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Abstract

Given a compact Lie group G and a commutative orthogonal ring spectrum R
such that R[G]∗ = π∗(R ∧G+) is finitely generated and projective over π∗(R), we
construct a multiplicative G-Tate spectral sequence for each R-module X in orthog-
onal G-spectra, with E2-page given by the Hopf algebra Tate cohomology of R[G]∗
with coefficients in π∗(X). Under mild hypotheses, such as X being bounded below
and the derived page RE∞ vanishing, this spectral sequence converges strongly to

the homotopy π∗(X
tG) of the G-Tate construction XtG = [ẼG ∧ F (EG+, X)]G.
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CHAPTER 1

Introduction

This memoir grew out of an attempt to spell out the details for the Tate spec-
tral sequence for the circle group T. The construction of a multiplicative Tate
spectral sequence for finite groups has been around for a while now: the first con-
struction, due to Greenlees–May, can be found in [GM95], and another one, due
to Hesselholt–Madsen, which makes the multiplicative properties of the spectral
sequence more transparent, can be found in [HM03]. However, while multiplica-
tivity of the T-Tate spectral sequences has been used in computations, the authors
of this memoir have found references discussing the details for how such a spectral
sequence is constructed surprisingly lacking. We hope that this memoir will fill that
gap in the literature.

The authors’ motivation for considering the T-Tate spectral sequence comes
from the study of topological Hochschild homology and its refinements, such as
topological cyclic homology. Given an E1-ring spectrum B, the topological Hoch-
schild homology THH(B), first defined in the unpublished manuscript [Bök85],
is a genuine T-equivariant spectrum. The study of the Tate construction on this
spectrum using the entire circle action goes back to [BM94] and [AR02], and was
put in the spotlight by Hesselholt in [Hes18] under the name of periodic topological
cyclic homology:

TP(B) = THH(B)tT.

Recently, Bhatt–Morrow–Scholze showed that there is a tight connection between
periodic topological cyclic homology and crystalline cohomology [BMS19].

Background and aim

Classically, Tate cohomology is a way to combine group homology and group
cohomology into a single multiplicative cohomology theory, and was first introduced
by Tate in his study of class field theory [Tat52]. We sketch the main ideas in-
volved following [CE56, Section XII.3] and [Bro82]. Given a finite group G, the
main observation of Tate cohomology is this: if we dualise a projective resolution
of Z as a trivial module over Z[G], we end up with a ‘coresolution’ of Z by projec-
tive Z[G]-modules. This ‘coresolution’ HomZ(P∗,Z) can be spliced with the original

projective resolution P∗, and we so obtain a bi-infinite resolution P̂∗ of Z called a
complete resolution. Tate cohomology of G with coefficients in a G-module M is
defined as

Ĥn(G,M) = Hn(HomG(P̂∗,M)).

The Tate construction in the category of G-spectra can be seen as a generalisation
of Tate cohomology in the context of higher algebra. Given a compact Lie group G

1
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and orthogonal G-spectrum X, we define the G-homotopy orbits and G-homotopy
fixed points of X as

XhG = EG+ ∧G X and XhG = F (EG+, X)G,

respectively. Here EG denotes a free contractible G-space. These can be regarded
as generalisations of group homology and group cohomology. Indeed, if G is a finite
group and X = HM is the Eilenberg–Mac Lane spectrum on the G-module M ,
then the homotopy groups of the G-homotopy orbits and G-homotopy fixed points
of HM recover group homology and group cohomology of G with coefficients in M ,
respectively. Following Greenlees [Gre87,GM95], we define the G-Tate construc-
tion on X as the G-fixed point spectrum

XtG =
(
ẼG ∧ F (EG+, X)

)G
with respect to the diagonal G-action. Here, ẼG denotes the mapping cone of the
collapse map c : EG+ → S0. This is a generalisation of Tate cohomology in the
sense that the homotopy groups of the Tate construction on HM for a G-module M
recover the Tate cohomology groups of the finite group G with coefficients in M .

One important property of the Tate construction is that it is multiplicative
in the sense that any pairing X ∧ Y → Z of orthogonal G-spectra gives rise to a
pairing XtG∧Y tG −→ ZtG of their Tate constructions. This relies on the existence

of G-maps EG+ → EG+ ∧ EG+ and ẼG ∧ ẼG → ẼG. It is well-known that the
diagonal map EG+ → EG+ ∧EG+ induces a pairing

XhG ∧ Y hG −→ ZhG,

making the G-homotopy fixed points construction a lax symmetric monoidal func-

tor. The inclusion S0 → ẼG and the canonical identifications S0 ∧ ẼG ∼= ẼG ∼=
ẼG ∧ S0 induce a natural map

XhG −→ XtG

and pairings XhG ∧ Y tG → ZtG and XtG ∧ Y hG → ZtG. There is a G-map

N : ẼG ∧ ẼG → ẼG extending the canonical identifications, and any two such
extensions are homotopic. Any choice of extension then induces a pairing

XtG ∧ Y tG −→ ZtG

compatible with the above-mentioned map and pairings.1 In general, the ex-
tension N will only be commutative and associative up to (coherent) homotopy,
so X �→ XtG is not a lax symmetric monoidal functor to the category of orthogo-
nal spectra, but only satisfies a homotopy coherent version of this property, which
could be made precise using operad actions. For our purposes it suffices to note
that it is lax symmetric monoidal as a functor to the stable homotopy category.

Given an orthogonal G-spectrum X, the aim of the present memoir is to con-
struct a G-Tate spectral sequence

Êr
s,t(X) =⇒ πs+t(X

tG),

with an algebraically specified E2-page, converging, in some suitable sense, to the
homotopy groups of the G-Tate construction on X. Moreover, we would like this

1Work by Nikolaus–Scholze shows that this multiplicative structure is actually unique, in a
homotopy theoretical sense; see [NS18, Theorem I.3.1]. This will not be important for our work,
though.
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spectral sequence to be multiplicative, in the sense that a pairing X ∧ Y → Z of
orthogonal G-spectra should induce a pairing

(Êr(X), Êr(Y )) −→ Êr(Z)

of G-Tate spectral sequences. Finally, we want the pairing of E∞-pages to be
compatible with the pairing

π∗(X
tG)⊗ π∗(Y

tG) −→ π∗(Z
tG)

of abutments. In particular, if X is an orthogonal G-ring spectrum, then the G-
Tate spectral sequence of X should be an algebra spectral sequence converging
multiplicatively to π∗(X

tG). As already mentioned, how to construct such spectral
sequences is well-known in the situation of G being a finite group. Our goal is to
generalise this to higher dimensional compact Lie groups.

Main results

Let us start by describing roughly, without going into too much detail, what
we will do in this memoir. We will carry out the construction of multiplicative and
conditionally convergent Tate spectral sequences for compact Lie groups G such
that S[G]∗ = π∗(S[G]) is finitely generated projective as a module over S∗ = π∗(S).
Here S denotes the sphere spectrum and

S[G] = S ∧G+

is the unreduced suspension spectrum of G. Under these assumptions, S[G]∗ is a
finitely generated projective and cocommutative Hopf algebra over S∗, and we will
show that we have access to a multiplicative G-Tate spectral sequence with E2-page
given by the complete Ext-groups

Ê2
s,∗(X) = Êxt

−s

S[G]∗(S∗, π∗(X))

of S∗ over S[G]∗ with coefficients in the S[G]∗-module π∗(X). The multiplicative
structure in complete Ext is given by a graded commutative and associative cup
product, and this will serve as a substitute for the failure of X �→ XtG to be
lax symmetric monoidal. This spectral sequence will be strongly convergent under
mild hypotheses, such as for instance in the case when the derived E∞-page RE∞

vanishes and the spectrum X is bounded below.
We note that this generality includes the case where G = T is the circle group,

our main interest, but does not cover cases such as G = SO(3). We therefore
broaden our scope by considering a commutative2 ‘ground’ orthogonal ring spec-
trum R and a compact Lie group G such that R[G]∗ = π∗(R[G]) is finitely generated
and projective over R∗ = π∗(R), where

R[G] = R ∧G+.

2For somewhat technical reasons, it is not sufficient for us to assume that R is homotopy
commutative. We analyse the product in the filtered R-module G-spectrum

˜EG ∧ F (EG+, R ∧X) ∼= L ∧R M,

with L = R ∧ ˜EG and M = F (EG+, R ∧X), as a composition

L ∧R M ∧R L ∧R M
(23)−→ L ∧R L ∧R M ∧R M

φ∧ψ−→ L ∧R M

for filtered products φ : L ∧R L → L and ψ : M ∧R M → M . Homotopy commutativity is not
sufficient to ensure that the twist map τ : M ∧R L → L ∧R M implicit in the definition of (23) is
an R-R-bimodule map.
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This then includes cases such as R = S[1/2] and R = HF2, with G = SO(3). (We
have not classified the pairs (R,G) for which this condition holds, but it is easy
to see that if H∗(G;Z) is finitely generated and free over a PID Z with a ring
homomorphism to π0(R), and the Atiyah–Hirzebruch spectral sequence E2

∗,∗ =

H∗(G;R∗) =⇒ R[G]∗ collapses at E2, then R[G]∗ is finitely generated and free
over R∗. This includes all cases where G is topologically a product of spheres.)
Given an R-module X in orthogonal G-spectra we shall construct a multiplicative
G-Tate spectral sequence

Ê2
s,∗(X) = Êxt

−s

R[G]∗(R∗, π∗(X)) =⇒ πs+∗(X
tG)

where the E2-page is now given as complete Ext of R∗ over R[G]∗ with coefficients
in π∗(X). This will be strongly convergent under the same conditions as before.

Tate cohomology of Hopf algebras. In Chapter 2 we develop a theory
of Tate cohomology of a finitely generated and projective Hopf algebra Γ over a
(possibly graded) commutative ring k, with the aim being to algebraically describe
the E2-page of a suitable Tate spectral sequence. Our approach will be different
from the complete resolution approach, and we instead rely on the so-called Tate
complex. Given a projective Γ-resolution P∗ of k, we will denote the mapping cone

of the augmentation map ε : P∗ → k as P̃∗. The Tate complex of a Γ-module M ,
first defined in [Gre95], is the Γ-chain complex

hm∗(M) = P̃∗ ⊗k Homk(P∗,M)

where Γ acts diagonally on the tensor product and by conjugation on Hom(P∗,M).
In the aforementioned paper, the author shows that in the classical case, meaning
k = Z and Γ = Z[G] for a finite group G, there is a zigzag of maps

P̃∗ ⊗k Homk(P∗,M) �� P̃∗ ⊗k Homk(P̂∗,M) Homk(P̂∗,M)��

which become quasi-isomorphisms after taking G-invariants. The conclusion is
that Tate cohomology can also be computed as the (co)homology groups of the G-

invariants of the Tate complex. Recall that P̂∗ denoted a complete resolution. We
show that a similar result holds true in our setting: under the assumption that Γ
is a finitely generated and projective Hopf algebra over k, the homology of the Γ-
invariants of hm∗(M), which we can reasonably refer to as the Tate cohomology
of Γ with coefficients in M , is isomorphic to the complete Ext of k over Γ with
coefficients in M .

Theorem 1.1. If Γ is a finitely generated projective and cocommutative Hopf
algebra over k, then

Êxt
n

Γ(k,M) ∼= H−n(HomΓ(k, hm∗(M))).

The above result, which in the text corresponds to Theorem 2.28 and Re-
mark 2.29, relies crucially on a result by Pareigis which exhibits the k-dual of a
Hopf algebra Γ as an induced Γ-module.

Theorem 1.2 (Pareigis). Let Γ be a finitely generated projective Hopf algebra
over k. Then there is an isomorphism

Homk(Γ, k) ∼= IndΓkP (Homk(Γ, k))
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of right Γ-modules, where P (Homk(Γ, k)) is a finitely generated projective k-module
of constant rank 1, given as the primitives for the right Γ-coaction on Homk(Γ, k).

Our main reason for working primarily with Tate complexes, as opposed to
complete resolutions, has to do with multiplicative structures. Recall that the cup
product

� : Ext∗Γ(k,M)⊗k Ext∗Γ(k,N) −→ Ext∗Γ(k,M ⊗k N)

relies on the existence of a Γ-linear chain map Ψ: P∗ → P∗ ⊗k P∗ covering the
identity map id : k → k ⊗k k. Such a chain map exists and is unique up to chain
homotopy, by elementary homological algebra. One can extend this cup product
to a product on Hopf algebra Tate cohomology by the existence of a Γ-linear chain

map Φ: P̃∗ ⊗k P̃∗ → P̃∗ extending the fold map P̃∗ ⊕k P̃∗ → P̃∗. For Γ-modules M
and N the composite pairing

P̃∗ ⊗k Homk(P∗,M)⊗k P̃∗⊗k Homk(P∗, N)

1⊗τ⊗1−→ P̃∗ ⊗k P̃∗ ⊗k Homk(P∗,M)⊗Homk(P∗, N)

1⊗1⊗α−→ P̃∗ ⊗k P̃∗ ⊗k Homk(P∗ ⊗k P∗,M ⊗k N)

Φ⊗Ψ∗
−→ P̃∗ ⊗k Homk(P∗,M ⊗k N)

is Γ-linear, and it induces an associative, unital, and graded commutative pairing

� : Êxt
∗
Γ(k,M)⊗k Êxt

∗
Γ(k,N) −→ Êxt

∗
Γ(k,M ⊗k N)

after passing to homology, which we refer to as the cup product on Tate coho-
mology. This extends the cup product on ordinary Ext, in a suitable sense. See
Proposition 2.34.

Finally, in Section 2.6, we do a full computation of the Tate cohomology, to-
gether with the cup product, of the Hopf algebra

Γ = k[s]/(s2 = ηs), |s| = 1,

where s is a primitive element and k is a graded commutative ring with an element η
in internal degree 1 satisfying 2η = 0. This has relevance in the situation G = T,
which is our main case of interest. Indeed, we have

π∗(S[T]) ∼= π∗(S)[s]/(s
2 = ηs)

where η is the image of the complex Hopf map in π1(S) ∼= Z/2. See Proposition 3.3.
The conclusion of the computation is the following theorem, which in the text is
Theorem 2.54 and Remark 2.56.

Theorem 1.3. Tate cohomology of Γ = k[s]/(s2 = ηs) with coefficients in
the Γ-module M is isomorphic to the homology of the differential graded Γ-module

M [t, t−1]

with differential

d(m) = tms and d(t) = t2η,

where m is an element of M and t has homological degree −1, internal degree |t| =
−1 and total degree ‖t‖ = −2. If μ : M ⊗ N → L is a pairing of Γ-modules, then
the cup product

� : Êxt
c1

Γ (k,M)⊗ Êxt
c2

Γ (k,N) −→ Êxt
c1+c2

Γ (k,M ⊗N) −→ Êxt
c1+c2

Γ (k, L)
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is precisely the one induced by the obvious pairing

M [t, t−1]⊗N [t, t−1] −→ L[t, t−1]

on homology.

Sequences of spectra and spectral sequences. The main difficulty of the
memoir lies in verifying that there is a construction of the Tate spectral sequence
that is multiplicative. To deal with multiplicative structures on spectral sequences
we have decided to employ Cartan–Eilenberg systems. These are mathematical
gadgets, first introduced in [CE56], which determine a spectral sequence. For
us, the advantage is that there is a useful notion of pairings of Cartan–Eilenberg
systems, and that one can prove that a pairing of Cartan–Eilenberg systems gives
rise to a pairing of the associated spectral sequences. Our contribution is a detailed
and explicit proof that a pairing of sequences of orthogonal G-spectra gives rise to
a pairing of Cartan–Eilenberg systems. Here, sequence simply means a sequential
diagram

· · · −→ Xi−1 −→ Xi −→ Xi+1 −→ · · ·
of maps of orthogonal G-spectra, and pairing φ : (X�, Y�) → Z� refers to a collection
of G-maps

φi,j : Xi ∧ Yj −→ Zi+j

for all integers i and j, making the squares

Xi−1 ∧ Yj Zi+j−1 Xi ∧ Yj−1

Xi ∧ Yj Zi+j Xi ∧ Yj

φi−1,j φi,j−1

φi,j φi,j

commute strictly. It is well-known that a sequence of orthogonal G-spectra gives
rise to an unrolled exact couple on equivariant homotopy groups, which in turn
gives rise to a spectral sequence. That a pairing of sequences gives rise of a pairing
of the corresponding spectral sequences can also reasonably be regarded as folklore,
but as the authors feel that an explicit reference for this is not available at the time
of writing, we have decided to give a complete proof of this fact.

For homotopical control in the proofs, some sort of ‘cofibrant replacement’ of
the sequence X� is needed. In this memoir we have chosen to use the classical
telescope construction to deal with these sorts of issues. See Section 4.3. Our main
reason for this is that these ‘cofibrant replacements’ behave well with respect to
monoidal properties. This allows us to always approximate a sequence X� with an
equivalent sequence T�(X) in a way that will make our analysis of multiplicative
structures more manageable.

The main result of Chapter 4 of the memoir is the following, which in the text
corresponds to Theorem 4.27.

Theorem 1.4. A pairing φ : (X�, Y�) → Z� of sequences of orthogonal G-
spectra gives rise to a pairing φ : (E∗(X�), E

∗(Y�)) → E∗(Z�). Explicitly, we have
access to a collection of homomorphisms

φr : Er(X�)⊗ Er(Y�) −→ Er(Z�)

for all r ≥ 1, such that:
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(1) The Leibniz rule

drφr = φr(dr ⊗ 1) + φr(1⊗ dr)

holds as an equality of homomorphisms Er
i (X�)⊗Er

j (Y�) −→ Er
i+j−r(Z�)

for all i, j ∈ Z and r ≥ 1.
(2) The diagram

Er+1(X�)⊗ Er+1(Y�) Er+1(Z�)

H(Er(X�)⊗ Er(Y�)) H(Er(Z�))

φr+1

∼=
H(φr)

commutes for all r ≥ 1.

Moreover, the induced pairing φ∗ on filtered abutments is compatible with the
pairing φ∞ of E∞-pages in the sense of Proposition 4.12. Explicitly, the diagram

FiA∞(X�)

Fi−1A∞(X�)
⊗ FjA∞(Y�)

Fj−1A∞(Y�)

φ̄∗ ��

β⊗β

��

Fi+jA∞(Z�)

Fi+j−1A∞(Z�)
��

β

��

E∞
i (X�)⊗ E∞

j (Y�)
φ∞

�� E∞
i+j(Z�)

commutes, for all i, j ∈ Z. Here the abutments are given as

A∞(X�) ∼= πG
∗ Tel(X�)

A∞(Y�) ∼= πG
∗ Tel(Y�)

A∞(Z�) ∼= πG
∗ Tel(Z�)

with filtrations by the images

FiA∞(X�) = im(πG
∗ (Xi) −→ A∞(X�))

FjA∞(Y�) = im(πG
∗ (Yj) −→ A∞(Y�))

FkA∞(Z�) = im(πG
∗ (Zk) −→ A∞(Z�)),

respectively.

The G-Tate spectral sequence. Given an R-module X in orthogonal G-
spectra, there are a number of ways of constructing Tate spectral sequences ad-
ditively; as mentioned, the difficulty lies in establishing multiplicative properties
of the constructions. The standard way of constructing a Tate spectral sequence
seems to be by filtering the Tate construction

XtG =
(
ẼG ∧ F (EG+, X)

)G


(
(R ∧ ẼG) ∧R FR(R ∧ EG+, X)

)G
by filtering ẼG, in some suitable sense, dualising this filtration, and splicing, in
analogy with the construction of complete resolutions by dualising and splicing
projective resolutions. This is far from ideal if one aims to prove any multiplicative
properties of the Tate spectral sequence. We will instead prove multiplicativity of
the Tate spectral sequence using a construction along the lines of [HM03]. In this

construction, we filter F (EG+, X) and ẼG separately, and totalise to get a filtration
on the Tate construction. In the key case R = S and G = T, essentially the same
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construction was considered by Blumberg and Mandell in their preprint [BM17,
Section 3]. See Remark 6.48.

In more detail, we proceed as follows in Chapter 6. We start by giving the
free G-space EG the simplicial skeletal filtration F�EG coming from the construc-
tion of EG using the simplicial bar construction. This induces a filtration

E� = R ∧ F�EG+

on R ∧ EG+, which in turn induces a filtration

M�(X) = FR(E/E−�−1, X)

on FR(R ∧EG+, X), and a filtration

Ẽ� = cone(E�−1 −→ R)

on R ∧ ẼG. The convolution filtration

HM�(X) = (Ẽ ∧R T (M(X)))� = colim
i+j≤�

Ẽi ∧R T (M(X))j

is referred to as the Hesselholt–Madsen filtration. For homotopical control we
have ‘cofibrantly replaced’ the filtration M�(X) with its telescopic approxima-
tion T�(M(X)). Under our projectivity assumptions, we show that the E1-page
of the spectral sequence arising from the Hesselholt–Madsen filtration is given by

Ê1
c,∗

∼= HomR[G]∗(R∗, hmc(π∗(X))),

so that the E2-page is given as the Hopf algebra Tate cohomology groups

Ê2
c,∗

∼= Êxt
−c

R[G]∗(R∗, π∗(X)),

as defined in Chapter 2. See Proposition 6.16 and Theorem 6.17. We note that the
Hesselholt–Madsen G-Tate spectral sequence is not obviously conditionally con-
vergent, so for convergence issues we need to do some additional work. (In the
key case R = S, G = T, Blumberg and Mandell establish conditional convergence
in [BM17, Lemma 3.16].)

The existence of a multiplicative structure on the Hesselholt–Madsen G-Tate
spectral sequence relies on the existence of filtration-preserving maps

EG+ −→ EG+ ∧ EG+ and ẼG ∧ ẼG −→ ẼG.

The first is known to exist, and we prove by obstruction theory that the second one
exists under the assumption that R[G]∗ is projective over R∗. See Proposition 6.9.
This guarantees that a pairing X ∧R Y → Z of R-modules in orthogonal spectra
induces a pairing

(HM�(X), HM�(Y )) −→ HM�(Z)

of the corresponding Hesselholt–Madsen filtrations. The work done in Chapter 4
then guarantees that the G-Tate spectral sequence constructed from the Hesselholt–
Madsen filtration has a multiplicative structure. Moreover, we show that the mul-
tiplicative structure on the E2-page agrees with the one given by cup product on
Tate cohomology. See Theorem 6.18 and Theorem 6.21.

To settle questions about convergence we compare the Hesselholt–Madsen fil-
tration to another possible filtration of the Tate construction. The filtration we are
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referring to is the filtration GM�(X) given in each degree as

GMk(X) =

{
Ẽk ∧R T0(M(X)) for k ≥ 0,

Ẽ0 ∧R Tk(M(X)) for k ≤ 0.

Here, the structure maps GMk−1(X) → GMk(X) for k ≥ 1 are induced by

the maps Ẽk−1 → Ẽk in the filtration Ẽ�, while the maps for k ≤ 0 are those
of T�(M(X)). This filtration is referred to as the Greenlees–May filtration. It is
straight-forward to show that the spectral sequence arising from the Greenlees–May
filtration is conditionally convergent; see Lemma 6.37. Moreover, in Lemma 6.25
we show that there is a map of filtrations

α : GM�(X) −→ HM�(X),

which induces an isomorphism of spectral sequences from the E2-page and on.
See Proposition 6.31. We can then deduce convergence results for the Hesselholt–
Madsen G-Tate spectral sequence in certain favourable situations, such as in the
case when the spectrum X is bounded below and the derived E∞-page RE∞ van-
ishes. In particular, we have the following result, which in the text corresponds to
Theorem 6.43.

Theorem 1.5. If the Greenlees–May G-Tate spectral sequence for X is strongly
convergent, then so is the Hesselholt–Madsen G-Tate spectral sequence for X.

Organisation

Let us discuss the various chapters contained in this memoir, and how they
relate to one another.

Chapter 2: In this chapter we develop a theory of Tate cohomology for
finitely generated projective Hopf algebras, with a view toward being able
to satisfactorily describe the E2-page of a G-Tate spectral sequence for
compact Lie groups.

Chapter 3: In this chapter we do a quick review of orthogonal G-spectra.
Most of this chapter can be regarded as well-known to people working
in genuine equivariant stable homotopy theory. However, we want to
highlight Proposition 3.6, for which we have not found a reference, and
which will be important in later parts of the memoir.

Chapter 4: In this chapter we discuss sequences of orthogonal G-spectra,
Cartan–Eilenberg systems, and spectral sequences, with a special focus on
multiplicative structures. This chapter may well be read separately from
the rest of the memoir, possibly in addition to Section 3.1, which contains
a quick recap on orthogonal G-spectra. We hope it can be of use as a
reference for multiplicative structures on spectral sequences coming from
sequences of spectra.

Chapter 5: In this chapter we discuss the G-homotopy fixed point spectral
sequence for an orthogonal G-spectrum. This is meant as a warm-up to
the G-Tate spectral sequence, but can absolutely be read in its own right.

Chapter 6: In this chapter we discuss various constructions of the G-Tate
spectral sequence of an orthogonal G-spectrum. The reader who only
cares for the T-Tate spectral sequence will find a summary of the relevant
results at the very end of the memoir, in Section 6.7.
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CHAPTER 2

Tate Cohomology for Hopf Algebras

The algebraic objects that we are led to work with when constructing the Tate
spectral sequence are Hopf algebras and chain complexes of modules over these. The
topological context we will discuss later in the memoir allows for Hopf algebras over
fairly complicated rings, which forces us to work in the generality of Hopf algebras
over arbitrary, possibly graded, commutative rings. We give a brief account of this
in Section 2.1 and Section 2.2, referring e.g. to [ML95, Chapter VI] for a fuller
discussion. We go on to give a suitable definition of Tate cohomology of Hopf
algebras via the so-called Tate complex in Section 2.3. In Section 2.4 we relate
this definition to the ordinary definition of Tate cohomology in terms of complete
resolutions. In particular, we show in Theorem 2.28 that our definition agrees with
what is traditionally referred to as Tate cohomology or complete Ext, in the case
when our Hopf algebra Γ is finitely generated and projective over its base ring k.
The crucial point that allows us to do this is a result of Pareigis, which in particular
forces the k-dual of Γ to be finitely generated and projective over Γ, under the same
hypotheses. We discuss the multiplicative structure of Tate cohomology in Section
2.5, and finish with an explicit computation in Section 2.6.

2.1. Modules over Hopf algebras

Let k be a graded commutative ring, where we mean commutative in the graded
sense. All unlabelled tensors and homs are to be taken over k. We denote the
closed symmetric monoidal category of right k-modules by Mod(k). Note that such
modules are implicitly graded, and that morphisms of such modules, which we will
refer to as k-linear homomorphisms, are degree-preserving.

Definition 2.1. A Hopf algebra Γ over k is a k-module equipped with five k-
linear homomorphisms: multiplication φ : Γ⊗Γ → Γ, comultiplication ψ : Γ → Γ⊗Γ,
unit η : k → Γ, counit ε : Γ → k, and antipode χ : Γ → Γ. These are subject to the
following conditions:

(1) Multiplication and unit provide Γ with the structure of a k-algebra.
(2) Comultiplication and counit provide Γ with the structure of a k-coalgebra.
(3) Comultiplication and counit are k-algebra morphisms, or equivalently,

multiplication and unit are k-coalgebra morphisms.
(4) The antipode satisfies the formulae φ(1⊗ χ)ψ = ηε = φ(χ⊗ 1)ψ.

We say that a Hopf algebra is cocommutative if the comultiplication satis-
fies τψ = ψ, where τ denotes the twist in Mod(k). We are going to assume that all
Hopf algebras we work with are cocommutative in this memoir.

11
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A module over a Hopf algebra is just a module over the underlying k-algebra.
For a right Γ-module M we denote the right action by ρM : M⊗Γ → M . We denote
the category of right Γ-modules by Mod(Γ). This is a closed symmetric1 monoidal
category if we endow the category with the tensor products and internal homs
over k together with appropriate Γ-actions on these objects. Here let M , N , and L
be Γ-modules. The tensor product M ⊗N is endowed with the diagonal Γ-action.
This is the composition

M ⊗N ⊗ Γ
1⊗1⊗ψ

�� M ⊗N ⊗ Γ⊗ Γ
1⊗τ⊗1

�� M ⊗ Γ⊗N ⊗ Γ
ρM⊗ρN�� M ⊗N .

The unit of the tensor product is k regarded as a trivial Γ-module via the counit:

k ⊗ Γ
1⊗ε

�� k ⊗ k = k .

The internal Hom Hom(N,L) becomes a Γ-module by giving it the conjugate Γ-
action. This is the Γ-action that needs to be on the internal Hom to make sure
that Hom(N,−) is right adjoint to (−)⊗N : Mod(Γ) → Mod(Γ). In other words,
the characterising feature of the conjugate Γ-action is that it is the Γ-action on
Hom(N,L) that makes the counit Hom(N,L) ⊗ N → L and the unit M →
Hom(M ⊗ N,N) into Γ-linear maps. Explicitly, the conjugate action is adjoint
to the composition

Hom(N,L)⊗ Γ⊗N
1⊗τ−−→ Hom(N,L)⊗N ⊗ Γ

1⊗1⊗ψ−−−−−→ Hom(N,L)⊗N ⊗ Γ⊗ Γ

1⊗1⊗χ⊗1−−−−−−→ Hom(N,L)⊗N ⊗ Γ⊗ Γ

1⊗ρN⊗1−−−−−→ Hom(N,L)⊗N ⊗ Γ
ev⊗1−−−→ L⊗ Γ

ρL−−→ L.

These actions on tensor and hom-objects ensure that the forgetful functor

U : Mod(Γ) → Mod(k)

is strict closed monoidal.

Lemma 2.2. Let M and N be Γ-modules, where we assume that M is projective
over Γ and N is projective over k. Then M ⊗N is projective over Γ.

Proof. By the tensor-hom adjunction we have a natural isomorphism

HomΓ(M ⊗N,−) ∼= HomΓ(M,Hom(N,−))

of functors. Since N is projective over k the functor Hom(N,−) is exact, and
since M is projective over Γ the functor HomΓ(M,−) is exact. The left hand
functor HomΓ(M ⊗ N,−) is then also exact, being naturally isomorphic to the
composition of two exact functors. This is equivalent to the assertion that M ⊗N
is projective over Γ. �

The forgetful functor U admits a left adjoint

IndΓk : Mod(k) −→ Mod(Γ),

which we refer to as induction. This functor sends a k-module C to C ⊗ Γ with
the Γ-action given by

C ⊗ Γ⊗ Γ
1⊗φ−−−→ C ⊗ Γ.

1Symmetry uses that Γ is cocommutative.
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The forgetful functor U also admits a right adjoint

CoindΓk : Mod(k) −→ Mod(Γ),

which is referred to as coinduction. This functor sends a k-module C to Hom(Γ, C)
with Γ-action given as the adjoint of

Hom(Γ, C)⊗ Γ⊗ Γ
1⊗τ−−→ Hom(Γ, C)⊗ Γ⊗ Γ

1⊗1⊗χ−−−−→ Hom(Γ, C)⊗ Γ⊗ Γ

1⊗φ−−−→ Hom(Γ, C)⊗ Γ
ev−→ C.

The fact that the forgetful functor is strict monoidal makes sure that induc-
tion and coinduction interact with the forgetful functor in various useful ways.
In [LMSM86, Section 2.4] the following formulae, in the context of equivariant
stable homotopy theory, are called untwisting isomorphisms , and we will refer to
them as such also in this memoir.

Proposition 2.3. Let M be a Γ-module and let C be a k-module. There are
natural Γ-module isomorphisms:

(1)

IndΓk (C ⊗ U(M)) ∼= IndΓk (C)⊗M

(2)

Hom(M,CoindΓk (C)) ∼= CoindΓk (Hom(U(M), C))

(3)

Hom(IndΓk (C),M) ∼= CoindΓk (Hom(C,U(M))).

Proof. The result follows formally from the Yoneda lemma together with
the fact that Mod(Γ) → Mod(k) is strict closed monoidal. We show the first
isomorphism and leave the others for the reader, as they are proven in a similar
manner.

Consider the functor corepresented by IndΓk (C ⊗ U(M)). By adjunctions we
have natural isomorphisms

HomΓ(Ind
Γ
k (C ⊗ U(M)),−) ∼= Hom(C ⊗ U(M), U(−))

∼= Hom(C,Hom(U(M), U(−))).

Since the forgetful functor is strict closed monoidal we have the identity

Hom(C,Hom(U(M), U(−))) = Hom(C,U(Hom(M,−)))

and by adjunctions again

Hom(C,U(Hom(M,−))) ∼= HomΓ(Ind
Γ
k (C),Hom(M,−))

∼= HomΓ(Ind
Γ
k (C)⊗M,−).

The Yoneda lemma now asserts that we have a natural isomorphism, as wanted. �

Corollary 2.4. Let M be a Γ-module. There are natural isomorphisms

IndΓk (U(M)) ∼= Γ⊗M and CoindΓk (U(M)) ∼= Hom(Γ,M)

where the Γ-actions on the right hand sides are the ordinary diagonal and conjugate
actions, respectively.

Proof. Use that Γ = IndΓk (k). �
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We will also deal a lot with functional duals of modules over Hopf algebras, so
let us now recall this story.

Definition 2.5. For each Γ-module M let

DM = Hom(M,k)

be its functional dual . This is a Γ-module by using the usual conjugate Γ-action.

Note that the evaluation pairing ev : Hom(N,L) ⊗ N → L gives rise to a
natural Γ-linear pairing

α : Hom(N,L)⊗Hom(N ′, L′) −→ Hom(N ⊗N ′, L⊗ L′)

adjoint to the composition

Hom(N,L)⊗Hom(N ′, L′)⊗N ⊗N ′ 1⊗τ⊗1−−−−→ Hom(N,L)⊗N ⊗Hom(N ′, L′)⊗N ′

ev⊗ev−−−−→ L⊗ L′.

In the case N ′ = L = k this specialises to a natural Γ-linear homomorphism

ν : DN ⊗ L′ −→ Hom(N,L′).

This map is an isomorphism when N is finitely generated and projective over k.
So far we have only discussed Γ-modules, but we can also talk about (right)

comodules over Γ, by which we mean comodules over the underlying coalgebra
structure of Γ. If Γ is finitely generated projective over k then we can endow its
functional dual DΓ with such a Γ-coaction. Moreover, this Γ-coaction is compatible
with the Γ-action in a suitable way. See [Par71, Prop. 2]. This allows us to conclude
the following.

Theorem 2.6 ([Par71, Lem. 2, Prop. 3]). Let Γ be a finitely generated projec-
tive Hopf algebra over k. Then there is an isomorphism

DΓ ∼= IndΓkP (DΓ)

of right Γ-modules, where P (DΓ) is a finitely generated projective k-module of con-
stant rank 1, given as the primitives for the right Γ-coaction on DΓ.

Note in particular that a direct consequence of Γ being finitely generated and
projective over k is that DΓ is itself finitely generated and projective over Γ. This
result will be crucial in our treatment of Tate cohomology of Hopf algebras. For now,
let us simply note that the result implies that we have a ‘Wirthmüller isomorphism’.

Corollary 2.7. Let Γ be a finitely generated and projective Hopf algebra over k
and let C be a k-module. There is a natural isomorphism

IndΓk (P (DΓ)⊗ C) ∼= CoindΓk (C)

of Γ-modules.

Proof. We can assume that C is obtained from a Γ-module M by forgetting
the Γ-action, as in C = UM . By the first untwisting isomorphism of Proposition 2.3
we have

IndΓk (P (DΓ)⊗ U(M)) ∼= IndΓk (P (DΓ))⊗M.

By Pareigis’ result it follows that

IndΓk (P (DΓ))⊗M ∼= DΓ⊗M.
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Finally, by Γ being finitely generated projective over k and untwisting, more specif-
ically Corollary 2.4, we have

DΓ⊗M ∼= Hom(Γ,M) ∼= CoindΓk (U(M)).

�

Since P (DΓ) is tensor-invertible over k the above tells us that induced modules
are the same things as coinduced modules. We also note that that duals of finitely
generated projectives over Γ are themselves finitely generated projective over Γ.

Corollary 2.8. Let Γ be a finitely generated projective Hopf algebra over k
and let M be a finitely generated projective Γ-module. Then its dual DM is also
finitely generated projective over Γ.

Proof. Since M is finitely generated, we can find a short exact sequence

0 �� ker(r) ��
⊕

i∈I Σ
niΓ

r �� M �� 0

of Γ-modules, where I is a finite indexing set. Since M is projective, this short
exact sequence splits, so that we can find a Γ-linear map u : M →

⊕
i∈I Σ

niΓ such
that ru = idM . Consider the k-dual picture. Applying Hom(−, k) gives us a long
exact sequence of Γ-modules:

· · · Ext1k(M,k)�� D ker(r)�� D
(⊕

i∈I Σ
niΓ
)

�� DM
r∗�� 0.��

Since M is projective over Γ, which is in turn projective over k, it follows that M is
projective over k, from which we conclude that Ext1k(M,k) ∼= 0. We are left with a
short exact sequence, which is also split since u∗r∗ = idDM . We conclude that DM
is finitely generated projective over Γ since it is a retract of the finitely generated
projective Γ-module

D

(⊕
i∈I

ΣniΓ

)
∼=
⊕
i∈I

Σ−niDΓ ∼=
⊕
i∈I

Σ−niIndΓkP (DΓ).

�

2.2. Chain complexes of Γ-modules

In this section we give the conventions for chain complexes of Γ-modules. A
lot is standard: the category Mod(Γ) is an abelian category and what we mean by
chain complexes of Γ-modules is nothing more than the ordinary category of chain
complexes in this abelian category. However, we want to make a point of clarifying
certain subtle points, especially related to grading and signs.

Definition 2.9. A chain complex X∗ of Γ-modules is a family (Xn)n∈Z of Γ-
modules together with morphisms of Γ-modules ∂ : Xn → Xn−1, called boundaries ,
such that ∂2 = 0. A chain map f : X∗ → Y∗ is a family of Γ-module homomor-
phisms fn : Xn → Yn that commute with the boundaries.

The Γ-module Xn in the chain complex is of course implicitly graded:

Xn =
⊕
�∈Z

Xn,�,
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and if we want to emphasize the bigrading we will write X∗,∗ for the complex. We
remark on the following point: as the boundaries ∂ : Xn → Xn−1 are morphisms of
Γ-modules, they preserve the Γ-module grading in the sense that they are given as
a direct sum of maps ∂ : Xn,� → Xn−1,�. We use the following terminology for the
different degrees.

Definition 2.10. Let X∗ be a chain complex of Γ-modules. If x is an element
in Xn,� we say that x has homological degree n, internal degree |x| = �, and total
degree ‖x‖ = n+ �.

The category of chain complexes of Γ-modules is closed symmetric monoidal.
If X∗, Y∗, and Z∗ are chain complexes of Γ-modules then the tensor product X∗⊗Y∗
of the complexes X∗ and Y∗ is (either the evident bicomplex or) the complex given
in degree n as

(X ⊗ Y )n =
⊕

i+j=n

Xi ⊗ Yj , ∂(x⊗ y) = ∂(x)⊗ y + (−1)‖x‖x⊗ ∂(y).

The unit for the tensor product is k concentrated in homological degree 0. Note
that the twist isomorphism is given as

τ : X∗ ⊗ Y∗ −→ Y∗ ⊗X∗, x⊗ y �→ (−1)‖x‖‖y‖y ⊗ x.

The Hom complex Hom(Y∗, Z∗) of Y∗ and Z∗ is (either the evident bicomplex or)
the complex given in degree n as

Hom(Y, Z)n =
∏

i+j=n

Hom(Y−i, Zj), (∂f)(x) = ∂(f(x))− (−1)‖f‖f(∂(x)).

We will in particular be interested in the case when Z∗ is a Γ-module M , regarded
as a chain complex concentrated in homological degree 0. In this case, we will
often denote the differential in the resulting function complex as ∂∗ = Hom(∂, 1).
Explicitly, we have

Hom(Y,M)n = Hom(Y−n,M), (∂∗f)(x) = −(−1)‖f‖f(∂(x)).

As before, the evaluation pairing ev : Hom(Y∗, Z∗)⊗ Y∗ → Z∗ gives rise to a natu-
ral Γ-chain map

α : Hom(Y∗, Z∗)⊗Hom(Y ′
∗ , Z

′
∗) −→ Hom(Y∗ ⊗ Y ′

∗ , Z∗ ⊗ Z ′
∗)

adjoint to the composition

Hom(Y∗, Z∗)⊗ Hom(Y ′
∗ , Z

′
∗)⊗ Y∗ ⊗ Y ′

∗
1⊗τ⊗1−−−−→ Hom(Y∗, Z∗)⊗ Y∗ ⊗Hom(Y ′

∗ , Z
′
∗)⊗ Y ′

∗
ev⊗ev−−−−→ Z∗ ⊗ Z ′

∗.

Note that this introduces a sign in the formula for α coming from the twist τ .
Explicitly,

α(f ⊗ g)(x⊗ y) = (−1)‖g‖‖x‖f(x)⊗ g(y).(2.1)

We now turn to suspensions and mapping cones. These are determined by
specifying a ‘circle chain complex’ and an ‘interval chain complex’.
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Notation 2.11. The interval object is the chain complex I∗ given as

0 −→ k{i1} ∂−→ k{i0} −→ 0, ∂(i1) = i0.

