zero (these classes are hit by $d^{2}$-differentials), and the last term $E\left(\bar{\epsilon}_{1}, \lambda_{2}\right) \otimes P\left(t \mu_{2}\right)$ maps identically to the same term. This proves (a) and part of (d).

For each $k \geq 1$ and $j=d p^{2 k-2}$ with $p \nmid d$, the term $E\left(\lambda_{2}\right) \otimes \mathbb{F}_{p}\left\{\mu_{2}^{-j}\right\} \otimes P_{\rho(2 k-1)}\left(t \mu_{2}\right)$ maps to the term $E\left(\lambda_{2}\right) \otimes \mathbb{F}_{p}\left\{t^{j}\right\} \otimes P_{\rho(2 k-3)}\left(t \mu_{2}\right)$, except that the target is zero for $k=1$. In symbols, the element $\lambda_{2}^{\delta} \mu_{2}^{-j}\left(t \mu_{2}\right)^{i}$ maps to the element $\lambda_{2}^{\delta} t^{j}\left(t \mu_{2}\right)^{i-j}$. If $d<0$, then the $t$-exponent in the target is bounded above by $d p^{2 k-2}+\rho(2 k-3)<0$, so the target lives in the right half-plane and is essentially not hit by the source, which lives in the left half-plane. If $d>p^{2}-p$, then the total degree in the source is bounded above by $\left(2 p^{2}-1\right)-2 d p^{2 k}+\rho(2 k-1)\left(2 p^{2}-2\right)<2 p-2$, so the source lives in total degree $<(2 p-2)$ and will be disregarded. If $0<d<p^{2}-p$, then $\rho(2 k-1)-d p^{2 k-2}>\rho(2 k-3)$ and $-d p^{2 k-2}<0$, so the source surjects onto the target. This proves (b) and part of (d).
Lastly, for each $k \geq 1$ and $j=d p^{2 k-1}$ with $p \nmid d$, the term $E\left(\bar{\epsilon}_{1}\right) \otimes \mathbb{F}_{p}\left\{\lambda_{2} \mu_{2}^{-j}\right\} \otimes P_{\rho(2 k)}\left(t \mu_{2}\right)$ maps to the term $E\left(\bar{\epsilon}_{1}\right) \otimes \mathbb{F}_{p}\left\{t^{j} \lambda_{2}\right\} \otimes P_{\rho(2 k-2)}\left(t \mu_{2}\right)$. The target is zero for $k=1$. If $d<0$, then $d p^{2 k-1}+\rho(2 k-2)<0$ so the target lives in the right half-plane. If $d>p$, then $(2 p-1)+\left(2 p^{2}-1\right)-2 d p^{2 k+1}+\rho(2 k)\left(2 p^{2}-2\right)<2 p-2$, so the source lives in total degree $<(2 p-2)$. If $0<d<p$, then $\rho(2 k)-d p^{2 k-1}>\rho(2 k-2)$ and $-d p^{2 k-1}<0$, so the source surjects onto the target. This proves (c) and the remaining part of (d).

Definition 7.3. Let

$$
\begin{aligned}
A & =E\left(\bar{\epsilon}_{1}, \lambda_{2}\right) \otimes P\left(t \mu_{2}\right) \\
B_{k} & =E\left(\lambda_{2}\right) \otimes \mathbb{F}_{p}\left\{t^{d p^{2 k-2}} \mid 0<d<p^{2}-p, p \nmid d\right\} \otimes P_{\rho(2 k-3)}\left(t \mu_{2}\right) \\
C_{k} & =E\left(\bar{\epsilon}_{1}\right) \otimes \mathbb{F}_{p}\left\{t^{d p^{2 k-1}} \lambda_{2} \mid 0<d<p\right\} \otimes P_{\rho(2 k-2)}\left(t \mu_{2}\right)
\end{aligned}
$$