Both of the generators i0 and i1 are regarded as having internal degree 0 and the
subscripts indicate the homological degrees.

Notation 2.12. The circle object is the chain complex C∗ given as

0 −→ k{c1} −→ 0,

again with c1 regarded as having internal degree 0 and with the subscript indicating
the homological degree.

The convention we will use in this memoir is that chain complexes are suspended
on the left. In more precise terms, the suspension of a chain complex X∗ is the
chain complex X[1]∗ = C∗ ⊗ X∗. From the definition of the symmetric monoidal
structure and the appropriate identifications we get

X[1]n ∼= Xn−1, ∂X[1](x) = −∂X(x).

Definition 2.13. The mapping cone of a chain map f : X∗ → Y∗ is the chain
complex cone(f)∗ given as the pushout in the diagram

X∗
f

��

i0

��

Y∗

��

I∗ ⊗X∗ �� cone(f)∗

where i0(x) = i0 ⊗ x.

Explicitly, we have

cone(f)n ∼= Xn−1 ⊕ Yn, ∂(x, y) = (−∂(x), ∂(y) + f(x)).

We have a short exact sequence of chain complexes

0 �� Y∗ �� cone(f)∗ �� X[1]∗ �� 0

where the first map is y �→ (0, y) and the second one is (x, y) �→ x. We leave it to
the reader to convince themself that these are indeed chain maps.

2.3. Tate complexes

Consider a projective Γ-resolution ε : P∗ → k of the trivial Γ-module k. We will

denote the mapping cone of the map ε as P̃∗. With the conventions from before we
hence have

P̃n
∼=
{
k if n = 0

Pn−1 otherwise

with boundary ∂̃ : P̃n → P̃n−1 given as

∂̃(x) =

{
−∂(x) if n ≥ 2

ε(x) if n = 1.

Let us use the notation i : k → P̃∗ for the inclusion. We now define the so-called
Tate complex.
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Definition 2.14. For each Γ-module M let

hm∗(M) = P̃∗ ⊗Hom(P∗,M)

be the Tate complex of [Gre95, §3].

Complexes of this type arise from a filtration of the Tate construction on
a G-spectrum that we call the Hesselholt–Madsen filtration, which is adapted
from [HM03], and this explains the notation ‘hm’. See Section 6.3. Explicitly,
the Tate complex is given in each homological degree by

hmn(M) =
⊕

i+j=n

P̃i ⊗Hom(P−j ,M)

with boundary given as

∂hm(x⊗ f) = ∂̃(x)⊗ f + (−1)‖x‖x⊗ ∂∗(f).

Definition 2.15. For an integer n let

Êxt
n

Γ(k,M) = H−n(HomΓ(k, hm∗(M)))

be the k-module given by the (−n)th homology of the chain complex

HomΓ(k, hm∗(M)) = HomΓ(k, P̃∗ ⊗Hom(P∗,M)).

We call this the nth Tate cohomology group of Γ with coefficients in the Γ-module M .

To be able to compare this definition to the standard definition of Tate coho-
mology in terms of complete resolutions, it is convenient to introduce an alternative,
quasi-isomorphic chain complex.

Definition 2.16. For each Γ-module M , let gm∗(M) be the pushout in the
diagram

M Hom(P∗,M)

P̃∗ ⊗M gm∗(M).

ε∗

i⊗1

Here the top horizontal morphism is the map

ε∗ = Hom(ε, 1) : M ∼= Hom(k,M) −→ Hom(P∗,M)

contravariantly induced by the augmentation, and the left hand vertical morphism
is the map

i⊗ 1: M ∼= k ⊗M −→ P̃∗ ⊗M

induced by the inclusion of k into the mapping cone P̃∗ = cone(ε).

Complexes of this type arise from a filtration of the Tate construction on a G-
spectrum that we call the Greenlees–May filtration, which is adapted from [GM95],
and this explains the notation ‘gm’. See Section 6.5.

Proposition 2.17. Explicitly, the complex gm∗(M) is given in each homolog-
ical degree as

gmn(M) ∼=
{
P̃n ⊗M if n ≥ 1

Hom(P−n,M) if n ≤ 0
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and under these identifications the boundary ∂gm : gmn(M) → gmn−1(M) is given
as

∂gm =

⎧⎪⎨⎪⎩
∂̃ ⊗ 1 if n ≥ 2

∂∗ if n ≤ 0

P̃1 ⊗M
ε⊗1−−→ M

ε∗−→ Hom(P0,M) if n = 1.

Proof. The only non-trivial case happens when the homological degree is
n = 0. In this case we have a pushout square

M Hom(P0,M)

P̃0 ⊗M gm0(M).

ε∗

i⊗1

Since i ⊗ 1 is an isomorphism in this homological degree it follows that so is the
map Hom(P0,M) → gm0(M).

It is straight-forward to see that the boundary ∂gm : gmn(M) → gmn−1(M)

is given by ∂̃ ⊗ 1 and ∂∗ when n ≥ 2 and n ≤ 0, respectively. For the re-

maining boundary, note that the element 1 ⊗ m in P̃0 ⊗ M is identified with
the element f : y �→ mε(y) in Hom(P0,M) when both are viewed as elements
of the pushout gm0(M). The boundary wants to take the element x ⊗ m in

P̃1 ⊗ M ∼= gm1(M) to ε(x) ⊗ m in P̃0 ⊗ M . This is identified with the map
y �→ (−1)|m||x|mε(x)ε(y) in Hom(P0,M). Schematically, we are taking the com-
posite

P̃1 ⊗M
ε⊗1−→ P̃0 ⊗M ∼= M ∼= Hom(k,M)

ε∗−→ Hom(P0,M). �

Visually, gm∗(M) is the complex

· · · P̃2 ⊗M P̃1 ⊗M Hom(P0,M) Hom(P1,M) · · · .

M

∂̃⊗1

ε⊗1

∂∗

ε∗

We will often refer to the complex gm∗(M) as being obtained by ‘splicing’ P̃∗ ⊗M
and Hom(P∗,M) together.

Note that the universal property of the pushout ensures that we have an in-
duced Γ-chain map θ : gm∗(M) → hm∗(M) in the commutative diagram

M Hom(P∗,M)

P̃∗ ⊗M gm∗(M)

hm∗(M).

ε∗

i⊗1
i⊗1

1⊗ε∗

θ

Here the ‘bendy’ map

1⊗ ε∗ : P̃∗ ⊗M ∼= P̃∗ ⊗Hom(k,M) −→ P̃∗ ⊗ Hom(P∗,M)
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is again the map contravariantly induced by the augmentation, and the other
‘bendy’ map

i⊗ 1: Hom(P∗,M) ∼= k ⊗Hom(P∗,M) −→ P̃∗ ⊗Hom(P∗,M)

is induced by the inclusion i : k → P̃∗.

Proposition 2.18. The k-linear chain map

Hom(1, θ) : HomΓ(k, gm∗(M)) −→ HomΓ(k, hm∗(M))

is a quasi-isomorphism, inducing isomorphisms

Hn(HomΓ(k, gm∗(M)))
∼=−→ Êxt

−n

Γ (k,M)

for all integers n.

Proof. We compatibly filter gm∗(M) and hm∗(M), setting

Fs gmk(M) =

{
0 for k > s,

gmk(M) for k ≤ s

and

Fs hmk(M) =
⊕

i+j=k
i≤s

P̃i ⊗Hom(P−j ,M).

We obtain a vertical map of short exact sequences

0 �� Fs−1 gm∗(M) ��

θs−1

��

Fs gm∗(M) ��

θs

��

Fs gm∗(M)

Fs−1 gm∗(M)
��

θ̄s
��

0

0 �� Fs−1 hm∗(M) �� Fs hm∗(M) ��
Fs hm∗(M)

Fs−1 hm∗(M)
�� 0.

Each horizontal short exact sequence is degree-wise split as an extension of Γ-
modules, hence remains short exact after applying HomΓ(k,−).

For s = 0, the map F0 gm∗(M) → F0 hm∗(M) is an isomorphism. We claim
for each s ≥ 1 that the map of filtration subquotients

θ̄s :
Fs gm∗(M)

Fs−1 gm∗(M)
−→ Fs hm∗(M)

Fs−1 hm∗(M)

induces a quasi-isomorphism Hom(1, θ̄s) after applying HomΓ(k,−). It follows by
induction that Hom(1, θs) is a quasi-isomorphism for each s ≥ 0. Passing to colimits
over s it follows that Hom(1, θ) is a quasi-isomorphism.

It remains to prove the claim. We can rewrite θ̄s for s ≥ 1 as

1⊗ ε∗ : P̃s ⊗M −→ P̃s ⊗Hom(P∗,M).

Here P̃s is Γ-projective, so it suffices to prove that

HomΓ(1, 1⊗ ε∗) : HomΓ(k, L⊗M) −→ HomΓ(k, L⊗Hom(P∗,M))

is a quasi-isomorphism for any projective Γ-module L. By preservation of quasi-
isomorphisms under passage to retracts, we may assume that L is free. Since
the functor HomΓ(k,−) commutes with direct sums, it suffices to consider the
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case L = Γ. Using the Hopf algebra structure of Γ, there is a natural untwisting
isomorphism

Γ⊗N ∼= IndΓk (N)

for any Γ-module N , where Γ acts diagonally on the left hand side and we use
the induced Γ-action on the right hand side. See Corollary 2.4. The augmentation
ε : P∗ → k admits a k-linear chain homotopy inverse. Hence ε∗ : M → Hom(P∗,M)
also admits such a chain homotopy inverse, and

IndΓk (ε
∗) : IndΓk (M) −→ IndΓk (Hom(P∗,M))

admits a Γ-linear chain homotopy inverse. By naturality of the untwisting isomor-
phism,

1⊗ ε∗ : Γ⊗M −→ Γ⊗Hom(P∗,M)

admits a Γ-module chain homotopy inverse, and therefore induces a k-module
chain homotopy equivalence after applying HomΓ(k,−). This proves the claim
that HomΓ(1, 1⊗ ε∗) is a quasi-isomorphism. �

Corollary 2.19. The inclusion Hom(P∗,M) → gm∗(M) induces an isomor-
phism

γ : ExtnΓ(k,M) −→ Êxt
n

Γ(k,M)

for each n ≥ 1, and a surjection for n = 0.

2.4. Complete resolutions

In this section, we make the standing assumption that the cocommutative Hopf
algebra Γ is finitely generated and projective over k. Let us now relate the com-
plex gm∗(M) to the complete resolutions often used when defining Tate cohomology.
See [CK97] for a standard treatment of this topic.

Definition 2.20. Let P̂∗ be the pullback in the diagram

P̂∗ ��

��

P∗

ε

��

DP̃∗
i∗ �� k

where DP̃∗ = Hom(P̃∗, k).

Proposition 2.21. Explicitly, the chain complex P̂∗ is given in each homolog-
ical degree as

P̂n
∼=
{
Pn for n ≥ 0,

D(P̃−n) for n < 0

with boundary given as

∂̂n =

⎧⎪⎨⎪⎩
∂n for n > 0,

ε∗ ◦ ε for n = 0,

D(∂̃1−n) for n < 0

under these identifications.
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Proof. The only non-trivial case is when we are dealing with something in-

volving homological degree 0. Since DP̃0 → k is an isomorphism, it follows that
the projection P̂0 → P0 is one, as well. This shows that the chain complex is given
in each homological degree as asserted. The only thing left to prove is that the
boundaries are given as claimed. To do so, note that the inverse to the projection
is the map P0 → P̂0 given by

P0 −→ P̂0 = P0 ×k DP̃0, x �→ (x, ε(x)).

It is clear that the boundary ∂̂ : P̂n → P̂n−1 is given by ∂n and D(∂̃1−n) when n > 0
and n < 0, respectively. When n = 0, we are looking at the boundary

P0 ×k DP̃0 −→ DP̃1, (x, f) �→ ε∗(f)

which under the identifications made above corresponds to the composition

P0 −→ P0 ×k DP̃0 −→ DP̃1, x �→ (ε∗ ◦ ε)(x). �

Diagrammatically, we can visualise P̂∗ as the ‘spliced’ complex

· · · �� P̂1
�� P̂0

��

ε
��
��

��
��

P̂−1
�� P̂−2

�� · · ·

k

ε∗

���������

.

We will show that if P∗ is assumed to be a projective resolution of finite type,2 then
this is a complete resolution. See Remark 2.29. First we need a lemma.

Lemma 2.22. Let

Q∗ A∗

C∗ B∗

g′

f ′ f

g

be a pullback diagram of chain complexes. Assume that there is some chain map
φ : B∗ → A∗ such that fφ = idB∗ and φf 
 idA∗ witnessed by a chain homotopy
H : An → An+1 satisfying fH = 0. Then there is a chain map φ′ : C∗ → Q∗ such
that f ′φ′ = idC∗ and φ′f ′ 
 idQ∗ .

Proof. Consider the diagram

C∗

Q∗ A∗

C∗ B∗

φg

idC∗

φ′

g′

f ′ f

g

in which we have an induced chain map φ′ : C∗ → Q∗ by the universal property of
a pullback. This shows that f ′φ′ = idC∗ . Let us show that this constitutes a left
homotopy inverse, as well.

2Recall that a chain complex C∗ of projective modules is said to be of finite type if it is
finitely generated in each homological degree.
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Let Hn : An → An+1 be the chain homotopy between φf and idA∗ . That is

idA∗ −φf = ∂Hn +Hn−1∂.

We want to use this data to build a chain homotopy between idQ∗ and φ′f ′. To do
this, consider the diagram

An

Qn+1 An+1

Cn+1 Bn+1

Hn

0

h

g′

f ′ f

g

which commutes since fHn = 0, by assumption. Again, by the universal property
of a pullback we have induced maps h : An → Qn+1. Let us set

H ′
n = hg′ : Qn −→ Qn+1.

We claim that these maps constitute a chain homotopy between idQ∗ and φ′f ′.
That is, we claim that they satisfy

idQ∗ −φ′f ′ = ∂H ′
n +H ′

n−1∂.

To show this, we appeal to the uniqueness of maps induced from pullbacks. Consider
the diagram

Qn

Qn An

Cn Bn.

∂Hng
′+Hn−1∂g

′

0

?

g′

f ′ f

g

This diagram commutes, since

f∂Hng
′ + fHn−1∂g

′ = ∂fHng
′ + fHn−1∂g

′

= 0,

so we do indeed have a unique induced map in the diagram. We claim that the
question-mark in the diagram can be filled by both idQ∗ −φ′f ′ and ∂H ′

n +H ′
n−1∂,

so they must agree by uniqueness of the induced map. Checking this claim is
straight-forward. The checks

g′(idQ∗ −φ′f ′) = g′ − g′φ′f ′

= g′ − φgf ′

= g′ − φfg′

= (idA∗ −φf)g′

= (∂Hn +Hn−1∂)g
′,
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and

f ′(idQ∗ −φ′f ′) = f ′ − f ′φ′f ′

= f ′ − f ′

= 0

show that the map idQ∗ −φ′f ′ fits into the diagram. The checks

g′(∂H ′
n +H ′

n−1∂) = g′∂hg′ + g′hg′∂

= ∂g′hg′ + g′h∂g′

= ∂Hng
′ +Hn−1∂g

′

= (∂Hn +Hn−1∂)g
′

and

f ′(∂H ′
n +H ′

n−1∂) = f ′∂H ′
n + f ′H ′

n−1∂

= ∂′f ′H ′
n + f ′H ′

n−1∂

= ∂′f ′hg′ + f ′hg′∂

= 0

show that the map ∂H ′
n + H ′

n−1∂ also fits into the diagram, which concludes the
proof. �

Proposition 2.23. Assume that P∗ is of finite type over Γ. Then P̂∗ is an
acyclic complex of projective Γ-modules such that HomΓ(P̂∗, Q) is acyclic for every
coinduced Γ-module Q.

Proof. Since Pn is finitely generated and projective over Γ in each homological
degree n, it follows that P̂n must be finitely generated and projective over Γ, as
well, by Corollary 2.8.

To show that P̂∗ is acyclic, we show that it is k-linearly contractible. Since
ε : P∗ → k is a chain homotopy equivalence, we can find a homotopy inverse k → P∗.
In this case we can pick η : k → P∗, so that εη = idk on the nose. Since k is
concentrated in homological degree 0 we know that the chain homotopy ηε 
 idP∗

is zero after post-composition with ε, so that Lemma 2.22 applies. This shows that

the map P̂∗ → DP̃∗ is a chain homotopy equivalence. Since P̃∗ is chain contractible,

we conclude that so is its dual DP̃∗ and hence also P̂∗.
If Q = CoindΓk (C) for some k-module C, then

HomΓ(P̂∗,Coind
Γ
k (C)) ∼= Hom(P̂∗, C).

Since P̂∗ is k-linearly contractible it follows that Hom(P̂∗, C) is contractible, and
therefore acyclic. �

Let M be a Γ-module. The chain map P̂∗ → P∗ induces a chain map

Hom(P∗,M) −→ Hom(P̂∗,M)

which is an isomorphism in homological degrees ∗ ≤ 0. In addition to this map, we
also have a chain map composition

P̃∗ ⊗M −→ DDP̃∗ ⊗M
ν−→ Hom(DP̃∗,M) −→ Hom(P̂∗,M).
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In particular, this is an isomorphism in homological degrees ∗ ≥ 1 under the as-

sumption that P̃∗ is of finite type over k. Note that the chain maps described above
fit into the commutative diagram

M Hom(P∗,M)

P̃∗ ⊗M gm∗(M)

Hom(P̂∗,M),

ε∗

i⊗1

β

so that we have an induced chain map β by the universal property of gm∗(M).

Proposition 2.24. Suppose that P̃∗ is of finite type over k. Then the map

β : gm∗(M)
∼=−→ Hom(P̂∗,M)

is a natural isomorphism of Γ-chain complexes.

Proof. The assertion is clear in homological degrees n > 0 and n < 0. If
n = 0 we are looking at the diagram

M Hom(P0,M)

P̃0 ⊗M gm0(M)

Hom(P̂0,M),

∼= ∼= ∼=

β

in which we have marked the obvious isomorphisms. It is then clear that β is an
isomorphism, as well. �

Corollary 2.25. Suppose that the projective Γ-resolution P∗ is of finite type
over k. Then there is a natural isomorphism

Êxt
n

Γ(k,M) ∼= Hn(HomΓ(P̂∗,M))

for all n ∈ Z.

Proof. Combine Proposition 2.18 and Proposition 2.24. �
It turns out that, under the assumption that Γ is finitely generated projective

over k, we can always construct the projective resolution P∗ so that it is of finite type
over Γ. It is then necessarily also of finite type over k. This can be done via the bar
construction, which we now review. See ([May72, §9, §10, §11] and [GM74, App.
A]) for more details.

Construction 2.26 (The bar construction). Let Γ be a k-algebra, M a right
Γ-module, andN a left Γ-module. We form a simplicial object B•(M,Γ, N) : Δop →
Mod(k) as follows. In simplicial degree q we let

Bq(M,Γ, N) = M ⊗ Γ⊗q ⊗N.
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It is customary to write

m[γ1| · · · |γq]n = m⊗ γ1 ⊗ · · · ⊗ γq ⊗ n

for an element in the qth simplicial degree; hence the terminology bar construction.
In this notation, the face maps are given as

di(m[γ1| · · · |γq]n) =

⎧⎪⎨⎪⎩
mγ1[γ2| · · · |γq]n i = 0

m[γ1| · · · |γiγi+1| · · · |γq]n 0 < i < q

m[γ1| · · · |γq−1]γqn i = q

and the degeneracy maps are given by

si(m[γ1| · · · |γq]n) = m[γ1| · · · |γi|1|γi+1| · · · |γq]n.
The simplicial k-module B•(M,Γ, N) can be turned into a non-negative k-

complex in essentially two ways.

• The most straight-forward way to turn B•(M,Γ, N) into a Γ-chain com-
plex B∗(M,Γ, N) is by taking the Γ-module in homological degree n to
be equal to the n-simplices of B•(M,Γ, N) and to let the boundary in the
chain complex be the alternating sum of the face maps:

Bn = Bn(M,Γ, N) and ∂ =

n∑
i=0

(−1)idi : Bn −→ Bn−1.

This is referred to as the bar complex .
• To get a smaller but quasi-isomorphic chain complex that is more con-
venient for computations, we can turn B•(M,Γ, N) into a chain complex
NB∗ = NB∗(M,Γ, N) by quotienting out by the degenerate simplices.
Explicitly, in homological degree n we have

NBn = Bn/(s0Bn−1 + · · ·+ sn−1Bn−1)

∼= M ⊗ Γ
⊗n ⊗N,

where
Γ = coker(η) ∼= ker(ε).3

The boundary ∂ : NBn → NBn−1 is given by the same formula as before,
which makes sense because

∂(s0Bn−1 + · · ·+ sn−1Bn−1) = 0.

We refer to (NB∗, ∂) as the normalised bar complex .

There is a natural Γ-action on the simplicial k-module B•(M,Γ,Γ) arising from
viewing N = Γ as a Γ-Γ-bimodule. Explicitly, in each simplicial degree we have the
right Γ-action Bq(M,Γ,Γ)⊗ Γ → Bq(M,Γ,Γ) given by

m[γ1| · · · |γq]γq+1 ⊗ γ �→ m[γ1| · · · |γq]γq+1γ

and this Γ-action commutes with the simplicial structure maps of B•(M,Γ,Γ),
so that B•(M,Γ,Γ) extends to a simplicial Γ-module. It is a standard exercise
in simplicial homotopy theory to check that B•(M,Γ,Γ) is simplicially homotopy
equivalent to M viewed as a constant simplicial Γ-module. As a consequence, the
complexes

B∗(M,Γ,Γ) and NB∗(M,Γ,Γ)

3This isomorphism follows from εη = idk.
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are resolutions of M as a Γ-module. We refer to these as the bar resolution and
normalised bar resolution of M as a Γ-module, respectively. See [May72, Prop.
9.9] and [GM74, Lem. A.8].

Proposition 2.27. Assume that Γ is finitely generated and projective over k.
If M is finitely generated projective over k, then the bar resolution B∗(M,Γ,Γ) and
the normalised bar resolution NB∗(M,Γ,Γ) are Γ-projective resolutions of M of
finite type.

Proof. Since B•(M,Γ,Γ) is simplicially homotopy equivalent to M , the bar
resolution is a resolution of M . It is finitely generated, and projective in each
degree by an application of Lemma 2.2. The proof in the normalised case is very
similar. �

Theorem 2.28. When Γ is finitely generated and projective over k, each short
exact sequence

0 −→ M ′ −→ M −→ M ′′ −→ 0

of Γ-modules induces a long exact sequence

. . . −→ Êxt
n

Γ(k,M
′) −→ Êxt

n

Γ(k,M) −→ Êxt
n

Γ(k,M
′′)

δ−→ Êxt
n+1

Γ (k,M ′) −→ . . . .

Furthermore, if M is an induced or coinduced Γ-module,4 then Êxt
n

Γ(k,M) = 0 for
all n ∈ Z.

Proof. If Γ is finitely generated projective over k, then the bar complex
B∗(k,Γ,Γ) constitutes a projective Γ-resolution of k of finite type, so that Propo-
sition 2.23 applies. The long exact sequence is then induced by the short exact
sequence

0 −→ HomΓ(P̂∗,M
′) −→ HomΓ(P̂∗,M) −→ HomΓ(P̂∗,M

′′) −→ 0

of k-module chain complexes. Here we are using Corollary 2.25 to identify the
terms in the long exact homology sequence. That Tate cohomology vanishes on
induced/coinduced modules is a direct consequence of Proposition 2.23. �

Remark 2.29. Note that if Γ is finitely generated projective, the chain com-
plex P̂∗ constructed from P∗ = B∗(k,Γ,Γ) is indeed a complete Γ-resolution of k
in the sense of [CK97, Definition 1.1]. This uses Proposition 2.23 and the fact
that all projective Γ-modules are retracts of induced Γ-modules, which are coin-
duced Γ-modules by Corollary 2.7. In particular, the results of [CK97] apply and

we can conclude that our ÊxtΓ(k,−) agrees with what is traditionally referred to
as ‘complete Ext’, in this case.

Remark 2.30. In this approach to Tate cohomology and complete Ext the
Hopf algebra structure of Γ, rather that just its algebra structure, enters in two
ways: First, it is needed for Pareigis’ theorem (Theorem 2.6), which is used in

Definition 2.20 to ensure that the spliced complex P̂∗ consists of projective Γ-
modules, as required for a complete resolution. Second, the Hopf algebra diagonal
and conjugation are used in Definitions 2.14 and 2.16 to make sense of the Γ-

module structure of the Tate complex hm∗(M) = P̃∗ ⊗Hom(P∗,M), as well as for
its variant gm∗(M).

4Due to the assumption that Γ is finitely generated projective induced modules are coinduced
by Corollary 2.7, and vice versa, so these are actually equivalent conditions.
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2.5. Multiplicative structure of Tate cohomology

We will now define a suitable pairing on Hopf algebra Tate cohomology. As
before, we will assume that Γ is finitely generated and projective over k, so that
this theory coincides with complete Ext.

Proposition 2.31. There is a unique, up to chain homotopy, Γ-linear chain
map Ψ: P∗ → P∗ ⊗ P∗ covering the identity map id : k → k ⊗ k.

Proof. We first note that the chain complex P∗⊗P∗, with diagonal Γ-action,
is a Γ-resolution of k ⊗ k = k. To see this, use the spectral sequence associated
to P∗ ⊗ P∗ viewed as a double complex. This converges strongly to the homology
of P∗ ⊗ P∗. The first page of the spectral sequence is given by

E1
s,t

∼= Ht(Ps ⊗ P∗) ∼= Ps ⊗Ht(P∗),

since Ps is projective over Γ, and hence over k. This is zero unless t = 0, where
it is Ps. The d1-differential is induced by the horizontal differential in the double
complex, so that the E2-page is k concentrated at the origin.

Classical homological algebra then asserts that there is a unique (up to chain
homotopy) Γ-linear chain map as asserted; see [ML95, Chapter III Thm. 6.1]. �

The Γ-linear chain map Ψ: P∗ → P∗ ⊗ P∗ described above induces a product
on Ext∗Γ(k,−) via the pairing

HomΓ(P∗,M)⊗HomΓ(P∗, N)
α−→ HomΓ(P∗ ⊗ P∗,M ⊗N)

Ψ∗
−→ HomΓ(P∗,M ⊗N)

of k-module complexes. By cocommutativity of Γ and uniqueness (up to chain
homotopy) of Ψ, we have that Ψ 
 τ ◦ Ψ. Passing to homology, this gives us an
associative, unital, and graded commutative multiplication

� : Ext∗Γ(k,M)⊗ Ext∗Γ(k,N) −→ Ext∗Γ(k,M ⊗N)

that we will refer to as the cup product . In particular, Ext∗Γ(k, k) is a k-algebra,
and Ext∗Γ(k,M) is an Ext∗Γ(k, k)-module for each Γ-module M . If M is a Γ-module
algebra, then Ext∗Γ(k,M) is an Ext∗Γ(k, k)-algebra.

We proceed to define the cup product in Tate cohomology for Hopf algebras.
For this, we need a unique (up to chain homotopy) Γ-linear extension of the fold
map in the category of chain complexes of Γ-modules under k. Explicitly, the fold
map ∇ is the induced map in the commutative diagram

k ⊗ k P̃∗

P̃∗ P̃∗ ⊕k P̃∗

P̃∗,

i⊗1

1⊗i
id

id

∇

where the inner square is a pushout diagram. Let us start with a more general
result.
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Lemma 2.32. Let A∗, B∗ and C∗ be chain complexes of Γ-modules, where we
assume that C∗ is non-negative and exact. Let i : A∗ → B∗ be an injective chain
map and assume that Q∗ = coker(i) is projective over Γ in each homological degree.
Then, for each chain map f : A∗ → C∗ there is a chain map g : B∗ → C∗ such
that gi = f . Moreover, this chain map is unique up to a chain homotopy that is
zero on the image of i.

Proof. Consider the diagram

0 A∗ B∗ Q∗ 0

C∗,

i

f

r

g

where the top sequence is short exact in each homological degree. Since C∗ is non-
negative, we must have gn = 0 for n < 0. To construct the rest of the chain map we
proceed by induction. Assume inductively that we have constructed gm satisfying

gmim = fm and gm−1∂ = ∂gm

for all m < n. Since

0 = gn−2∂
2 = ∂gn−1∂

and C∗ is exact we know that gn−1∂ lands in ∂(Cn). Consider the diagram

0 An Bn Qn 0

Cn ∂(Cn)

in

fn

rn

gn
gn−1∂

in which we want to find a dashed map gn : Bn → Cn that makes both triangles
commute. Since Qn is projective, the short exact sequence at the top of the diagram
splits, and we can find sn : Qn → Bn and tn : Bn → An such that

intn + snrn = idBn
.

Moreover, we can find a map hn : Qn → Cn such that gn−1∂sn = ∂hn. We define
gn : Bn → Cn by setting

gn = fntn + hnrn.

This map satisfies

gnin = fntnin + hnrnin = fn + 0 = fn

and

∂gn = ∂fntn + ∂hnrn

= fn−1∂tn + ∂hnrn

= gn−1in−1∂tn + gn−1∂snrn

= gn−1∂(intn + snrn)

= gn−1∂,

which concludes the construction of g.
We now show that the map g : B∗ → C∗ is unique up to a chain homotopy that

is zero on i(A∗). Let g
′ : B∗ → C∗ be another chain map satisfying f = g′i. We want

to show that we can find a chain homotopy between k = g − g′ and 0 that is zero
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on the image of i. That is, we want to find a collection of maps Hn : Bn → Cn+1

such that

kn = Hn−1∂ + ∂Hn and Hnin = 0

for all n. Again, we use induction. Since C∗ is non-negative we must haveHn = 0 for
n < 0. Assume inductively that we have constructed Hm : Bm → Cm+1 satisfying

km = Hm−1∂ + ∂Hm and Hmim = 0

for all m < n. Consider the map kn −Hn−1∂ : Bn → Cn. Since

∂(kn −Hn−1∂) = ∂kn − ∂Hn−1∂

= ∂kn − (kn−1 −Hn−2∂)∂

= ∂kn − kn−1∂

= 0

and C∗ is exact we know that kn−Hn−1∂ lands in ∂(Cn+1). Consider the diagram

Qn

Cn+1 ∂(Cn+1) 0

knsn−Hn−1∂sn
βn

in which we have a map βn since Qn is projective. We define

Hn = βnrn : Bn −→ Cn+1,

which vanishes on the image of in since rnin = 0. Furthermore, we have

Hn−1∂ + ∂Hn = Hn−1∂ + ∂βnrn

= Hn−1∂ + knsnrn −Hn−1∂snrn

= Hn−1∂ + kn −Hn−1∂

= kn

where the penultimate equality sign follows from the fact that kn and Hn−1 vanish
on the image of in and in−1, respectively, so that kn = kn(intn + snrn) = knsnrn
and

Hn−1∂ = Hn−1∂(intn + snrn)

= Hn−1∂intn +Hn−1∂snrn

= Hn−1in−1∂tn +Hn−1∂snrn

= Hn−1∂snrn. �

Proposition 2.33. There is a unique, up to chain homotopy, Γ-linear chain

map Φ: P̃∗ ⊗ P̃∗ → P̃∗ that makes the diagram

P̃∗ ⊕k P̃∗ P̃∗

P̃∗ ⊗ P̃∗

∇

Φ

commute.
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Proof. This is an application of Lemma 2.32. The diagram we are considering
is

0 P̃∗ ⊕k P̃∗ P̃∗ ⊗ P̃∗ Q∗ 0

P̃∗.

i

∇

r

Φ

We only need to check that the cokernel of the map i is projective over Γ in each
homological degree. By construction, the cokernel is the total cokernel of the com-
mutative diagram

k ⊗ k P̃∗ ⊗ k

k ⊗ P̃∗ P̃∗ ⊗ P̃∗.

i⊗1

1⊗i 1⊗i

i⊗1

This can be calculated by computing the cokernels of the two horizontal maps
followed by the cokernel of induced vertical map. Explicitly:

coker(i) ∼= coker(coker(i⊗ 1) −→ coker(i⊗ 1))

∼= coker(1⊗ i : P [1]∗ ⊗ k −→ P [1]∗ ⊗ P̃∗)

∼= P [1]∗ ⊗ P [1]∗.

In particular, we note that the cokernel is a complex of projective Γ-modules. �

We can now define a pairing on hm∗(−) using Φ and Ψ. For Γ-modules M
and N the composite pairing

P̃∗ ⊗Hom(P∗,M)⊗ P̃∗⊗Hom(P∗, N)

1⊗τ⊗1−→ P̃∗ ⊗ P̃∗ ⊗Hom(P∗,M)⊗Hom(P∗, N)

1⊗1⊗α−→ P̃∗ ⊗ P̃∗ ⊗Hom(P∗ ⊗ P∗,M ⊗N)

Φ⊗Ψ∗
−→ P̃∗ ⊗Hom(P∗,M ⊗N)

is Γ-linear, so it induces a pairing

HomΓ(k, hm∗(M))⊗HomΓ(k, hm∗(N)) −→ HomΓ(k, hm∗(M ⊗N))

of k-module complexes. Note that the uniqueness of Φ up to chain homotopy
guarantees that Φ ◦ τ 
 Φ, and we have already observed that τ ◦ Ψ 
 Ψ, which
ensures that we get an associative, unital, and graded commutative pairing

� : Êxt
∗
Γ(k,M)⊗ Êxt

∗
Γ(k,N) −→ Êxt

∗
Γ(k,M ⊗N)

after passing to homology. The inclusion Hom(P∗,M) → hm∗(M) provides us with
a map

Ext∗Γ(k,M) −→ Êxt
∗
Γ(k,M).

This map is compatible with the multiplicative structures we have defined above,
in the sense of the following proposition.
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Proposition 2.34. The two diagrams

Extb1Γ (k,M)⊗ Extb2Γ (k,N)
� ��

��

Extb1+b2
Γ (k,M ⊗N)

��

Extb1Γ (k,M)⊗ Êxt
b2

Γ (k,N) ��

��

Êxt
b1+b2

Γ (k,M ⊗N)

Êxt
b1

Γ (k,M)⊗ Êxt
b2

Γ (k,N)
� �� Êxt

b1+b2

Γ (k,M ⊗N)

and

Extb1Γ (k,M)⊗ Extb2Γ (k,N)
� ��

��

Extb1+b2
Γ (k,M ⊗N)

��

Êxt
b1

Γ (k,M)⊗ Extb2Γ (k,N) ��

��

Êxt
b1+b2

Γ (k,M ⊗N)

Êxt
b1

Γ (k,M)⊗ Êxt
b2

Γ (k,N)
� �� Êxt

b1+b2

Γ (k,M ⊗N)

commute. In particular, it follows that Êxt
∗
Γ(k, k) is an Ext∗Γ(k, k)-algebra, and

Ext∗Γ(k,M) → Êxt
∗
Γ(k,M) is an Ext∗Γ(k, k)-module homomorphism. If M is a Γ-

module algebra, then Ext∗Γ(k,M) → Êxt
∗
Γ(k,M) is an Ext∗Γ(k, k)-algebra homomor-

phism.

Proof. This follows from the commutative diagrams

k ⊗ k k

k ⊗ P̃∗ P̃∗

P̃∗ ⊗ P̃∗ P̃∗
Φ

and

k ⊗ k k

P̃∗ ⊗ k P̃∗

P̃∗ ⊗ P̃∗ P̃∗.
Φ

�

2.6. Computation

In this section we look at a sample computation of the Tate cohomology of a
Hopf algebra. Let k be a graded commutative ring with an element η in degree 1
such that 2η = 0. We will consider the Hopf algebra

Γ = k[s]/(s2 = ηs), |s| = 1.

Here s is a primitive element, so that comultiplication is given by ψ = s⊗1+1⊗ s,
counit by ε(s) = 0, and antipode by χ(s) = −s. To clarify: our goal is to compute

Êxt
∗
Γ(k,M) where M is a Γ-module. This situation naturally appears when we
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consider the Tate construction on a spectrum X with an action of the circle T. In
this situation, we will have

Γ = π∗(S[T]) k = π∗(S) M = π∗(X).

See Proposition 3.3 and Chapter 6.
A projective resolution P∗ of k as a trivial Γ-module is

· · · �� Γ{p3}
∂3 �� Γ{p2}

∂2 �� Γ{p1}
∂1 �� Γ{p0} �� 0

with the internal degree of the generator pb being |pb| = b and the total de-
gree being ‖pb‖ = 2b. As (right) k-modules we have Pb = Γ{pb} = k{pb, pbs}
where ‖pbs‖ = 2b+ 1. The boundary of the complex is given by

∂b+1(pb+1) =

{
pbs b ≥ 0 even

pb(s+ η) b ≥ 1 odd

and the augmentation ε : P∗ → k is given by ε(p0) = 1.

By definition, the mapping cone P̃∗ = cone(P∗ → k) is isomorphic to the
complex

· · · �� Γ{p̃3}
∂̃3 �� Γ{p̃2}

∂̃2 �� Γ{p̃1}
∂̃1 �� k{p̃0} �� 0

where the internal degrees of the generators are |p̃0| = 0 and |p̃a| = a− 1 for a ≥ 1,
and the total degrees are ‖p̃0‖ = 0 and ‖p̃a‖ = 2a − 1 for a ≥ 1. As before, we
can also write this as a complex of (right) k-modules Γ{p̃a} = k{p̃a, p̃as} for a ≥ 1,
where |p̃as| = a and ‖p̃as‖ = 2a. The boundary is given by

∂̃a(p̃a) =

⎧⎪⎨⎪⎩
p̃0 a = 1

−p̃a−1s a ≥ 2 even

−p̃a−1(s+ η) a ≥ 3 odd.

The chain complex we want to consider is the Tate complex hm∗(M), or rather,
its Γ-invariants. Recall that the Tate complex hm∗(M) is given in each homological
degree by

hmc(M) =
⊕

a+b=c

P̃a ⊗Hom(P−b,M)

with boundary given as

∂hm(x, f) = ∂̃(x)⊗ f + (−1)‖x‖x⊗ ∂∗(f).

When calculating the second term we also remember that

(∂∗f)(v) = −(−1)‖f‖f(∂(v))

for an element f ∈ Hom(P∗,M) since M is concentrated in homological degree 0.
It will also be useful to consider the Tate complex in its bicomplex version. In

this case, we will write (hm∗,∗(M), ∂h, ∂v) where

hma,b(M) = P̃a ⊗Hom(P−b,M)

and the horizontal and vertical boundaries are the first and the second term in the
formula for the boundary in hm∗, respectively. The total complex of this bicomplex
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is equal to the Tate complex, by definition. Moreover, let us write (U∗,∗, ∂
h, ∂v) for

the restriction of the bicomplex to the Γ-invariants

Ua,b = HomΓ(k, P̃a ⊗Hom(P−b,M)).

We refer to the total complex of this bicomplex as (U∗, ∂
h + ∂v); it is isomorphic

to HomΓ(k, hm∗(M)). Let us introduce some notation for the different elements in
the bicomplex U∗,∗ to keep our computations from becoming too messy.

Notation 2.35. Let x be an element of M and write

fb · x = p̃0 ⊗
(

pb �→ x

pbs �→ xs

)
for an element in HomΓ(k, P̃0 ⊗Hom(Pb,M)) for b ≥ 0.

Notation 2.36. Let y be an element of M and write

ga,b · y = p̃a ⊗
(

pb �→ y

pbs �→ ys

)
+ p̃as⊗

(
pb �→ 0

pbs �→ (−1)|y|y

)
for an element in HomΓ(k, P̃a ⊗Hom(Pb,M)) for a ≥ 1 and b ≥ 0.

Notation 2.37. Let z be an element of M and write

ha,b · z = p̃as⊗
(

pb �→ z

pbs �→ z(s+ η)

)
for an element in HomΓ(k, P̃a ⊗Hom(Pb,M)) for a ≥ 1 and b ≥ 0.

It is a straight-forward computation to check that these are indeed Γ-invariant
elements, in the sense that

(ga,b · y) · s = 0,

and analogously for fb · x and ha,b · z, using the following lemma.

Lemma 2.38. The (right) conjugate action of s on an element f of Hom(M,N)
is given by

(fs)(m) = (−1)‖m‖(f(m)s− f(ms)).

Proof. Recall that the characterising property of the conjugate action is that
it is the action on a function object Hom(M,N) such that the evaluation pairing
ev : Hom(M,N) ⊗ M → N is Γ-linear. Explicitly, the Γ-action on Hom(M,N)
makes the diagram

Hom(M,N)⊗M ⊗ Γ
ev⊗1

��

ρHom(M,N)⊗M

��

N ⊗ Γ

ρN

��

Hom(M,N)⊗M
ev �� N

commute. The top composition sends a generic element to

f ⊗m⊗ s �→ f(m)⊗ s �→ f(m)s,

while the bottom composition sends the generic element to

f ⊗m⊗ s �→ f ⊗ms+ (−1)‖m‖fs⊗m �→ f(ms) + (−1)‖m‖(fs)(m).

These must agree, which necessarily gives us the assertion. �



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

2.6. COMPUTATION 35

Furthermore, these form an ‘M -basis’ of the Γ-invariants of the Tate complex
in the sense of the following proposition.

Proposition 2.39. Let b ≥ 0 and a ≥ 1. There are k-module isomorphisms

Σ−bM
∼=−→ HomΓ(k, P̃0 ⊗Hom(Pb,M))

x �→ fb · x

and

Σa−b−1M ⊕ Σa−bM
∼=−→ HomΓ(k, P̃a ⊗Hom(Pb,M))

(y, z) �→ ga,b · y + ha,b · z.

Proof. The maps are clearly injective, so we only need to show that they are
surjective.

A general element in P̃0 ⊗Hom(Pb,M) is on the form

p̃0 ⊗
(
pb �→ x

pbs �→ y

)
.

By Lemma 2.38, the right action of the primitive element s on such an element is

p̃0 ⊗
(

pb �→ xs− y

pbs �→ yη − ys

)
.

For our original element to be Γ-invariant this must be zero, which gives us y = xs.

In other words, a Γ-invariant element in P̃0 ⊗ Hom(Pb,M) can be written fb · x,
where we let x range throughout M . The grading suspension appearing in the
isomorphism makes sure that this is actually a map of graded k-modules. Indeed,
the internal degree of our element is

|fb · x| = |p̃0|+ |x| − |pb| = |x| − b.

A general element in P̃a ⊗Hom(Pb,M) is on the form

p̃a ⊗
(
pb �→ x

pbs �→ y

)
+ p̃as⊗

(
pb �→ z

pbs �→ w

)
.

We assume that this is a homogeneous element, so that |y| = |x|+ 1, |z| = |x| − 1,
and |w| = |x|. Letting the primitive element s act on this element from the right
we obtain

(−1)|x|p̃as⊗
(
pb �→ x

pbs �→ y

)
+ p̃a ⊗

(
pb �→ xs− y

pbs �→ yη − ys

)
− (−1)|x|p̃asη ⊗

(
pb �→ z

pbs �→ w

)
+ p̃as⊗

(
pb �→ zs− w

pbs �→ wη − ws

)
.

For our element to be Γ-invariant we want this to add up to zero. In other words,
we need to solve the following system of equations⎧⎪⎪⎪⎨⎪⎪⎪⎩

xs− y = 0

yη − ys = 0

(−1)|x|x+ zη + zs− w = 0

(−1)|x|y + wη + wη − ws = 0.
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It is straight-forward to check that the solutions are given by the two independent
equations {

y = xs

w = (−1)|x|x+ zη + zs,

which tells us that a Γ-invariant element can be written

ga,b · x+ ha,b · z
where we are free to vary x and z in M . The suspensions in the source of the k-
isomorphism are again there to make sure that the grading is preserved by the
isomorphism. Indeed,

|ga,b · x| = |p̃a|+ |x| − |pb| = a− 1 + |x| − b

and
|ha,b · z| = |p̃as|+ |z| − |pb| = a+ |z| − b. �

We now need to figure out what the boundary on these generic Γ-invariant
elements looks like. Keeping track of all the signs we end up with the following
description of the horizontal and vertical boundaries in terms of our ‘M -basis’.

Lemma 2.40. The horizontal boundary on fb · x is given by

∂h(fb · x) = 0

and the vertical boundary is given by

∂v(fb · x) =
{
−(−1)|x|fb+1 · xs b ≥ 0 even

−(−1)|x|fb+1 · x(s+ η) b ≥ 1 odd.

Lemma 2.41. The horizontal boundary on ga,b · y is given by

∂h(ga,b · y) =

⎧⎪⎨⎪⎩
fb · y for a = 1

−ha−1,b · y for a ≥ 2 even

ga−1,b · yη − ha−1,b · y for a ≥ 3 odd

and the vertical boundary is given by

∂v(ga,b · y) =
{
(−1)|y|ga,b+1 · ys + ha,b+1 · y for b ≥ 0 even

(−1)|y|ga,b+1 · y(s+ η) + ha,b+1 · y for b ≥ 1 odd.

Lemma 2.42. The horizontal boundary on ha,b · z is given by

∂h(ha,b · z) =
{
ha−1,b · zη for a ≥ 2 even

0 for a ≥ 1 odd

and the vertical boundary is given by

∂v(ha,b · z) =
{
−(−1)|z|ha,b+1 · z(s+ η) for b ≥ 0 even

−(−1)|z|ha,b+1 · zs for b ≥ 1 odd.

We calculate the homology of U∗ by filtering the first tensor factor of U∗,∗ and
using the spectral sequence for the total complex of a bicomplex:

E1
a,−b = H−b(HomΓ(k, P̃a ⊗Hom(P∗,M))) ⇒ Ha−b(HomΓ(k, P̃∗ ⊗Hom(P∗,M))).

The bicomplex (U∗,∗, ∂
h, ∂v) is displayed in Figure 1 for the convenience of the

reader.
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Remark 2.43. Let us clarify how to interpret Figure 1 and the matrix notation
appearing in it. The horizontal and vertical boundaries are given in terms of the ‘M -
bases’ {fb} for U0,−b and {ga,b, ha,b} for Ua,−b. We record fb ·x and ga,b ·y+ha,b · z
as the column vectors [

x
]

and

[
y
z

]
,

respectively. The boundaries are then indicated by multiplication with the corre-
sponding matrices appearing in the figure. Multiplication is done, as is usual, with
the matrix on the left hand side. So, to clarify: A vertical boundary ∂v : Ua,−b →
Ua,−b−1 recorded as a 2 × 2-matrix (with entries in Γ) and multiplied with the
relevant column vector (with entries in M)[

i j
k �

] [
y
z

]
=

[
iy + jz
ky + �z

]
indicates that this boundary is given as

ga,b · y + ha,b · z �→ ga,b+1 · (iy + jz) + ha,b+1 · (ky + �z).

Note that in this convention Γ ends up acting on M from the left, through the twist
isomorphism followed by the right action. To see that the boundaries given in the
matrix notation actually agree with the ones given in Lemma 2.40, Lemma 2.41,
and Lemma 2.42, we have to switch the position of the Γ-values (i, j, k, and �)
and the M -values (y and z), which typically introduces a sign. For example, the
boundary ∂v : Ua,−b → Ua,−b−1 for even b is recorded in the figure as[

s 0
1 −(s+ η)

]
.

Left multiplication of this matrix with the column vector corresponding to ga,b · y
gives [

s 0
1 −(s+ η)

] [
y
0

]
=

[
sy
y

]
,

which tells us that this vertical boundary is given by

ga,b · y �→ ga,b+1 · sy + ha,b+1 · y = (−1)|y|ga,b+1 · ys+ ha,b+1 · y,

which is indeed in agreement with Lemma 2.41.

Before we explicitly compute the first page of the spectral sequence for the
bicomplex U∗,∗, we again introduce some notation.

Notation 2.44. Let z be an element of M and write

ua · z = −(−1)|z|ga,0 · z(s+ η)− ha,0 · z

= −(−1)|z|p̃a ⊗
(
p0 �→ z(s+ η)

p0s �→ 0

)
− p̃as⊗

(
p0 �→ z

p0s �→ 0

)
for the specified element in HomΓ(k, P̃a ⊗Hom(Pb,M)) for a ≥ 1 and b ≥ 0.
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U0,0

[−s]

��

U1,0

[1 0]
��

[
s 0
1 −(s+η)

]

��

U2,0

[
0 0
−1 η

]
��

[
s 0
1 −(s+η)

]

��

U3,0

[
η 0
−1 0

]
��

[
s 0
1 −(s+η)

]

��

. . .

[
0 0
−1 η

]
��

U0,−1

[−(s+η)]

��

U1,−1
[1 0]

��

[
s+η 0
1 −s

]

��

U2,−1

[
0 0
−1 η

]
��

[
s+η 0
1 −s

]

��

U3,−1

[
η 0
−1 0

]
��

[
s+η 0
1 −s

]

��

. . .

[
0 0
−1 η

]
��

U0,−2

[−s]

��

U1,−2
[1 0]

��

[
s 0
1 −(s+η)

]

��

U2,−2

[
0 0
−1 η

]
��

[
s 0
1 −(s+η)

]

��

U3,−2

[
η 0
−1 0

]
��

[
s 0
1 −(s+η)

]

��

. . .

[
0 0
−1 η

]
��

...
...

...
...

Figure 1. The bicomplex (U∗,∗, ∂
h, ∂v) for Γ = k[s]/(s2 = ηs)

Proposition 2.45. The E1-page of the bicomplex spectral sequence for U∗,∗ is
given as

H−b(HomΓ(k, P̃0 ⊗Hom(P∗,M))) ∼=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f0 · ker(s) for b = 0,

fb ·
ker(s+ η)

im(s)
for b ≥ 1 odd,

fb ·
ker(s)

im(s+ η)
for b ≥ 2 even,

when a = 0, and as

H−b(HomΓ(k, P̃a ⊗Hom(P∗,M))) ∼=
{
ua ·M for b = 0

0 otherwise,

when a ≥ 1.

Proof. This is essentially an exercise in linear algebra using the matrices in
Figure 1. The kernels of the boundaries are computed by computing the null spaces
of the corresponding matrices. Similarly, the images of boundaries are computed by
computing the column spaces of the matrices. Let us give the details for the a ≥ 1
case, as the a = 0 case is directly visible by inspecting the figure. The null spaces
of the matrices [

s 0
1 −(s+ η)

]
and

[
s+ η 0
1 −s

]
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are generated by the column vectors[
s+ η
1

]
and

[
s
1

]
,

respectively, and the column spaces are generated by the column vectors[
s
1

]
and

[
s+ η
1

]
,

respectively. From this is follows that the homology is concentrated in homological
degree b = 0, in the a ≥ 1 case. Here it consists of elements of the form

ga,0 · (s+ η)z + ha,0 · z = (−1)|z|ga,0 · z(s+ η) + ha,0 · z

for varying z in M . For reasons concerning the multiplicative structure, we have
decided to denote the above element by −ua · z. �

In particular, note that the above result tells us that the E1-page of the spec-
tral sequence is concentrated around the boundary of the fourth quadrant. The d1-
differential d1 : E1

a,−b → E1
a−1,−b in the spectral sequence is induced by the horizon-

tal boundary, and is by degree reasons only non-zero on the positive a-axis. There
it is given by

d1(ua · z) =

⎧⎪⎨⎪⎩
−(−1)|z|f0 · z(s+ η) for a = 1

−(−1)|z|ua−1 · zs for a ≥ 2 even

−(−1)|z|ua−1 · z(s+ η) for a ≥ 3 odd

by using Lemma 2.41 and Lemma 2.42. We conclude that the second page of the
spectral sequence is concentrated along the a- and b-axes and that

E2
a,−b

∼=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fb ·
ker(s)

im(s+ η)
for a = 0 and b ≥ 0 even,

fb ·
ker(s+ η)

im(s)
for a = 0 and b ≥ 1 odd,

ua ·
ker(s)

im(s+ η)
for b = 0 and a ≥ 2 even,

ua ·
ker(s+ η)

im(s)
for b = 0 and a ≥ 1 odd.

There is no room for further differentials, and the infinite cycles along the upper
and left hand edges are necessarily also d1-cycles in the total complex U∗. We
conclude:
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Proposition 2.46.

Êxt
c

Γ(k,M) ∼=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fc ·
ker(s)

im(s+ η)
for c ≥ 0 even,

fc ·
ker(s+ η)

im(s)
for c ≥ 1 odd,

u−c ·
ker(s)

im(s+ η)
for c ≤ −2 even,

u−c ·
ker(s+ η)

im(s)
for c ≤ −1 odd.

Now all that remains is to describe the multiplicative structure. That is, given
two Γ-modules M and N we want to determine the cup product

� : Êxt
c1

Γ (k,M)⊗ Êxt
c2

Γ (k,N) −→ Êxt
c1+c2

Γ (k,M ⊗N).

In order to do so we need a Γ-linear chain map Ψ: P∗ → P∗ ⊗ P∗ covering the

identity of k, and a Γ-linear chain map Φ: P̃∗ ⊗ P̃∗ → P̃∗ extending the fold map,
as per Section 2.5.

Lemma 2.47. A Γ-linear chain map Ψ: P∗ → P∗ ⊗ P∗ that covers the identity
is given by

Ψ(pb) =
∑

b1+b2=b

pb1 ⊗ pb2 .

By Γ-linearity we have

Ψ(pbs) =
∑

b1+b2=b

pb1s⊗ pb2 + pb1 ⊗ pb2s.

This chain map is cocommutative: Ψ = τΨ.

Proof. Note that

∂(pb) = pb−1(s+ (b− 1)η)

for b ≥ 1. To verify that Ψ, as specified in the statement of the lemma, is a chain
map, we must show that

∂(Ψ(pb)) =
∑

b1+b2=b

∂(pb1)⊗ pb2 + pb1 ⊗ ∂(pb2)

=
∑

b1+b2=b

pb1−1(s+ (b1 − 1)η)⊗ pb2 + pb1 ⊗ pb2−1(s+ (b2 − 1)η)

is equal to

Ψ(∂(pb)) = Ψ(pb−1s) + Ψ(pb−1)(b− 1)η.

Here ∑
b1+b2=b

pb1−1s⊗ pb2 + pb1 ⊗ pb2−1s = Ψ(pb−1)s,

so it remains to check that∑
b1+b2=b

pb1−1(b1 − 1)η ⊗ pb2 + pb1 ⊗ pb2−1(b2 − 1)η = Ψ(pb−1)(b− 1)η.
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When b is odd the terms of the left hand side cancel in pairs, and the right hand
side is zero. When b is even only the terms with b1 and b2 both even contribute to
the left hand side, and these add up to Ψ(pb−1)η, as required. Finally,

(ε⊗ ε)(Ψ(p0)) = 1 = ε(p0),

so Ψ is indeed a chain map covering k⊗k = k. Cocommutativity of Ψ is clear from
the explicit formulas. �

Lemma 2.48. A Γ-linear chain map Φ: P̃∗⊗ P̃∗ → P̃∗ that extends the fold map
is given by

Φ(p̃a1
⊗ p̃a2

) = 0

Φ(p̃a1
⊗ p̃a2

s) = −p̃a

Φ(p̃a1
s⊗ p̃a2

) = −p̃a

Φ(p̃a1
s⊗ p̃a2

s) = −p̃a(s+ η)

for a1, a2 ≥ 1 and a = a1 + a2. Furthermore,

Φ(p̃0 ⊗ p̃a2
) = p̃a2

Φ(p̃0 ⊗ p̃a2
s) = p̃a2

s

Φ(p̃a1
⊗ p̃0) = p̃a1

Φ(p̃a1
s⊗ p̃0) = p̃a1

s

and Φ(p̃0 ⊗ p̃0) = p̃0. This chain map is commutative: Φ = Φτ .

Proof. Note that the differential in the chain complex P̃∗ can be described as

∂̃(p̃a) =

{
p̃0 for a = 1

−p̃a−1(s+ aη) for a ≥ 2.

To check that Φ, as specified in the statement of the lemma, is Γ-linear, we observe
that

Φ((p̃a1
⊗ p̃a2

)s) = Φ(p̃a1
⊗ p̃a2

s− p̃a1
s⊗ p̃a2

)

= −p̃a + p̃a

= 0

= Φ(p̃a1
⊗ p̃a2

)s

and that

Φ((p̃a1
⊗ p̃a2

s)s) = Φ(p̃a1
s⊗ p̃a2

s+ p̃a1
⊗ p̃a2

ηs)

= −p̃a(s+ η) + p̃aη

= −p̃as

= Φ(p̃a1
⊗ p̃a2

s)s.
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The check that Φ is a chain map is contained in the computations

Φ(∂P̃∗⊗P̃∗
(p̃a1

⊗ p̃a2
)) = Φ(∂̃(p̃a1

)⊗ p̃a2
)− Φ(p̃a1

⊗ ∂̃(p̃a2
))

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Φ(p̃a1−1(s+ a1η)⊗ p̃a2
)

+Φ(p̃a1
⊗ p̃a2−1(s+ a2η)) for a1, a2 ≥ 2,

Φ(p̃0 ⊗ p̃a2
)

+Φ(p̃1 ⊗ p̃a2−1(s+ a2η)) for a1 = 1, a2 ≥ 2,

−Φ(p̃a1−1(s+ a1η)⊗ p̃1)

−Φ(p̃a1
⊗ p̃0) for a1 ≥ 2, a2 = 1

= p̃a−1 − p̃a−1

= 0

= ∂̃(Φ(p̃a1
⊗ p̃a2

))

and

Φ(∂P̃∗⊗P̃∗
(p̃a1

⊗ p̃a2
s)) = Φ(∂̃(p̃a1

)⊗ p̃a2
s)− Φ(p̃a1

⊗ ∂̃(p̃a2
s))

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Φ(p̃a1−1(s+ a1η)⊗ p̃a2
s)

+Φ(p̃a1
⊗ p̃a2−1(s+ a2η)s) for a1, a2 ≥ 2,

Φ(p̃0 ⊗ p̃a2
s)

+Φ(p̃1 ⊗ p̃a2−1(s+ a2η)s) for a1 = 1, a2 ≥ 2,

−Φ(p̃a1−1(s+ a1η)⊗ p̃1s)

−Φ(p̃a1
⊗ p̃0s) for a1 ≥ 2, a2 = 1

= p̃a−1(s+ aη)

= −∂̃(p̃a)

= ∂̃(Φ(p̃a1
⊗ p̃a2

s)).

Commutativity of Φ is clear from the explicit formulas. �

Now we want to use the above chain maps to compute the multiplicative struc-
ture. Recall that the cup product is induced by the composite pairing

P̃∗ ⊗Hom(P∗,M)⊗ P̃∗⊗Hom(P∗, N)

1⊗τ⊗1−−−−→ P̃∗ ⊗ P̃∗ ⊗Hom(P∗,M)⊗Hom(P∗, N)

1⊗1⊗α−−−−→ P̃∗ ⊗ P̃∗ ⊗Hom(P∗ ⊗ P∗,M ⊗N)

Φ⊗Ψ∗
−−−−→ P̃∗ ⊗Hom(P∗,M ⊗N).

There are two signs to be wary of here; the first one comes from twisting the factor

Hom(P∗,M) past the second P̃∗-factor, and the second sign comes from using the
canonical map α. Please refer to Equation (2.1). We note that the cocommutativity
of Γ, symmetry of α, commutativity of Φ and cocommutativity of Ψ imply that
this particular model for the cochain cup product is graded commutative. The
cup product computations, which can be found in the lemmas below, are straight-
forward computations. We only include the verification of two of the lemmas, as
the other two are very similar.
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Lemma 2.49. Let fb1 · m be a cycle with homology class in Êxt
b1

Γ (k,M) and

let fb2 · n be a cycle with homology class in Êxt
b2

Γ (k,N). The cup product of these
is the cycle

fb1 ·m � fb2 · n = fb1+b2 ·m⊗ n

with homology class in Êxt
b1+b2

Γ (k,M ⊗N).

Lemma 2.50. Let ua1
·m be a cycle with homology class in Êxt

−a1

Γ (k,M) and

let ua2
·n be a cycle with homology class in Êxt

−a2

Γ (k,N). The cup product of these
is the cycle

ua1
·m � ua2

· n = ua1+a2
·m⊗ n

with homology class in Êxt
−a1−a2

Γ (k,M ⊗N).

Lemma 2.51. Let f0 ·m and ua ·n be cycles with homology classes in Êxt
0

Γ(k,M)

and Êxt
−a

Γ (k,N), respectively. The cup product of these is the cycle

f0 ·m � ua · n = ua ·m⊗ n

with homology class in Êxt
−a

Γ (k,M ⊗N). By graded commutativity we have

ua · n � f0 ·m = ua · n⊗m.

Proof. Since f0 · m is assumed to be a cycle in U∗ we know that m is an
element in ker(s). An explicit description of this cycle is then

f0 ·m = p̃0 ⊗
(
p0 �→ m

p0s �→ 0

)
.

The first map 1 ⊗ τ ⊗ 1 in the composite pairing twists the second tensor factor
past the third one, so that

p̃0 ⊗
(
p0 �→ m

p0s �→ 0

)
⊗
(
−(−1)|n|p̃a ⊗

(
p0 �→ n(s+ η)

p0s �→ 0

)
− p̃as⊗

(
p0 �→ n

p0s �→ 0

))
�→ −(−1)|m|+|n|p̃0 ⊗ p̃a ⊗

(
p0 �→ m

p0s �→ 0

)
⊗
(
p0 �→ n(s+ η)

p0s �→ 0

)
− p̃0 ⊗ p̃as⊗

(
p0 �→ m

p0s �→ 0

)
⊗
(
p0 �→ n

p0s �→ 0

)
.
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The second map in the composite is 1⊗ 1⊗ α, so that

− (−1)|m|+|n|p̃0 ⊗ p̃a ⊗
(
p0 �→ m

p0s �→ 0

)
⊗
(
p0 �→ n(s+ η)

p0s �→ 0

)
− p̃0 ⊗ p̃as⊗

(
p0 �→ m

p0s �→ 0

)
⊗
(
p0 �→ n

p0s �→ 0

)

�→ −(−1)|m|+|n|p̃0 ⊗ p̃a ⊗

⎛⎜⎜⎝
p0 ⊗ p0 �→ m⊗ n(s+ η)

p0s⊗ p0 �→ 0
p0 ⊗ p0s �→ 0
p0s⊗ p0s �→ 0

⎞⎟⎟⎠

− p̃0 ⊗ p̃as⊗

⎛⎜⎜⎝
p0 ⊗ p0 �→ m⊗ n
p0s⊗ p0 �→ 0
p0 ⊗ p0s �→ 0
p0s⊗ p0s �→ 0

⎞⎟⎟⎠ .

Lastly, the computations of Ψ and Φ given in Lemma 2.47 and Lemma 2.48 tell us
that the final map in the composite is such that

− (−1)|m|+|n|p̃0 ⊗ p̃a ⊗

⎛⎜⎜⎝
p0 ⊗ p0 �→ m⊗ n(s+ η)

p0s⊗ p0 �→ 0
p0 ⊗ p0s �→ 0
p0s⊗ p0s �→ 0

⎞⎟⎟⎠

− p̃0 ⊗ p̃as⊗

⎛⎜⎜⎝
p0 ⊗ p0 �→ m⊗ n
p0s⊗ p0 �→ 0
p0 ⊗ p0s �→ 0
p0s⊗ p0s �→ 0

⎞⎟⎟⎠ �→ −(−1)|m|+|n|p̃a ⊗
(
p0 �→ m⊗ n(s+ η)

p0s �→ 0

)

− p̃as⊗
(
p0 �→ m⊗ n

p0s �→ 0

)
where the target can be identified with ua · (m⊗ n), as wanted.

By graded commutativity of �, we have

ua · n � f0 ·m = (−1)|m||n|f0 ·m � ua · n
= (−1)|m||n|ua ·m⊗ n

= ua · n⊗m.

�

Lemma 2.52. Let f1 ·m and u1 ·n be cycles with homology classes in Êxt
1

Γ(k,M)

and Êxt
−1

Γ (k,N), respectively. Then the two cycles

f1 ·m � u1 · n 
 f0 ·m⊗ n.

are homologous in the complex U∗. It follows that they determine the same class

in Êxt
0

Γ(k,M ⊗N).

Proof. Since f1 ·m and u1 ·n are assumed to be cycles we know that m and n
are elements in ker(s+η), which directly implies that m⊗n is an element of ker(s)
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since

(m⊗ n) · s = m⊗ ns+ (−1)|n|ms⊗ n

= m⊗ ns+m⊗ nη +m⊗ nη + (−1)|n|ms⊗ n

= m⊗ n(s+ η) + (−1)|n|m(s+ η)⊗ n

= 0.

An explicit description of the two cycles f1 ·m and u1 · n is

f1 ·m = p̃0 ⊗
(

p1 �→ m

p1s �→ ms

)
and u1 · n = −p̃1s⊗

(
p0 �→ n

p0s �→ 0

)
.

The first map 1 ⊗ τ ⊗ 1 in the composite pairing twists the second tensor factor
past the third one, so that

−p̃0⊗
(

p1 �→ m

p1s �→ ms

)
⊗ p̃1s⊗

(
p0 �→ n

p0s �→ 0

)
�→ −p̃0⊗ p̃1s⊗

(
p1 �→ m

p1s �→ ms

)
⊗
(
p0 �→ n

p0s �→ 0

)
.

The second map in the composite is 1⊗ 1⊗ α, so that

−p̃0⊗p̃1s⊗
(

p1 �→ m

p1s �→ ms

)
⊗
(
p0 �→ n

p0s �→ 0

)
�→ −p̃0⊗p̃1s⊗

⎛⎜⎜⎝
p1 ⊗ p0 �→ m⊗ n

p1s⊗ p0 �→ (−1)|n|ms⊗ n
p1 ⊗ p0s �→ 0
p1s⊗ p0s �→ 0

⎞⎟⎟⎠ .

Lastly, the computations of Ψ and Φ given in Lemma 2.47 and Lemma 2.48 tells
us that the final map in the composite is such that

−p̃0 ⊗ p̃1s⊗

⎛⎜⎜⎝
p1 ⊗ p0 �→ m⊗ n

p1s⊗ p0 �→ (−1)|n|ms⊗ n
p1 ⊗ p0s �→ 0
p1s⊗ p0s �→ 0

⎞⎟⎟⎠ �→ −p̃1s⊗
(

p1 �→ m⊗ n

p1s �→ (−1)|n|ms⊗ n

)
.

The right hand term can be identified with −h1,1 ·m⊗ n. We conclude that

f1 ·m � u1 · n = −h1,1 ·m⊗ n.

Note that the boundary of g1,0 ·m⊗ n is

∂(g1,0 ·m⊗ n) = f0 ·m⊗ n+ h1,1 ·m⊗ n,

which tells us that f0 ·m ⊗ n and −h1,1 ·m ⊗ n are homologous in U∗, and hence

represent the same class in Êxt
0

Γ(k,M ⊗N). �

We decide to make a final change of notation.

Notation 2.53. Let tb ·m and t−a · n denote the homology classes

tb ·m = [fb ·m] and t−a · n = [ua · n]

in Êxt
b

Γ(k,M) for b ≥ 0 and in Êxt
−a

Γ (k,N) for a ≥ 1, respectively.

Note that tb ·m has internal and total degrees equal to those of fb ·m, so that

|tb ·m| = |m| − b and ‖tb ·m‖ = |m| − 2b.

Similarly, t−a · n has internal and total degrees equal to those of ua · n, so that

|t−a · n| = a+ |n| and ‖t−a · n‖ = 2a+ |n|.
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We conclude that, formally, the symbol t has homological degree −1, internal degree
|t| = −1 and total degree ‖t‖ = −2. Using this new notation we have the following
theorem.

Theorem 2.54.

Êxt
c

Γ(k,M) ∼=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
tc · ker(s)

im(s+ η)
for c even,

tc · ker(s+ η)

im(s)
for c odd.

The cup product

Êxt
c1

Γ (k,M)⊗ Êxt
c2

Γ (k,N) −→ Êxt
c1+c2

Γ (k,M ⊗N)

is given by
(tc1 ·m) � (tc2 · n) = tc1+c2 ·m⊗ n.

Corollary 2.55.

Êxt
c

Γ(k, k)
∼=
{
tc · coker(η) for c even,

tc · ker(η) for c odd.

In this case, the cup product

Êxt
c1

Γ (k, k)⊗ Êxt
c2

Γ (k, k) −→ Êxt
c1+c2

Γ (k, k)

is given by
(tc1 · x) � (tc2 · y) = tc1+c2 · xy

and makes Êxt
∗
Γ(k, k) into a k-algebra over which Êxt

∗
Γ(k,M) is a module for any Γ-

module M .

Remark 2.56. Note that in Theorem 2.54 above, the answer is also the ho-
mology of a differential graded Γ-module

M [t, t−1]

with differential given by

d(m) = tms and d(t) = t2η,

wherem is an element ofM and t has homological degree−1 and internal degree−1.
More precisely, the differential satisfies a Leibniz rule in the form

d(tcm) = d(tc)m+ tcd(m) = ctc+1ηm+ tc+1ms

=

{
tc+1ms if c is even,

tc+1m(s+ η) if c is odd,

and this gives us the same homology groups as in Theorem 2.54. Note that this is
also true multiplicatively: if μ : M ⊗ N → L is a pairing of Γ-modules, then the
cup product

Êxt
c1

Γ (k,M)⊗ Êxt
c2

Γ (k,N) −→ Êxt
c1+c2

Γ (k,M ⊗N) −→ Êxt
c1+c2

Γ (k, L)

is precisely the one induced by the obvious pairing

M [t, t−1]⊗N [t, t−1] −→ L[t, t−1]

on homology.
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CHAPTER 3

Homotopy Groups of Orthogonal G-Spectra

In this chapter we discuss some results regarding equivariant stable homotopy
groups. Our chosen model for equivariant spectra is orthogonal G-spectra, and
we recall some basic theory about these objects and their homotopy groups in
Section 3.1. In Section 3.2 we define the main Hopf algebra that we will work with
in this memoir, namely the (non-equivariant) homotopy groups of the unreduced
suspension spectrum of a compact Lie group, also referred to as the spherical group
ring S[G] of that group. Since our main group of interest is the circle T, we also give
an explicit description of π∗(S[T]) as an algebra over π∗(S). Lastly, in Section 3.3
we show, under suitable projectivity assumptions, that we can sometimes describe
the equivariant homotopy groups πG

∗ (X) of an orthogonal G-spectrum X as the
‘π∗(S[G])-invariants’ of the non-equivariant homotopy groups π∗(X).

3.1. Equivariant homotopy groups

Let G be a compact Lie group, and let X be an orthogonal G-spectrum, as
in [MM02, §II.2] and [Sch18, §3.1]. In what follows, we will always assume
that G acts from the right. Recall that, in particular, X associates to each (finite-
dimensional, orthogonal) G-representation V a based G-space X(V ), and to each
pair (U, V ) of G-representations a G-equivariant structure map σ : ΣUX(V ) →
X(U ⊕ V ).

We can define G-equivariant homotopy groups πG
∗ (X) associated to X. To do

this, one fixes a complete G-universe1 U containing a fixed copy of R∞. Note
that the set of finite-dimensional G-subrepresentations of U is partially ordered
by inclusion. For non-negative integers q ≥ 0, we define the qth G-equivariant
homotopy group of X as the colimit, over this directed partially ordered set, of the
sets of homotopy classes [f ] of G-maps f : ΣV Sq → X(V ):

πG
q (X) = colim

V
[ΣV Sq, X(V )]G.

Similarly, to define the non-positive G-equivariant homotopy groups, we let

πG
−q(X) = colim

V
[ΣV−R

q

S0, X(V )]G

where V − Rq denotes the orthogonal complement of Rq in V . Here the colimit is
formed over the partially ordered set of subrepresentations V in U that contain Rq.
These definitions agree for q = 0. Each equivariant homotopy group πG

q (X) is
naturally an abelian group.

1A complete G-universe is an orthogonal representation of countably infinite dimension in
which every finite dimensional G-representation, and their countably infinite direct sums, embeds.

47
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Given a group homomorphism H → G, we can view any G-spectrum as an
H-spectrum. This gives rise to a restriction map

resGH : πG
∗ (X) −→ πH

∗ (X)

of graded abelian groups. In particular, any G-spectrum can be viewed as a non-
equivariant spectrum via the inclusion homomorphism 1 → G, where 1 denotes the
trivial group. In this case, we will write π∗(X) in place of π1

∗(X), as these are simply
the ordinary non-equivariant homotopy groups of X viewed as a non-equivariant
orthogonal spectrum.

The category of orthogonal G-spectra is symmetric monoidal, with the symmet-
ric monoidal product being denoted ∧ and referred to as the smash product . The
unit of this symmetric monoidal structure is the sphere spectrum S with the trivial
G-action. Any pairing φ : X∧Y → Z of orthogonal G-spectra gives rise to a pairing
of the corresponding equivariant homotopy groups. Consider classes [f ] ∈ πG

p (X)

and [g] ∈ πG
q (Y ), represented by homotopy classes of G-maps f : ΣV Sp → X(V )

and g : ΣWSq → Y (W ), respectively. The induced pairing

φ∗ : π
G
p (X)⊗ πG

q (Y ) −→ πG
p+q(Z)

maps [f ]⊗ [g] to the element represented by the homotopy class of the composite

ΣV⊕WSp+q ∼=−→ ΣV Sp ∧ ΣWSq f∧g−→ X(V ) ∧ Y (W )
φ−→ Z(V ⊕W ).

Similar constructions can be carried out if p or q is negative, although this is
a bit tricky. One approach is to use the suspension isomorphisms E : πG

p (X) ∼=
πG
p+1(X ∧ S1) and define φ∗ as the composite

πG
p (X)⊗ πG

q (Y ) ∼= πG
p+n(X ∧ Sn)⊗ πG

q+m(Y ∧ Sm)

−→ πG
p+n+q+m(X ∧ Sn ∧ Y ∧ Sm)

(−1)nqτ∗−−−−−−→ πG
p+q+n+m(X ∧ Y ∧ Sn ∧ Sm)

−→ πG
p+q+n+m(Z ∧ Sn ∧ Sm) ∼= πG

p+q(Z)

for n and m such that p+ n ≥ 0 and q +m ≥ 0. In this way, we obtain a pairing

φ∗ : π
G
∗ (X)⊗ πG

∗ (Y ) −→ πG
∗ (Z)

of graded abelian groups.

Remark 3.1. More generally, given a group homomorphism α : G → H × K
and an α-equivariant map X ∧ Y → Z, where X, Y and Z are orthogonal H-, K-
and G-spectra, respectively, we obtain a pairing

πH
∗ (X)⊗ πK

∗ (Y ) −→ πG
∗ (Z).

Here, α-equivariant means that the diagram

X ∧ Y ∧G+ X ∧ Y ∧H+ ∧K+ X ∧H+ ∧ Y ∧K+ X ∧ Y

Z ∧G+ Z

1∧1∧α 1∧τ∧1

commutes.
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If R is a commutative (non-equivariant) orthogonal ring spectrum, with multi-
plication μ : R ∧R → R, then the induced pairing

μ∗ : π∗(R)⊗ π∗(R) −→ π∗(R)

of (non-equivariant) homotopy groups makes R∗ = π∗(R) into a graded commuta-
tive ring. A right R-module in orthogonal G-spectra is an orthogonal G-spectrumX
with an associative and unital action ρ : X ∧ R → X, defined in the category of
orthogonal G-spectra. Here R is regarded as a G-spectrum with trivial action. In
this case, there is an induced pairing

ρ∗ : π
G
∗ (X)⊗R∗ −→ πG

∗ (X)

making πG
∗ (X) into a right R∗-module. If X and Y are two R-modules in orthog-

onal G-spectra, then the canonical map X ∧ Y → X ∧R Y induces a pairing

πG
∗ (X)⊗ πG

∗ (Y ) −→ πG
∗ (X ∧R Y )

that equalizes the two composites from πG
∗ (X)⊗R∗ ⊗ πG

∗ (Y ), so that we have the
induced dashed map making the diagram

πG
∗ (X)⊗R∗ ⊗ πG

∗ (Y ) πG
∗ (X)⊗ πG

∗ (Y ) πG
∗ (X)⊗R∗ πG

∗ (Y )

πG
∗ (X ∧R Y )

commute.

3.2. A cocommutative Hopf algebra

Let us introduce the Hopf algebra that we will work with through the remainder
of this memoir. The right R-action on R[G] = R ∧ G+ is given by the composite
map

R ∧G+ ∧R
1∧τ−−→ R ∧R ∧G+

μ∧1−−→ R ∧G+.

Lemma 3.2. If R[G]∗ = π∗(R∧G+) is flat as a (right) R∗-module, then R[G]∗
is naturally a cocommutative Hopf algebra over R∗ = π∗(R).

Proof. We have a pairing

R[G]∗ ⊗R∗ R[G]∗ = π∗(R ∧G+)⊗π∗(R) π∗(R ∧G+)
·−→ π∗((R ∧G+) ∧R (R ∧G+)) ∼= π∗(R ∧G+ ∧G+),

where the left R∗-action on the right hand copy of R[G]∗ is equal to that obtained
by twisting the right R∗-action. When R[G]∗ is flat as a right R∗-module, it follows
by a well-known induction [Ada69, Lec. 3, Lem. 1, p. 68] over the cells of a CW
structure on the right hand copy of G that the pairing above is an isomorphism of
R∗-modules.

The unit inclusion 1 → G, group multiplication G × G → G, collapse G → 1,
diagonal G → G×G and group inverse G → G give us R-module maps R → R∧G+,
R ∧ G+ ∧R R ∧ G+ → R ∧ G+, R ∧ G+ → R, R ∧ G+ → R ∧ G+ ∧R R ∧ G+ and
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R ∧G+ → R ∧G+ that induce R∗-module homomorphisms

η : R∗ −→ R[G]∗

φ : R[G]∗ ⊗R∗ R[G]∗ −→ R[G]∗

ε : R[G]∗ −→ R∗

ψ : R[G]∗ −→ R[G]∗ ⊗R∗ R[G]∗

χ : R[G]∗ −→ R[G]∗

which make R[G]∗ a Hopf algebra over R∗. The cocommutativity of the diagonal
implies that ψ is cocommutative. �

By the discussion in Section 2.1, the category of modules over R[G]∗ is closed
symmetric monoidal. Note that if X is an R-module in orthogonal G-spectra, then
the commuting right R- and G-actions combine to define an action

γ : X ∧R R[G] ∼= X ∧G+ −→ X

which makes the underlying (non-equivariant) orthogonal spectrum of X into a
right R[G]-module in the category of (non-equivariant) R-modules. The induced
pairing

γ∗ : π∗(X)⊗R∗ R[G]∗ −→ π∗(X)

gives the (non-equivariant) homotopy groups π∗(X) the structure of a right R[G]∗-
module. If Y is a second R-module in orthogonal G-spectra, the pairing

π∗(X)⊗R∗ π∗(Y )
·−→ π∗(X ∧R Y )

is a homomorphism of R[G]∗-modules, where the Hopf algebra R[G]∗ acts diagonally
on the left hand side. Likewise,

π∗FR(X,Y ) −→ HomR∗(π∗(X), π∗(Y ))

is a homomorphism of R[G]∗-modules, where the Hopf algebra R[G]∗ acts by con-
jugation on the right hand side.

The case we are the most interested in is when the Lie group is the circle, so let
us compute the homotopy groups of the spherical group ring of this specific group.

Proposition 3.3. When G = T = U(1) is the circle group,

R[T]∗ = R∗[s]/(s
2 = ηs)

with |s| = |η| = 1. Here s generates the augmentation ideal

R[T]∗ = ker(ε : R[T]∗ −→ R∗) = R∗{s},
and η is the image of the complex Hopf map in π1(S) ∼= Z/2. The generator s
is primitive, so the coproduct and involution are given by ψ(s) = s ⊗ 1 + 1 ⊗ s
and χ(s) = −s.

Proof. It suffices to prove the result for R = S. Proving this we would know
that S[T]∗ is free over S∗, so that the case of a general ground ring spectrum R
follows immediately from the isomorphism R[T]∗ ∼= S[T]∗ ⊗S∗ R∗.

To prove the result for the sphere spectrum, we start by noting that the cofibre
sequence

S0 ∼= 1+ −→ T+ −→ T ∼= S1
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admits a retraction T+ → 1+. Hence the induced stable cofibre sequence

S
i−→ S[T]

p−→ ΣS

admits a retraction c : S[T] → S and a section s : ΣS → S[T] with ps 
 1 and cs 

0. The maps i and s represent classes in S[T]∗ of total (and internal) degree 0
and 1, respectively, and induce an isomorphism S∗{i, s} ∼= S[T]∗. Here, i is the

multiplicative unit and s generates the augmentation ideal S[T]∗ = S∗{s}. It only
remains to prove that we have the relation s2 = ηs in S[T]2. This is the content
of formula (1.4.4) in [Hes96]. We give the following direct argument using the
bar construction [Seg68, §3], [May75, §7] and the bar spectral sequence [Seg68,
§5], [May72, §11]. We shall discuss these tools at greater length in Section 5.1.

The bar construction of T is the geometric realization BT = |B•T| 
 CP∞ of
the simplicial space

[q] �→ BqT = Tq,

with the usual face and degeneracy maps. There is a standard filtration of BT by
simplicial skeleta. The associated spectral sequence in (reduced) stable homotopy
has E1-page given as the normalised bar complex NB∗(S∗, S[T]∗, S∗)

0 ← 0
d1
1←− S[T]∗

d1
2←− S[T]∗ ⊗S∗ S[T]∗

d1
3←− · · · ,

which we reviewed in Construction 2.26. This spectral sequence converges (strongly)
to π∗Σ

∞(BT) ∼= π∗Σ
∞(CP∞). The part of the E1-page that will be relevant to us

is pictured below, with the origin in the lower left hand corner:

. . . . . . . . . . . . . . .