for $k \geq 2$ and let $D$ be the span of the remaining monomials in $\hat{E}^{\infty}\left(S^{1}, \ell / p\right)$. Let $B=\bigoplus_{k \geq 2} B_{k}$ and $C=\bigoplus_{k \geq 2} C_{k}$. Then $\hat{E}^{\infty}\left(S^{1}, \ell / p\right)=A \oplus B \oplus C \oplus D$.
Proposition 7.4. In degrees $>(2 p-2)$, there are closed subgroups $\widetilde{A}=E\left(\bar{\epsilon}_{1}, \lambda_{2}\right) \otimes$ $P\left(v_{2}\right), \widetilde{B}_{k}, \widetilde{C}_{k}$ and $\widetilde{D}$ in $V(1)_{*} T F(\ell / p)$, represented by $A, B_{k}, C_{k}$ and $D$ in $\hat{E}^{\infty}\left(S^{1}, \ell / p\right)$, respectively, such that the homomorphism induced by the restriction map $R$
(a) is the identity on $\widetilde{A}$;
(b) maps $\widetilde{B}_{k+1}$ surjectively onto $\widetilde{B}_{k}$ for all $k \geq 2$;
(c) maps $\widetilde{C}_{k+1}$ surjectively onto $\widetilde{C}_{k}$ for all $k \geq 2$;
(d) is zero on $\widetilde{B}_{2}, \widetilde{C}_{2}$ and $\widetilde{D}$.

In these degrees, $V(1)_{*} T F(\ell / p) \cong \widetilde{A} \oplus \widetilde{B} \oplus \widetilde{C} \oplus \widetilde{D}$, where $\widetilde{B}=\prod_{k \geq 2} \widetilde{B}_{k}$ and $\widetilde{C}=\prod_{k \geq 2} \widetilde{C}_{k}$.
Proof. In terms of the model $T H H(\ell / p)^{t S^{1}}$ for $T F(\ell / p)$, the restriction map $R$ is given in these degrees as the composite of the isomorphism $G$, computed in Theorem 6.12(c), and the map $\hat{E}^{\infty}\left(R^{h}\right)$, computed in Proposition 7.2. This gives the desired formulas at the level of $E^{\infty}$-terms. The rest of the argument is the same as that for Theorem 7.7 of [AR02], using Corollary 6.10 to control the topologies, and will be omitted.
Remark 7.5. Here we have followed the basic computational strategy of [BM94], [BM95] and [AR02]. It would be interesting to have a more concrete construction of the lifts $\widetilde{B}_{k}$, $\widetilde{C}_{k}$ and $\widetilde{D}$, in terms of de Rham-Witt operators $R, F, V$ and $d=\sigma$, like in the algebraic case of [HM97] and [HM03].
Proposition 7.6. In degrees $>(2 p-2)$ there are isomorphisms

$$
\begin{aligned}
\operatorname{ker}(R-1) \cong & \widetilde{A} \oplus \lim _{k} \widetilde{B}_{k} \oplus \lim _{k} \widetilde{C}_{k} \\
\cong & E\left(\bar{\epsilon}_{1}, \lambda_{2}\right) \otimes P\left(v_{2}\right) \\
& \oplus E\left(\lambda_{2}\right) \otimes \mathbb{F}_{p}\left\{t^{d} \mid 0<d<p^{2}-p, p \nmid d\right\} \otimes P\left(v_{2}\right) \\
& \oplus E\left(\bar{\epsilon}_{1}\right) \otimes \mathbb{F}_{p}\left\{t^{d p} \lambda_{2} \mid 0<d<p\right\} \otimes P\left(v_{2}\right)
\end{aligned}
$$

and $\operatorname{cok}(R-1) \cong \widetilde{A}=E\left(\bar{\epsilon}_{1}, \lambda_{2}\right) \otimes P\left(v_{2}\right)$. Hence there is an isomorphism

$$
\begin{aligned}
V(1)_{*} T C(\ell / p) \cong & E\left(\partial, \bar{\epsilon}_{1}, \lambda_{2}\right) \otimes P\left(v_{2}\right) \\
& \oplus E\left(\lambda_{2}\right) \otimes \mathbb{F}_{p}\left\{t^{d} \mid 0<d<p^{2}-p, p \nmid d\right\} \otimes P\left(v_{2}\right) \\
& \oplus E\left(\bar{\epsilon}_{1}\right) \otimes \mathbb{F}_{p}\left\{t^{d p} \lambda_{2} \mid 0<d<p\right\} \otimes P\left(v_{2}\right)
\end{aligned}
$$