0 S[T]2 S[T]1 ⊗ S[T]1 . . . . . .

0 S[T]1 0 0 . . .

0 0 0 0 0

Firstly,

d12(x⊗ y) = ε(x)y − xy + xε(y) = −xy

for x, y ∈ S[T]∗, since x and y both augment to zero. With prior understand-
ing of the stable homotopy groups of CP∞ we can now figure out the displayed
differential. The stable class of the inclusion S2 ∼= CP 1 → CP∞ is well-known
to generate π2Σ

∞CP∞ ∼= Z. For degree reasons this must be detected by ±s in
E∞

1,1 = E1
1,1 = S[T]1 = Z{s}. The 4-cell in CP 2 is attached by the Hopf fibration η

to CP 1, so that π3Σ
∞CP∞ = 0. This forces ηs ∈ E1

1,2 = S[T]2 = Z/2{ηs} to be a
boundary in the spectral sequence. For degree reasons, the only possibility is that

ηs = d12(s⊗ s),

so that s2 = ηs.
Note that the coproduct ψ(s) must contain the terms s ⊗ 1 and 1 ⊗ s by

counitality, and cannot contain other terms since S[T]∗ is connected and |s| = 1.
Hence s is a primitive element of our Hopf algebra. �
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Proposition 3.4. When G = U = Sp(1) is the 3-sphere group,

R[U]∗ = R∗[t]/(t
2 = ν̇t)

with |t| = |ν̇| = 3. Here t generates the augmentation ideal

R[U]∗ = ker(ε : R[U]∗ −→ R∗) = R∗{t},
and ν̇ is the image of a generator of π3(S) ∼= Z/24. The coproduct is given by
ψ(t) = t⊗ 1 + 1⊗ t.

Proof. Similar to the circle case. �

Note that we cannot assert from this line of argument that ν̇ is the image of the
quaternionic Hopf map. The bar spectral sequence argument for R = S only shows
that t2 = ν̇t with ν̇ some generator of π3(S) ∼= Z/24. A more geometric argument
might link ν̇ to the standard generator ν of π3(S), but we will not pursue this here.

3.3. A restriction homomorphism

As explained earlier, the inclusion homomorphism 1 → G gives rise to a map
of graded abelian groups

resG1 : πG
∗ (X) −→ π∗(X)

taking the homotopy class of a G-map f : ΣV Sq → X(V ) to the homotopy class of
the underlying non-equivariant map, and similarly for G-maps ΣV−R

q

S0 → X(V ).
Tracing through definitions shows that resG1 is R∗-linear if X is an R-module in
orthogonal G-spectra. We are interested in the following refined restriction homo-
morphism.

Lemma 3.5. There is a natural R∗-module homomorphism

ωX : πG
∗ (X) −→ HomR[G]∗(R∗, π∗(X))

making the triangle in the following diagram commute.

πG
∗ (X)

ωX

��

resG1

����
���

���
���

��

HomR[G]∗(R∗, π∗(X)) �� �� π∗(X)
γ̃

��

ε̃
�� HomR∗(R[G]∗, π∗(X))

Here ε̃ denotes the adjoint of the trivial R[G]∗-action ε∗ on π∗(X), which equals the
composite

ε∗ : π∗(X)⊗R∗ R[G]∗
1⊗ε−→ π∗(X)⊗R∗ R∗ ∼= π∗(X).

Similarly γ̃ denotes the adjoint to the R[G]∗-action

γ∗ : π∗(X)⊗R∗ R[G]∗ −→ π∗(X)

on π∗(X).

Proof. We claim that the two composite homomorphisms

πG
∗ (X)⊗R∗ R[G]∗

resG1 ⊗1
�� π∗(X)⊗R∗ R[G]∗

γ∗ ��

ε∗
�� π∗(X)
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are equal. This implies that the two adjoint homomorphisms

πG
∗ (X)

resG1 �� π∗(X)
γ̃

��

ε̃
�� HomR∗(R[G]∗, π∗(X))

are equal, so that resG1 factors uniquely through the equalizer HomR[G]∗(R∗, π∗(X))
of the two right-hand arrows.

By fibrant replacement we may assume that X is an Ω-G-spectrum [MM02,
Def. III.3.1], meaning that each adjoint structure map X(V ) → ΩW−V X(W ) is a
weak G-equivalence, where V ⊂ W lie in our fixed complete G-universe U . Then
each element x in πG

∗ (X) is represented by the homotopy class [f ] of a G-map
f : Sm → X(Rn), for suitable non-negative integers m and n. Here G acts trivially
on Sm, so f factors through the fixed pointsX(Rn)G, where theG-action γ is trivial.
It follows that γ̃ and ε̃ agree on resG1 (x)⊗ y for any y ∈ R[G]∗, as claimed. �

Proposition 3.6. If R[G]∗ is projective as an R∗-module, and X 
 F (G+, Y )
for some R-module Y in orthogonal G-spectra, then the natural homomorphism

ωX : πG
∗ (X)

∼=−→ HomR[G]∗(R∗, π∗(X))

is an isomorphism.

Proof. By fibrant replacement, we may assume that Y is an Ω-G-spectrum.
As usual we give F (G+, Y ) ∼= FR(R[G], Y ) the conjugate G-action. By naturality
of ωX we may assume thatX = F (G+, Y ), in which caseX is also an Ω-G-spectrum.

Let us consider the commutative diagram

πG
∗ (X) π∗(X)

π∗(Y ) HomR∗(R[G]∗, π∗(Y )).

resG1

∼= ∼=
γ̃

Wemake the maps involved a bit more explicit. The vertical isomorphisms are given
as follows. The left hand vertical isomorphism πG

∗ (X) = πG
∗ (F (G+, Y )) → π∗(Y )

takes the homotopy class of a G-map f : Sm → X(Rn) = F (G+, Y (Rn)) bijectively
to the homotopy class of f ′ : Sm → Y (Rn) given by f ′(s) = f(s)(e), where e ∈ G is
the unit element of our group. The right hand vertical isomorphism is the special
case Z = R[G] of the natural R[G]∗-module homomorphism

π∗FR(Z, Y ) −→ HomR∗(π∗(Z), π∗(Y )).

Indeed, this is an isomorphism whenever π∗(Z) is projective as an R∗-module. The
top horizontal map is the restriction homomorphism we described at the beginning
of this section, and the lower horizontal homomorphism γ̃ is adjoint to the R[G]∗-
module action on π∗(Y ). Note that the diagram does indeed commute, since the
lower and upper compositions both send the homotopy class of the G-map f : Sm →
F (G+, Y (Rn)) to the homomorphism R[G]∗ → π∗(Y ) induced by the left adjoint
Sm ∧G+ → Y (Rn) of f .

The homomorphism γ̃ identifies π∗(Y ) with the R∗-submodule

HomR[G]∗(R∗,HomR∗(R[G]∗, π∗(Y ))) ∼= HomR[G]∗(R[G]∗, π∗(Y ))
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of its target, while resG1 factors through HomR[G]∗(R∗, π∗(X)) by the previous
lemma. Hence we can apply HomR[G]∗(R∗,−) to the right hand vertical isomor-
phism in the diagram above to obtain another isomorphism, and a commutative
square

πG
∗ (X)

ωX ��

∼=
��

HomR[G]∗(R∗, π∗(X))

∼=
��

π∗(Y )
∼= �� HomR[G]∗(R∗,HomR∗(R[G]∗, π∗(Y ))).

It follows that ωX is an isomorphism, as asserted. �
To handle multiplicative structure, we need the following observation.

Lemma 3.7. The natural transformation ω is monoidal, in the sense that the
diagram

πG
∗ (X)⊗R∗ πG

∗ (Y ) πG
∗ (X ∧R Y )

HomR[G]∗(R∗, π∗(X))⊗R∗ HomR[G]∗(R∗, π∗(Y ))

HomR[G]∗(R∗, π∗(X)⊗R∗ π∗(Y )) HomR[G]∗(R∗, π∗(X ∧R Y ))

·

ωX⊗ωY

ωX∧RY

α

·

commutes.

Proof. Since HomR[G]∗(R∗, π∗(X ∧R Y )) → π∗(X ∧R Y ) is a monomorphism
it suffices to show that

πG
∗ (X)⊗R∗ πG

∗ (Y )
· ��

resG1 ⊗ resG1
��

πG
∗ (X ∧R Y )

resG1
��

π∗(X)⊗R∗ π∗(Y )
· �� π∗(X ∧R Y )

commutes, which is clear. �
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CHAPTER 4

Sequences of Spectra and Spectral Sequences

In this chapter we associate a Cartan–Eilenberg system, an exact couple, and
a spectral sequence to any sequence of orthogonal G-spectra. We identify cer-
tain well-behaved sequences called filtrations, and use these to show how pairings
of sequences induce pairings of Cartan–Eilenberg systems and spectral sequences.
This is essentially the content of Section 4.5 and Section 4.6, culminating in The-
orem 4.26 and Theorem 4.27. We shall rely on the classical telescope construction
to approximate general sequences by equivalent filtrations. Finally we discuss how
pairings can be internalized in terms of the convolution product of two sequences.

4.1. Cartan–Eilenberg systems

A Cartan–Eilenberg system is an algebraic structure, introduced in [CE56],
which determines two exact couples [Mas52] and a spectral sequence. This struc-
ture has the advantage that one can give a useful definition of a pairing of Cartan–
Eilenberg systems, which determines a pairing of the corresponding spectral se-
quences. These definitions were reviewed by Douady in [Dou59a] and [Dou59b].
As opposed to these sources, which use cohomological indexing, we adopt homo-
logical indexing for our Cartan–Eilenberg systems, as in [HR19].

We start with some preliminary definitions. We will in particular make use of
the posets [1] = {0 → 1} and [2] = {0 → 1 → 2} regarded as categories. Note that
we have three functors

δ0, δ1, δ2 : [1] −→ [2],

with subscript indicating which object of the target is skipped. In addition, we
have natural transformations

i : δ2 −→ δ1 and p : δ1 −→ δ0.

Definition 4.1 ([HR19, Def. 4.1]). Let (I,≤) be a linearly ordered set.

• Let I [1] = Fun([1], I). The objects in this category are pairs (i, j) in I
with i ≤ j, and we have a single morphism (i, j) → (i′, j′) precisely when
i ≤ i′ and j ≤ j′.

• Let I [2] = Fun([2], I). The objects in this category are triples (i, j, k) in
I with i ≤ j ≤ k, and we have a single morphism (i, j, k) → (i′, j′, k′)
precisely when i ≤ i′, j ≤ j′ and k ≤ k′.

The functors δ0, δ1, and δ2 defined above induce functors

d0, d1, d2 : I [2] −→ I [1].

55
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These map (i, j, k) to (j, k), (i, k) and (i, j), respectively. The natural transforma-
tions i and p induce natural transformations

ι : d2 −→ d1 and π : d1 −→ d0

with components ι : (i, j) → (i, k) and π : (i, k) → (j, k), respectively.
Let k be a graded ring and let A be the graded abelian category of k-modules.

The grading ‖x‖ of a homogeneous element x ∈ M in an object M of A will be
referred to as its total degree.

Definition 4.2 ([HR19, Def. 4.2, Def. 6.1]). An I-system in A is a pair (H, ∂)
where H : I [1] → A is a functor and ∂ : Hd0 → Hd2 is a natural transformation of
functors I [2] → A, such that the triangle

Hd2
Hι �� Hd1

Hπ

��

Hd0

∂

����������

is exact. We assume that Hι and Hπ have total degree 0, while ∂ has total de-
gree −1. We generically write η : H(i, j) → H(i′, j′) for the total degree 0 mor-
phisms in A induced by morphisms in I [1].

Definition 4.3.

• A finite Cartan–Eilenberg system is a Z-system (H, ∂), where Z denotes
the integers with its usual linear ordering.

• An extended Cartan–Eilenberg system is an I-system (H, ∂) for I = Z ∪
{±∞}, with the extended linear ordering where −∞ is initial and +∞ is
terminal.

• An extended Cartan–Eilenberg system (H, ∂) is a Cartan–Eilenberg sys-
tem if the following condition, called (SP.5), is satisfied: The canonical
homomorphism

colim
j

H(i, j)
∼=−→ H(i,∞)

is an isomorphism for all i ∈ Z.

An extended Cartan–Eilenberg system thus associates to each pair (i, j) with
−∞ ≤ i ≤ j ≤ ∞ a module H(i, j), in a functorial way. Furthermore, it associates
to each triple (i, j, k) with −∞ ≤ i ≤ j ≤ k ≤ ∞ a long exact sequence

. . . −→ H(i, j) −→ H(i, k) −→ H(j, k)
∂−→ H(i, j) −→ . . . ,

where ∂ is a natural transformation of total degree −1. If the homomorphism in
condition (SP.5) is an isomorphism for one −∞ ≤ i < ∞, then it is an isomorphism
for every such i. This follows by using the 5-Lemma twice in the following map of
exact sequences:

. . . �� H(−∞, i) ��

=

��

colimj H(−∞, j) ��

��

colimj H(i, j)
∂ ��

��

H(−∞, i) ��

=

��

. . .

. . . �� H(−∞, i) �� H(−∞,∞) �� H(i,∞)
∂ �� H(−∞, i) �� . . . .
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An extended Cartan–Eilenberg system determines a finite Cartan–Eilenberg system
by restriction to (i, j) with −∞ < i ≤ j < ∞.

Remark 4.4. Apart from the switch in variance, the definition given by Car-
tan and Eilenberg in [CE56, §XV.7] corresponds to our Cartan–Eilenberg systems.
This is also the definition recalled in [McC01, Ex. 2.2]. In [Dou59a, § II C],
Douady works with data defining an Adams spectral sequence, which is concen-
trated in non-negative cohomological (so: non-positive homological) filtration de-
grees. He therefore assumes that H(i, 0) = H(i, j) for all i ≤ 0 ≤ j ≤ ∞, so that
condition (SP.5) is trivially satisfied.

Definition 4.5 ([HR19, Def. 7.1]). Let (H, ∂) be a Cartan–Eilenberg system.
Let the left couple (A,E1) be the exact couple given by

As = H(−∞, s) and E1
s = H(s− 1, s)

fitting together in the exact triangle

As−1
�� As

��

E1
s

∂

		��������

associated to the triple (−∞, s− 1, s). The abutment of this exact couple is

A∞ = colim
s

As
∼= H(−∞,∞).

This abutment is exhaustively filtered by the images

FsA∞ = im(As −→ A∞).

The Cartan–Eilenberg system and the left couple give rise to the same spectral
sequence (Er, dr). The pages of this spectral sequence are given by

Er
s = Zr

s/B
r
s

and the differentials drs : E
r
s → Er

s−r are of total degree −1. Here

Zr
s = ker(∂ : E1

s −→ H(s− r, s− 1))

Br
s = im(∂ : H(s, s+ r − 1) −→ E1

s )

define the r-cycles and r-boundaries in filtration degree s, respectively, and

drs([x]) = [∂(x̃)],

where x ∈ Zr
s and x̃ ∈ H(s − r, s) satisfies η(x̃) = x. There are preferred isomor-

phisms H(Er, dr) ∼= Er+1. We let

Z∞
s = lim

r
Zr
s , B∞

s = colim
r

Br
s , and E∞

s = Z∞
s /B∞

s .

We refer to [CE56, §XV.1] or [HR19, Prop. 4.9] for the verification that
(Er, dr) is indeed a spectral sequence. Note in particular that it only depends on
the finite part of the Cartan–Eilenberg system (H, ∂). The abutment and E∞-page
are related as follows.

Lemma 4.6. There is a natural monomorphism

β :
FsA∞

Fs−1A∞
−→ E∞

s

in each filtration degree s.
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Proof. See [Boa99, Lem. 5.6] or [HR19, Lem. 3.15(a)]. �

The main purpose of reviewing the above definitions is to let us record the
following definitions of pairings of (finite and classical) Cartan–Eilenberg systems.
We assume that k is graded commutative, and write ⊗ in place of ⊗k.

Definition 4.7. Let (H ′, ∂), (H ′′, ∂) and (H, ∂) be finite Cartan–Eilenberg
systems in A. A pairing φ : (H ′, H ′′) → H of such systems is a collection of k-
module homomorphisms

φr : H
′(i− r, i)⊗H ′′(j − r, j) −→ H(i+ j − r, i+ j)

of total degree 0, for all i, j ∈ Z and r ≥ 1. These are required to satisfy the
following two conditions:

SPP I: Each square

H ′(i− r, i)⊗H ′′(j − r, j)
φr ��

η⊗η

��

H(i+ j − r, i+ j)

η

��

H ′(i′ − r′, i′)⊗H ′′(j′ − r′, j′)
φr′ �� H(i′ + j′ − r′, i′ + j′)

commutes, for all integers i, j, i′, j′ and r, r′ ≥ 1 with i ≤ i′, i− r ≤ i′− r′,
j ≤ j′ and j − r ≤ j′ − r′.

SPP II: In the (non-commutative) diagram

H ′(i− r, i)⊗H ′′(j − r, j)

∂⊗η

��

φr

����
���

���
���

��
η⊗∂

�� H ′(i− 1, i)⊗H ′′(j − r − 1, j − r)

φ1

��

H(i+ j − r, i+ j)

∂

����
���

���
���

��

H ′(i− r − 1, i− r)⊗H ′′(j − 1, j)
φ1 �� H(i+ j − r − 1, i+ j − r)

the inner composition is the sum of the two outer ones:

∂φr = φ1(∂ ⊗ η) + φ1(η ⊗ ∂).

In terms of elements, this identity in H(i + j − r − 1, i + j − r) can be
written

∂φr(x⊗ y) = φ1(∂x⊗ ηy) + (−1)‖x‖φ1(ηx⊗ ∂y)

for x ∈ H ′(i− r, i) of total degree ‖x‖ and y ∈ H ′′(j − r, j).

Remark 4.8. Apart from the switch in variance, this definition agrees with
that of Douady [Dou59b, § II A], except for the fact that we ignore r = 0, since φ0

carries no information, and Douady omits the cases i > 0 and j > 0, due to his
focus on Adams spectral sequences. In the definition given in [McC01, Ex. 2.3],
the homomorphism ϕ1 is missing from the right hand term in his equation (2), and
the conditions n ≥ 0 and q ≥ 0 should be omitted.
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Definition 4.9. Let (′Er, dr), (′′Er, dr) and (Er, dr) be k-module spectral
sequences. A pairing φ : (′E∗, ′′E∗) → E∗ of such spectral sequences consists of a
collection of k-module homomorphisms

φr : ′Er ⊗ ′′Er −→ Er

for all r ≥ 1, such that:

(1) The Leibniz rule

drφr = φr(dr ⊗ 1) + φr(1⊗ dr)

holds as an equality of homomorphisms ′Er
i ⊗ ′′Er

j −→ Er
i+j−r for all

i, j ∈ Z and r ≥ 1.
(2) The diagram

′Er+1 ⊗ ′′Er+1 Er+1

H(′Er ⊗ ′′Er) H(Er)

φr+1

∼=
H(φr)

commutes for all r ≥ 1.

By a multiplicative spectral sequence, we mean a spectral sequence (Er, dr)
equipped with a pairing

φ : (E∗, E∗) −→ E∗.

If φa : Ea ⊗ Ea → Ea (usually with a = 1 or a = 2) is associative and unital, then
each pairing φr for r ≥ a is also associative and unital, and we call (Er, dr)r≥a an
algebra spectral sequence.

Theorem 4.10 ([Dou59b, Thm. II A]). Let (H ′, ∂), (H ′′, ∂) and (H, ∂) be
finite Cartan–Eilenberg systems, with associated spectral sequences referred to as
(′Er, dr), (′′Er, dr) and (Er, dr), respectively. Let φ : (H ′, H ′′) → H be a pairing
of finite Cartan–Eilenberg systems. Then there is a pairing φ : (′E∗, ′′E∗) → E∗ of
spectral sequences, uniquely defined by the condition φ1 = φ1.

Proof. Douady leaves the proof to the reader (‘s’il existe’). Starting with
setting φ1 : ′E1

i ⊗ ′′E1
j → E1

i+j equal to

φ1 :
′H(i− 1, i)⊗ ′′H(j − 1, j) −→ H(i+ j − 1, i+ j),

the point is to inductively show that dr satisfies the Leibniz rule with respect
to the pairing φr of Er-pages, so that φr+1 can be defined to be equal to the
induced pairing in homology with respect to dr. A full proof can be found in
[Hel17, Prop. 3.4.2]. �

We now move from finite Cartan–Eilenberg systems to classical ones.

Definition 4.11. Let (H ′, ∂), (H ′′, ∂) and (H, ∂) be Cartan–Eilenberg sys-
tems. A pairing φ : (H ′, H ′′) → H of such systems consists of a pairing (φr)r≥1 of
the restricted finite Cartan–Eilenberg systems, together with k-module homomor-
phisms

φ∞ : H ′(−∞, i)⊗H ′′(−∞, j) −→ H(−∞, i+ j)

of total degree 0, for all i, j ∈ Z. These are required to satisfy the following
additional condition:
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SPP III: The squares

H ′(−∞, i)⊗H ′′(−∞, j)
φ∞ ��

η⊗η

��

H(−∞, i+ j)

η

��

H ′(−∞, i′)⊗H ′′(−∞, j′)
φ∞ �� H(−∞, i′ + j′)

and

H ′(−∞, i)⊗H ′′(−∞, j)
φ∞ ��

η⊗η

��

H(−∞, i+ j)

η

��

H ′(i− r, i)⊗H ′′(j − r, j)
φr �� H(i+ j − r, i+ j)

commute, for all integers i ≤ i′, j ≤ j′ and r ≥ 1.

We emphasize that the φr in the definition above must satisfy the condi-
tions (SPP I) and (SPP II), by virtue of defining a pairing of finite Cartan–Eilenberg
systems. The new condition (SPP III) is an analogue of (SPP I) for r = ∞.

With notation as in Definition 4.5, we can rewrite φ∞ as compatible pairings

φi,j : A
′
i ⊗A′′

j −→ Ai+j

in the corresponding left couples, for all i, j ∈ Z. Passing to colimits, we obtain a
pairing of abutments

φ∗ : A
′
∞ ⊗A′′

∞ −→ A∞.

This is filtration-preserving in the sense that it sends FiA
′
∞ ⊗ FjA

′′
∞ to Fi+jA∞,

by virtue of the commutative diagram

A′
i ⊗A′′

j

φi,j
��

����

Ai+j

����

FiA
′
∞ ⊗ FjA

′′
∞ ��

��

Fi+jA∞
��

��

A′
∞ ⊗A′′

∞
φ∗ �� A∞.

Being filtration-preserving, the pairing φ∗ then induces pairings of filtration sub-
quotients

φ̄∗ :
FiA

′
∞

Fi−1A′
∞

⊗ FjA
′′
∞

Fj−1A′′
∞

−→ Fi+jA∞
Fi+j−1A∞

for all i, j ∈ Z.
In a similar way, the spectral sequence pairing φ = (φr)r≥1, induced by the

pairing (φr)r≥1 per Theorem 4.10, maps

′Zr ⊗ ′′Zr −→ Zr,
′Br ⊗ ′′Zr −→ Br,
′Zr ⊗ ′′Br −→ Br,
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hence also maps

′Z∞ ⊗ ′′Z∞ −→ Z∞,
′B∞ ⊗ ′′Z∞ −→ B∞,
′Z∞ ⊗ ′′B∞ −→ B∞.

It follows that φ also induces k-module homomorphisms

(4.1) φ∞ : ′E∞
i ⊗ ′′E∞

j −→ E∞
i+j ,

sending [x] ⊗ [y] to [φ1(x ⊗ y)] for any pair of infinite cycles x and y. Condi-
tion (SPP III) ensures that we have the following compatibility.

Proposition 4.12. Let φ = (φr) : (H
′, H ′′) → H be a pairing of Cartan–

Eilenberg systems, with induced pairing φ = (φr) : (′E∗, ′′E∗) → E∗ of spectral
sequences, per Theorem 4.10. Then the pairing φ∗ of filtered abutments is compatible
with the pairing φ∞ of E∞-pages, in the sense that the diagram

FiA
′
∞

Fi−1A′
∞

⊗ FjA
′′
∞

Fj−1A′′
∞

φ̄∗ ��

β⊗β

��

Fi+jA∞
Fi+j−1A∞

��

β

��
′E∞

i ⊗ ′′E∞
j

φ∞
�� E∞

i+j

commutes, for all i, j ∈ Z.

Proof. A detailed proof is given in [Hel17, Prop. 3.4.4]. �

Remark 4.13. As a consequence of Theorem 4.10, if (H, ∂) is a multiplicative
Cartan–Eilenberg system, meaning that it is equipped with a pairing φ : (H,H) →
H, then the associated spectral sequence (Er, dr) is also multiplicative. Moreover,
Proposition 4.12 tells us that the induced pairing on the filtered abutment A∞ is
compatible with the induced pairing on the E∞-page of the spectral sequence. In
this situation, we say that A∞ is a multiplicative abutment . When (Er, dr) con-
verges strongly to A∞, meaning that the filtration (FsA∞)s is complete Hausdorff
and exhaustive, and that β is an isomorphism, multiplicativity of the abutment
means that we can reconstruct the product φ∗ on A∞ from the product φ∞ on
E∞, up to the usual ambiguity created by extensions and filtration shifts.

4.2. Sequences

Our Cartan–Eilenberg systems will in practice be obtained from filtrations and
sequences. Let us first set up some terminology, so that it is clear what we are
discussing. Again, G denotes a compact Lie group.

Definition 4.14. A sequential diagram X� of orthogonal G-spectra and G-
maps of the form

· · · −→ Xi−1 −→ Xi −→ Xi+1 −→ · · · ,
indexed over i ∈ Z, is called a sequence.

We can extend the sequence to be indexed over Z ∪ {±∞} by setting

X−∞ = ∗ and X∞ = Tel(X�),
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where

Tel(X�) =
∨
i∈Z

[i, i+ 1]+ ∧Xi/∼

is the classical telescope construction. Here, the equivalence relation ∼ is given by
identifying {i}+ ∧ Xi−1 with {i}+ ∧ Xi using the G-map Xi−1 → Xi. There are
standard inclusions Xi

∼= {i}+ ∧Xi ⊂ Tel(X�) for all i ∈ Z, and each diagram

Xi−1
��



�
��

��
��

��
Xi

��

Tel(X�)

commutes up to preferred homotopy.

Definition 4.15. The Cartan–Eilenberg system (H = H(X�), ∂) associated
to the sequence X� of orthogonal G-spectra is given by

H(i, j) = πG
∗ (Xi −→ Xj)

for all −∞ ≤ i ≤ j ≤ ∞, and

∂ : πG
∗ (Xj → Xk) −→ πG

∗−1(Xi → Xj)

for all −∞ ≤ i ≤ j ≤ k ≤ ∞.

Let us elaborate on the definition above. In the q ≥ 0 case, the expression

H(i, j) = πG
q (X → Y )

denotes the colimit, over the partially ordered set of finite-dimensional G-sub-
representations V of the complete G-universe U , of the groups of homotopy classes
[f ′, f ] of pairs (f ′, f) of G-maps f ′ : ΣV Sq−1 → X(V ) and f : ΣV Dq → Y (V )
making the square

ΣV Sq−1 ��

f ′

��

ΣV Dq

f

��

X(V ) �� Y (V )

commute. Similar definitions can be made for q ≤ 0, but will be left to the reader.
By the stability of the homotopy category of orthogonal G-spectra there is a natural
isomorphism

πG
q (X → Y ) ∼= πG

q (Y ∪ CX),

where Y ∪ CX is the mapping cone of X → Y . This isomorphism takes the
homotopy class [f ′, f ] to (the image in the colimit over V of) the homotopy class
of the composite map

ΣV Sq �−→ ΣV (Dq ∪ CSq−1)
f∪Cf ′

−−−−→ (Y ∪ CX)(V ),

where the first map is a (V -suspended) homotopy inverse to the collapse map
Dq ∪ CSq−1 → Dq/Sq−1 ∼= Sq.

The connecting homomorphism ∂ : πG
q (Y → Z) → πG

q−1(X → Y ) mentioned in

the definition takes the homotopy class [g′, g] of a pair of G-maps g′ : ΣV Sq−1 →
Y (V ) and g : ΣV Dq → Z(V ) to the homotopy class [∗, g′π] of the maps

∗ : ΣV Sq−2 −→ ∗ −→ X(V ) and g′π : ΣV Dq−1 π−→ ΣV Sq−1 −→ Y (V ),
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where π : Dq−1 → Sq−1 identifies Dq−1/Sq−2 with Sq−1. The diagram

ΣV Sq−2 ��

��

ΣV Dq−1

π

��

∗ ��

��

ΣV Sq−1

g′

��

X(V ) �� Y (V )

evidently commutes. Under the isomorphism πG
q−1(X → Y ) ∼= πG

q−1(Y ∪ CX) the
homotopy class [∗, g′π] corresponds to the homotopy class of the composite map

ΣV Sq−1 g′

−→ Y (V ) −→ (Y ∪ CX)(V ).

Note that the graded abelian group πG
∗ (Xi → Xj) is functorial in i ≤ j, the

homomorphism ∂ is natural in i ≤ j ≤ k, and the sequence

· · · → πG
q (Xi → Xj) → πG

q (Xi → Xk) → πG
q (Xj → Xk)

∂−→ πG
q−1(Xi → Xj) → · · ·

is exact for all i ≤ j ≤ k and q ∈ Z. The canonical homomorphism

colim
j

πG
∗ (Xj)

∼=−→ πG
∗ Tel(X�)

is an isomorphism, which implies that condition (SP.5) is satisfied. Hence (H, ∂) is
indeed a Cartan–Eilenberg system in the sense of Definition 4.3.

We can extract two different exact couples [Mas52] from (H(X�), ∂), but shall
only be concerned with the ‘left’ couple of Definition 4.5. Explicitly, the exact
couple (A,E1) = (A(X�), E

1(X�)) associated to X� is given by

As = πG
∗ (Xs) and E1

s = πG
∗ (Xs−1 → Xs),

fitting together in the exact triangle

πG
∗ (Xs−1) �� πG

∗ (Xs)

��

πG
∗ (Xs−1 → Xs)

∂

��												

where ∂ has total degree −1.
Recall from [Boa99, Def. 5.10] that the spectral sequence associated to the

unrolled exact couple (A,E1) is said to be conditionally convergent to the abutment

(4.2) A∞ = colim
s

πG
∗ (Xs) ∼= πG

∗ Tel(X�)

if and only if

A−∞ = lim
s

As = 0 and RA−∞ = Rlim
s

As = 0.

Here Rlim = lim1 denotes the (first right) derived limit of a sequence. In view of
the short exact sequence

0 −→ Rlim
s

πG
∗+1(Xs) −→ πG

∗ (holims
Xs) −→ lim

s
πG
∗ (Xs) −→ 0

this is equivalent to the condition that

πG
∗ (holim

s
Xs) = 0.
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In particular, conditional convergence holds if holims Xs 
G ∗.
The spectral sequence (Er = Er(X�), d

r)r≥1 associated to the sequenceX� (and
the Cartan–Eilenberg system (H(X�), ∂), and the exact couple (A(X�), E

1(X�)))
has

E1
s,t = πG

s+t(Xs−1 → Xs)

and d1 : E1
s,t → E1

s−1,t is equal to the composite homomorphism

πG
s+t(Xs−1 → Xs)

∂−→ πG
s+t−1(Xs−1) −→ πG

s+t−1(Xs−2 → Xs−1).

Here s + t is the total degree, s is the filtration degree, and t will be called the
internal degree. The dr-differentials have the form

dr : Er
s,t −→ Er

s−r,t+r−1

and there are preferred isomorphisms H(Er, dr) ∼= Er+1 for all r ≥ 1.

4.3. Filtrations

The category of orthogonal G-spectra is based topological, meaning that it is
enriched in the closed symmetric monoidal category of compactly generated weak
Hausdorff spaces with base point.

Definition 4.16. Let I = [0, 1], with boundary ∂I = {0, 1}.
• A G-map i : A → X of orthogonal G-spectra is an h-cofibration (also
called: Hurewicz cofibration) if it has the homotopy extension property
with respect to any target Z:

X ∪A A ∧ I+ ��

��

Z

X ∧ I+

��






.

• A G-map p : E → B of orthogonal G-spectra is an h-fibration (also called:
Hurewicz fibration) if it has the homotopy lifting property with respect
to any source X:

X ��

��

E

p

��

X ∧ I+ ��



�
�

�
�

�
B.

• Adapting [SV02, Def. 2.4], we say that i : A → X is a strong h-cofibration
if the G-map X ∪A A ∧ I+ → X ∧ I+ has the left lifting property with
respect to any h-fibration:

X ∪A A ∧ I+ ��

��

E

p

��

X ∧ I+ ��

��






B.

Strong h-cofibrations are closed under cobase change, retracts, arbitrary sums,
and sequential colimits [SV02, Lem. 2.6]. For each map f : X → Y the inclusion
i0 : X → Y ∪X X ∧ I+ is a strong h-cofibration [SV02, Rmk. 3.3(2)]. It follows
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that each q-cofibration (= Quillen cofibration, [MM02, Def. III.2.3]) is a strong h-
cofibration. Each strong h-cofibration is evidently an h-cofibration. Our main
reason for working with strong h-cofibrations is the availability of the following
theorem.

Theorem 4.17 ([SV02, Thm. 2.7]). If i : A → X and j : B → Y are strong
h-cofibrations, then the pushout-product map

i ∧ 1 ∪ 1 ∧ j : A ∧ Y ∪A∧B X ∧B −→ X ∧ Y

is a strong h-cofibration.

We can now specify well-behaved sequences, called filtrations, for which we
can directly prove that pairings of sequences induce pairings of Cartan–Eilenberg
systems and of spectral sequences.

Definition 4.18. Let X� be a sequence of orthogonal G-spectra. We say
that X� is a filtration if each G-map Xi−1 → Xi for i ∈ Z is a strong h-cofibration.

In particular, if X� is a filtration, then the G-maps are all h-cofibrations, so
the canonical maps

Xj ∪ CXi −→ Xj/Xi and Tel(X�) −→ colim
i

Xi =
⋃
i

Xi

are G-equivalences, so that

H(i, j) ∼= πG
∗ (Xj/Xi) and A∞ ∼= πG

∗

(⋃
i

Xi

)
in the associated Cartan–Eilenberg system.

We can always approximate a sequence X� with an equivalent filtration T�(X).
To do this, we proceed as follows. For each integer j we let

Tj(X) = {j}+ ∧Xj ∨
∨
i<j

[i, i+ 1]+ ∧Xi/∼

be the subspectrum of Tel(X�) with telescope coordinate in the interval (−∞, j]
within the real line (−∞,∞) =

⋃
i[i, i + 1]. The sequence T�(X) given by the

inclusions
. . . −→ Tj−1(X) −→ Tj(X) −→ Tj+1(X) −→ . . .

is then a filtration.
For each integer j there is a deformation retraction

εj : Tj(X) −→ Xj

identifying {j}+ ∧Xj with Xj and mapping [i, i + 1]+ ∧Xi to Xj by the evident
composition [i, i+ 1]+ ∧Xi → Xi → Xj , for each i < j. The resulting diagram

. . . �� Tj−1(X) ��

�G

��

Tj(X) ��

�G

��

Tj+1(X) ��

�G

��

. . .

. . . �� Xj−1
�� Xj

�� Xj+1
�� . . .

commutes, and defines a G-equivalence of sequences ε : T�(X) → X�. It follows
that the associated maps

∗ = T−∞(X) −→ X−∞ = ∗ and T∞(X) −→ X∞ = Tel(X�)
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are both G-equivalences. Hence the induced maps of Cartan–Eilenberg systems

H(T�(X))(i, j) = πG
∗ (Ti(X) −→ Tj(X))

∼=−→ πG
∗ (Xi → Xj) = H(X�)(i, j),

and of spectral sequences

(Er(T�(X)), dr)r≥1

∼=−→ (Er(X�), d
r)r≥1,

are both isomorphisms. Their common abutment for convergence to the colimit is
A∞(X�) ∼= πG

∗ Tel(X�), filtered by the image subsequence

FsA∞(X�) ∼= Fsπ
G
∗ Tel(X�) = im(πG

∗ (Xs) → πG
∗ Tel(X�)).

Remark 4.19. Some form of cofibrant replacement of maps is necessary to
convert general sequences to filtrations. We have chosen to use mapping cylinders
and telescopes, which have convenient monoidal properties. For finite groups, Hes-
selholt and Madsen [HM03, §4.3] instead use a functorial G-CW replacement to
convert G-spectra to G-CW spectra. There exists a functorial G-CW replacement
also for compact Lie groups [Sey83], but its construction is comparatively intricate,
and the monoidal properties are less clear, which may partially justify our choice.

4.4. Pairings of sequences

We now turn to discussing pairings of sequences and how these behave under
passage to mapping telescopes.

Definition 4.20. Let X�, Y� and Z� be sequences of orthogonal G-spectra. A
pairing φ : (X�, Y�) → Z� is a collection of G-maps

φi,j : Xi ∧ Yj −→ Zi+j

for all integers i and j, making the squares

(4.3)

Xi−1 ∧ Yj Zi+j−1 Xi ∧ Yj−1

Xi ∧ Yj Zi+j Xi ∧ Yj

φi−1,j φi,j−1

φi,j φi,j

commute. We say that a sequence X� is multiplicative if it comes equipped with a
pairing φ : (X�, X�) → X�.

We note that, from [MM02, §II.3] and [Sch18, §3.5], the smash productXi∧Yj

of orthogonal G-spectra is defined in such a way that φi,j associates to each pair
of G-representations U and V a G-map of based G-spaces

φi,j(U, V ) : Xi(U) ∧ Yj(V ) −→ Zi+j(U ⊕ V ),

subject to bilinearity relations for varying U and V .

Lemma 4.21. A pairing of sequences φ : (X�, Y�) → Z� induces a pairing of
sequences T (φ) : (T�(X), T�(Y )) → T�(Z), such that the diagram

Ti(X) ∧ Tj(Y )
T (φ)i,j

��

�G

��

Ti+j(Z)

�G

��

Xi ∧ Yj

φi,j
�� Zi+j

commutes for all integers i and j.
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Proof. Given a pairing φ of sequences, we can form G-maps

(4.4) [i, i+ 1]+ ∧Xi ∧ [j, j + 1]+ ∧ Yj −→ [k, k + 2]+ ∧ Zk −→ Tel(Z�)

for any integers i and j, with k = i+ j. Here [i, i+ 1]× [j, j + 1] → [k, k+ 2] sends
(x, y) to x+y, while Xi∧Yj → Zk is given by φi,j . The second map factors through

[k, k + 1]+ ∧ Zk ∪ [k + 1, k + 2]+ ∧ Zk+1,

and is given by Zk → Zk+1 on [k+1, k+2] ⊂ [k, k+2]. The maps (4.4) for varying i
and j are compatible with the identifications defining Tel(X�) and Tel(Y�), hence
combine to define a G-map

Tel(φ) : Tel(X�) ∧ Tel(Y�) −→ Tel(Z�).

By construction, it restricts to compatible G-maps

T (φ)i,j : Ti(X) ∧ Tj(Y ) −→ Ti+j(Z)

for all integers i and j, defining the pairing of sequences T (φ) : (T�(X), T�(Y )) →
T�(Z)). It is then clear that the square in the lemma commutes, and that the
vertical maps are G-equivariant deformation retractions. �

Corollary 4.22. If (X�, φ) is a multiplicative sequence, then so is the sequence
(T�(X), T (φ)). Moreover, the equivalence ε : T�(X) → X� respects the multiplicative
structures.

4.5. Pairings of Cartan–Eilenberg systems, I

The goal of the following two sections is to show that a pairing of sequences gives
rise to a pairing of the resulting Cartan–Eilenberg systems. By Theorem 4.10 and
Proposition 4.12 this is enough to guarantee that we have a pairing of the associated
spectral sequences in such a way that the induced pairing on filtered abutments is
compatible with the pairing on E∞-pages. Referring back to Definition 4.7 and
Definition 4.11, we note that there are three things to check. In this section we
deal with (SPP I) and (SPP III).

Let φ : (X�, Y�) → Z� be a pairing of sequences. For integers i, j and r, with
r ≥ 1, we define induced pairings

φr : H(X�)(i− r, i)⊗H(Y�)(j − r, j) −→ H(Z�)(i+ j − r, i+ j)

as homomorphisms

φr : π
G
p (Xi−r → Xi)⊗ πG

q (Yj−r → Yj) −→ πG
p+q(Zi+j−r → Zi+j).