in these degrees, where $\partial$ has degree -1 and represents the image of 1 under the connecting map $\partial$ in (7.1).
Proof. By Proposition 7.4, the homomorphism $R-1$ is zero on $\widetilde{A}$ and an isomorphism on $\widetilde{D}$. Furthermore, there is an exact sequence

$$
0 \rightarrow \lim _{k} \widetilde{B}_{k} \rightarrow \prod_{k \geq 2} \widetilde{B}_{k} \xrightarrow{R-1} \prod_{k \geq 2} \widetilde{B}_{k} \rightarrow \lim _{k}^{1} \widetilde{B}_{k} \rightarrow 0
$$

and similarly for the $C$ 's. The derived limit on the right vanishes since each $\widetilde{B}_{k+1}$ surjects onto $\widetilde{B}_{k}$.

Multiplication by $t \mu_{2}$ in each $B_{k}$ is realized by multiplication by $v_{2}$ in $\widetilde{B}_{k}$. Each $\widetilde{B}_{k}$ is a sum of $2(p-1)^{2}$ cyclic $P\left(v_{2}\right)$-modules, and since $\rho(2 k-3)$ grows to infinity with $k$ their limit is a free $P\left(v_{2}\right)$-module of the same rank, with the indicated generators $t^{d}$ and $t^{d} \lambda_{2}$ for $0<d<p^{2}-p, p \nmid d$. The argument for the $C$ 's is practically the same.

The long exact sequence (7.1) yields the short exact sequence

$$
0 \rightarrow \Sigma^{-1} \operatorname{cok}(R-1) \xrightarrow{\partial} V(1)_{*} T C(\ell / p) \xrightarrow{\pi} \operatorname{ker}(R-1) \rightarrow 0,
$$

from which the formula for the middle term follows.
Remark 7.7. A more obvious set of $E\left(\lambda_{2}\right) \otimes P\left(v_{2}\right)$-module generators for $\lim _{k} \widetilde{B}_{k}$ would be the classes $t^{d p^{2}}$ in $B_{2} \cong \widetilde{B}_{2}$, for $0<d<p^{2}-p, p \nmid d$. Under the canonical map $T F(\ell / p) \rightarrow$ $T H H(\ell / p)^{C_{p}}$, modeled here by THH $(\ell / p)^{t S^{1}} \rightarrow\left(T H H(\ell / p)^{t C_{p}}\right)^{h C_{p}}$, these map to the classes $\mu_{2}^{-d}$. Since we are only concerned with degrees $>(2 p-2)$ we may equally well use their $v_{2}$-power multiplies $\left(t \mu_{2}\right)^{d} \cdot \mu_{2}^{-d}=t^{d}$ as generators, with the advantage that these are in the image of the localization map $T H H(\ell / p)^{h C_{p}} \rightarrow\left(T H H(\ell / p)^{t C_{p}}\right)^{h C_{p}}$. Hence the class denoted $t^{d}$ in $\lim _{k} \widetilde{B}_{k}$ is chosen so as to map under $T F(\ell / p) \rightarrow T H H(\ell / p)^{h C_{p}}$ to $t^{d}$ in $E_{* *}^{\infty}\left(C_{p} ; \ell / p\right)$. Similarly, the class denoted $t^{d p} \lambda_{2}$ in $\lim _{k} \widetilde{C}_{k}$ is chosen so as to map to $t^{d p} \lambda_{2}$ in $E_{* *}^{\infty}\left(C_{p} ; \ell / p\right)$.

The map $\pi: \ell / p \rightarrow \mathbb{Z} / p$ is ( $2 p-2$ )-connected, hence induces $(2 p-1)$-connected maps $\pi_{*}: K(\ell / p) \rightarrow K(\mathbb{Z} / p)$ and $\pi_{*}: V(1)_{*} T C(\ell / p) \rightarrow V(1)_{*} T C(\mathbb{Z} / p)$, by [BM94, 10.9] and [Dun97]. Here $T C(\mathbb{Z} / p) \simeq H \mathbb{Z}_{p} \vee \Sigma^{-1} H \mathbb{Z}_{p}$ and $V(1)_{*} T C(\mathbb{Z} / p) \cong E\left(\partial, \bar{\epsilon}_{1}\right)$, so we can recover $V(1)_{*} T C(\ell / p)$ in degrees $\leq(2 p-2)$ from this map.
Theorem 7.8. There is an isomorphism of $E\left(\lambda_{1}, \lambda_{2}\right) \otimes P\left(v_{2}\right)$-modules