Here p and q range over all integers, but for (relative) brevity we concentrate on
the case when p ≥ 0 and q ≥ 0. Given two pairs of vertical G-maps

ΣUSp−1 ��

f ′

��

ΣUDp

f

��

Xi−r(U) �� Xi(U)

and ΣV Sq−1 ��

g′

��

ΣV Dq

g

��

Yj−r(V ) �� Yj(V )
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we first form the commutative diagram

ΣU⊕V Sp−1 ∧ Sq−1 ��

����
���

���
���

��

∼=

��

ΣU⊕V Dp ∧ Sq−1

��		
			

			
			

	

∼=
��

ΣU⊕V Sp−1 ∧Dq ��

∼=

��

ΣU⊕V Dp ∧Dq

∼=

��

ΣUSp−1 ∧ ΣV Sq−1 ��

����
���

���
���

��

f ′∧g′

��

ΣUDp ∧ ΣV Sq−1

��		
			

			
			

	

f∧g′

��

ΣUSp−1 ∧ ΣV Dq ��

f ′∧g

��

ΣUDp ∧ ΣV Dq

f∧g

��

Xi−r(U) ∧ Yj−r(V ) ��

����
���

���
���

��

φi−r,j−r(U,V )

��

Xi(U) ∧ Yj−r(V )

����
���

���
���

�

φi,j−r(U,V )

��

Xi−r(U) ∧ Yj(V ) ��

φi−r,j(U,V )
��		

			
			

			
	

Xi(U) ∧ Yj(V )

φi,j(U,V )

��

Zi+j−2r(U ⊕ V ) �� Zi+j−r(U ⊕ V ) �� Zi+j(U ⊕ V ).

For typographical reasons, we will often suppress the stabilisingG-representations U
and V and simply display this diagram as

Sp−1 ∧ Sq−1 ��

��		
			

			
			

	

f ′∧g′

��

Dp ∧ Sq−1

��
















f∧g′

��

Sp−1 ∧Dq ��

f ′∧g

��

Dp ∧Dq

f∧g

��

Xi−r ∧ Yj−r
��

����
���

���
���

φi−r,j−r

��

Xi ∧ Yj−r

����
���

���
��

φi,j−r

��

Xi−r ∧ Yj
��

φi−r,j ��
















Xi ∧ Yj

φi,j

��

Zi+j−2r
�� Zi+j−r

�� Zi+j .

Let

Sp+q−1 = Sp−1 ∧Dq ∪Sp−1∧Sq−1 Dp ∧ Sq−1

W = Xi−r ∧ Yj ∪Xi−r∧Yj−r
Xi ∧ Yj−r

denote the pushouts in the squares of the upper and middle layer of the diagram,
respectively. In particular, Sp+q−1 is the boundary of Dp ∧Dq ∼= Dp+q. We then
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have an induced commutative diagram

(4.5)

Sp−1 ∧ Sq−1 Sp+q−1 Dp+q

Xi−r ∧ Yj−r W Xi ∧ Yj

Zi+j−2r Zi+j−r Zi+j .

f ′∧g′ (f∧g)′ f∧g

φi−r,j−r φW φi,j

Here, (f ∧ g)′ : Sp+q−1 → W is the induced map between the pushouts in the top
and bottom square of the boxed-shaped diagram appearing above, and φW is the
induced map in the diagram

Xi−r ∧ Yj−r Xi ∧ Yj−r

Xi−r ∧ Yj W

Zi+j−r.

φi,j−r

φi−r,j

φW

We define the homomorphism

φr : π
G
p (Xi−r → Xi)⊗ πG

q (Yj−r → Yj) → πG
p+q(Zi+j−r → Zi+j)

as sending [f ′, f ]⊗ [g′, g] to the homotopy class of the pair

φW (f ∧ g)′ : Sp+q−1 → Zi+j−r and φi,j(f ∧ g) : Dp+q → Zi+j ,

which is an element of πG
p+q(Zi+j−r → Zi+j). As a diagram, this pair is visualised

as the commutative square

Sp+q−1 ��

φW (f∧g)′

��

Dp+q

φi,j(f∧g)

��

Zi+j−r
�� Zi+j .

In symbols:

φr : [f
′, f ]⊗ [g′, g] �−→ [φW (f ∧ g)′, φi,j(f ∧ g)].
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Spelled out with the stabilising G-representations U and V , this diagram should be
interpreted as the commutative diagram

ΣU⊕V Sp+q−1 ��

∼=
��

ΣU⊕V Dp+q

∼=
��

ΣUSp−1 ∧ ΣV Dq ∪ ΣUDp ∧ ΣV Sq−1 ��

(f∧g)′

��

ΣUDp ∧ ΣV Dq

f∧g

��

Xi−r(U) ∧ Yj(V ) ∪Xi(U) ∧ Yj−r(V ) ��

φW (U,V )

��

Xi(U) ∧ Yj(V )

φi,j(U,V )

��

Zi+j−r(U ⊕ V ) �� Zi+j(U ⊕ V )

The pushouts on the left hand side are formed along ΣUSp−1 ∧ ΣV Sq−1 and
Xi−r(U) ∧ Yj−r(V ), respectively.

Remark 4.23. We note that the pushout W is not generally equivalent to the
corresponding homotopy pushout, but this will hold if X� and Y� are filtrations.

We also note that if one only has a weak pairing, in the sense that the squares
in diagram (4.3) commute up to homotopy, then there is in general no preferred
commuting homotopy in the diagram

W ��

φW

��

Xi ∧ Yj

φi,j

��

Zi+j−r
�� Zi+j ,

and therefore no well-defined pairing φr. Any construction of spectral sequence
pairings that only assumes such compatibility at the level of the (stable) homotopy
category is therefore likely to contain a logical gap.

The pairing φr is evidently natural in i, j and r, in the sense that the square

(4.6)

H(X�)(i− r, i)⊗H(Y�)(j − r, j) H(Z�)(i+ j − r, i+ j)

H(X�)(i
′ − r′, i′)⊗H(Y�)(j

′ − r′, j′) H(Z�)(i
′ + j′ − r′, i′ + j′)

φr

φr′

commutes for all integers i, j, r ≥ 1, i′, j′, r′ ≥ 1 with i ≤ i′, i − r ≤ i′ − r′,
j ≤ j′ and j − r ≤ j′ − r′. As we recalled from [Dou59b, § II A] in Definition 4.7,
this is the first (SPP I) of two conditions for (φr)r≥1 to define a pairing of (finite)
Cartan–Eilenberg systems.

We now check condition (SPP III). The pairings φr can be extended to the
case r = ∞ by letting

φ∞ : H(X�)(−∞, i)⊗H(Y�)(−∞, j) −→ H(Z�)(−∞, i+ j)

be defined by homomorphisms

φ∞ : πG
p (Xi)⊗ πG

q (Yj) −→ πG
p+q(Zi+j).
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Given G-maps f : ΣUSp → Xi(U) and g : ΣV Sq → Yj(V ), the homomorphism φ∞
sends the homotopy classes [f ] and [g] to the homotopy class of the composite

ΣU⊕V Sp+q ∼= ΣUSp ∧ ΣV Sq f∧g−−→ Xi(U) ∧ Yj(V )
φi,j(U,V )−−−−−−→ Zi+j(U ⊕ V ).

In symbols, suppressing U and V :

φ∞ : [f ]⊗ [g] �−→ [φi,j(f ∧ g)].

These pairings are natural in i and j, which verifies the first part of (SPP III).
Recalling that our convention is such that X−∞ = Y−∞ = Z−∞ = ∗, we note

that the isomorphism πG
p (Xi) ∼= πG

p (X−∞ → Xi) takes the homotopy class of f to

the homotopy class [∗, fπ] of the pair ∗ : ΣUSp−1 → X−∞(U) and fπ : ΣUDp →
Xi(U). Here π : Dp → Sp identifies Dp/Sp−1 with Sp. The pairing φ∞ then
corresponds to the pairing φr as defined in the paragraph above, for r = ∞, with
every reference to Xi−r, Yj−r, Zi+j−r and Zi+j−2r replaced by ∗. By the discussion
above, it then also follows that the extended naturality condition

(4.7)

H(X�)(−∞, i)⊗H(Y�)(−∞, j) H(Z�)(−∞, i+ j)

H(X�)(i− r, i)⊗H(Y�)(j − r, j) H(Z�)(i+ j − r, i+ j)

φ∞

φr

holds for the pairings φr with 1 ≤ r ≤ ∞. This is the second part of condi-
tion (SPP III) from Definition 4.11.

4.6. Pairings of Cartan–Eilenberg systems, II

Having proved (SPP I) and (SPP III), we now turn to the second condition
(SPP II) from [Dou59b, § II A]. Recall that it says that, for (φr)r≥1 to define a
pairing of Cartan–Eilenberg systems, we want the Leibniz rule

(4.8) ∂φr = φ1(∂ ⊗ η) + φ1(η ⊗ ∂)

to hold. That is, we want the composite

H(X�)(i− r, i)⊗H(Y�)(j − r, j)
φr−→ H(Z�)(i+ j − r, i+ j)

∂−→ H(Z�)(i+ j − r − 1, i+ j − r)

to be equal to the sum of the composite homomorphisms

H(X�)(i− r, i)⊗H(Y�)(j − r, j)
∂⊗η−−−→ H(X�)(i− r − 1, i− r)⊗H(Y�)(j − 1, j)

φ1−→ H(Z�)(i+ j − r − 1, i+ j − r)

and

H(X�)(i− r, i)⊗H(Y�)(j − r, j)
η⊗∂−−−→ H(X�)(i− 1, i)⊗H(Y�)(j − r − 1, j − r)

φ1−→ H(Z�)(i+ j − r − 1, i+ j − r).

Here

η : H(X�)(i− r, i) −→ H(X�)(i− 1, i)

η : H(Y�)(j − r, j) −→ H(Y�)(j − 1, j)
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denote the natural maps. Regarding signs in the Leibniz rule, we recall the con-
vention that

(∂ ⊗ 1)(x⊗ y) = ∂x⊗ y and (1⊗ ∂)(x⊗ y) = (−1)px⊗ ∂y,

for x ∈ πG
p (Xi−r → Xi) in total degree p of H(X�)(i− r, i).

To verify condition (4.8) for a given pairing φ : (X�, Y�) → Z�, it follows from
the naturality of the boundary homomorphisms ∂, and the case i = i′, j = j′,
r ≥ r′ = 1 of (4.6), that it suffices to establish the rule

(4.9) ∂φr = φr(∂ ⊗ 1) + φr(1⊗ ∂).

Here the left hand side is the composite

H(X�)(i− r, i)⊗H(Y�)(j − r, j)
φr−→ H(Z�)(i+ j − r, i+ j)

∂−→ H(Z�)(i+ j − 2r, i+ j − r),

and the right hand side is the sum of the two composite homomorphisms

H(X�)(i− r, i)⊗H(Y�)(j − r, j)
∂⊗1−−−→ H(X�)(i− 2r, i− r)⊗H(Y�)(j − r, j)

φr−→ H(Z�)(i+ j − 2r, i+ j − r)

and

H(X�)(i− r, i)⊗H(Y�)(j − r, j)
1⊗∂−−−→ H(X�)(i− r, i)⊗H(Y�)(j − 2r, j − r)

φr−→ H(Z�)(i+ j − 2r, i+ j − r).

We shall now show that the identity (4.9) holds for pairings of filtrations of orthog-
onal G-spectra. Thereafter we use approximation by mapping telescopes to deduce
that the identity holds for pairings of arbitrary sequences, as well.

Proposition 4.24. If φ : (X�, Y�) → Z� is a pairing of sequences of orthogo-
nal G-spectra, and X� and Y� are filtrations, then

∂φr = φr(∂ ⊗ 1) + φr(1⊗ ∂)

as homomorphisms

H(X�)(i− r, i)⊗H(Y�)(j − r, j) −→ H(Z�)(i+ j − 2r, i+ j − r)

for all integers i, j, r with r ≥ 1.

Proof. In this proof we will, for the same typographical reasons as in Sec-
tion 4.5, suppress the stabilising representations U and V implicit in the presen-
tation of elements of πG

p (Xi−r → Xi) and πG
q (Yj−r → Yj) by homotopy classes of

pairs (f ′, f) and (g′, g) of G-maps. The reader can reconstruct how the diagrams
could be embellished with these suspensions and shifts.

For each map A → B we have natural maps B → B ∪ CA → B/A to the
homotopy cofibre and cofibre. The right hand map is an equivalence when A → B
is an h-cofibration. Applied to the left hand maps in diagram (4.5), this gives us a
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commutative diagram

Sp+q−1 ��

(f∧g)′

��

Sp+q−1 ∪ C(Sp−1 ∧ Sq−1)
� ��

(f∧g)′∪C(f ′∧g′)

��

Sp−1 ∧ Sq ∨ Sp ∧ Sq−1

f ′∧g′′∨f ′′∧g′

��

W ��

φW

��

W ∪ C(Xi−r ∧ Yj−r)
(�)

Θ
��

Φ

��

Xi−r ∧ Yj/Yj−r ∨Xi/Xi−r ∧ Yj−r

Zi+j−r
�� Zi+j−r ∪ CZi+j−2r.

Here

f ′′ : Sp −→ Xi/Xi−r and g′′ : Sq −→ Yj/Yj−r

are the quotient maps induced by (f ′, f) and (g′, g), respectively, and we write

Φ = φW ∪ Cφi−r,j−r

for brevity. If X� and Y� are filtrations, as we assume, then

Xi−r ∧ Yj−r −→ W

is an h-cofibration, so the collapse map

Θ: W ∪ C(Xi−r ∧ Yj−r) −→ Xi−r ∧ Yj/Yj−r ∨Xi/Xi−r ∧ Yj−r

is an equivalence.
The left hand side of Equation (4.9) applied to [f ′, f ]⊗ [g′, g] is

∂φr([f
′, f ]⊗ [g′, g]) = ∂[φW (f ∧ g)′, φi,j(f ∧ g)](4.10)

= [∗, φW (f ∧ g)′π].

Under the isomorphism πG
p+q−1(Zi+j−2r → Zi+j−r) ∼= πG

p+q−1(Zi+j−r ∪ CZi+j−2r)
this corresponds to the homotopy class of the composite map

Sp+q−1 −→ Zi+j−r −→ Zi+j−r ∪ CZi+j−2r

in the diagram above. Equivalently, by the commutativity of the diagram, we can
describe it as the homotopy class of the composite map

Sp+q−1 −→ Sp+q−1 ∪ C(Sp−1 ∧ Sq−1)

(f∧g)′∪C(f ′∧g′)−−−−−−−−−−−→ W ∪ C(Xi−r ∧ Yj−r)

Φ−→ Zi+j−r ∪ C(Zi+j−2r).

Alternatively, we can describe it as the image Φ∗([a]) of the homotopy class [a] of
the composite map

a : Sp+q−1 −→ Sp+q−1 ∪ C(Sp−1 ∧ Sq−1)

(f∧g)′∪C(f ′∧g′)−−−−−−−−−−−→ W ∪ C(Xi−r ∧ Yj−r)

under the homomorphism

Φ∗ : π
G
p+q−1(W ∪ C(Xi−r ∧ Yj−r)) −→ πG

p+q−1(Zi+j−r ∪ CZi+j−2r).

We shall confirm that Equation (4.9) holds by writing it in the form

Φ∗([a]) = Φ∗([b]) + (−1)pΦ∗([c])
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for some specific classes [b] and [c], to be defined later, and showing that

[a] = [b] + (−1)p[c]

in πG
p+q−1(W ∪ C(Xi−r ∧ Yj−r)). The latter identity will be confirmed by showing

that

Θ∗([a]) = Θ∗([b]) + (−1)pΘ∗([c]),

where Θ∗ is the isomorphism

Θ∗ : π
G
p+q−1(W ∪ C(Xi−r ∧ Yj−r))

(∼=)−→ πG
p+q−1(Xi−r ∧ Yj/Yj−r ∨Xi/Xi−r ∧ Yj−r)

induced by the map Θ on homotopy. With this aim in mind, we note that Θ∗([a])
is the homotopy class of the composite

Sp+q−1 −→ Sp+q−1 ∪ C(Sp−1 ∧ Sq−1)

�−→ (Sp−1 ∧ Sq) ∨ (Sp ∧ Sq−1)

(f ′∧g′′)∨(f ′′∧g′)−−−−−−−−−−−→ Xi−r ∧ Yj/Yj−r ∨Xi/Xi−r ∧ Yj−r,

again by commutativity of the above diagram. Checking orientations in the bound-
ary of Dp ∧ Dq, the composition of all but the last map in the displayed map
has degree +1 when projected to Sp−1 ∧ Sq, and degree (−1)p when projected
to Sp ∧ Sq−1. Hence Θ∗([a]) is the sum of the homotopy class of the composite

Sp−1 ∧ Sq f ′∧g′′

−−−−→ Xi−r ∧ Yj/Yj−r(4.11)

in1−−→ Xi−r ∧ Yj/Yj−r ∨Xi/Xi−r ∧ Yj−r

and (−1)p times the homotopy class of the composite

Sp ∧ Sq−1 f ′′∧g′

−−−−→ Xi/Xi−r ∧ Yj−r(4.12)

in2−−→ Xi−r ∧ Yj/Yj−r ∨Xi/Xi−r ∧ Yj−r.

The first term of the right hand side of Equation (4.9) applied to [f ′, f ]⊗ [g′, g]
is

(4.13) φr(∂ ⊗ 1)([f ′, f ]⊗ [g′, g]) = φr([∗, f ′π]⊗ [g′, g]).
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Unravelling the definition of φr, see the discussion in Section 4.5 for more details,
we form the commutative diagram

Sp−2 ∧ Sq−1 ��

��		
			

			
			

	

��

Dp−1 ∧ Sq−1

��		
			

			
			

	

f ′π∧g′

��

Sp−2 ∧Dq ��

��

Dp−1 ∧Dq

f ′π∧g

��

∗ ��

��		
			

			
			

			
		

��

Xi−r ∧ Yj−r

����
���

���
���

�

=

��

∗ ��

��

Xi−r ∧ Yj

=

��

Xi−2r ∧ Yj−r
��

��		
			

			
			

φi−2r,j−r

��

Xi−r ∧ Yj−r

����
���

���
���

�

φi−r,j−r

��

Xi−2r ∧ Yj
��

φi−2r,j ����
���

���
���

�
Xi−r ∧ Yj

φi−r,j

��

Zi+j−3r
�� Zi+j−2r

�� Zi+j−r.

We also introduce the pushouts

Sp+q−2 = Sp−2 ∧Dq ∪Sp−2∧Sq−1 Dp−1 ∧ Sq−1

and

U = Xi−2r ∧ Yj ∪Xi−2r∧Yj−r
Xi−r ∧ Yj−r

mapping to Dp−1 ∧ Dq ∼= Dp+q−1 and Xi−r ∧ Yj , respectively. This leads to the
commutative diagram

Sp+q−2 ��

∗∪f ′π∧g′

��

Dp+q−1

f ′π∧g

��

Xi−r ∧ Yj−r
��

��

φi−r,j−r

��

Xi−r ∧ Yj

=

��

U ��

φU

��

Xi−r ∧ Yj

φi−r,j

��



�
��

��
��

��

W

φW
�����

���
���

�

Zi+j−2r
�� Zi+j−r.
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The class in πG
p+q−1(Zi+j−2r → Zi+j−r) described in Equation (4.13) is represented

visually as the big rectangle in the diagram, that is, by the pair of maps

φi−r,j−r(∗ ∪ f ′π ∧ g′) : Sp+q−2 → Zi+j−2r

φi−r,j(f
′π ∧ g) : Dp+q−1 → Zi+j−r.

We can extend the diagram to the right, as follows,

Dp+q−1 ��

f ′π∧g

��

Dp+q−1 ∪ CSp+q−2 � ��

f ′π∧g∪C(∗∪f ′π∧g′)

��

Sp+q−1

f ′∧g′′

��

Xi−r ∧ Yj
��

��

Xi−r ∧ (Yj ∪ CYj−r)
(�)

��

��

Xi−r ∧ Yj/Yj−r

in1

��

W ��

φW

��

W ∪ C(Xi−r ∧ Yj−r)
(�)

Θ
��

Φ

��

Xi−r ∧ Yj/Yj−r ∨Xi/Xi−r ∧ Yj−r

Zi+j−r
�� Zi+j−r ∪ CZi+j−2r

where the maps marked (
) are equivalences by our assumption that Xi−r → Xi

and Yj−r → Yj are strong h-cofibrations. Under the isomorphism πG
p+q−1(Zi+j−2r→

Zi+j−r) ∼= πG
p+q−1(Zi+j−r ∪ CZi+j−2r) the class described in Equation (4.13) is

given by the composite

Sp+q−1 �−→ Dp+q−1 ∪ CSp+q−2

−→ Xi−r ∧ (Yj ∪ CYj−r)

−→ W ∪ C(Xi−r ∧ Yj−r)

Φ−→ Zi+j−r ∪ CZi+j−2r,

where the first map is a homotopy inverse to the collapse map. This is the im-
age Φ∗([b]) of the homotopy class [b] of the composite map

b : Sp+q−1 �−→ Dp+q−1 ∪ CSp+q−2 −→ W ∪ C(Xi−r ∧ Yj−r).

Since the composite

Sp+q−1 �−→ Dp+q−1 ∪ CSp+q−2 �−→ Sp+q−1 ∼= Sp−1 ∧ Sq

is homotopic to the identity, Θ∗([b]) is the homotopy class of the map (4.11). That
is, it is the image of [f ′ ∧ g′′] under the inclusion (in1)∗.

The second term of the right hand side of (4.9) applied to [f ′, f ]⊗ [g′, g] is

(4.14) φr(1⊗ ∂)([f ′, f ]⊗ [g′, g]) = (−1)pφr([f
′, f ]⊗ [∗, g′π]).

By a similar analysis as for the first term of the sum, the class φr([f
′, f ]⊗ [∗, g′π])

in πG
p+q−1(Zi+j−2r → Zi+j−r) is represented by a pair of maps

φi−r,j−r(f
′ ∧ g′π ∪ ∗) : Sp+q−2 −→ Zi+j−2r,

φi,j−r(f ∧ g′π) : Dp+q−1 −→ Zi+j−r,

where Sp+q−2 is the boundary of Dp+q−1 ∼= Dp∧Dq−1. The corresponding class in
πG
p+q−1(Zi+j−r ∪CZi+j−2r) is the image Φ∗([c]) under Φ∗ of the homotopy class [c]
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of the composite map

c : Sp+q−1 �−→ Dp+q−1 ∪ CSp+q−2 −→ W ∪ C(Xi−r ∧ Yj−r).

The class Θ∗([c]) is then the homotopy class of the map (4.12). That is, it is the
image of [f ′′ ∧ g′] under (in2)∗.

Summarising, we have now defined classes [a], [b], and [c] in πG
p+q−1(W ∪

C(Xi−r ∧ Yj−r)) satisfying

Θ∗([a]) = Θ∗([b]) + (−1)pΘ∗([c]).

Since Θ∗ is an isomorphism, we deduce that

[a] = [b] + (−1)p[c] and Φ∗([a]) = Φ∗([b]) + (−1)pΦ∗([c]).

Since Φ∗([a]), Φ∗([b]) and (−1)pΦ∗([c]) are the three parts in Equation (4.9) evalu-
ated at [f ′, f ]⊗ [g′, g], and [f ′, f ] and [g′, g] were arbitrarily chosen, it follows that
Equation (4.9) holds whenever X� and Y� are filtrations. �

We now extend the result above to all pairings of sequences.

Proposition 4.25. If φ : (X�, Y�) → Z� is a pairing of sequences of orthogo-
nal G-spectra, then

∂φr = φr(∂ ⊗ 1) + φr(1⊗ ∂)

as homomorphisms

H(X�)(i− r, i)⊗H(Y�)(j − r, j) −→ H(Z�)(i+ j − 2r, i+ j − r)

for all integers i, j, r with r ≥ 1.

Proof. Let T (φ) : (T�(X), T�(Y )) → T�(Z) be the pairing of filtrations defined
as in the proof of Lemma 4.21. The equivalence ε : T�(X) → X� and its analogues
for Y� and Z� are compatible with the pairings. Hence we have a commutative
diagram with vertical isomorphisms

H(T�(X))(i− r, i)
∂ ��

ε ∼=
��

H(T�(X))(i− 2r, i− r)

ε∼=
��

H(X�)(i− r, i)
∂ �� H(X�)(i− 2r, i− r),

together with its analogues for Y� and Z�, and

H(T�(X))(i− r, i)⊗H(T�(Y ))(j − r, j)
T (φ)r

��

ε⊗ε ∼=
��

H(T�(Z))(i+ j − r, i+ j)

ε∼=
��

H(X�)(i− r, i)⊗H(Y�)(j − r, j)
φr �� H(Z�)(i+ j − r, i+ j),

for all r ≥ 1. By Proposition 4.24 applied to the pairing of filtrations T (φ) we know
that

∂T (φ)r = T (φ)r(∂ ⊗ 1) + T (φ)r(1⊗ ∂)

as homomorphisms

H(T�(X))(i− r, i)⊗H(T�(Y ))(j − r, j) −→ H(T�(Z))(i+ j − 2r, i+ j − r).

In view of the vertical isomorphisms ε, this implies that ∂φr = φr(∂⊗1)+φr(1⊗∂)
as homomorphisms H(X�)(i−r, i)⊗H(Y�)(j−r, j) → H(Z�)(i+j−2r, i+j−r). �
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This finishes the goal we set out for ourselves at the start of Section 4.5, namely
to prove that a pairing of sequences gives rise to a pairing of the resulting Cartan–
Eilenberg systems. Let us phrase this conclusion in a theorem, so that we can refer
back to it when needed.

Theorem 4.26. A pairing φ : (X�, Y�) → Z� of sequences gives rise to a pairing
φ : (H(X�), H(Y�)) → H(Z�) of the associated Cartan–Eilenberg systems, in the
sense of Definition 4.11.

Proof. The proof of (SPP I) and (SPP III) is the content of Section 4.5 and
the proof of (SPP II) is the content of the present section. �

This directly gives us the following consequence for the associated spectral
sequences.

Theorem 4.27. A pairing φ : (X�, Y�) → Z� of sequences of orthogonal G-
spectra gives rise to a pairing φ : (E∗(X�), E

∗(Y�)) → E∗(Z�), in the sense of
Definition 4.9. Explicitly, we have access to a collection of homomorphisms

φr : Er(X�)⊗ Er(Y�) −→ Er(Z�)

for all r ≥ 1, such that:

(1) The Leibniz rule

drφr = φr(dr ⊗ 1) + φr(1⊗ dr)

holds as an equality of homomorphisms Er
i (X�)⊗Er

j (Y�) −→ Er
i+j−r(Z�)

for all i, j ∈ Z and r ≥ 1.
(2) The diagram

Er+1(X�)⊗ Er+1(Y�) Er+1(Z�)

H(Er(X�)⊗ Er(Y�)) H(Er(Z�))

φr+1

∼=
H(φr)

commutes for all r ≥ 1.

Moreover, the induced pairing φ∗ on filtered abutments is compatible with the
pairing φ∞ of E∞-pages in the sense of Proposition 4.12. Explicitly, the diagram

FiA∞(X�)

Fi−1A∞(X�)
⊗ FjA∞(Y�)

Fj−1A∞(Y�)

φ̄∗ ��

β⊗β

��

Fi+jA∞(Z�)

Fi+j−1A∞(Z�)
��

β

��

E∞
i (X�)⊗ E∞

j (Y�)
φ∞

�� E∞
i+j(Z�)

commutes, for all i, j ∈ Z. Here the abutments are given as

A∞(X�) ∼= πG
∗ Tel(X�)

A∞(Y�) ∼= πG
∗ Tel(Y�)

A∞(Z�) ∼= πG
∗ Tel(Z�),
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and are filtered by the images

FiA∞(X�) = im(πG
∗ (Xi) −→ A∞(X�))

FjA∞(Y�) = im(πG
∗ (Yj) −→ A∞(Y�))

FkA∞(Z�) = im(πG
∗ (Zk) −→ A∞(Z�)),

respectively.

Proof. This follows from combining Theorem 4.26 with Theorem 4.10 and
Proposition 4.12. �

Corollary 4.28. If (X�, φ) is a multiplicative sequence of orthogonal G-
spectra, then the associated spectral sequence (E(X�), d) is multiplicative with mul-
tiplicative abutment.

4.7. The convolution product

Given two sequences X� and Y� of orthogonal G-spectra there is an initial
pairing ι : (X�, Y�) → Z�, where the sequence Z� is given at each level by

Zk = colim
i+j≤k

Xi ∧ Yj ,

with the canonical G-maps Zk−1 → Zk between them. We call this sequence Z�

the (Day) convolution product of X� and Y�, and write

Z� = (X ∧ Y )�.

The universal pairing ι : (X�, Y�) → (X ∧ Y )� has components

ιi,j : Xi ∧ Yj −→ (X ∧ Y )i+j ,

each given by a structure map to the colimit. Per the discussion of Section 4.5, the
universal pairing ι : (X�, Y�) → (X ∧ Y )� induces homomorphisms

ιr : π
G
p (Xi−r → Xi)⊗ πG

q (Yj−r → Yj) −→ πG
p+q((X ∧ Y )i+j−r → (X ∧ Y )i+j)

for r ≥ 1, and Theorem 4.27 shows that the pairing ι extends to a pairing

ι : E∗(X�)⊗ E∗(Y�) → E∗((X ∧ Y )�)

of spectral sequences, in such a way that the induced pairing on filtered abutments

ῑ∗ :
Fiπ

G
∗ Tel(X�)

Fi−1πG
∗ Tel(X�)

⊗ Fjπ
G
∗ Tel(Y�)

Fj−1πG
∗ Tel(Y�)

−→ Fi+jπ
G
∗ Tel((X ∧ Y )�)

Fi+j−1πG
∗ Tel((X ∧ Y )�)

is compatible with the induced pairing on E∞-pages.

Remark 4.29. The colimit defining Zk can equally well be calculated over the
cofinal subcategory of pairs (i, j) ∈ Z2 with k− 1 ≤ i+ j ≤ k, i.e., as the colimit of
the zigzag diagram:

. . . �� Xi−1 ∧ Yk−i+1

Xi−1 ∧ Yk−i
��

��

Xi ∧ Yk−i

Xi ∧ Yk−i−1
��

��

. . .
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If (X�, φ) and (Y�, ψ) are multiplicative sequences of orthogonal G-spectra, then
the convolution product ((X∧Y )�, φ∧ψ) is a multiplicative sequence as well. Here,
the component

(φ ∧ ψ)i,j : (X ∧ Y )i ∧ (X ∧ Y )j −→ (X ∧ Y )i+j

is defined as the colimit over i1 + i2 ≤ i and j1 + j2 ≤ j of the composite maps

Xi1 ∧ Yi2 ∧Xj1 ∧ Yj2
1∧τ∧1−−−−→ Xi1 ∧Xj1 ∧ Yi2 ∧ Yj2

φi1,j1
∧ψi2,j2−−−−−−−−→ Xi1+j1 ∧ Yi2+j2

ιi1+j1,i2+j2−−−−−−−−→ (X ∧ Y )i1+j1+i2+j2 −→ (X ∧ Y )i+j .

Lemma 4.30. If (X�, φ) and (Y�, ψ) are multiplicative sequences, then the ho-
momorphism ι1 : E1(X�)⊗ E1(Y�) → E1((X ∧ Y )�) is multiplicative, in the sense
that the diagram

E1(X�)⊗ E1(Y�)⊗ E1(X�)⊗ E1(Y�) E1((X ∧ Y )�)⊗ E1((X ∧ Y )�)

E1(X�)⊗ E1(X�)⊗ E1(Y�)⊗ E1(Y�)

E1(X�)⊗ E1(Y�) E1((X ∧ Y )�)

ι1⊗ι1

1⊗τ⊗1 ∼=

(φ∧ψ)1

φ1⊗ψ1

ι1

commutes.

Proof. Let us write θ = φ ∧ ψ for brevity. The diagrams

Xi1 ∧ Yi2 ∧Xj1 ∧ Yj2

ιi1,i2
∧ιj1,j2 ��

1∧τ∧1 ∼=
��

(X ∧ Y )i1+i2 ∧ (X ∧ Y )j1+j2

θi1+i2,j1+j2

��

Xi1 ∧Xj1 ∧ Yi2 ∧ Yj2

φi1,j1
∧ψi2,j2

��

Xi1+j1 ∧ Yi2+j2

ιi1+j1,i2+j2 �� (X ∧ Y )i1+j1+i2+j2

commute, and are compatible, for all i1, i2, j1 and j2. This implies that the
composite homomorphism

H(X�)(i1 − r, i1)⊗H(Y�)(i2 − r, i2)⊗H(X�)(j1 − r, j1)⊗H(Y�)(j2 − r, j2)

ιr⊗ιr−−−→ H((X ∧ Y )�)(i1 + i2 − r, i1 + i2)⊗H((X ∧ Y )�)(j1 + j2 − r, j1 + j2)

θr−→ H((X ∧ Y )�)(i1 + i2 + j1 + j2 − r, i1 + i2 + j1 + j2)

is equal to the composite homomorphism

H(X�)(i1 − r, i1)⊗H(Y�)(i2 − r, i2)⊗H(X�)(j1 − r, j1)⊗H(Y�)(j2 − r, j2)
∼=−→ H(X�)(i1 − r, i1)⊗H(X�)(j1 − r, j1)⊗H(Y�)(i2 − r, i2)⊗H(Y�)(j2 − r, j2)

φr⊗ψr−−−−→ H(X�)(i1 + j1 − r, i1 + j1)⊗H(Y�)(i2 + j2 − r, i2 + j2)
ιr−→ H((X ∧ Y )�)(i1 + j1 + i2 + j2 − r, i1 + j1 + i2 + j2)

for each r ≥ 1, where the homomorphisms ιr, φr, ψr and θr are defined as in
Section 4.5. For r = 1, this gives the claim of the lemma. �
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Note that for general sequences X� and Y� we typically have no homotopical
control of their convolution product. However, if both X� and Y� are filtrations,
then we can view each Xi ∧ Yj as a subspectrum of

colim
i

Xi ∧ colim
j

Yj =
⋃
i

Xi ∧
⋃
j

Yj

and their colimit for i+ j ≤ k can be formed as the union

(X ∧ Y )k =
⋃

i+j=k

Xi ∧ Yj .

Proposition 4.31. If the sequences X� and Y� are filtrations, then their con-
volution product (X ∧ Y )� is a filtration.

Proof. We must show that each map

(X ∧ Y )k−1 −→ (X ∧ Y )k

is a strong h-cofibration. This is the colimit of a sequence of maps, each of which
is the cobase change of a pushout-product map

Xi−1 ∧ Yj ∪Xi ∧ Yj−1 −→ Xi ∧ Yj

with i + j = k, where the pushout is formed over Xi−1 ∧ Yj−1. By assumption
Xi−1 → Xi and Yj−1 → Yj are strong h-cofibrations, so the conclusion follows
immediately from Theorem 4.17. �

In the special case when two arbitrary sequences X� and Y� are first replaced
with equivalent filtrations T�(X) and T�(Y ), we can give the following alterna-
tive, more explicit, argument for why the resulting convolution product is always a
filtration.

Lemma 4.32. For any two sequences X� and Y� of orthogonal G-spectra, the
convolution product (T (X) ∧ T (Y ))� is a filtration.

Proof. In degree k,

(T (X) ∧ T (Y ))k =
⋃

i+j=k

Ti(X) ∧ Tj(Y ).

This is the subspectrum of Tel(X�) ∧ Tel(Y�) with telescope coordinates x and y
satisfying �x� + �y� ≤ k. Here �x� denotes the least integer i with x ≤ i. The
inclusion (T (X)∧T (Y ))k−1 → (T (X)∧T (Y ))k is then the composite of a sequence
of cobase changes of maps of the form

i0 : A −→ B ∪A A ∧ I+,

with A the double mapping cylinder of the diagram

Xi−1 ∧ Yj ←− Xi−1 ∧ Yj−1 −→ Xi ∧ Yj−1

and B = Xi ∧ Yj , for i + j = k. Since each such map i0 is a strong h-cofibration,
so is the structure map in (T (X) ∧ T (Y ))�, as claimed. �
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As a consequence of Proposition 4.31, we can write the first page of the spectral
sequence associated to the convolution product of two filtrations X� and Y� as

E1
k((X ∧ Y )�) = πG

∗ ((X ∧ Y )k−1 → (X ∧ Y )k)

∼= πG
∗ ((X ∧ Y )k/(X ∧ Y )k−1)

∼=
⊕

i+j=k

πG
∗ (Xi/Xi−1 ∧ Yj/Yj−1)

since
(X ∧ Y )k

(X ∧ Y )k−1

∼=
∨

i+j=k

Xi/Xi−1 ∧ Yj/Yj−1.

Furthermore, the diagram

(4.15)

E1(X�)⊗ E1(Y�) E1((X ∧ Y )�)

E1(X�)⊗ E1(Y�) E1((X ∧ Y )�)

ι1

d1⊗1+1⊗d1 d1

ι1

commutes. To proceed we usually need more explicit control of the d1-differential
for (X ∧ Y )�, e.g., by use of (4.15) in situations where ι1 is surjective.

Suppose now that (X�, φ) and (Y�, ψ) are multiplicative sequences, and also
assume that the former is a filtration. This will be the situation when we filter
the G-Tate construction in Chapter 6. By Corollary 4.22, the telescopic replace-
ment (T�(Y ), T (ψ)) is a multiplicative filtration, and by Proposition 4.31 the con-
volution product ((X ∧ T (Y ))�, φ ∧ T (ψ)) is then also a multiplicative filtration.
Lemma 4.30 shows that ι1 : E1(X�)⊗E1(Y�) → E1((X ∧ Y )�) is multiplicative, in
the sense that the diagram

E1(X�)⊗ E1(T�(Y ))
⊗

E1(X�)⊗ E1(T�(Y ))

E1((X ∧ T (Y ))�)⊗ E1((X ∧ T (Y ))�)

E1(X�)⊗ E1(X�)
⊗

E1(T�(Y ))⊗ E1(T�(Y ))

E1(X�)⊗ E1(T�(Y )) E1((X ∧ T (Y ))�)

ι1⊗ι1

1⊗τ⊗1 ∼=

(φ∧T (ψ))1

φ1⊗T (ψ)1

ι1

commutes for all i, j ∈ Z. In situations where ι1 is surjective, this gives us algebraic
control of the product on E1((X∧T (Y ))�) in terms of the products on E1(X�) and
E1(T�(Y )) ∼= E1(Y�).

Remark 4.33. The results of this chapter readily generalise to the case of
sequences of R-modules in orthogonal G-spectra, for any fixed commutative or-
thogonal ring spectrum R. Letting X� denote a sequence

· · · −→ Xi−1 −→ Xi −→ Xi+1 −→ · · ·
of R-module G-spectra and R-module G-maps, the telescope Tel(X�) is an R-
module G-spectrum, and the following all live in the category of R∗-modules: the
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Cartan–Eilenberg system (H, ∂), the exact couple (A,E1), the filtered abutment
A∞ ∼= πG

∗ Tel(X�), and the spectral sequence (Er, dr). The telescope filtration and
equivalence

ε : T�(X) −→ X�

also live in the category of R-modules.
Given sequences X�, Y� and Z� of R-modules in orthogonal G-spectra, an R-

bilinear pairing
φ : (X�, Y�) −→ Z�

consists of compatible R-linear G-maps

φ : Xi ∧R Yj −→ Zi+j ,

where the usual smash product has been replaced with the smash product over R.
Such pairings induce R∗-module homomorphisms

φr : H(X�)(i− r, i)⊗R∗ H(Y�)(j − r, j) −→ H(Z�)(i+ j − r, i+ j),

where the usual tensor product has been replaced with the tensor product over R∗.
The Leibniz rule holds for φr, so that φ induces an R∗-linear pairing of R∗-module
spectral sequences

φr : Er(X�)⊗R∗ Er(Y�) −→ Er(Z�).

The corresponding R∗-linear pairings φ̄∗ and φ∞ of the filtration subquotients
and E∞-pages are compatible under the R∗-module monomorphism

β :
FiA∞

Fi−1A∞
−→ E∞

i .

The universal R-bilinear pairing ι : (X�, Y�) → Z� is given by the R-module convo-
lution product Z� = (X ∧R Y )�, with

(X ∧R Y )k = colim
i+j≤k

Xi ∧R Yj .

If X� and Y� are R-module filtrations, then (X ∧R Y )� is an R-module filtration.
For general R-module sequences X� and Y� the diagram (4.15) commutes after
replacing ⊗ and ∧ by ⊗R∗ and ∧R, respectively. Finally, if (X�, φ) and (Y�, ψ) are
multiplicative R-module sequences then ι1 : E1(X�)⊗R∗ E

1(Y�) → E1((X ∧R Y )�)
will be multiplicative. This depends on the existence of R-module maps

(23) = 1 ∧ τ ∧ 1: Xi1 ∧R Yi2 ∧R Xj1 ∧R Yj2 −→ Xi1 ∧R Xj1 ∧R Yi2 ∧R Yj2

that are strictly compatible for varying i1, j1, i2 and j2. This is a point where we use
the assumption that R is strictly commutative, not just homotopy commutative,
as an orthogonal ring spectrum.
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CHAPTER 5

The G-Homotopy Fixed Point Spectral Sequence

Given an R-module X of orthogonal G-spectra we can define the G-homotopy
fixed points as the genuine fixed points

XhG = F (EG+, X)G = FR(R ∧ EG+, X)G.

In this chapter we construct a spectral sequence

Er
∗,∗(X) =⇒ π∗(X

hG)

with abutment being the homotopy groups of the G-homotopy fixed points of X, for
any compact Lie group G. This spectral sequence will be induced by the filtration,
covered in Section 5.1, on the free and contractible G-space EG coming from the
simplicial bar construction. In Section 5.2, we show that this spectral sequence is
multiplicative with multiplicative abutment. See Theorem 5.6. Under the assump-
tion that R[G]∗ is finitely generated and projective over R∗ we can algebraically
identify the E2-page of the G-homotopy fixed point spectral sequence as

E2
∗,∗(X) ∼= Ext−∗

R[G]∗
(R∗, π∗(X)),

with the multiplicative structure being identified with the cup product on the right-
hand side. See Theorem 5.14. Lastly, in Section 5.4 we discuss the relationship
between the simplicial skeletal filtration on ET and the often-used filtration coming
from odd-dimensional spheres.

5.1. The filtered G-space EG

As always, G is a compact Lie group. We let

EG = B(∗, G,G)

be the free and contractible (right) G-space obtained by taking the geometric real-
ization of the simplicial space

[q] �→ Bq(∗, G,G) = Gq ×G,

with the usual face and degeneracy maps [May75, §7]. There is a simplicial con-
traction of B•(∗, G,G), so EG is indeed contractible [May72, Prop. 9.8]. We
let FiEG be the image of the structure map Δi × Bi(∗, G,G) → EG to the geo-
metric realization, yielding the following exhaustive filtration [May72, Def. 11.1]:

∅ = F−1EG ⊂ F0EG ⊂ · · · ⊂ Fi−1EG ⊂ FiEG ⊂ · · · ⊂ EG.

85
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Here, the group G acts freely from the right in each simplicial degree, hence also
on each term in this filtration. The structure map induces a G-equivariant homeo-
morphism

Σi(G∧i ∧G+) ∼= Δi/∂Δi ∧G∧i ∧G+
∼= FiEG/Fi−1EG

for each i ≥ 0. Each smash power G∧i = G∧ · · · ∧G (with i copies of G) is formed
with respect to the base point e ∈ G given by the unit element.

Remark 5.1. When G is finite, FiEG gives the i-skeleton of a free G-CW
structure on EG. When G = T = U(1) is the circle group, FiEG gives the 2i- and
2i + 1-skeleta of a G-CW structure (with no odd-dimensional G-cells). Similarly,
when G = U = Sp(1) is the 3-sphere, FiEG gives the 4i-, 4i + 1-, 4i + 2- and
4i + 3-skeleta of a G-CW structure. For other Lie groups the relationship is more
complicated. Hence our filtration will agree with that used by Greenlees and May
in [GM95, §9] when G is finite, be a doubly accelerated version when G = T, and
be a quadruply accelerated version when G = U. The two filtrations might be quite
different for other compact Lie groups G, though.

We give the Cartesian product EG× EG the product filtration:

Fk(EG× EG) =
⋃

i+j=k

FiEG× FjEG.

Note that the diagonal G-map Δ: EG → EG×EG, sending x to Δ(x) = (x, x), is
not filtration-preserving. However, by [Seg68, Lem. 5.4] or [May72, Lem. 11.15]
it is naturally homotopic to a filtration-preserving map D : EG → EG×EG, which
we call a diagonal approximation for EG. By inspection, both D and the natural
homotopy Δ 
 D are G-equivariant. Subject to this condition, the precise choice
of diagonal approximation will not be important, only its existence.

Lemma 5.2. Any diagonal approximation D induces a commutative diagram of
based G-spaces and G-maps

FkEG

Fk−1EG

D′
k ��

��

��

D′
i,j

��

Fk(EG× EG)

Fk−1(EG× EG)

pri,j
��

��

��

FiEG

Fi−1EG
∧ FjEG

Fj−1EG
��

��

EG

Fk−1EG

Dk ��

Di,j

��

EG× EG

Fk−1(EG× EG)
��

EG

Fi−1EG
∧ EG

Fj−1EG
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for all i+ j = k. The G-maps Di,j are compatible for varying i and j, in the sense
that the squares

EG

Fi−1EG
∧ EG

Fj−1EG

��

EG

Fk−1EG

Di,j
��

��

Di,j
��

EG

Fi−1EG
∧ EG

Fj−1EG

��

EG

FiEG
∧ EG

Fj−1EG

EG

FkEG

Di+1,j
��

Di,j+1
��

EG

Fi−1EG
∧ EG

FjEG

commute.

Proof. This follows from the inclusions

D(Fk−1EG) ⊂ Fk−1(EG× EG) ⊂ (Fi−1EG× EG) ∪ (EG× Fj−1EG)

and the splitting

Fk(EG× EG)

Fk−1(EG× EG)
∼=
∨

i+j=k

FiEG

Fi−1EG
∧ FjEG

Fj−1EG
.

�

5.2. G-homotopy fixed points

Let X be an orthogonal G-spectrum. In this section we will construct a spectral
sequence computing the homotopy groups of theG-homotopy fixed points ofX, that
is, the G-fixed points of a fibrant replacement of the function spectrum F (EG+, X):

XhG = F (EG+, X)G.

To this end, note that the sequence of based G-spaces

EG+ =
EG

F−1EG
→ EG

F0EG
→ · · · → EG

Fi−1EG
→ EG

FiEG
→ · · · → ∗

induces a sequence

M�(X) = F (EG/EG−�−1, X)

of orthogonal G-spectra. Explicitly, M�(X) is the sequence

· · · → F

(
EG

FiEG
,X

)
→ F

(
EG

Fi−1EG
,X

)
→ . . .

· · · → F

(
EG

F0EG
,X

)
→ F (EG+, X) = F (EG+, X) = . . . .

Definition 5.3. The spectral sequence (Er(X), dr) = (Er(M�(X)), dr) asso-
ciated to the sequence M�(X) above is called the G-homotopy fixed point spectral
sequence of X.

Each map of function spectra F (EG/FiEG,X) → F (EG/Fi−1EG,X) is a
monomorphism of orthogonalG-spectra, but it is unlikely in general that these maps
are h-cofibrations, so M�(X) need not be a filtration. Since the sequence M�(X) is
eventually constant, there is a natural G-equivalence

M∞(X) = Tel(M�(X)) 
G F (EG+, X).
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There is also a G-equivalence

holim
s

Ms(X) = holim
s

F

(
EG

F−s−1EG
,X

)
∼= F

(
hocolim

i

EG

Fi−1EG
,X

)

G ∗,

since hocolimi Fi−1EG 
G EG. We conclude that the G-homotopy fixed point
spectral sequence is always conditionally convergent to the abutment

A∞(M�(X)) ∼= πG
∗ Tel(M�(X)) ∼= πG

∗ F (EG+, X) = π∗(X
hG).

Let us now explicitly compute the E1-page of this spectral sequence.

Lemma 5.4. The E1-page of the G-homotopy fixed point spectral sequence of X
is given by

E1
−i,∗(M�(X)) ∼= πG

−i+∗F

(
FiEG

Fi−1EG
,X

)
∼= πG

∗ F (G+, F (G∧i, X))

and the differential

d1−i,∗ : E
1
−i,∗(X) → E1

−i−1,∗(X)

is contravariantly induced by the composite G-map

Fi+1EG

FiEG
−→ EG

FiEG

 EG

Fi−1EG
∪ C
( FiEG

Fi−1EG

)
−→ Σ

FiEG

Fi−1EG
.

Proof. The cofibre sequence

FiEG

Fi−1EG
−→ EG

Fi−1EG
−→ EG

FiEG

of based G-spaces is a homotopy cofibre sequence, hence induces a homotopy fibre
sequence

M−i−1(X) −→ M−i(X) −→ F

(
FiEG

Fi−1EG
,X

)
of orthogonal G-spectra. It follows that

E1
−i,∗(X) ∼= πG

−i+∗F

(
FiEG

Fi−1EG
,X

)
∼= πG

−i+∗F (Σi(G∧i ∧G+), X)

∼= πG
∗ F (G+, F (G∧i, X))

for i ≥ 0. The d1-differential is the composite of the connecting homomorphism

πG
−i+∗(M−i−1(X) → M−i(X))

∂−→ πG
−i−1+∗(M−i−1(X)) ∼= πG

−i−1+∗F

(
EG

FiEG
,X

)
induced by

EG

FiEG

 EG

Fi−1EG
∪ C

(
FiEG

Fi−1EG

)
−→ Σ

FiEG

Fi−1EG
,

and the homomorphism

πG
−i−1+∗(M−i−1(X)) −→ πG

−i−1+∗(M−i−2(X) → M−i−1(X))

induced by
Fi+1EG

FiEG
−→ EG

FiEG
.

�



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

5.2. G-HOMOTOPY FIXED POINTS 89

Remark 5.5. When G is finite, the spectral sequence Er(M�(X)) agrees with
the G-homotopy fixed point spectral sequence obtained from the G-equivariant
Whitehead (or Postnikov) tower for X. Greenlees and May prove this in [GM95,
Theorem B.8]. When G = T or U it is an accelerated version of the latter spectral
sequence. In Theorem 5.14 we will give an algebraic description of E2(M�(X))
when X is an R-module and R[G]∗ is finitely generated and projective over R∗.

The homotopy fixed point construction is a lax symmetric monoidal functor.
To see this, let μ : X ∧ Y → Z be a pairing of orthogonal G-spectra, and recall the
diagonal map Δ: EG → EG× EG. The associated pairing XhG ∧ Y hG → ZhG is
given by the composite

F (EG+, X)G ∧ F (EG+, Y )G
α−→ F (EG+ ∧ EG+, X ∧ Y )G

(Δ+)∗−→ F (EG+, X ∧ Y )G

μ∗−→ F (EG+, Z)G.

From this point of view it is hence relevant to understand how the homotopy fixed
point spectral sequence interacts with multiplicative structures. First note that the
maps Di,j from Lemma 5.2 induce G-maps

F

(
EG

Fi−1EG
,X

)
∧ F

(
EG

Fj−1EG
, Y

)
α−→ F

(
EG

Fi−1EG
∧ EG

Fj−1EG
,X ∧ Y

)
D∗

i,j−→ F

(
EG

Fk−1EG
,X ∧ Y

)
μ∗−→ F

(
EG

Fk−1EG
,Z

)
for k = i+j. These are compatible for varying i and j, in the sense of Definition 4.20,
and so define the components μ̄−i,−j of a pairing

μ̄ : (M�(X),M�(Y )) → M�(Z)

of sequences of orthogonal G-spectra.

Theorem 5.6. Let μ : X ∧ Y → Z be a pairing of orthogonal G-spectra. There
is then a pairing

μ̄r : Er(M�(X))⊗ Er(M�(Y )) −→ Er(M�(Z))

of the associated G-homotopy fixed point spectral sequences, and the induced pair-
ing μ̄∗ on filtered abutments is compatible with the induced pairing

μ̄∞ : E∞(M�(X))⊗ E∞(M�(Y )) → E∞(M�(Z))

of E∞-pages.
Moreover, the pairing μ̄1 of E1-pages is contravariantly induced by

D′
i,j :

FkEG

Fk−1EG
−→ FiEG

Fi−1EG
∧ FjEG

Fj−1EG

under the isomorphism of Lemma 5.4, and the pairing

μ̄∗ : π∗(X
hG)⊗ π∗(Y

hG) −→ π∗(Z
hG)

equals the pairing induced by XhG ∧ Y hG → ZhG.
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Proof. In the paragraph before this theorem we noted that a map μ : X∧Y →
Z of orthogonal G-spectra gives rise to a pairing μ̄ : (M�(X),M�(Y )) → M�(Z) of
sequences. By Theorem 4.27 it follows that we have an induced pairing between the
associated spectral sequences, and that the induced pairing μ̄∗ on filtered abutments
is compatible with the pairing μ̄∞ of E∞-pages.

Tracing through the definitions shows that the pairing μ̄1
−i,−j of E1-pages is

compatible with the pairing induced by D′
i,j under the isomorphism

E1
−i,∗(M�(X)) = πG

−i+∗(M−i−1(X) → M−i(X))

∼= πG
−i+∗F

(
FiEG

Fi−1EG
,X

)
and its analogues for Y and Z.

The abutment A∞(M�(X)) ∼= πG
∗ F (EG+, X) is filtered by the images

Fsπ
G
∗ F (EG+, X) = im(πG

∗ F (EG/EG−s−1, X) −→ πG
∗ F (EG+, X)).

Note that this exhaustive filtration is constant for s ≥ 0. The pairing μ̄∗ is induced
by the composite map

μ̄0,0 : F (EG+, X) ∧ F (EG+, Y )
α−→ F (EG+ ∧ EG+, X ∧ Y )

D∗
0,0−−−→ F (EG+, X ∧ Y )

μ∗−→ F (EG+, Z).

In view of the based G-homotopy Δ+ 
 D+ = D0,0, it is also induced by the
composite map

F (EG+, X) ∧ F (EG+, Y )
α−→ F (EG+ ∧ EG+, X ∧ Y )

Δ∗
+−−→ F (EG+, X ∧ Y )

μ∗−→ F (EG+, Z),

where Δ+ : EG+ → (EG× EG)+ ∼= EG+ ∧ EG+. �
Corollary 5.7. If (X,μ : X ∧ X → X) is a multiplicative orthogonal G-

spectrum, then the G-homotopy fixed point spectral sequence (Er(M�(X)), dr) is
a conditionally convergent and multiplicative spectral sequence, with multiplicative
abutment π∗(X

hG).

5.3. Algebraic description of the E1- and E2-pages

Under suitable flatness hypotheses there is an algebraic description of the first
two pages of the homotopy fixed point spectral sequence. Recall from Chapter 3
that R is our ‘ground’ commutative orthogonal ring spectrum. We write

R∗(X) = π∗(R ∧X)

for the associated (reduced) homology theory. We will assume that R[G]∗ is flat
over R∗, so that R[G]∗ is a cocommutative Hopf algebra over R∗, per Lemma 3.2.
Let us write

E = R ∧EG+ and Ei = R ∧ (FiEG)+.

Each map Ei−1 → Ei is a q-cofibration, hence a strong h-cofibration, so that E� is
a filtration

· · · −→ Ei−1 −→ Ei −→ Ei+1 −→ · · ·
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of R-modules in orthogonal G-spectra. Here Ei = ∗ for i < 0, and

E∞ = Tel(E�) 
G E.

The R- and G-equivariant collapse map 1∧c : E = R∧EG+ → R∧S0 = R is a non-
equivariant R-equivalence, inducing an R[G]∗-module isomorphism π∗(E) ∼= R∗.

Definition 5.8. Let (P∗,∗, ∂) = NB∗(R∗, R[G]∗, R[G]∗) denote the normalised
bar resolution, as defined in Construction 2.26.

Explicitly, the normalised bar resolution of the R[G]∗-module R∗ is a non-
negative chain complex given in homological degree n ≥ 0 as

Pn,∗ = NBn(R∗, R[G]∗, R[G]∗) = R[G]
⊗n

∗ ⊗R∗ R[G]∗,

where
R[G]∗ = coker(η : R∗ → R[G]∗) ∼= ker(ε : R[G]∗ → R∗)

denotes the augmentation (co-)ideal, and R[G]
⊗n

∗ is its n-th tensor power over R∗.
The boundary ∂n : Pn,∗ → Pn−1,∗ is induced by the alternating sum of face opera-
tors

n∑
i=0

(−1)idi

for n ≥ 1, with

di =

{
ε⊗ 1⊗n for i = 0,

1⊗i−1 ⊗ φ⊗ 1⊗n−i for 0 < i ≤ n.

Note that the simplicial contraction [May72, Prop. 9.8] of B•(R∗, R[G]∗, R[G]∗)
shows that the augmentation ε : P0,∗ = R[G]∗ → R∗ admits an R∗-linear chain
homotopy inverse, so that the augmented chain complex

. . . −→ Pq,∗
∂q−→ Pq−1,∗ → · · · → P1,∗

∂1−→ P0,∗
ε−→ R∗ −→ 0

is exact. Hence (P∗,∗, ∂) is a flat R[G]∗-module resolution of R∗.

Lemma 5.9. If R[G]∗ is flat over R∗, then the (E1, d1)-page of the non-equi-
variant homotopy spectral sequence

E1
i,∗ = πi+∗(Ei−1 → Ei)

associated to E� is isomorphic to (P∗,∗, ∂). The edge homomorphism P0,∗ →
π∗(E) ∼= R∗ is equal to the augmentation ε : R[G]∗ → R∗, and makes (P∗,∗, ∂)
a flat R[G]∗-module resolution of R∗. In particular, the spectral sequence collapses
at the E2-page, where is it given by

E2 = E∞ ∼= R∗

concentrated in filtration degree i = 0.

Proof. The R-module filtration E� has an associated R[G]∗-module spectral
sequence (for non-equivariant homotopy groups) with E1-page

E1
i,∗ = πi+∗(Ei−1 → Ei) ∼= Ri+∗

(
FiEG

Fi−1EG

)
and d1-differential equal to the composite

Ri+∗

(
FiEG

Fi−1EG

)
∂−→ Ri−1+∗(Fi−1EG+) −→ Ri−1+∗

(
Fi−1EG

Fi−2EG

)
.
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By the proof of [Seg68, Prop. 5.1] or [May72, Thm. 11.14], (E1, d1) is the nor-
malized chain complex associated to the simplicial R[G]∗-module

[q] �→ R∗(Bq(∗, G,G)+) = R∗((G
q ×G)+).

The products

R[G]∗ ⊗R∗ R[G]∗ ⊗R∗ · · · ⊗R∗ R[G]∗
·−→ π∗(R ∧G+ ∧R R ∧G+ ∧R · · · ∧R R ∧G+)

∼= π∗(R ∧G+ ∧G+ ∧ · · · ∧G+)

induce a homomorphism of simplicial R[G]∗-modules

B•(R∗, R[G]∗, R[G]∗) −→ R∗(B•(∗, G,G))+).

Since R[G]∗ is assumed to be flat over R∗ the products are isomorphisms, so
that (E1, d1) is indeed isomorphic to the normalized chain complex associated to
the simplicial R[G]∗-module B•(R∗, R[G]∗, R[G]∗). �

Remark 5.10. If R[G]∗ is projective over R∗, then R[G]∗ is also R∗-projective,
and each Pq,∗ is R[G]∗-projective by Lemma 2.2. It follows that the chain com-
plex (P∗,∗, ∂) is a projective R[G]∗-module resolution of R∗. Moreover, if R[G]∗
is finitely generated over R∗, then so is R[G]∗, and each Pq,∗ is finitely generated
as an R[G]∗-module. We conclude that (P∗,∗, ∂) is a projective resolution of finite
type, in this case.

To deal with the multiplicative structure of the spectral sequence we introduce
the convolution product (E ∧R E)�. Explicitly, this is given by

(E ∧R E)k = R ∧ Fk(EG× EG)+,

with filtration subquotients

(E ∧R E)k
(E ∧R E)k−1

∼=
∨

i+j=k

Ei

Ei−1
∧R

Ej

Ej−1
.

Let ini,j denote the inclusion of the (i, j)-th summand in this splitting.

Lemma 5.11. The (E1, d1)-page of the homotopy spectral sequence associated
to (E ∧R E)� is isomorphic to the tensor product

(P∗,∗ ⊗R∗ P∗,∗, ∂ ⊗ 1 + 1⊗ ∂),

with the same signs occurring in the boundary as specified in Section 2.2. In par-
ticular, this spectral sequence collapses at the E2-page, where it is given by

E2 = E∞ ∼= R∗ ⊗R∗ R∗ ∼= R∗

concentrated in filtration degree 0.

Proof. Theorem 4.27 applied to the initial pairing ι : (E�, E�) → (E ∧R E)�
gives us a pairing

ιr : Er(E�)⊗R∗ Er(E�) −→ Er((E ∧R E)�)

of R[G]∗-module spectral sequences. Since each copy of E� is a filtration, the pairing

ι1i,j : Pi,∗ ⊗R∗ Pj,∗ = E1
i,∗(E�)⊗R∗ E1

j,∗(E�) −→ E1
k,∗((E ∧R E)�),
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for r = 1 and i+ j = k, is induced by the product

Pi,∗ ⊗R∗ Pj,∗
·−→ π∗

(
Ei

Ei−1
∧R

Ej

Ej−1

)
and the inclusion

ini,j :
Ei

Ei−1
∧R

Ej

Ej−1
−→ (E ∧R E)k

(E ∧R E)k−1
.

Since R[G]∗ is flat over R∗, so that each Pi,∗ is flat over R∗, the product is an
isomorphism. Adding these together for i + j = k we obtain the degree k part of
an isomorphism of R[G]∗-module chain complexes

ι1 : P∗,∗ ⊗R∗ P∗,∗
∼=−→ E1

∗,∗((E ∧R E)�).

In particular, Theorem 4.27 ensures that the tensor product boundary operator
∂⊗1+1⊗∂ on the left hand side corresponds to the d1-differential on the right hand
side. The calculation of the E2-page then follows as in the proof of Proposition 2.31.

�

Lemma 5.12. The diagonal approximation D : EG → EG×EG induces a map
of filtrations 1 ∧D+ : E� → (E ∧R E)� and a chain map

(1 ∧D+)
1 : E1(E�) −→ E1((E ∧R E)�),

which corresponds, under the isomorphisms of Lemma 5.9 and Lemma 5.11, to
an R[G]∗-module chain map

Ψ: P∗,∗ −→ P∗,∗ ⊗R∗ P∗,∗.

In particular, the component

Ψi,j = pri,j ◦Ψk : Pk,∗ → Pi,∗ ⊗R∗ Pj,∗

of Ψk, for k = i+ j, is induced by the G-map D′
i,j of Lemma 5.2 and Theorem 5.6.

The chain map Ψ is characterised, uniquely up to chain homotopy equivalence,
by the commutative square

P∗,∗
Ψ ��

ε

��

P∗,∗ ⊗R∗ P∗,∗

ε⊗ε

��

R∗
∼= �� R∗ ⊗R∗ R∗

of R[G]∗-module complexes.

Proof. The map of E1-pages induced by the diagonal approximation is in-
duced by 1 ∧ D′

k, and the (i, j)-th component in the direct sum splitting of its
target can be recovered by projecting to that summand, which is therefore induced
by 1 ∧D′

i,j .
By naturality of the edge homomorphism, we have a commutative square

of R[G]∗-modules

P0,∗
Ψ0 ��

ε

��

P0,∗ ⊗R∗ P0,∗

ε⊗ε

��

R∗
∼= �� R∗ ⊗R∗ R∗.
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Hence the R[G]∗-module chain map Ψ: P∗,∗ → P∗,∗ ⊗R∗ P∗,∗ is a lift of the iso-
morphism R∗ ∼= R∗ ⊗R∗ R∗. Since ε : P∗,∗ → R∗ is an R[G]∗-projective com-
plex over R∗, and ε ⊗ ε : P∗,∗ ⊗R∗ P∗,∗ → R∗ ⊗R∗ R∗ is a resolution, it follows
from [ML95, Thm. III.6.1] that such a chain map Ψ exists and is unique up to
chain homotopy. �

We now suppose that X is an R-module in orthogonal G-spectra. There are
then compatible adjunction equivalences

FR(E/Ei−1, X) ∼= F (EG/Fi−1EG,X) = M−i(X)

for all i. The left hand side exhibits M�(X) as a sequence of R-modules in orthog-
onal G-spectra, so that the G-homotopy fixed point spectral sequence Er(M�(X))
is a spectral sequence of R∗-modules. Theorem 5.6 readily generalizes: If Y and Z
are also R-modules in orthogonal G-spectra, and μ : X ∧R Y → Z is a map in this
category, then we obtain a pairing of R∗-module spectral sequences

μ̄r : Er(M�(X))⊗R∗ Er(M�(Y )) −→ Er(M�(Z))

such that the resulting pairing of E∞-pages is compatible with the R∗-linear pairing

μ̄∗ : π
G
∗ F (EG+, X)⊗R∗ πG

∗ F (EG+, Y ) −→ πG
∗ F (EG+, Z)

of abutments. We can now give algebraic descriptions of the (E1, d1)-pages and the
pairing μ̄1, for R[G]∗ projective over R∗.

Proposition 5.13. Assume that R[G]∗ is projective as an R∗-module. There
is then a natural isomorphism

E1
−i,∗(M�(X)) ∼= HomR[G]∗(Pi,∗, π∗(X))

of R∗-modules. Under this isomorphism, the d1-differential

d1−i,∗ : E
1
−i,∗(M�(X)) −→ E1

−i−1,∗(M�(X))

corresponds to the boundary in the chain complex, with signs as specified in Sec-
tion 2.2. The pairing

μ̄1 : E1
−i,∗(M�(X))⊗R∗ E1

−j,∗(M�(Y )) −→ E1
−k,∗(M�(Z))

with i+ j = k is contravariantly induced by the component

Ψi,j : Pk,∗ −→ Pi,∗ ⊗R∗ Pj,∗

of the chain map Ψ.

Proof. By Lemma 5.4 and adjunction there are isomorphisms

E1
−i,∗(M�(X)) ∼= πG

−i+∗F (FiEG/Fi−1EG,X) ∼= πG
−i+∗FR(Ei/Ei−1, X).

Note that the spectrum appearing in the last term can be written FR(Ei/Ei−1, X) ∼=
F (G+, X

′) with
X ′ = FR(R ∧G∧i, X) ∼= F (G∧i, X).

Under our assumption that R[G]∗ is projective, it follows from Proposition 3.6 that
the natural R∗-module homomorphism

ω : πG
−i+∗FR(Ei/Ei−1, X)

∼=−→ HomR[G]∗(R∗, π−i+∗FR(Ei/Ei−1, X))

is an isomorphism. Moreover, since Pi,∗ = πi+∗(Ei/Ei−1) is projective over R[G]∗
and hence also over R∗, it follows that the natural R[G]∗-module homomorphism

π−i+∗FR(Ei/Ei−1, X)
∼=−→ HomR∗(πi+∗(Ei/Ei−1), π∗(X)) = HomR∗(Pi,∗, π∗(X))
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is an isomorphism. Applying the functor HomR[G]∗(R∗,−) yields an isomorphism

HomR[G]∗(R∗, π−i+∗FR(Ei/Ei−1, X))
∼=−→ HomR[G]∗(R∗,HomR∗(Pi,∗, π∗(X))) ∼= HomR[G]∗(Pi,∗, π∗(X)).

Composing this chain of R∗-module isomorphisms gives the asserted natural iso-
morphism.

We now identify the d1-differential. By Lemma 5.4 again, we have a commu-
tative diagram

E1
−i,∗(M�(X))

d1
−i,∗

��

∼= �� πG
−i+∗FR(Ei/Ei−1, X)

��

πG
−i−1+∗FR(E/Ei, X)

��

E1
−i−1,∗(M�(X))

∼= �� πG
−i−1+∗FR(Ei+1/Ei, X)

of R∗-modules. By the naturality of ω in Lemma 3.5 the diagram

πG
−i+∗FR(Ei/Ei−1, X)

��

ω
∼=

�� HomR[G]∗(R∗, π−i+∗FR(Ei/Ei−1, X))

��

πG
−i−1+∗FR(E/Ei, X)

��

ω �� HomR[G]∗(R∗, π−i−1+∗FR(E/Ei, X))

��

πG
−i−1+∗FR(Ei+1/Ei, X)

ω
∼=

�� HomR[G]∗(R∗, π−i−1+∗FR(Ei+1/Ei, X))

commutes. Note that these two diagrams fit together along one edge. We also have
a commutative diagram of R[G]∗-modules

π−i+∗FR(Ei/Ei−1, X)

��

∼= �� HomR∗(Pi,∗, π∗(X))

��

Hom(∂i+1,1)

��

π−i−1+∗FR(E/Ei, X) ��

��

HomR∗(πi+1+∗(E/Ei), π∗(X))

��

π−i−1+∗FR(Ei+1/Ei, X)
∼= �� HomR∗(Pi+1,∗, π∗(X))

since ∂i+1 : Pi+1,∗ → Pi,∗ can be calculated by either composite from the left to the
right in the diagram

πi+1+∗(Ei+1/Ei) ��

∂
����

���
���

���
��

πi+1+∗(E/Ei)

∂

����
���

���
���

��

∂

��

πi+∗(Ei) �� πi+∗(Ei/Ei−1).
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Applying HomR[G]∗(R∗,−) we obtain a commutative diagram of R∗-modules, which
fits together with the previous one. Hence the square

E1
−i,∗(M�(X))

∼= ��

d1
−i,∗

��

HomR[G]∗(Pi,∗, π∗(X))

Hom(∂i+1,1)

��

E1
−i−1,∗(M�(X))

∼= �� HomR[G]∗(Pi+1,∗, π∗(X))

commutes, as asserted.
We now identify the multiplicative structure on the E1-page. By Theorem 5.6,

the diagram

E1
−i,∗(M�(X))⊗R∗ E1

−j,∗(M�(Y ))
μ̄1

��

∼=
��

E1
−k,∗(M�(Z))

∼=
��

πG
−i+∗FR(Ei/Ei−1, X)⊗R∗ πG

−j+∗FR(Ej/Ej−1, Y ) �� πG
−k+∗FR(Ek/Ek−1, Z)

commutes, where the lower arrow is induced by

1 ∧D′
i,j : Ek/Ek−1 → Ei/Ei−1 ∧R Ej/Ej−1.

Since the natural homomorphism ω is monoidal, per Lemma 3.7, the composite

πG
−i+∗FR(Ei/Ei−1, X)⊗R∗ πG

−j+∗FR(Ej/Ej−1, Y ) −→ πG
−k+∗FR(Ek/Ek−1, Z)

ω−→ HomR[G]∗(R∗, π−k+∗FR(Ek/Ek−1, Z))

is equal to the composite

πG
−i+∗FR(Ei/Ei−1, X)⊗R∗ πG

−j+∗FR(Ej/Ej−1, Y )
ω⊗ω−−−→

HomR[G]∗(R∗, π−i+∗FR(Ei/Ei−1, X))⊗R∗ HomR[G]∗(R∗, π−j+∗FR(Ej/Ej−1, Y ))
α−→ HomR[G]∗(R∗, π−i+∗FR(Ei/Ei−1, X)⊗R∗ π−j+∗FR(Ej/Ej−1, Y ))

μ∗−→ HomR[G]∗(R∗, π−k+∗FR(Ek/Ek−1, Z)).

Note that the final arrow is also induced by 1 ∧ D′
i,j : Ek/Ek−1 → Ei/Ei−1 ∧R

Ej/Ej−1. Next, we use the commutative diagram

π−i+∗FR(Ei/Ei−1, X)⊗R∗ π−j+∗FR(Ej/Ej−1, Y ) ��

∼=
��

π−k+∗FR(Ek/Ek−1, Z)

∼=
��

HomR∗(Pi,∗, π∗(X))⊗R∗ HomR∗(Pj,∗, π∗(Y )) �� HomR∗(Pk,∗, π∗(Z))

of R[G]∗-modules, where the lower homomorphism is induced by 1 ∧D′
i,j . In view

of the isomorphism Pi,∗ ⊗R∗ Pj,∗ ∼= πi+j(Ei/Ei−1 ∧R Ej/Ej−1) from the proof of
Lemma 5.11, this is the same homomorphism as that induced by Ψi,j , as defined
in Lemma 5.12.
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Applying the monoidal functor HomR[G]∗(R∗,−), we obtain a commutative
square of R∗-modules. Combining these results we have a commutative square

E1
−i,∗(M�(X))⊗R∗ E1

−j,∗(M�(Y ))
μ̄1

��

∼=
��

E1
−k,∗(M�(Z))

∼=
��

HomR[G]∗(Pi,∗, π∗(X))⊗R∗ HomR[G]∗(Pj,∗, π∗(Y )) �� HomR[G]∗(Pk,∗, π∗(Z))

where the lower homomorphism is induced by Ψi,j , meaning that it is equal to the
composite

HomR[G]∗(Pi,∗, π∗(X))⊗R∗ HomR[G]∗(Pj,∗, π∗(Y ))
α−→ HomR[G]∗(Pi,∗ ⊗R∗ Pj,∗, π∗(X)⊗R∗ π∗(Y ))

Ψ∗
i,j−−−→ HomR[G]∗(Pk,∗, π∗(X)⊗R∗ π∗(Y ))

μ∗−→ HomR[G]∗(Pk,∗, π∗(Z)).

This is the same as the (i, j)-component of the chain map

HomR[G]∗(P∗,∗, π∗(X))⊗R∗ HomR[G]∗(P∗,∗, π∗(Y ))
α−→ HomR[G]∗(P∗,∗ ⊗R∗ P∗,∗, π∗(X)⊗R∗ π∗(Y ))

Ψ∗
−−→ HomR[G]∗(P∗,∗, π∗(X)⊗R∗ π∗(Y ))
μ∗−→ HomR[G]∗(P∗,∗, π∗(Z))

induced by Ψ. �

As a direct consequence, we get a description of the E2-page of the homotopy
fixed point spectral sequence.

Theorem 5.14. Let G be a compact Lie group and let R be a commutative
orthogonal ring spectrum. Moreover, let μ : X ∧R Y → Z be a pairing of R-modules
in orthogonal G-spectra. Assume that R[G]∗ is projective as an R∗-module. Then
there is a natural isomorphism

E2
−i,∗(M�(X)) ∼= ExtiR[G]∗(R∗, π∗(X))

of R∗-modules, for each integer i. The pairing

μ̄2 : E2
−i,∗(M�(X))⊗R∗ E2

−j,∗(M�(Y )) −→ E2
−i−j,∗(M�(Z))

is given by the cup product

� : ExtiR[G]∗(R∗, π∗(X))⊗R∗ ExtjR[G]∗
(R∗, π∗(Y )) −→ Exti+j

R[G]∗
(R∗, π∗(Z))

associated to the R[G]∗-module pairing μ∗ : π∗(X)⊗R∗ π∗(Y ) → π∗(Z), in Ext over
the Hopf algebra R[G]∗.

Proof. By Proposition 5.13 the first page of the spectral sequence, together
with its d1-differential, is identified with the chain complex HomR[G]∗(P∗,∗, π∗(X))

where (P∗,∗, ∂) is a projective resolution of R∗. It follows that the E
2-page is given

by the homology of this chain complex, which by definition is the graded R∗-module

E2
∗,∗(X) ∼= Ext∗R[G]∗(R∗, π∗(X)).
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Let us now identify the multiplication on the E2-page with the cup product.
Let f : Pi,∗ → π∗(X) and g : Pj,∗ → π∗(Y ) be (graded) R[G]∗-module homo-
morphisms with f∂i+1 = 0 and g∂j+1 = 0. They correspond to i- and j-cycles
in HomR[G]∗(P∗,∗, π∗(X)) and HomR[G]∗(P∗,∗, π∗(Y )), respectively, with homology

classes [f ] ∈ E2
−i,∗(X) and [g] ∈ E2

−j,∗(Y ). The pairing of E2-pages sends [f ]⊗ [g]

to the homology class in E2
−k,∗(Z) of the k-cycle given by the composite (graded)

R[G]∗-module homomorphism

Pk,∗
Ψi,j−→ Pi,∗ ⊗R∗ Pj,∗

f⊗g−−−→ π∗(X)⊗R∗ π∗(Y )
μ∗−→ π∗(Z).

The verification that μ∗(f⊗g)Ψi,j is a k-cycle uses the fact that Ψi,j is a component
of an R[G]∗-module chain map Ψ: P∗,∗ → P∗,∗ ⊗R∗ P∗,∗, so that

Ψi,j∂k+1 = (∂i+1 ⊗ 1)Ψi+1,j + (1⊗ ∂j+1)Ψi,j+1.

This is the definition of the cup product

� : Ext∗R[G]∗(R∗, π∗(X))⊗R∗ Ext∗R[G]∗(R∗, π∗(Y )) −→ Ext∗R[G]∗(R∗, π∗(Z))

associated to the pairing μ∗. See Section 2.5. �

Remark 5.15. A well-known consequence of the comparison theorem [ML95,
Thm. III.6.1] is that

ExtiR[G]∗(R∗, π∗(X)) = Hi(HomR[G]∗(P∗,∗, π∗(X)))

can be calculated with any projective R[G]∗-module resolution P∗,∗ of R∗, not
necessarily the one introduced in Definition 5.8. Likewise, by Proposition 2.31, the
cup product can be calculated with any R[G]∗-module chain map

Ψ: P∗,∗ −→ P∗,∗ ⊗R∗ P∗,∗

lifting R∗ ∼= R∗ ⊗R∗ R∗, not necessarily the one induced by a given diagonal ap-
proximation D.

Example 5.16. When G is finite,

R[G]∗ = R∗[G] ∼= Z[G]⊗Z R∗,

any projective Z[G]-module resolution Q∗ of Z induces up to a projective R∗[G]-
module resolution P∗,∗ = Q∗ ⊗Z R∗ of R∗, and any Z[G]-module diagonal approxi-
mation Ψ: Q∗ → Q∗⊗ZQ∗ induces up to an R∗[G]-module diagonal approximation
Ψ ⊗ 1: P∗,∗ = Q∗ ⊗Z R∗ → Q∗ ⊗Z Q∗ ⊗Z R∗ ∼= P∗,∗ ⊗R∗ P∗,∗. Hence there is a
natural isomorphism

ExtiR∗[G](R∗, π∗(X)) ∼= ExtiZ[G](Z, π∗(X)) = Hi(G, π∗(X))

identifying the E2-page of the G-homotopy fixed point spectral sequence with the
group cohomology of the G-module π∗(X), and this identification is compatible
with the cup product structure on both sides.

Example 5.17. When G = T is the circle group, we showed in Proposition 3.3
that

R[T]∗ = R∗[s]/(s
2 = ηs) and R[T]∗ = R∗{s}.

As we discussed in Definition 5.8, the normalized bar resolution gives a (minimal)
resolution P∗,∗ = NB∗(R∗, R[T]∗, R[T]∗) of R∗, with

Pi,∗ = R[T]
⊗i

∗ ⊗R∗ R[T]∗ ∼= R[T]∗{p̄i}.
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Here p̄i = s⊗· · ·⊗s⊗1 = [s| . . . |s]1 has homological degree i, internal degree |p̄i| = i
and total degree ‖pi‖ = 2i, for i ≥ 0. The differential is given by

∂i(p̄i) = p̄i−1((i− 1)η + (−1)is)

for i ≥ 1. This means that P∗,∗ is not strictly equal to the resolution P∗ specified at
the beginning of Section 2.6, with Pi = R[T]∗{pi} and ∂i(pi) = pi−1(s+(i−1)η), due
to the sign (−1)i before the contribution from the last face operator. However, the
two resolutions are isomorphic, by way of the chain map sending p̄i to (−1)i(i+1)/2pi
for each i ≥ 0. Even without this isomorphism, we are free to use P∗ to calculate
Ext∗R[T]∗(R∗, π∗(X)) as the homology of HomR[T]∗(P∗, π∗(X)), and that calculation
was essentially done in Section 2.6. For each b ≥ 0 the rule

x �−→ fb · x :=

(
pb �→ x

pbs �→ xs

)
defines a bijection Σ−bπ∗(X) ∼= HomR[T]∗(Hom(Pb, π∗(X))), and the boundary on
such an element is given by

∂v(fb · x) =
{
−(−1)|x|fb+1 · xs for b ≥ 0 even,

−(−1)|x|fb+1 · x(s+ η) for b ≥ 1 odd.

Hence we can compute the homology as

ExtbR[T]∗(R∗, π∗(X)) ∼=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f0 · ker(s : π∗(X) → π∗+1(X)) for b = 0,

fb ·
ker(s+ η : π∗(X) → π∗+1(X))

im(s : π∗−1(X) → π∗(X))
for b ≥ 1 odd,

fb ·
ker(s : π∗(X) → π∗+1(X))

im(s+ η : π∗−1(X) → π∗(X))
for b ≥ 2 even.

Please compare with Proposition 2.39, Lemma 2.40, and Proposition 2.45.
For a description of the cup product, we can use any chain map Ψ : P∗ →

P∗ ⊗R∗ P∗ lifting the identity on R∗. Such a map is given in Lemma 2.47, so that
we can compute the cup product as

fb1 · x � fb2 · y = fb1+b2 · x⊗ y.

Please compare with Lemma 2.49. Formally writing the class of fb ·x as tb ·x, we can
then express ExtR[T]∗(R∗, π∗(X)) as the homology of the differential graded R[T]∗-
module

π∗(X)[t]

with differential given by d(x) = txs and d(t) = t2η, for x ∈ π∗(X). Here t has
homological degree −1, internal degree |t| = −1 and total degree ‖t‖ = −2.

5.4. The odd spheres filtration

In the important case G = T, the circle action on odd-dimensional spheres
provides a pleasant alternative model for EG. For each i ≥ 0 let S(iC) = S2i−1

be the unit sphere in iC = Ci, with the standard, free T-action. We obtain an
exhaustive filtration

∅ ⊂ S(C) ⊂ · · · ⊂ S(iC) ⊂ S((i+ 1)C) ⊂ · · · ⊂ S(∞C)
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of free T-spaces. Here S((i + 1)C) is obtained from S(iC) by attaching a free T-
equivariant 2i-cell D2i × T along the group action map

S2i−1 × T ∼= S(iC)× T → S(iC),

so that S((i + 1)C) is the 2i-skeleton in a free T-CW structure on S(∞C). This
filtered model for a free, contractible T-CW complex was used in [BR05, §2] to
discuss the T-homotopy fixed point spectral sequence.