$$
\begin{aligned}
V(1)_{*} T C(\ell / p) \cong & P\left(v_{2}\right) \otimes E\left(\partial, \bar{\epsilon}_{1}, \lambda_{2}\right) \\
& \oplus P\left(v_{2}\right) \otimes E\left(\operatorname{dlog} v_{1}\right) \otimes \mathbb{F}_{p}\left\{t^{d} v_{2} \mid 0<d<p^{2}-p, p \nmid d\right\} \\
& \oplus P\left(v_{2}\right) \otimes E\left(\bar{\epsilon}_{1}\right) \otimes \mathbb{F}_{p}\left\{t^{d p} \lambda_{2} \mid 0<d<p\right\}
\end{aligned}
$$

where $v_{2} \cdot \operatorname{dlog} v_{1}=\lambda_{2}$. The degrees are $|\partial|=-1,\left|\bar{\epsilon}_{1}\right|=\left|\lambda_{1}\right|=2 p-1,\left|\lambda_{2}\right|=2 p^{2}-1$ and $\left|v_{2}\right|=2 p^{2}-2$. The formal multipliers have degrees $|t|=-2$ and $\left|\operatorname{dlog} v_{1}\right|=1$.

The notation $\operatorname{dlog} v_{1}$ for the multiplier $v_{2}^{-1} \lambda_{2}$ is suggested by the relation $v_{1} \cdot \operatorname{dlog} p=\lambda_{1}$ in $V(0)_{*} T C\left(\mathbb{Z}_{(p)} \mid \mathbb{Q}\right)$.
Proof. Only the additive generators $t^{d}$ for $0<d<p^{2}-p, p \nmid d$ from Proposition 7.6 do not appear in $V(1)_{*} T C(\ell / p)$, but their multiples by $\lambda_{2}$ and positive powers of $v_{2}$ do. This leads to the given formula, where $\operatorname{dlog} v_{1} \cdot t^{d} v_{2}$ must be read as $t^{d} \lambda_{2}$.

By [HM97] the cyclotomic trace map of [BHM93] induces cofiber sequences

$$
\begin{equation*}
K\left(B_{p}\right)_{p} \xrightarrow{\text { trc }} T C(B)_{p} \xrightarrow{g} \Sigma^{-1} H \mathbb{Z}_{p} \tag{7.9}
\end{equation*}
$$

for each connective $S$-algebra $B$ with $\pi_{0}\left(B_{p}\right)=\mathbb{Z}_{p}$ or $\mathbb{Z} / p$, and thus long exact sequences

$$
\cdots \rightarrow V(1)_{*} K\left(B_{p}\right) \xrightarrow{t r c} V(1)_{*} T C(B) \xrightarrow{g} \Sigma^{-1} E\left(\bar{\epsilon}_{1}\right) \rightarrow \ldots
$$

This uses the identifications $W\left(\mathbb{Z}_{p}\right)_{F} \cong W(\mathbb{Z} / p)_{F} \cong \mathbb{Z}_{p}$ of Frobenius coinvariants of Witt rings, and applies in particular for $B=H \mathbb{Z}_{(p)}, H \mathbb{Z} / p, \ell$ and $\ell / p$.