There are well-known T-equivariant homeomorphisms

S((i+ 1)C) ∼= T ∗ · · · ∗ T ∗ T
with (i+1) copies of T, where ∗ denotes the join of spaces. These homeomorphisms
are compatible for varying i ≥ 0, and S(∞C) is isomorphic as a filtered space to
Milnor’s infinite join construction from [Mil56], for G = T, which we denote by

EG = G ∗G ∗G ∗ . . . .
The identifications made in the iterated join are included among those made in
geometric realization. Hence the structure map Δi×Gi×G → EG factors through
a G-map

qi : G ∗ · · · ∗G ∗G −→ FiEG

with (i+ 1) copies of G, collapsing degenerate simplices. These are compatible for
varying i, yielding a G-map q : EG → EG. As explained in [Seg68, §3], the Milnor
join construction is a special case EG ∼= EGN of the two-sided bar construction for a
topological category GN, and there is a continuous functor GN → G inducing the G-
maps qi and q. It follows that the filtration-preserving diagonal approximation
DN : EGN → EGN ×EGN constructed in [Seg68, Lem. 5.4] is compatible with the
diagonal approximation D : EG → EG × EG that we have used in the present
memoir. In particular, the T-map

q∗ : F (ET+, X) −→ F (ET+, X) ∼= F (S(∞C)+, X)

maps our multiplicative sequenceM�(X) to the multiplicative tower used in [BR05,
§4]. Furthermore, for G = T the G-maps qi and q are equivalences, so that the
two multiplicative towers of orthogonal G-spectra are equivalent. Hence they give
isomorphic T-homotopy fixed point spectral sequences, converging to the same mul-
tiplicative filtration on the abutment.

A similar discussion applies for the 3-sphere G = U = Sp(1) acting on the unit
spheres in iH = Hi, showing that S(∞H) ∼= EU is a perfectly good alternative
filtered model for EU.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

CHAPTER 6

The G-Tate Spectral Sequence

Given an R-module X in orthogonal G-spectra we can define its G-Tate con-
struction as the genuine fixed points

XtG = (ẼG ∧ F (EG+, X))G,

where ẼG is the mapping cone of the collapse map EG+ → S0. In this chapter we
construct an R∗-module spectral sequence

Êr
∗,∗ =⇒ π∗(X

tG)

with abutment the G-equivariant homotopy groups of ẼG ∧ F (EG+, X), for any

compact Lie group G. We do this by letting the filtration E� induce a filtration Ẽ�

of R ∧ ẼG and consider the so-called Hesselholt–Madsen filtration

HM�(X) = (Ẽ ∧R T (M(X)))�

obtained by forming a convolution product. Under the assumption that R[G]∗
is finitely generated and projective over R∗ we show that the resulting spectral
sequence Êr

∗,∗(X) = Er
∗,∗(HM�(X)) is multiplicative, as a functor of X, with mul-

tiplicative abutment. With the same assumptions we also algebraically identify
the E2-page as

Ê2
∗,∗(X) ∼= Êxt

−∗
R[G]∗(R∗, π∗(X)),

with the multiplicative structure given by cup product on the right-hand side.
See Theorem 6.18. To say something about the convergence of this spectral se-
quence we compare the Hesselholt–Madsen filtration to another filtration GM�(X)

of ẼG ∧ F (EG+, X), dubbed the Greenlees–May filtration. While the multiplica-
tive properties of the Greenlees–May G-Tate spectral sequence are less clear, it is
easy to obtain convergence results for the latter spectral sequence. By the compar-
ison we can then also obtain convergence results for the Hesselholt–Madsen G-Tate
spectral sequence. See Section 6.6, and in particular Theorem 6.44.

6.1. The filtered G-space ẼG

As always, let G be any compact Lie group. Let c : EG+ → S0 denote the
based and G-equivariant collapse map, and define

ẼG = S0 ∪ C(EG+)

to be its reduced mapping cone, as in [Car84, p. 198] and [GM95, p. 2]. Non-

equivariantly, c is an equivalence, so ẼG is (non-equivariantly) contractible. For
i ≥ 0 we let

FiẼG = S0 ∪ C(Fi−1EG+)

101
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be the mapping cone of c restricted to Fi−1EG+, where Fi−1EG is defined as in

Section 5.1. For i < 0, we set FiẼG = ∗. This defines an exhaustive filtration

(6.1) ∗ = F−1ẼG ⊂ S0 = F0ẼG ⊂ · · · ⊂ Fi−1ẼG ⊂ FiẼG ⊂ · · · ⊂ ẼG

of based G-spaces. Each map Fi−1ẼG → FiẼG is a strong h-cofibration, so this is
indeed a filtration, as opposed to simply a sequence. Moreover, there are homeo-
morphisms

FiẼG

Fi−1ẼG
∼= Σ

Fi−1EG

Fi−2EG

for i ≥ 1. Per Theorem 4.17, each pushout-product map

Fi−1ẼG ∧ FjẼG ∪ FiẼG ∧ Fj−1ẼG −→ FiẼG ∧ FjẼG

is a strong h-cofibration, with cofibre

FiẼG

Fi−1ẼG
∧ FjẼG

Fj−1ẼG
.

Remark 6.1. When G is finite, FiẼG gives the i-skeleton of a based and non-

free G-CW structure on ẼG. When G = T = U(1), F0ẼG = S0 is the 0-skeleton,

while FiẼG for i ≥ 1 is the 2i − 1-and 2i-skeleton of a G-CW structure on ẼG.

Similarly, when G = U = Sp(1), FiẼG gives the 4i−3-, 4i−2-, 4i−1- and 4i-skeleta
of a G-CW structure.

Remark 6.2. For G = T, the G-equivalences qi−1 : S(iC) → Fi−1EG from

Section 5.4 induce G-equivalences q̃i : S
iC → FiẼG, where we identify the one-

point compactification SiC with the mapping cone S0∪C(S(iC)+). Hence we have
a G-equivalence from the exhaustive filtration

∗ → S0 → · · · → S(i−1)C → SiC → · · · → S∞C

to (6.1), showing that we may use S∞C as a filtered replacement for ẼG, if desired.

We give ẼG ∧ ẼG the (convolved) smash product filtration, with

Fk(ẼG ∧ ẼG) =
⋃

i+j=k

FiẼG ∧ FjẼG.

The identifications S0∧ẼG ∼= ẼG ∼= ẼG∧S0 agree on S0∧S0 ∼= S0, hence combine
to a fold map

∇ : ẼG ∪S0 ẼG ∼= ẼG ∧ S0 ∪ S0 ∧ ẼG −→ ẼG.

We seek a G-map N : ẼG ∧ ẼG → ẼG extending ∇, so that the diagram

ẼG ∧ S0 ∪ S0 ∧ ẼG ��

∇
����

���
���

���
���

�� ẼG ∧ ẼG

N

��

ẼG

commutes. For these pairings to induce pairing of spectral sequences, we must
arrange that N is filtration-preserving. We do not know how to give a direct

definition of such an extension N : ẼG ∧ ẼG → ẼG, in analogy with the explicit
diagonal approximation D : EG → EG × EG. Instead we will use obstruction
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theory to show that such a filtration-preserving extension N of ∇ exists after base
change to our ground ring spectrum R, assuming that R[G]∗ is projective over R∗.
See Proposition 6.9.

Definition 6.3. Let

Ẽ = R ∧ ẼG and Ẽi = R ∧ FiẼG.

Each map Ẽi−1 → Ẽi is a strong h-cofibration, so that Ẽ� is a filtration

. . . −→ Ẽi−1 −→ Ẽi −→ Ẽi+1 −→ . . .

of R-modules in orthogonal G-spectra. Here Ẽi = ∗ for i < 0, Ẽ0 = R, and

Ẽ∞ = Tel(Ẽ�) 
G Ẽ.

Since ẼG is non-equivariantly contractible, π∗(Ẽ) = 0.

Applying non-equivariant homotopy we obtain the following unrolled exact
couple

(6.2)

· · · π∗(Ẽi−1) π∗(Ẽi) · · ·

π∗(Ẽi−1 → Ẽi)

α

β
∂

with ∂ of total degree −1. Recall the R[G]∗-module resolution (P∗,∗, ∂) of R∗,
introduced in Definition 5.8.

Definition 6.4. Let (P̃∗,∗, ∂̃) be the mapping cone of the augmentation

ε : P∗,∗ → R∗,

in the sense of Definition 2.13.

Explicitly, we have

P̃i,∗ ∼=
{
R∗ for i = 0

Pi−1,∗ for i ≥ 1

with boundary ∂̃ : P̃i,∗ → P̃i−1,∗ given as

∂̃(x) =

{
ε(x) for i = 1

−∂(x) for i ≥ 2.

We note that P̃∗,∗ is an exact complex of flat R∗-modules, by our standing as-
sumption that R[G]∗ is flat. If, furthermore, R[G]∗ is finitely generated projective

over R∗, then so is each P̃i,∗.

Lemma 6.5. If R[G]∗ is flat over R∗, then the (E1, d1)-page of the non-equi-
variant homotopy spectral sequence

Ẽ1
i,∗ = πi+∗(Ẽi−1 → Ẽi)

associated to Ẽ� is isomorphic to (P̃∗,∗, ∂̃). In particular, the spectral sequence
collapses at the E2-page, where it is given by

Ẽ2 = Ẽ∞ = 0.
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Proof. Note that Ẽ is the mapping cone of the collapse map 1 ∧ c : E → R
and can be viewed as the pushout

E ��

1∧c

��

I ∧ E

��

R �� Ẽ.

Let I� be the filtration

∗ −→ {0, 1} −→ I
=−→ I

=−→ I
=−→ · · ·

of the unit interval I = [0, 1], where ∂I = {0, 1} sits in filtration degree 0. Let L�(R)
be the non-negative filtration consisting of copies of R and identity maps between
them. We then have a pushout of filtrations

(6.3)

E� (I ∧E)�

L�(R) Ẽ�

1∧c

with colimit being the pushout square above. That this is indeed a pushout of
filtrations can be checked in each filtration degree separately, noting that

(I ∧ E)k = ∂I ∧Ek ∪ I ∧ Ek−1
∼= Ek ∪ CEk−1.

It follows as in Lemma 5.9 that we have a commutative square of associated chain
complexes

(6.4) P∗,∗
∼= ��

ε

��

∂I∗ ⊗ P∗,∗ �� �� I∗ ⊗ P∗,∗

��

R∗ �� �� Ẽ1
∗,∗.

Here R∗ is the chain complex consisting of R∗ concentrated in homological degree 0,
and I∗ is the reduced cellular chain complex

0 −→ Z{i1}
∂1−→ Z{i0} −→ 0

of I, with ∂1(i1) = i0. Both i0 and i1 have internal degree 0, and lie in homological
degree as indicated by their subscript. The chain complex ∂I∗ is the subcomplex
given by Z{i0} concentrated in homological degree 0. Since the map

P∗,∗ ∼= ∂I∗ ⊗ P∗,∗ −→ I∗ ⊗ P∗,∗

is injective, a Mayer–Vietoris argument for the filtration subquotients of (6.3) shows

that (6.4) is in fact a pushout of chain complexes. This proves that Ẽ1
∗,∗ is indeed

the algebraic mapping cone of ε : P∗,∗ → R∗, by the definition of the latter chain
complex. �

Lemma 6.6. The (E1, d1)-page of the non-equivariant homotopy spectral se-

quence associated to (Ẽ ∧R Ẽ)� is isomorphic to (P̃∗,∗ ⊗R∗ P̃∗,∗, ∂̃ ⊗ 1 + 1⊗ ∂̃).

Proof. This is very similar to Lemma 5.11. �

Lemma 6.7. The homomorphism π∗(Ẽi−1) → π∗(Ẽi) is zero, for each i.
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Proof. This follows from the exactness of (Ẽ1
∗,∗, d

1) ∼= (P̃∗,∗, ∂̃), by an induc-
tion on i in the unrolled exact couple (6.2). The claim is clear for i ≤ 0. Assume by

induction that α : π∗(Ẽi−1) → π∗(Ẽi) is zero, for some i ≥ 0. Then β : πi+∗(Ẽi) →
P̃i,∗ is injective. Consider any class x ∈ πi+∗(Ẽi). Since ∂̃i(β(x)) = β∂β(x) = 0,

exactness at P̃i,∗ implies that β(x) = ∂̃i+1(y) = β∂(y) for some y ∈ P̃i+1,∗. By injec-

tiveness of β it follows that x = ∂(y). Since x was arbitrary, ∂ : P̃i+1,∗ → πi+∗(Ẽi)

is surjective, so α : π∗(Ẽi) → π∗(Ẽi+1) is zero. �

Lemma 6.8. There always exists an R-module map of orthogonal G-spectra

N : Ẽ ∧R Ẽ −→ Ẽ

extending ∇ : Ẽ ∪R Ẽ → Ẽ, and any two choices are homotopic.

Proof. This follows by obstruction theory, since

ẼG ∪ ẼG ∼= ẼG ∧ S0 ∪ S0 ∧ ẼG ⊂ ẼG ∧ ẼG

can be given the structure of a free relative G-CW complex, and π∗(Ẽ) = 0. �

The above lemma, together with the map Δ+ : EG+ → EG+ ∧ EG+, makes
sure that the Tate construction is multiplicative, in the sense that a G-equivariant
R-module pairing X ∧R Y → Z induces an R-module pairing XtG ∧R Y tG → ZtG.
See Section 6.2. To arrange that the Tate spectral sequence preserves this structure
we need to make sure that we can find a filtration-preserving approximation of N ,
in the same way as we could find the filtration-preserving approximation of D. The
following proposition addresses difficulties raised in Problem 11.8 and Problem 14.8
of [GM95].

Proposition 6.9. Suppose that R[G]∗ is projective over R∗. Then there exists
a filtration-preserving map

N : (Ẽ ∧R Ẽ)� −→ Ẽ�

of R-modules in orthogonal G-spectra, extending the fold map

∇ : Ẽ� ∪R Ẽ�
∼= (Ẽ� ∧R R) ∪ (R ∧R Ẽ�) −→ Ẽ�.

Proof. We inductively assume that ∇ has been extended to a filtration-

preserving map Nk−1 : (Ẽ ∧R Ẽ)k−1 → Ẽk−1, and show that Nk−1 can be further

extended to a filtration-preserving map Nk : (Ẽ ∧R Ẽ)k → Ẽk. It suffices to extend

Nk−1 over Ẽi∧R Ẽj for i, j ≥ 1 with i+j = k. In particular, there is only something
to prove for k ≥ 2. Let us consider the diagram

Ẽi−1 ∧R Ẽj ∪ Ẽi ∧R Ẽj−1

Nk−1
��

��

��

Ẽk−1

α

��

Ẽi ∧R Ẽj

Ni,j
���������

��

Ẽk

Ẽi/Ẽi−1 ∧R Ẽj/Ẽj−1
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where the left hand column is a (Hurewicz) cofibre sequence. By the homotopy ex-
tension property, in order to find a dashed map Ni,j making the diagram commute,
it suffices to find an extension up to homotopy of α ◦Nk−1. Let

W = Ei−1/Ei−2 ∧R Ej−1/Ej−2
∼= R ∧G∧i−1 ∧G+ ∧G∧j−1 ∧G+

so that Σ2W ∼= Ẽi/Ẽi−1 ∧R Ẽj/Ẽj−1. There is then a (stably defined) homotopy
cofibre sequence

ΣW
∂−→ Ẽi−1 ∧R Ẽj ∪ Ẽi ∧R Ẽj−1 −→ Ẽi ∧R Ẽj −→ Σ2W

and it suffices to prove that α◦Nk−1 ◦∂ : ΣW → Ẽk is null-homotopic. We confirm
this by showing that α induces the trivial homomorphism

α∗ : [ΣW, Ẽk−1]
G
R −→ [ΣW, Ẽk]

G
R,

where [−,−]GR denotes homotopy classes of G-maps of R-modules in orthogonal G-
spectra. Note that G acts diagonally on the two copies of G+ in W , so that there
is an untwisting isomorphism W ∼= V ∧G+ where

V = R ∧G∧i−1 ∧G∧j−1 ∧G+

has trivial G-action. By adjunction we can therefore rewrite the homomorphism
above as

α∗ : [ΣV, Ẽk−1]R −→ [ΣV, Ẽk]R

where [−,−]R denotes homotopy classes of maps of (non-equivariant) R-modules.
By our assumption that R[G]∗ is R∗-projective, it follows that

π∗(V ) ∼= R[G]
⊗i−1

∗ ⊗R∗ R[G]
⊗j−1

∗ ⊗R∗ R[G]∗

is R∗-projective. Hence we can rewrite α∗ as the homomorphism

HomR∗(Σπ∗(V ), π∗(Ẽk−1)) −→ HomR∗(Σπ∗(V ), π∗(Ẽk))

given by composition with α : π∗(Ẽk−1) → π∗(Ẽk). By Lemma 6.7 that homomor-
phism is zero, which completes the proof. �

Definition 6.10. Suppose that R[G]∗ is projective over R∗. Let

Φ: P̃∗,∗ ⊗R∗ P̃∗,∗ −→ P̃∗,∗

be the R[G]∗-module chain map that corresponds, under the isomorphisms of
Lemma 6.5 and Lemma 6.6, to the pairing N1 of (E1, d1)-pages induced by the

filtration-preserving map N : (Ẽ ∧R Ẽ)� → Ẽ� of Proposition 6.9.

Lemma 6.11. Suppose that R[G]∗ is projective over R∗. Then the map

Φ: P̃∗,∗ ⊗R∗ P̃∗,∗ → P̃∗,∗

is uniquely characterized, up to R[G]∗-module chain homotopy, by being an R[G]∗-
module chain map that extends the fold map ∇.

Proof. By construction, Φ extends the fold map, and it follows that this map
is unique up chain homotopy equivalence by Proposition 2.33. �
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6.2. The G-Tate construction

Let X be an R-module in orthogonal G-spectra.1 In this section, we discuss
the Tate construction and its multiplicative properties.

Definition 6.12. The G-Tate construction XtG is the G-fixed point spectrum

of (a fibrant replacement of) ẼG ∧ F (EG+, X):

XtG =
(
ẼG ∧ F (EG+, X)

)G
Note that the homotopy groups

π∗(X
tG) ∼= πG

∗ (ẼG ∧ F (EG+, X))

naturally form an R∗-module, and that we can write

ẼG ∧ F (EG+, X) ∼= Ẽ ∧R FR(E,X).

The inclusion S0 → ẼG induces a G-map

F (EG+, X) ∼= S0 ∧ F (EG+, X) −→ ẼG ∧ F (EG+, X)

and a map of their corresponding G-fixed points XhG −→ XtG. We can write these

as maps of R-modules, using the inclusion R → Ẽ, to obtain a G-map

FR(E,X) ∼= R ∧R FR(E,X) −→ Ẽ ∧R FR(E,X)

and a canonical map

γ : XhG = FR(E,X)G −→
(
Ẽ ∧R FR(E,X)

)G
= XtG,

inducing a homomorphism π∗(X
hG) → π∗(X

tG) of R∗-modules.
The Tate construction interacts well with the multiplicative structure on ho-

motopy fixed points we described in the paragraph following Remark 5.5. Note first
that given a pairing μ : X ∧R Y → Z of R-modules in orthogonal G-spectra, the R-
module pairing XhG∧R Y hG → ZhG extends to R-module pairings XtG∧R Y hG →
ZtG and XhG ∧R Y tG → ZtG. The first is given by a composite(

Ẽ ∧R FR(E,X)
)G

∧R FR(E, Y )G
∧−→
(
Ẽ ∧R FR(E,X) ∧R FR(E, Y )

)G
1∧α−−→

(
Ẽ ∧R FR(E ∧R E,X ∧R Y )

)G
1∧(1∧Δ+)∗−−−−−−−→

(
Ẽ ∧R FR(E,X ∧R Y )

)G
1∧μ∗−−−→

(
Ẽ ∧R FR(E,Z)

)G
.

The second one is similar, and left to the reader. The two pairings induce R∗-module
pairings π∗(X

tG)⊗R∗ π∗(Y
hG) → π∗(Z

tG) and π∗(X
hG)⊗R∗ π∗(Y

tG) → π∗(Z
tG).

1If X is an orthogonal G-spectrum without R-action, the discussion in this section applies
to R ∧X in place of X.
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These pairings are all compatible via the canonical map, meaning that theR-module
diagram

XtG ∧R Y hG

��

XhG ∧R Y hGγ∧1
��

��

1∧γ
�� XhG ∧R Y tG

��

ZtG ZhGγ
��

γ
�� ZtG,

and the induced R∗-module diagram both commute. Per Lemma 6.8 we can choose

a unique (up to homotopy) extension N : Ẽ∧R Ẽ → Ẽ of the fold map ∇ : Ẽ∪R Ẽ →
Ẽ, in the category of R-modules in orthogonal G-spectra. We can then promote
the two R-module pairings to an R-module pairing XtG ∧R Y tG → ZtG, given by
the composite(

Ẽ ∧R FR(E,X)
)G

∧R

(
Ẽ ∧R FR(E, Y )

)G
∧−→
(
Ẽ ∧R FR(E,X) ∧R Ẽ ∧R FR(E, Y )

)G
1∧τ∧1−−−−→

(
Ẽ ∧R Ẽ ∧R FR(E,X) ∧R FR(E, Y )

)G
1∧1∧α−−−−→

(
Ẽ ∧R Ẽ ∧R FR(E ∧R E,X ∧R Y )

)G
N∧(1∧Δ+)∗−−−−−−−−→

(
Ẽ ∧R FR(E,X ∧R Y )

)G
1∧μ∗−−−→

(
Ẽ ∧R FR(E,Z)

)G
.

These pairings are also compatible via the canonical map, meaning that the R-
module diagram

XtG ∧R Y hG 1∧γ
��

��		
			

			
			

		
XtG ∧R Y tG

��

XhG ∧R Y tGγ∧1
��

�����
���

���
���

�

ZtG

and the induced R∗-module diagram both commute. Taken together, these dia-
grams show that

γ : XhG → XtG and γ∗ : π∗(X
hG) → π∗(X

tG)

are multiplicative. We would now like to access π∗(X
tG) and the pairings above

through filtrations and their associated spectral sequences.

6.3. The Hesselholt–Madsen filtration

We can now generalize the filtration of XtG from [HM03, §4.3] to the case of
compact Lie groups G.

Definition 6.13. Let

HM�(X) = (Ẽ ∧R T (M(X)))�

be the filtration

· · · → HMk−1(X) → HMk(X) → HMk+1(X) → . . .
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of R-modules in orthogonal G-spectra given by the Day convolution product of the

filtrations Ẽ� and T�(M(X)).

Recall: we introduced the filtration Ẽ� in Definition 6.3, the sequence M�(X)
in Section 5.2, and its telescopic approximation T�(M(X)) in Section 4.3. The

convolution product of Ẽ� and T�(M(X)) was defined in Section 4.7, and is a
filtration by Proposition 4.31. We can realize

HMk(X) =
⋃

i+j=k

Ẽi ∧R Tj(M(X))

as a subspectrum of Ẽ∧RTel(M�(X)). The structure mapsHMk−1(X) → HMk(X)
are then inclusions of subspectra. These are (strong) h-cofibrations, so the canonical
map

Tel(HM�(X)) −→ colim
k

HMk(X) = Ẽ ∧R Tel(M�(X))

is an equivalence. Since Mj(X) = FR(E,X) for all j ≥ 0 there is a deformation
retraction

Tel(M�(X))
�G−→ FR(E,X)

and a further equivalence

Ẽ ∧R Tel(M�(X))
�G−→ Ẽ ∧R FR(E,X) ∼= ẼG ∧ F (EG+, X).

Definition 6.14. Let X be an R-module in orthogonal G-spectra. We de-
fine the G-Tate spectral sequence for X to be the R∗-module spectral sequence
(Êr(X), dr) associated to the filtration HM�(X) with

Êr(X) = Er(HM�(X))

for each r ≥ 1.

The abutment of the G-Tate spectral sequence for X is the colimit

A∞(HM�(X)) ∼= πG
∗ Tel(HM�(X)) ∼= πG

∗ (Ẽ ∧R FR(E,X)) ∼= π∗(X
tG),

filtered by the image submodules

Fkπ∗(X
tG) = im

(
πG
∗ (HMk(X)) → πG

∗ Tel(HM�(X)) ∼= π∗(X
tG)
)
.

Remark 6.15. In general, we do not claim that the G-Tate spectral sequence
converges to the stated abutment, neither in the conditional nor in the weak
sense. As we recalled in Section 4.2, conditional convergence to the colimit holds
if holimk HMk(X) 
G ∗. The latter condition would follow from an interchange
of homotopy colimits and homotopy limits. More precisely, for each a ≥ 0 and
integer k, consider the subspectrum

Sa,k =
⋃

i+j=k
i≤a

Ẽi ∧R Tj(M(X))

of Ẽ∧RTel(M�(X)). Then hocolima Sa,k 
G HMk(X), and the sufficient condition
holimk HMk(X) 
G ∗ for conditional convergence is equivalent to

(6.5) holim
k

hocolim
a

Sa,k 
G ∗.
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On the other hand, holimj Ẽi ∧R Tj(M(X)) 
G ∗ for each i, since FiẼG is a
finite G-CW space. It follows by induction that holimk Sa,k 
G ∗ for each finite a,
which implies that

(6.6) hocolim
a

holim
k

Sa,k 
G ∗.

Without further hypotheses we do not see how to deduce (6.5) from (6.6). (However,
for G = T see [BM17, Lemma 3.16].)

6.4. Algebraic description of Ê1 and Ê2

Under the assumption that R[G]∗ is finitely generated projective over R∗, we
can algebraically describe the E1- and E2-pages of the G-Tate spectral sequence,
in the same way as we did for the G-homotopy fixed point spectral sequence in
Section 5.3.

Proposition 6.16. Suppose that R[G]∗ is R∗-projective. There is then a nat-
ural isomorphism of R∗-module chain complexes

E1
∗,∗(HM�(X)) ∼= HomR[G]∗(R∗, P̃∗,∗ ⊗R∗ HomR∗(P∗,∗, π∗(X))).

In the notation of Definition 2.14 and Definition 6.14, we have

Ê1
∗,∗(X) ∼= HomR[G]∗(R∗, hm∗(π∗(X))),

where the d1-differential on the left hand side corresponds to Hom(1, ∂hm) on the
right hand side.

Proof. We first check that the natural restriction homomorphism

(6.7) ω : E1
∗,∗(HM�(X))

∼=−→ HomR[G]∗(R∗, E
1
∗,∗((Ẽ ∧R T (M(X)))�))

from Lemma 3.5 is an isomorphism of R∗-module chain complexes, where HM�(X)
at the left hand side is treated as an R-module filtration in orthogonal G-spectra,

while (Ẽ ∧R T (M(X)))� at the right hand side refers to the underlying R-module
filtration in non-equivariant orthogonal spectra, with the residual R[G]-module ac-
tion. We first note that we have

E1
k,∗(HM�(X)) = πG

k+∗(HMk−1(X) → HMk(X))

∼= πG
k+∗(HMk(X)/HMk−1(X))

while

E1
k,∗((Ẽ ∧R T (M(X)))�) = πk+∗(HMk−1(X) → HMk(X))

∼= πk+∗(HMk(X)/HMk−1(X)).

Secondly, we note that

HMk(X)/HMk−1(X) ∼=
∨

i+j=k

Ẽi/Ẽi−1 ∧R Tj(M(X))/Tj−1(M(X))

∼=
∨

i+j=k

Ẽi/Ẽi−1 ∧R (Mj(X) ∪ CMj−1(X))


G

∨
i+j=k

Ẽi/Ẽi−1 ∧R FR(E−j/E−j−1, X),
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which is moreover G-equivalent to F (G+, X
′) for

X ′ =
∨

i+j=k

Ẽi/Ẽi−1 ∧ ΣjF (G∧−j , X).

This uses that R[G] is dualisable (see Definition 6.28). Proposition 3.6 therefore
implies that the natural restriction homomorphism (6.7) is an isomorphism in every
homological degree. We check that it is also an isomorphism of chain complexes.
The d1-differential in the spectral sequence appearing at the left hand side corre-
sponds to the composition

πG
k+∗(HMk(X)/HMk−1(X))

∂−→ πG
k−1+∗(HMk−1(X))

−→ πG
k−1+∗(HMk−1(X)/HMk−2(X)),

which by the naturality of ω corresponds to Hom(1, d1k,∗), where d1k,∗ is the d1-
differential in the spectral sequence appearing at the right hand side. This is given
by the composite

πk+∗(HMk(X)/HMk−1(X))
∂−→ πk−1+∗(HMk−1(X))

−→ πk−1+∗(HMk−1(X)/HMk−2(X)).

Hence (6.7) is indeed an isomorphism of chain complexes.

We now want to identify E1
∗,∗((Ẽ∧RT (M(X)))�) with the complex hm∗(π∗(X)).

For this aim, we can use the canonical pairing

ι : (Ẽ�, T�(M(X))) −→ (Ẽ ∧R T (M(X)))�

of R-module filtrations to obtain an R[G]∗-module chain map of the associated E1-
pages

ι1 : E1(Ẽ�)⊗R∗ E1(T�(M(X))) −→ E1((Ẽ ∧R T (M(X)))�)

as in Theorem 4.27, but in the non-equivariant setting. This map is the direct sum
of the maps

πi+∗(Ẽi/Ẽi−1)⊗R∗ πj+∗(Tj(M(X))/Tj−1(M(X)))
·−→ πk+∗(Ẽi/Ẽi−1 ∧R Tj(M(X))/Tj−1(M(X)))

for i + j = k. Note that each one of these maps is an isomorphism, because

P̃i,∗ = πi+∗(Ẽi/Ẽi−1) is projective, hence flat, over R∗. We conclude that ι1 is an
isomorphism of R[G]∗-chain complexes, and thus induces an isomorphism

(6.8) Hom(1, ι1) : HomR[G]∗(R∗, E
1(Ẽ�)⊗R∗ E

1(T�(M(X))))
∼=−→ HomR[G]∗(R∗, E

1((Ẽ ∧R T (M(X)))�))

of R∗-module complexes.
The equivalence ε : T�(M(X)) → M�(X) induces an isomorphism

ε : E1(T�(M(X)))
∼=−→ E1(M�(X))

of R[G]∗-module chain complexes, which in turn induces an isomorphism

(6.9) Hom(1, 1⊗ ε) : HomR[G]∗(R∗, E
1(Ẽ�)⊗R∗ E

1(T�(M(X))))
∼=−→ HomR[G]∗(R∗, E

1(Ẽ�)⊗R∗ E
1(M�(X))),
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of R∗-module chain complexes. Finally, we have

E1
j,∗(M�(X)) ∼= πj+∗(FR(E−j/E−j−1, X)) ∼= HomR∗(P−j,∗, π∗(X))

as R[G]∗-modules, because π−j+∗(E−j/E−j−1) ∼= P−j,∗ is R∗-projective. The d1-

differentials correspond to ∂̃ and Hom(∂, 1) by the argument in the proof of Propo-
sition 5.13. Hence we have an isomorphism

(6.10) HomR[G]∗(R∗, E
1
∗,∗(Ẽ�)⊗R∗ E

1
∗,∗(M�(X)))

∼= HomR[G]∗(R∗, P̃∗,∗ ⊗R∗ HomR∗(P∗,∗, π∗(X)))

of R∗-module complexes.
When strung together, the numbered isomorphisms (6.7) through (6.10) es-

tablish the asserted identification of the G-Tate spectral sequence (E1, d1)-page
for the orthogonal G-spectrum R-module X with the Tate complex for the R[G]∗-
module π∗(X). �

Theorem 6.17. Let X be an R-module in orthogonal G-spectra, and suppose
that R[G]∗ is R∗-projective. Then there is a natural R∗-module isomorphism

Ê2
i,∗(X) = E2

i,∗(HM�(X)) ∼= Êxt
−i

R[G]∗(R∗, π∗(X)),

for each integer i.

Proof. This is immediate by passage to homology from Proposition 6.16. Here
we are using the definition of Hopf algebra Tate cohomology given in Definition 2.15.

�

We now go on to discuss the multiplicative structure of the Tate spectral se-
quence. Let μ : X ∧R Y → Z be a pairing of R-modules in orthogonal G-spectra.
As discussed in the paragraph before Theorem 5.6, the diagonal approximation D
and μ combine to define a pairing μ̄ : (M�(X),M�(Y )) → M�(Z) of sequences of R-
modules in orthogonal G-spectra. By Lemma 4.21 we have an induced pairing

T (μ̄) : (T�(M(X)), T�(M(Y ))) −→ T�(M(Z))

of filtrations. By Proposition 6.9 there is also a pairing of filtrations

N : (Ẽ�, Ẽ�) −→ Ẽ�

which extends the fold map. Hence (Ẽ�, N) is a multiplicative R-module filtration
in orthogonal G-spectra. We can now form the induced pairing of convolution
filtrations

θ = N ∧ T (μ̄) : (HM�(X), HM�(Y )) −→ HM�(Z).

This has components

θi,j : HMi(X) ∧R HMj(Y ) −→ HMi+j(Z)

given by the union over i1 + i2 = i and j1 + j2 = j of the composite maps

Ẽi1 ∧R Ti2(M(X)) ∧R Ẽj1 ∧R Tj2(M(Y ))

1∧τ∧1−−−−→ Ẽi1 ∧R Ẽj1 ∧R Ti2(M(X)) ∧R Tj2(M(Y ))

Ni1,j1
∧T (μ̄)i2,j2−−−−−−−−−−−→ Ẽi1+j1 ∧R Ti2+j2(M(Z))

ιi1+j1,i2+j2−−−−−−−−→ HMi+j(Z).
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Viewing HMi(X) as a subspectrum of Ẽ∧RTel(M�(X)) (and similarly for Y and Z
in place of X) the maps θi,j are compatible with the composite map

Ẽ ∧R FR(E,X) ∧R Ẽ ∧R FR(E, Y )
1∧τ∧1−−−−→ Ẽ ∧R Ẽ ∧R FR(E,X) ∧R FR(E, Y )

1∧α−−→ Ẽ ∧R Ẽ ∧R FR(E ∧R E,X ∧R Y )

N∧1−−−→ Ẽ ∧R FR(E ∧R E,X ∧R Y )

(1∧D+)∗−−−−−−→ Ẽ ∧R FR(E,X ∧R Y )

1∧μ∗−−−→ Ẽ ∧R FR(E,Z).

This is G-homotopic to the corresponding map with Δ in place of D, which defines
the product

θ∗ : π∗(X
tG)⊗R∗ π∗(Y

tG) → π∗(Z
tG)

that we introduced in Section 6.2. Hence this product is filtration-preserving, taking
Fiπ∗(X

tG) ⊗R∗ Fjπ∗(Y
tG) to Fi+jπ∗(Z

tG) for all i and j. We write θ̄∗ for the
induced pairing of filtration subquotients.

Theorem 6.18. Let μ : X∧RY → Z be a pairing of R-modules in orthogonal G-
spectra, and assume that R[G]∗ is projective over R∗. The pairing

θ = N ∧ T (μ̄) : (HM�(X), HM�(Y )) → HM�(Z)

of filtrations induces a pairing of G-Tate spectral sequences

θ : Ê∗(X)⊗R∗ Ê∗(Y ) −→ Ê∗(Z)

in the sense of Definition 4.9. Moreover, the induced pairing θ∞ of E∞-pages is
compatible with the pairing θ̄∗ of filtration subquotients, in the sense of Proposi-
tion 4.12.

Proof. This is a direct consequence of Theorem 4.27. �
Corollary 6.19. If (X,μ : X ∧R X → X) is a multiplicative R-module in

orthogonal G-spectra, then (HM�(X), N ∧ T (μ̄)) is a multiplicative filtration, and
the G-Tate spectral sequence

(Êr(X), dr) = (Er(HM�(X)), dr)

is a multiplicative spectral sequence with multiplicative abutment π∗(X
tG).

Proof. This follows from Corollary 4.28. �
Proposition 6.20. Let μ : X ∧R Y → Z be a pairing of R-modules in orthog-

onal G-spectra and assume that R[G]∗ is R∗-projective. Under the isomorphism of
Proposition 6.16, the pairing

θ1 : Ê1(X)⊗R∗ Ê
1(Y ) −→ Ê1(Z)

corresponds to the pairing covariantly induced by Φ: P̃∗,∗ ⊗R∗ P̃∗,∗ −→ P̃∗,∗ and
contravariantly induced by Ψ: P∗,∗ −→ P∗,∗ ⊗R∗ P∗,∗, as in Section 2.5.

Proof. For typographical reasons we will use the abbreviation

MR[G]∗ = HomR[G]∗(R∗,M)

in what follows, for various R[G]∗-modules M . In the same way as in the proof
of Proposition 6.16, the notation E1(HM�(X)) will refer to the E1-page of the
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associated spectral sequence on equivariant homotopy groups, while E1((Ẽ ∧R

T (M(X)))�) will refer to the E1-page of the associated non-equivariant spectral
sequence.

We first note some results regarding multiplicative compatibility. Firstly, the
natural homomorphism ω is monoidal by Lemma 3.7, so the diagram

E1(HM�(X))⊗R∗ E1(HM�(Y ))
θ1

��

ω⊗ω ∼=
��

E1(HM�(Z))

ω∼=

��

E1((Ẽ ∧R T (M(X)))�)
R[G]∗

⊗R∗

E1((Ẽ ∧R T (M(Y )))�)
R[G]∗

α
��⎛⎜⎝E1((Ẽ ∧R T (M(X)))�)

⊗R∗

E1((Ẽ ∧R T (M(Y )))�)

⎞⎟⎠
R[G]∗

(θ1)R[G]∗
�� E1((Ẽ ∧R T (M(Z)))�)

R[G]∗

commutes. Secondly, by a slight generalization of Lemma 4.30, the pairing

ι1 : E1(Ẽ�)⊗R∗ E1(T�(M(X))) −→ E1((Ẽ ∧R T (M(X)))�)

and its variants for Y and Z in place of X are multiplicatively compatible in the
sense that the diagram

E1(Ẽ�)⊗R∗ E
1(T�(M(X)))

⊗R∗

E1(Ẽ�)⊗R∗ E1(T�(M(Y )))

1⊗τ⊗1
��

ι1⊗ι1 ∼=

��

E1(Ẽ�)⊗R∗ E1(Ẽ�)
⊗R∗

E1(T�(M(X)))⊗R∗ E1(T�(M(Y )))

N1⊗T (μ̄)1

��

E1(Ẽ�)⊗R∗ E1(T�(M(Z)))

ι1∼=

��E1((Ẽ ∧R T (M(X)))�)
⊗R∗

E1((Ẽ ∧R T (M(Y )))�)

θ1
�� E1((Ẽ ∧R T (M(Z)))�)

commutes. Note that, by Definition 6.10, the map

N1 : E1(Ẽ�)⊗R∗ E
1(Ẽ�) −→ E1(Ẽ�)

corresponds to Φ: P̃∗,∗⊗R∗ P̃∗,∗ → P̃∗,∗ under the isomorphism E1
∗,∗(Ẽ�) ∼= P̃∗,∗. As

discussed in the proofs of Proposition 4.25, Theorem 5.6 and (the non-equivariant
version of) Proposition 5.13,

T (μ̄)1 : E1(T�(M(X)))⊗R∗ E
1(T�(M(Y ))) −→ E1(T�(M(Z)))
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corresponds to the composite homomorphism

HomR∗(P∗,∗, π∗(X))⊗R∗ HomR∗(P∗,∗, π∗(Y ))
α−→ HomR∗(P∗,∗ ⊗R∗ P∗,∗, π∗(X)⊗R∗ π∗(Y ))

Ψ∗
−→ HomR∗(P∗,∗, π∗(X)⊗R∗ π∗(Y ))
μ∗−→ HomR∗(P∗,∗, π∗(Z))

under the isomorphisms

E1(T�(M(X))) ∼= E1(M�(X)) ∼= HomR∗(P∗,∗, π∗(X))

and their variants with Y and Z in place of X.
Combining all of these results, we have shown that θ1 corresponds to the com-

posite

hm(π∗(X))R[G]∗ ⊗R∗ hm(π∗(Y ))R[G]∗ α−→ (hm∗(π∗(X))⊗R∗ hm(π∗(Y )))R[G]∗

1⊗τ⊗1−−−−→ (P̃∗,∗ ⊗R∗ P̃∗,∗ ⊗R∗ HomR∗(P∗,∗, π∗(X))⊗R∗ HomR∗(P∗,∗, π∗(Y )))R[G]∗

1⊗1⊗α−−−−→ (P̃∗,∗ ⊗R∗ P̃∗,∗ ⊗R∗ HomR∗(P∗,∗ ⊗R∗ P∗,∗, π∗(X)⊗R∗ π∗(Y )))R[G]∗

Φ⊗1−−−→ (P̃∗,∗ ⊗R∗ HomR∗(P∗,∗ ⊗R∗ P∗,∗, π∗(X)⊗R∗ π∗(Y )))R[G]∗

1⊗Ψ∗
−−−−→ hm∗(π∗(X)⊗R∗ π∗(Y ))R[G]∗

1⊗μ∗−−−→ hm∗(π∗(Z))R[G]∗ ,

where we have abbreviated

hm∗(π∗(X)) = P̃∗,∗ ⊗R∗ HomR∗(P∗,∗, π∗(X)).