Theorem 7.10. There is an isomorphism of $E\left(\lambda_{1}, \lambda_{2}\right) \otimes P\left(v_{2}\right)$-modules

$$
\begin{aligned}
V(1)_{*} K(\ell / p) \cong & P\left(v_{2}\right) \otimes E\left(\bar{\epsilon}_{1}\right) \otimes \mathbb{F}_{p}\left\{1, \partial \lambda_{2}, \lambda_{2}, \partial v_{2}\right\} \\
& \oplus P\left(v_{2}\right) \otimes E\left(\operatorname{d} \log v_{1}\right) \otimes \mathbb{F}_{p}\left\{t^{d} v_{2} \mid 0<d<p^{2}-p, p \nmid d\right\} \\
& \oplus P\left(v_{2}\right) \otimes E\left(\bar{\epsilon}_{1}\right) \otimes \mathbb{F}_{p}\left\{t^{d p} \lambda_{2} \mid 0<d<p\right\} .
\end{aligned}
$$

This is a free $P\left(v_{2}\right)$-module of rank $\left(2 p^{2}-2 p+8\right)$ and of zero Euler characteristic.
Proof. In the case $B=\mathbb{Z} / p, K(\mathbb{Z} / p)_{p} \simeq H \mathbb{Z}_{p}$ and the map $g$ is split surjective up to homotopy. So the induced homomorphism to $V(1)_{*} \Sigma^{-1} H \mathbb{Z}_{p}=\Sigma^{-1} E\left(\bar{\epsilon}_{1}\right)$ is surjective. Since $\pi: \ell / p \rightarrow \mathbb{Z} / p$ induces a ( $2 p-1$ )-connected map in topological cyclic homology, and $\Sigma^{-1} E\left(\bar{\epsilon}_{1}\right)$ is concentrated in degrees $\leq(2 p-2)$, it follows by naturality that also in the case $B=\ell / p$ the map $g$ induces a surjection in $V(1)$-homotopy. The kernel of the surjection $P\left(v_{2}\right) \otimes E\left(\partial, \bar{\epsilon}_{1}, \lambda_{2}\right) \rightarrow \Sigma^{-1} E\left(\bar{\epsilon}_{1}\right)$ gives the first row in the asserted formula.

## References

[Ang08] V. Angeltveit, Topological Hochschild homology and cohomology of $A_{\infty}$ ring spectra, Geom. Topol. 12 (2008), no. 2, 987-1032.
[Ang] V. Angeltveit, Uniqueness of Morava K-theory, available at arXiv:math.AT/0810.5032. Preprint.
[AR05] V. Angeltveit and J. Rognes, Hopf algebra structure on topological Hochschild homology, Algebr. Geom. Topol. 5 (2005), 1223-1290.
[Aus05] Ch. Ausoni, Topological Hochschild homology of connective complex K-theory, Amer. J. Math. 127 (2005), no. 6, 1261-1313.
[Aus10] Ch. Ausoni, On the algebraic $K$-theory of the connective complex $K$-theory spectrum, Invent. Math. 180 (2010), no. 3, 611-668.
[AR02] Ch. Ausoni and J. Rognes, Algebraic K-theory of topological K-theory, Acta Math. 188 (2002), no. 1, 1-39.
[AR] Ch. Ausoni and J. Rognes, Algebraic K-theory of the fraction field of topological K-theory, available at arXiv:math.KT/0911.4781. Preprint.
[BJ02] A. Baker and A. Jeanneret, Brave new Hopf algebroids and extensions of MU-algebras, Homology Homotopy Appl. 4 (2002), no. 1.
[BR05] A. Baker and B. Richter, On the $\Gamma$-cohomology of rings of numerical polynomials and $E_{\infty}$ structures on K-theory, Comment. Math. Helv. 80 (2005), no. 4, 691-723.
[BM08] A. J. Blumberg and M. A. Mandell, The localization sequence for the algebraic K-theory of topological K-theory, Acta Math. 200 (2008), no. 2, 155-179.
[Bök] M. Bökstedt, Topological Hochschild homology of $\mathbb{Z}$ and $\mathbb{Z} / p$. Unpublished preprint.
[BBLNR] M. Bökstedt, B. Bruner, S. Lunøe-Nielsen, and J. Rognes, On cyclic fixed points of spectra, available at arXiv:math.AT/0712.3476. Preprint.
[BHM93] M. Bökstedt, W. C. Hsiang, and I. Madsen, The cyclotomic trace and algebraic K-theory of spaces, Invent. Math. 111 (1993), no. 3, 465-539.
[BM94] M. Bökstedt and I. Madsen, Topological cyclic homology of the integers, Astérisque (1994), no. 226, 7-8, 57-143. $K$-theory (Strasbourg, 1992).
[BM95] M. Bökstedt and I. Madsen, Algebraic K-theory of local number fields: the unramified case, Prospects in topology (Princeton, NJ, 1994), 1995, pp. 28-57.
[BMMS86] R. R. Bruner, J. P. May, J. E. McClure, and M. Steinberger, $H_{\infty}$ ring spectra and their applications, Lecture Notes in Mathematics, vol. 1176, Springer-Verlag, Berlin, 1986.
[Dun97] B. I. Dundas, Relative K-theory and topological cyclic homology, Acta Math. 179 (1997), no. 2, 223-242.
[EKMM97] A. D. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May, Rings, modules, and algebras in stable homotopy theory, Mathematical Surveys and Monographs, vol. 47, American Mathematical Society, Providence, RI, 1997. With an appendix by M. Cole.
[GH04] P. G. Goerss and M. J. Hopkins, Moduli spaces of commutative ring spectra, Structured ring spectra, London Math. Soc. Lecture Note Ser., vol. 315, Cambridge Univ. Press, Cambridge, 2004, pp. 151-200.
[GM95] J. P. C. Greenlees and J. P. May, Generalized Tate cohomology, Mem. Amer. Math. Soc. 113 (1995), no. 543, viii +178.
[HM97] L. Hesselholt and I. Madsen, On the K-theory of finite algebras over Witt vectors of perfect fields, Topology 36 (1997), no. 1, 29-101.
[HM03] L. Hesselholt and I. Madsen, On the K-theory of local fields, Ann. of Math. (2) 158 (2003), no. 1, 1-113.
[Hun96] T. J. Hunter, On the homology spectral sequence for topological Hochschild homology, Trans. Amer. Math. Soc. 348 (1996), no. 10, 3941-3953.
[Laz01] A. Lazarev, Homotopy theory of $A_{\infty}$ ring spectra and applications to MU-modules, K-Theory 24 (2001), no. 3, 243-281.
[MS93] J. E. McClure and R. E. Staffeldt, On the topological Hochschild homology of bu, I, Amer. J. Math. 115 (1993), no. 1, 1-45.
[Mil58] J. Milnor, The Steenrod algebra and its dual, Ann. of Math. (2) 67 (1958), 150-171.
[MM65] J. W. Milnor and J. C. Moore, On the structure of Hopf algebras, Ann. of Math. (2) 81 (1965), 211-264.
[Oka84] S. Oka, Multiplicative structure of finite ring spectra and stable homotopy of spheres, Algebraic topology, Aarhus 1982 (Aarhus, 1982), Lecture Notes in Math., vol. 1051, Springer, Berlin, 1984, pp. 418-441.
[Qui72] D. Quillen, On the cohomology and K-theory of the general linear groups over a finite field, Ann. of Math. (2) 96 (1972), 552-586.
[Rog98] J. Rognes, Trace maps from the algebraic K-theory of the integers (after Marcel Bökstedt), J. Pure Appl. Algebra 125 (1998), no. 1-3, 277-286.
[Rog08] J. Rognes, Galois extensions of structured ring spectra, Mem. Amer. Math. Soc. 192 (2008), no. 898, 1-97.
[Smi70] L. Smith, On realizing complex bordism modules. Applications to the stable homotopy of spheres, Amer. J. Math. 92 (1970), 793-856.
[Tat63] J. Tate, Duality theorems in Galois cohomology over number fields, Proc. Internat. Congr. Mathematicians (Stockholm, 1962), Inst. Mittag-Leffler, Djursholm, 1963, pp. 288-295.
[Tsa98] S. Tsalidis, Topological Hochschild homology and the homotopy descent problem, Topology 37 (1998), no. 4, 913-934.
[Wür91] U. Würgler, Morava K-theories: a survey, Algebraic topology Poznań 1989, Lecture Notes in Math., vol. 1474, Springer, Berlin, 1991, pp. 111-138.

Mathematical Institute, University of Münster, DE-48149 Münster, Germany
E-mail address: ausoni@uni-muenster.de
Department of Mathematics, University of Oslo, NO-0316 Oslo, Norway
E-mail address: rognes@math.uio.no


[^0]:    2000 Mathematics Subject Classification. 19D55, 55N15.