Note that this is the pairing that induces the cup product, as in Section 2.5. �

Theorem 6.21. Let μ : X∧RY → Z be a pairing of R-modules in orthogonal G-
spectra, and assume that R[G]∗ is R∗-projective. Then the pairing

θ2 : E2
i,∗(HM�(X))⊗R∗ E2

j,∗(HM�(Y )) −→ E2
i+j,∗(HM�(Z))

of G-Tate spectral sequence E2-pages corresponds, under the isomorphism of The-
orem 6.17, to the cup product

� : Êxt
−i,∗
R[G]∗(R∗, π∗(X))⊗R∗ Êxt

−j,∗
R[G]∗(R∗, π∗(Y )) −→ Êxt

−i−j,∗
R[G]∗ (R∗, π∗(Z))

associated to μ∗ : π∗(X)⊗R∗ π∗(Y ) → π∗(Z).

Proof. This is immediate by passage to homology from Proposition 6.20. See
Section 2.5 for the definition of the cup product in Hopf algebra Tate cohomology.

�

Corollary 6.22. If (X,μ) is a multiplicative R-module in orthogonal G-

spectra, then the product in Ê2(X) = E2(HM�(X)) corresponds to the cup product

in Êxt
∗
R[G]∗(R∗, π∗(X)) that is associated to the product μ∗ in π∗(X).

Note independence of the particular choices of maps D and N , since the re-
sulting chain maps Ψ and Φ are unique up to homotopy, per Proposition 2.31 and
Proposition 2.33.
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6.5. The Greenlees–May filtration

Greenlees [Gre87, §1] spliced the filtration F�ẼG with its Spanier–Whitehead
dual to obtain a sequence of G-spectra

· · · −→ D(F2ẼG) −→ D(F1ẼG) −→ S −→ Σ∞F1ẼG −→ Σ∞F2ẼG −→ · · ·

with mapping telescope equivalent to ẼG. The induced sequence

· · · → D(F1ẼG) ∧ F (EG+, X) → Σ∞F (EG+, X) → F1ẼG ∧ F (EG+, X) → · · ·

was used in [GM95, (9.5), Thm. 10.3] to define a spectral sequence with abutment
being the homotopy groups of the G-Tate construction on X. In this section, we
will define a spliced filtration GM�(X) with a map to the Hesselholt–Madsen filtra-
tion HM�(X), and show that the induced map of G-homotopy spectral sequences

Ěr(X) = Er(GM�(X)) −→ Er(HM�(X)) = Êr(X)

is an isomorphism for r ≥ 2. Thereafter we show that GM�(X) is equivalent to the
spliced sequence of Greenlees and May, at least for finite groups G. For other com-

pact Lie groups the sequences will differ in the same way that our filtration F�ẼG
differs from the G-CW skeletal filtration. See Remark 6.1.

Definition 6.23. Recall the filtration Ẽ� from Definition 6.3 and let GM�(X)
be the filtration of orthogonal G-spectra defined as

GMk(X) =

{
Ẽk ∧R T0(M(X)) for k ≥ 0,

Ẽ0 ∧R Tk(M(X)) for k ≤ 0.

The structure maps GMk−1(X) → GMk(X) for k ≥ 1 are induced by the maps

Ẽk−1 → Ẽk in the filtration Ẽ�, while the maps for k ≤ 0 are those of T�(M(X)).
We refer to the filtration GM�(X) as the Greenlees–May filtration.

Notation 6.24. Let

Ěr(X) = Er(GM�(X))

denote the G-homotopy spectral sequence associated to the filtration GM�(X).

We now discuss the map of filtrations between the Greenlees–May filtration
and the Hesselholt–Madsen filtration.

Lemma 6.25. The inclusions Ẽk ∧R T0(M(X)) → (Ẽ ∧R T (M(X)))k for k ≥ 0

and Ẽ0 ∧R Tk(M(X)) → (Ẽ ∧R T (M(X)))k for k ≤ 0 define a map of filtrations

α : GM�(X) −→ HM�(X)

of R-modules in orthogonal G-spectra. The induced maps of mapping telescopes and
colimits

Tel(GM�(X))
�G ��

�G

��

Tel(HM�(X))

�G

��

Ẽ ∧R T0(M(X))
�G �� Ẽ ∧R Tel(M�(X))

are all equivalences.
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Proof. Recall from Section 6.3 that

HMk(X) =
⋃

i+j=k

Ẽi ∧R Tj(M(X))

as a subspectrum of Ẽ ∧R Tel(M(X)). The existence of the filtered map α is then
clear. The vertical maps from mapping telescopes to colimits are equivalences,
since GM�(X) and HM�(X) are both filtrations. The lower horizontal map is also
an equivalence, since the sequence M�(X) is constant for � ≥ 0. �

As a consequence of the above lemma, there is a map

α : Ě∗(X) → Ê∗(X)

of R∗-module spectral sequences.

Remark 6.26. Recall from Proposition 6.9 that, under the assumption that
the Hopf algebra R[G]∗ is R∗-projective, we have a filtration-preserving pairing

N : (Ẽ�, Ẽ�) → Ẽ�. However, when (X,μ) is multiplicative, the induced pairing

N ∧ T (μ̄) : (HM�(X), HM�(X)) −→ HM�(X)

does usually not restrict to a multiplication on GM�(X). For instance, GMa(X)∧R

GM−b(X) with a > 0 and b > 0 maps to HMa(X) ∧R HM−b(X) and Ẽa ∧R

T−b(M(X)) in HMa−b(X), which is hardly ever in GMa−b(X). Hence GM�(X)
is not a multiplicative filtration, and Ěr(X) is not evidently a multiplicative spec-
tral sequence. Nonetheless, we will show that Ěr(X) is isomorphic to the G-Tate

spectral sequence Êr(X) for r ≥ 2, which we showed to be multiplicative in Theo-
rem 6.18. This will then show that (Ěr(X), dr) is also multiplicative, at least for
r ≥ 2.

Thinking only about the additive properties of the spectral sequence Ěr(X), we
can safely replace the filtration GM�(X) with a simpler, but equivalent, sequence.

Lemma 6.27. There is an equivalence from GM�(X) to the sequence GM ′
�(X)

with

GM ′
k(X) =

{
Ẽk ∧R FR(E,X) for k ≥ 0,

FR(E/E−k−1, X) for k ≤ 0.

Proof. The equivalences ε : Tk(M(X)) → Mk(X) induce the following com-
mutative diagram.

. . . �� Ẽ0 ∧R T−1(M(X)) ��

ε �
��

Ẽ0 ∧R T0(M(X)) ��

ε �
��

Ẽ1 ∧R T0(M(X)) ��

ε �
��

. . .

. . . �� M−1(X) �� FR(E,X) �� Ẽ1 ∧R FR(E,X) �� . . .

Here Mk(X) = FR(E/E−k−1, X) for k ≤ 0. �

We refer to [LMSM86, §III.1] for the basic Spanier–Whitehead duality theory
in a closed symmetric monoidal category. In the case of (the homotopy category
of) R-modules in orthogonal G-spectra, we refer to the objects called ‘finite’ by
Lewis and May as ‘dualisable’.
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Definition 6.28. For an R-module X in orthogonal G-spectra, let

D(X) = FR(X,R)

be its functional dual . For dualisable X we refer toD(X) as the Spanier–Whitehead
dual of X. There are natural maps

ρ : X → D(D(X)) and ν : DX ∧R Y → FR(X,Y ),

which are equivalences when X is dualisable.

Lemma 6.29. Each term in the filtration Ẽ� is dualisable.

Proof. We can give G a finite CW structure, with e as a 0-cell. It follows that
the bar construction is a finite G-CW space in each simplicial degree Bq(∗, G,G) =
Gq×G, so that G∧q∧G+ is a finite G-CW space and R∧G∧q∧G+ is a dualisable R-
module in orthogonal G-spectra. By induction, this implies that Ei−1 is dualisable,

and therefore the mapping cone Ẽi is also dualisable, for each i ≥ 0. �

Lemma 6.30. The E1-page of the spectral sequence associated to GM ′
�(X) is

the R∗-module chain complex with

Ě1
∗,∗(X) ∼= HomR[G]∗(R∗, gm∗(π∗(X))),

where we use the notation of Definition 2.16.

Proof. For � ≤ 0 the sequence GM ′
�(X) agrees with the sequence M�(X)

from Section 5.2, so (Ě1
∗(X), d1) for ∗ ≤ 0 agrees with HomR[G]∗(P−∗,∗, π∗(X)) by

Proposition 5.13.

For � ≥ 0 the sequence GM ′
�(X) agrees with the filtration Ẽ�∧RFR(E,X). Its

subquotients for i ≥ 1 are of the form (Ẽi/Ẽi−1) ∧R FR(E,X) with

Ẽi/Ẽi−1
∼= Σ(Ei−1/Ei−2) ∼= R ∧ Σi(G∧i−1 ∧G+).

Let d be the dimension ofG. SinceG+ is stably dualisable, with Spanier–Whitehead
dual D(G+) 
G Σ−dG+, each subquotient above is equivalent to F (G+, X

′) for
some R-module X ′ in orthogonal G-spectra. It follows from Proposition 3.6 that

Ě1
∗(X) ∼= HomR[G]∗(R∗, E

1
∗(Ẽ� ∧R FR(E,X)))

for ∗ ≥ 1. Here

E1
i (Ẽ� ∧R FR(E,X)) = πi+∗(Ẽi−1 ∧R FR(E,X) → Ẽi ∧R FR(E,X))

∼= πi+∗(Ẽi/Ẽi−1 ∧R FR(E,X))

∼= πi+∗(Ẽi/Ẽi−1)⊗R∗ π∗FR(E,X)

∼= P̃i,∗ ⊗R∗ π∗(X)

for i ≥ 1, since P̃i,∗ = πi+∗(Ẽi/Ẽi−1) is projective, hence flat, over R∗, and c : E →
R induces an isomorphism π∗(X) ∼= π∗FR(E,X) of R[G]∗-modules. This shows

that (Ě1
∗(X), d1) for ∗ ≥ 1 agrees with HomR[G]∗(R∗, P̃∗,∗ ⊗R∗ π∗(X)).
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It remains to verify that d1 : Ě1
1(X) → Ě1

0(X) is as asserted. By definition, it
is given by the left-to-right composite in the following diagram.

πG
1+∗((Ẽ1/Ẽ0) ∧R X)

∂ ��

1∧c∗ ∼=
��

πG
∗ (X)

c∗

��

πG
1+∗((Ẽ1/Ẽ0) ∧R FR(E,X))

∂ �� πG
∗ (FR(E,X)) �� πG

∗ (FR(E0, X))

By naturality of ω, as in Lemma 3.5, this is obtained from the left-to-right composite

π1+∗((Ẽ1/Ẽ0) ∧R X)
∂ �� π∗(X)

c∗ ∼=
��

π∗(FR(E,X)) �� π∗(FR(E0, X))

by applying HomR[G]∗(R∗,−). Under the isomorphisms above, this is the compo-
sition

P̃1,∗ ⊗R∗ π∗(X)
∂̃1−→ P̃0,∗ ⊗R∗ π∗(X)

∼= π∗(X) ∼= HomR∗(R∗, π∗(X))
ε∗−→ HomR∗(P0, π∗(X)).

As we made explicit in Proposition 2.17, this equals the boundary gm1(π∗(X)) →
gm0(π∗(X)). �

Proposition 6.31. The filtration-preserving map α : GM�(X) → HM�(X)
induces an isomorphism of spectral sequences

αr : Ěr(X)
∼=−→ Êr(X)

for r ≥ 2.

Proof. Comparing Proposition 6.16 and Lemma 6.30 shows that

α1 : Ě1(X) → Ê1(X)

is the chain map Hom(1, α) shown to be a quasi-isomorphism in Proposition 2.18.
Hence α2 = H(α1, d1) is an isomorphism, which implies that αr is an isomorphism
for each r ≥ 2. �

Following [Gre87, §1], we can splice the filtration

R ∼= Ẽ0 −→ Ẽ1 −→ Ẽ2 −→ . . .

with the Spanier–Whitehead dual sequence

. . . −→ D(Ẽ2) −→ D(Ẽ1) −→ D(Ẽ0) ∼= R

to obtain a bi-infinite sequence

(6.11) . . . −→ D(Ẽ2) −→ D(Ẽ1) −→ R −→ Ẽ1 −→ Ẽ2 −→ . . .

of dualisable R-modules in orthogonal G-spectra. This is the sequence [GM95,
(9.5)] used by Greenlees and May to define their Tate spectral sequence, at least
for finite G. For G = T = U(1) or U = Sp(1) they instead repeat each term in
this sequence two or four times, respectively. For other compact Lie groups, the
connection is less direct.
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Proposition 6.32. There is a zigzag of equivalences from GM ′
�(X) to the

sequence GM ′′
� (X) with

GM ′′
k (X) =

{
Ẽk ∧R FR(E,X) for k ≥ 0,

D(Ẽ−k) ∧R FR(E,X) for k ≤ 0.

Hence the spectral sequence Ěr(X) is isomorphic to the Greenlees–May Tate spectral
sequence [GM95, Thm. 10.3] for πG

∗ applied to the sequence GM ′′
� (X).

Proof. The zigzag of equivalences connecting GM ′
�(X) to GM ′′

� (X) consists
of identity maps for � ≥ 0. For � ≤ 0 it takes the following form:

. . . �� FR(E/E1, X) ��

�G

��

FR(E/E0, X) ��

�G

��

FR(E,X)

=

��

. . . �� FR(E ∪ CE1, X) �� FR(E ∪ CE0, X) �� FR(E,X)

. . . �� FR(Ẽ2 ∧R E,X)

Δ̃∗ �G

��

�� FR(Ẽ1 ∧R E,X)

Δ̃∗ �G

��

�� FR(Ẽ0 ∧R E,X)

Δ̃∗ ∼=

��

. . . �� D(Ẽ2) ∧R FR(E,X)

ν �G

��

�� D(Ẽ1) ∧R FR(E,X)

ν �G

��

�� D(Ẽ0) ∧R FR(E,X)

ν ∼=

��

The two top rows are equivalent because each quotient map E ∪CEi−1 → E/Ei−1

is an equivalence, since Ei−1 → E is a (strong) h-cofibration. The equivalence

between the middle two rows is induced by the map Δ̃ of mapping cones associated
to the diagonal equivalence Δ: Ei−1 → Ei−1 ∧R E:

Ei−1
��

Δ �G

��

E ��

=

��

E ∪ CEi−1

Δ̃ �G

��

Ei−1 ∧R E
c∧1 �� R ∧R E �� Ẽi ∧R E.

The lower two rows are equivalent because each Ẽi is dualisable by Lemma 6.29. �

Remark 6.33. Our comparison of the Hesselholt–Madsen Tate spectral se-
quence

Êr(X) = Er(HM�(X))

and the Greenlees–May Tate spectral sequence

Ěr(X) = Er(GM�(X)) ∼= Er(GM ′
�(X)) ∼= Er(GM ′′

� (X))

is a little different from that of [HM03, Rmk. 4.3.6], since we obtain the Greenlees
sequence GM ′′

� (X) by splicing the two perpendicular edges (i = 0, j ≤ 0) and
(i ≥ 0, j = 0) of the bifiltration

HMi,j(X) = Ẽi ∧R Tj(M(X)) 
G Ẽi ∧R FR(E/E−j−1, X),

while Hesselholt and Madsen first invert a quasi-isomorphism, so as to position
both halves of the Greenlees sequence on the line j = 0.
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Remark 6.34. In the case of the circle group G = T we can work over R = S

and use the odd spheres S((k+1)C) to filter ET = S(∞C), so that Ẽk = SkC equals

(the suspension spectrum of) a representation sphere. Then D(Ẽ−k) = D(S−kC) =
SkC is a virtual representation sphere for each k < 0. For brevity, let us also

write Ẽk for the latter T-spectra, so that {Ẽk}k∈Z is the bi-infinite sequence (6.11),

with cofibre sequences Ẽk−1 → Ẽk → Σ2k−1T+. The Greenlees–May spectral
sequence associated to the sequence

Ẽ� ∧ F (ET+, X)

of T-spectra has E1-page

Ě1
k,∗(X) = πT

k+∗(Σ
2k−1T+ ∧ F (ET+, X)) ∼= π∗−k(X)

for each k ∈ Z, which we can formally write as t−k · π∗(X) with t in bidegree
(−1,−1). As remarked earlier, we may reindex the filtration and spectral sequence
so as to put t in bidegree (−2, 0), in which case E2

2k,∗(X) ∼= t−k · π∗(X) and

E2
2k−1,∗(X) = 0. Maunder [Mau63, Thm. 3.3], as well as Greenlees and May

[GM95, Thm. B.8], prove that the latter spectral sequence is isomorphic to one
associated to the tower of T-spectra

. . . −→ ẼT ∧ F (ET+, X
�+1) −→ ẼT ∧ F (ET+, X

�) −→ . . . .

Here {X�}� denotes a T-equivariant Whitehead tower for X, with homotopy fibre
sequences X�+1 → X� → Σ�Hπ�(X). The latter spectral sequence is indexed so
that

E2
∗,�(X) = πT

∗+�(ẼT ∧ F (ET+,Σ
�Hπ�(X))) ∼= π∗(Hπ�(X)tT)

for each integer �. In particular

π2k(Hπ�(X)tT) ∼= t−k · π�(X) and π2k−1(Hπ�(X)tT) = 0,

so that, formally, π∗(Hπ�(X)tT) ∼= π�(X)[t, t−1]. Furthermore, Greenlees and May
argue that the latter spectral sequence is multiplicative, with respect to some topo-
logically defined pairings of the form

π∗(Hπi(X)tT)⊗ π∗(Hπj(Y )tT) −→ π∗(Hπi+j(Z)tT).

However, as is implicit in [GM95, Prob. 14.8], they do not establish that these
topological pairings agree with the evident algebraic pairings

πi(X)[t, t−1]⊗ πj(Y )[t, t−1] −→ πi+j(Z)[t, t−1].

Hence they do not assert that the isomorphism E2
∗,∗(X) ∼= π∗(X)[t, t−1] takes the

topological product to the algebraic product. In particular, the higher differentials
in this spectral sequence are known to obey a Leibniz rule, but conceivably not
with respect to the most evident algebraic product.

Nonetheless, we can confirm directly that the first differential in each of these
spectral sequences is a derivation with respect to the algebraic product. To express
this, we return to the indexing used elsewhere in the memoir, i.e., to the Greenlees–
May spectral sequence Ěr

∗,∗(X). Up to the technical issue we have pointed out
about compatibility of product structures, the following result is due to Hesselholt
[Hes96, Lem. 1.4.2].
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Proposition 6.35. Let X be any orthogonal T-spectrum, so that π∗(X) is a
right S[T]∗-module. There is a natural isomorphism

Ě1
∗,∗(X) ∼= π∗(X)[t, t−1]

with t in bidegree (−1,−1), such that d1 : Ě1
k,∗(X) → Ě1

k−1,∗(X) corresponds to the

differential d : t−k · π∗(X) → t−k+1 · π∗(X) given by

d(t−k · x) =
{
t−k+1 · xs for k even,

t−k+1 · x(s+ η) for k odd.

Proof. By naturality of the Greenlees–May spectral sequence with respect to
T-maps x : Σ�S[T] → X, corresponding to homotopy classes x ∈ π�(X), it suffices
to prove the result in the case X = S[T] and x = 1 ∈ π0(S[T]).

Consider the case X = HZ[T]. We have π∗(HZ[T]) = Z{1, σ} and HZ[T]tT 
 ∗
sinceHZ, as a T-spectrum, is induced up fromHZ. For bidegree reasons the T-Tate
spectral sequence must collapse to zero at the E2-page, which forces

d(t−k · 1) = ±t−k+1 · σ.
Here, we can iteratively fix the sign of t−k implicit in the identification Ě1

k,∗(X) ∼=
t−k · π∗(X) so that each of these signs is a plus. By naturality with respect to the
Hurewicz homomorphism S[T] → HZ[T] it follows that

d(t−k · 1) ≡ t−k+1 · s mod t−k+1 · η
in the T-Tate spectral sequence for S[T], since π1(S[T]) = Z{s} ⊕ Z/2{η} with the
Hurewicz homomorphism mapping s to σ.

Now consider the case X = S with trivial T-action. The part k ≥ 1 of the
Greenlees–May spectral sequence maps to the Atiyah–Hirzebruch spectral sequence
for Σ2CP∞

+ . Since the 2k-cell in Σ2CP∞ is stably attached to the 2k−2-cell by kη,
it follows that

d(t−k · 1) = t−k+1 · kη
for k ≥ 2. Similarly, the part k ≤ 0 receives a map from the Atiyah–Hirzebruch
spectral sequence for D(CP∞

+ ), where the −2k-cell is attached to the −2k − 2-cell
by kη, see [Mos68, Prop. 5.1], so that

d(t−k · 1) = t−k+1 · kη
for k ≤ 0, as well. Finally, for k = 1 the differential is induced by the composite
T-map

Σ−1Ẽ1/Ẽ0 ∧ F (ET+, S) −→ Ẽ0 ∧ F (ET+, S) −→ Ẽ0/Ẽ−1 ∧ F (ET+, S),

which we can rewrite in terms of the counit ε : T+ → S0 and its Spanier–Whitehead
dual D(ε) : S → D(T+) as

F (ET+,T+)
ε∗−→ F (ET+, S)

D(ε)∗−−−−→ F (ET+, D(T+)).

Passing to T-fixed points, this is a composite

ΣS 
 S[T]hT −→ ShT −→ D(T+)
hT 
 S,

which we claim equals η ∈ π1(S). This can be seen using the Pontryagin–Thom
collapse t : SC → SC/S0 ∼= Σ(T+) associated to the embedding T ⊂ C, and the
untwisting isomorphism ζ : Σ2(T+) ∼= ΣC(T+). Then ζ(1 ∧ t) : ΣSC → ΣC(T+)
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defines a stable T-map S1 → T+. The composite εζ(1 ∧ t) : ΣSC → SC has (non-
equivariant) Hopf invariant ±1, since the preimages of two generic points in SC are
circles in ΣSC with that linking number.

This proves d(t−1 · 1) = t0 · η in the T-Tate spectral sequence for S and, by
naturality with respect to S[T] → S, the asserted formulas follow. �

6.6. Convergence

In this section we use Proposition 6.31 to deduce convergence results for the
Hesselholt–Madsen spectral sequence Êr(X) from corresponding results for the
Greenlees–May spectral sequence Ěr(X).

Lemma 6.36. The map of abutments

α∞ : A∞(GM�(X))
∼=−→ A∞(HM�(X)) ∼= π∗(X

tG)

is an isomorphism. Hence the homomorphism

αs : FsA∞(GM�(X)) −→ FsA∞(HM�(X))

is injective, for each s ∈ Z.

Proof. The first assertion follows from Lemma 6.25. The commutative dia-
gram

As(GM�(X)) �� ��

��

FsA∞(GM�(X)) �� ��

αs

��

A∞(GM�(X))

α∞ ∼=
��

As(HM�(X)) �� �� FsA∞(HM�(X)) �� �� A∞(HM�(X))

implies the injectivity assertion. �

Lemma 6.37. The spectral sequence

Ěr(X) = Er(GM�(X)) =⇒ π∗(X
tG)

is conditionally convergent.

Proof. The spectral sequence associated to GM�(X) is conditionally conver-
gent to the colimit, in the sense of [Boa99, Def. 5.10], whenever holims GMs(X) 
G

∗. Since the sequences GM�(X) and GM ′
�(X) are equivalent by Lemma 6.27, we

may equally well verify that holims GM ′
s(X) 
G ∗. But

GM ′
s(X) = FR(E/Es−1, X) = Ms(X)

for s ≤ 0, and we saw in Section 5.2 that holims Ms(X) 
G ∗. Hence the Greenlees–
May G-Tate spectral sequence Ěr(X) is always conditionally convergent. �

Lemma 6.38. The maps of E∞- and RE∞-pages

E∞(GM�(X))
∼=−→ E∞(HM�(X))

RE∞(GM�(X))
∼=−→ RE∞(HM�(X))

are isomorphisms.
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Proof. Recall from [Boa99, (5.1)] that for each spectral sequence (Er, dr)
there are filtrations

0 = B1 ⊂ B2 ⊂ B3 ⊂ · · · ⊂ Z3 ⊂ Z2 ⊂ Z1 = E1

with Er ∼= Zr/Br for r ≥ 1. We set

B∞ = colim
r

Br, Z∞ = lim
r

Zr, E∞ = Z∞/B∞, RE∞ = Rlim
r

Zr.

Letting B̄r = Br/B2 and Z̄r = Zr/B2 for r ≥ 2, we obtain a filtration

0 = B̄2 ⊂ B̄3 ⊂ · · · ⊂ Z̄3 ⊂ Z̄2 ∼= E2

with Er ∼= Z̄r/B̄r for r ≥ 2. Let

B̄∞ = colim
r

B̄r and Z̄∞ = lim
r

Z̄r.

Then B̄∞ ∼= B∞/B2, while Z̄∞ ∼= Z∞/B2 and Rlimr Z
r ∼= Rlimr Z̄

r by the lim-
Rlim exact sequence. Hence E∞ ∼= Z̄∞/B̄∞ by the Noether isomorphism, and
RE∞ ∼= Rlimr Z̄

r.
A map of spectral sequences inducing an isomorphism of E2-pages will by

induction induce isomorphisms of B̄r- and Z̄r-pages for all r ≥ 2, and therefore
also of B̄∞-, Z̄∞-, E∞- and RE∞-pages. �

When X is bounded below, and G is finite or equal to T = U(1) or U =

Sp(1), the E1-pages Ě1(X) and Ê1(X) are both concentrated in half-planes with
entering differentials [Boa99, §7]. However, for more general groups G (such as
T × U) the E1-page Ě1(X) occupies a region that is only bounded by a broken

line, and Ê1(X) may not be bounded in any ordinary sense. We therefore need to

discuss convergence for the spectral sequences Ěr(X) and Êr(X) in the generality
of whole-plane spectral sequences [Boa99, §8].

Definition 6.39. Let (A,E1) be the exact couple associated to a Cartan–
Eilenberg system (H, ∂). Boardman’s whole-plane obstruction group W is defined
in [Boa99, Lem. 8.5] by an expression

W = colim
s

Rlim
r

K∞ imr As.

We refer to Boardman’s paper for an explanation of the notation. By [HR19,
Thm. 7.5] there is an isomorphism

W ∼= ker(κ)

where

κ : colim
j

lim
i

H(i, j) −→ lim
i
colim

j
H(i, j)

is the interchange morphism, which is always surjective.

WhileW is defined in terms of the underlying exact couple (or Cartan–Eilenberg
system), Boardman gives the following criterion for the vanishing of W , which is
internal to the spectral sequence.

Lemma 6.40 ([Boa99, Lem. 8.1]). Suppose that for each m, there exist num-
bers u(m) and v(m) such that for all u ≥ u(m) and v ≥ v(m), the differential

du+v : Eu+v
u,m−u −→ Eu+v

−v,m+v−1

vanishes. Then W = 0.
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Remark 6.41. If for some fixed r the Er-page of the spectral sequence is
bounded from the side of entering differentials, in the sense that for each m there is
a number u(m) such that Er

u,m−u = 0 for all u ≥ u(m), then Boardman’s vanishing
criterion is satisfied with v(m) = r − u(m). Hence W = 0 in these cases.

Alternatively, if the spectral sequence collapses at the Er-page, so that dr

and all later differentials are zero, then Boardman’s vanishing criterion is satisfied
with u(m) = r and v(m) = 0. Thus W = 0 also in these cases.

Theorem 6.42. The spectral sequence

Ěr(X) = Er(GM�(X))

converges strongly to A∞(GM�(X)) ∼= π∗(X
tG) if and only if RE∞ = 0 and W = 0

for this spectral sequence.

Proof. We saw that Ěr(X) is conditionally convergent in Lemma 6.37. Hence
the statements ‘RE∞ = 0 and W = 0’ and ‘the spectral sequence is strongly
convergent’ are equivalent by [Boa99, Thm. 8.10]. �

Theorem 6.43. If the Greenlees–May spectral sequence

Ěr(X) = Er(GM�(X)) =⇒ π∗(X
tG)

is strongly convergent, then the Hesselholt–Madsen spectral sequence

Êr(X) = Er(HM�(X)) =⇒ π∗(X
tG)

is strongly convergent, as well. Moreover, FsA∞(GM�(X)) = FsA∞(HM�(X)) for
all integers s.

Proof. We assume Ěr(X) is strongly convergent. Explicitly, this means that
the exhaustive filtration (FsA∞(GM�(X)))s of A∞(GM�(X)) ∼= π∗(X

tG) is com-
plete Hausdorff, and the left hand monomorphism β in the commutative square

FsA∞(GM�(X))

Fs−1A∞(GM�(X))

ᾱs ��

β ∼=
��

FsA∞(HM�(X))

Fs−1A∞(HM�(X))
��

β

��

E∞
s (GM�(X))

α∞
s

∼=
�� E∞

s (HM�(X))

is an isomorphism. It follows that the right hand monomorphism β is also an
isomorphism. Since the filtration (FsA∞(HM�(X)))s is exhaustive, this means

that Êr(X) converges weakly to π∗(X
tG). It also follows that the upper homomor-

phism ᾱs is an isomorphism. By induction, this implies that the map of filtration
quotients

FtA∞(GM�(X))

FsA∞(GM�(X))

∼=−→ FtA∞(HM�(X))

FsA∞(HM�(X))

is an isomorphism for all integers s ≤ t.
Passing to colimits over t, and using the fact that

α∞ : A∞(GM�(X))
∼=−→ A∞(HM�(X))

is an isomorphism by Lemma 6.36, we deduce that

αs : FsA∞(GM�(X)) → FsA∞(HM�(X))
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is an isomorphism, for each s ∈ Z. The filtration (FsA∞(HM�(X)))s is therefore

complete and Hausdorff, meaning that Êr(X) converges strongly to π∗(X
tG). �

Combining these results we obtain the following theorem, which often compen-
sates for the problem that we do not a priori know when Êr(X) = Er(HM�(X))
is conditionally convergent, cf. Remark 6.15.

Theorem 6.44. If RE∞ = 0 and Boardman’s vanishing criterion for W from
Lemma 6.40 is satisfied for the G-Tate spectral sequence Êr(X) = Er(HM�(X)),
then this spectral sequence converges strongly and conditionally to A∞(HM�(X)) ∼=
π∗(X

tG).

Note that we are not just assuming that W = 0 for Êr(X), but that this group
vanishes for the reason given by Boardman’s criterion.

Proof. Since Ěr(X) ∼= Êr(X) for r ≥ 2, the vanishing of RE∞ for Êr(X)
implies the vanishing of RE∞ for Ěr(X). Furthermore, the hypothesis of Board-

man’s criterion for Êr(X) implies the same hypothesis for Ěr(X). Hence Ěr(X)

converges strongly by Theorem 6.42, which implies that Êr(X) converges strongly
by Theorem 6.43. By [Boa99, Thm. 8.10] strong convergence and the vanishing
of RE∞ and W imply conditional convergence. �

6.7. Summary: The T-Tate spectral sequence

The main example we had in mind when writing this memoir was G = T.
Note that when discussing the T-Tate spectral sequence for a T-spectrum X one
could really refer to at least2 two different spectral sequences: one arising from
the Greenlees–May filtration and one from the Hesselholt–Madsen filtration. The
first has better convergence properties, while the latter has better multiplicative
properties. Fortunately there are quite good comparison results between the two,
as covered in Section 6.6.

Let us start by summarizing the additive results regarding the Greenlees–May
and Hesselholt–Madsen versions of the T-Tate spectral sequence. We work over
R = S, and write ⊗ for ⊗S∗ . We first note that by virtue of X being a T-spectrum,
there is an action

γ : X ∧ T+
∼= X ∧ S[T] −→ X

which makes X into a right module over the spherical group ring S[T]. The induced
pairing

γ∗ : π∗(X)⊗ S[T]∗ −→ π∗(X)

on homotopy groups then gives π∗(X) the structure of a right module over the Hopf
algebra

S[T]∗ ∼= S∗[s]/(s
2 = ηs), |s| = 1.

Here η is the image of the complex Hopf map in π1(S) ∼= Z/2. Note that this Hopf
algebra is finitely generated and projective over S∗. We denote the image γ∗(x⊗ s)
by xs.

There is a minimal projective S[T]∗-module resolution P∗ of S∗, with Pk =

S[T]{pk} and ∂(pk) = pk−1(s + (k − 1)η). Let P̃∗ be the mapping cone of the

2There is also at least one more Tate spectral sequence, namely the one arising from a
Postnikov or Whitehead tower of X; see Remark 5.5 and Remark 6.34.
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augmentation ε : P∗ → S∗. Let the complete resolution P̂∗ be the fibre product

P∗ ×S∗ D(P̃∗), which is obtained by splicing P∗ with its dual.

Theorem 6.45 (Greenlees–May–Tate spectral sequence). Given an orthogo-
nal T-spectrum X, there is a filtration GM�(X) of orthogonal T-spectra, and an
associated S∗-module spectral sequence

Ěr(X) = Er(GM�(X))

with abutment

A∞(GM�(X)) ∼= π∗(X
tT)

filtered by the images im(π∗GM∗(X) → π∗(X
tT)). We refer to this spectral sequence

as the Greenlees–May T-Tate spectral sequence for X. The following hold:

E1-page: The E1-page of the Greenlees–May T-Tate spectral sequence can
be written

E1
∗,∗(GM�(X)) ∼= HomS[T]∗(P̂∗, π∗(X))

where P̂∗ is a complete resolution of S∗ as a trivial S[T]∗-module. For the
minimal such resolution we can write

E1
∗,∗(GM�(X)) ∼= π∗(X)[t, t−1]

with t in bidegree (−1,−1), and then d1(tc · x) = tc+1 · x(s + cη) for all
c ∈ Z and x ∈ π∗(X).

Convergence: The Greenlees–May spectral sequence converges condition-
ally to the abutment. It converges strongly to the abutment if and only if
the derived E∞-page RE∞ and Boardman’s whole plane obstruction group
W are both trivial.

Proof. The first statement is Lemma 6.30 combined with Proposition 2.24
and Proposition 6.35. The second statement is Lemma 6.37 combined with Theo-
rem 6.42. �

Theorem 6.46 (Hesselholt–Madsen–Tate spectral sequence). Given an orthog-
onal T-spectrum X, there is a filtration HM�(X) of orthogonal T-spectra, and an
associated S∗-module spectral sequence

Êr(X) = Er(HM�(X))

with abutment

A∞(HM�(X)) ∼= π∗(X
tT)

filtered by the images im(π∗HM�(X) → π∗(X
tT)). We refer to this spectral sequence

as the Hesselholt–Madsen T-Tate spectral sequence for X. The following hold:

E1-page: The E1-page of the Hesselholt–Madsen T-Tate spectral sequence
can be written

E1
∗,∗(HM�(X)) ∼= HomS[T]∗(S∗, P̃∗ ⊗Hom(P∗, π∗(X)))

where P∗ is a projective resolution of S∗ as a trivial S[T]∗-module and P̃∗
denotes the mapping cone of the augmentation ε : P∗ → S∗.

E2-page: The E2-page is given in terms of Hopf algebra Tate cohomology,
alias complete Ext, as

E2
∗,∗(HM�(X)) ∼= Êxt

−∗
S[T]∗(S∗, π∗(X)).
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Convergence: If the Greenlees–May T-Tate spectral sequence for X con-
verges strongly, then the Hesselholt–Madsen T-Tate spectral sequence for
the same spectrum also converges strongly. Moreover, the two associated
filtrations of π∗(X

tT) agree.

Proof. The first statement is Proposition 6.16, the second is Theorem 6.17,
and the third statement is Theorem 6.43. �

Worth pointing out is that the Greenlees–May and the Hesselholt–Madsen ver-
sions of the T-Tate spectral sequence are isomorphic from the E2-page and on, per
Proposition 6.31. In particular, the E2-page of both spectral sequences is given by

Ê2
−c,∗(X) ∼= Ě2

−c,∗(X) ∼= Êxt
c

S[T]∗(S∗, π∗(X))

∼=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ker(s : π∗(X) → π∗+1(X))

im(s+ η : π∗−1(X) → π∗(X))
for c even,

ker(s+ η : π∗(X) → π∗+1(X))

im(s : π∗−1(X) → π∗(X))
for c odd,

where the last isomorphism is the result of the computation of Section 2.6.
Regarding convergence, we note that Lemma 6.40 gives a criterion, internal to

the spectral sequence itself, for when Boardman’s whole-plane obstruction vanishes.
In particular, if X is bounded below, either version of the T-Tate spectral sequence
is a half-plane spectral sequence with entering differentials (at least from the E2-
page), which guarantees this. In the applications we have in mind, we are in this
situation if we consider topological Hochschild homology X = THH(B) for some
connective orthogonal ring spectrum B.

Let us now summarise the multiplicative structure of the two spectral sequences
discussed.

Theorem 6.47.

Multiplicativity: The Hesselholt–Madsen T-Tate spectral sequence is mul-
tiplicative, in the sense that any pairing φ : X ∧ Y → Z of orthogonal
T-spectra gives rise to a pairing φ : (Ê∗(X), Ê∗(Y )) → Ê∗(Z) of the as-
sociated spectral sequences. Explicitly, φ gives rise to homomorphisms

φr : Êr(X�)⊗ Êr(Y�) −→ Êr(Z�)

for all r ≥ 1, such that:
(1) The Leibniz rule

drφr = φr(dr ⊗ 1) + φr(1⊗ dr)

holds as an equality of homomorphisms

Êr
i (X)⊗ Êr

j (Y ) −→ Êr
i+j−r(Z)

for all i, j ∈ Z and r ≥ 1.
(2) The diagram

Êr+1(X)⊗ Êr+1(Y ) Êr+1(Z)

H(Êr(X)⊗ Êr(Y )) H(Êr(Z))

φr+1

∼=

H(φr)

commutes for all r ≥ 1.
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(3) The pairing

φ2 : Ê2(X�)⊗ Ê2(Y�) −→ Ê2(Z�)

agrees with the cup product

� : Êxt
−i,∗
S[T]∗(S∗, π∗(X))⊗ Êxt

−j,∗
S[T]∗(S∗, π∗(Y )) −→ Êxt

−i−j,∗
S[T]∗ (S∗, π∗(Z)).

For r ≥ 2 the same statements hold for the Greenlees–May spectral se-
quence, with Ěr in place of Êr.

Multiplicative abutment: We have an induced pairing

φ∗ : π∗(X
tT)⊗ π∗(Y

tT) −→ π∗(Z
tT)

of abutments with the Hesselholt–Madsen filtrations, which is compatible
with the pairing φ∞ of E∞-pages. Explicitly, the diagram

Fiπ∗(X
tT)

Fi−1π∗(XtT)
⊗ Fjπ∗(Y

tT)

Fj−1π∗(Y tT)

φ̄∗ ��

β⊗β

��

Fi+jπ∗(Z
tT)

Fi+j−1π∗(ZtT)
��

β

��

Ê∞
i (X)⊗ Ê∞

j (Y )
φ∞

�� Ê∞
i+j(Z)

commutes, for all i, j ∈ Z.
If the Greenlees–May spectral sequence is strongly convergent, then the

same statements hold for the Greenlees–May filtrations and Ě∞
∗,∗.

Proof. For the Hesselholt–Madsen T-Tate spectral sequence this is Theo-
rem 6.18 and Theorem 6.21. The statements about multiplicativity of the Er-pages
and dr-differentials can be transported to the Greenlees–May spectral sequence for
r ≥ 2 by way of the isomorphism of Proposition 6.31. The statements about multi-
plicativity of filtered abutments carry over to the Greenlees–May spectral sequence
when GM�(X) and HM�(X) induce the same filtration on π∗(X

tT), which holds
under the hypothesis of strong convergence by Theorem 6.43. �

Recalling the discussion of Remark 2.56, in the context of the circle group,
the Hopf algebra Tate cohomology can also be described as the homology of the
differential graded S[T]∗-module

π∗(X)[t, t−1], |t| = −1

with differential characterised by

d(x) = txs and d(t) = t2η.

Moreover, given a pairing X∧Y → Z we have an induced pairing π∗(X)⊗π∗(Y ) →
π∗(Z) on homotopy groups, and the cup product on Tate cohomology is precisely
the one induced by the obvious map

π∗(X)[t, t−1]⊗ π∗(Y )[t, t−1] −→ π∗(Z)[t, t−1]

on homology. By Theorem 6.21, the multiplicative structure on the second page of
(both versions of) the T-Tate spectral sequence corresponds to this cup product. By
Proposition 6.35 we can formally impose this algebra structure on the Greenlees–
May E1-page, in which case the d1-differential is a derivation, and this lets us extend
the multiplicativity statement for the Greenlees–May T-Tate spectral sequence to
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the range r ≥ 1, in place of r ≥ 2, even if there is no underlying topological source
of the pairing of E1-pages.

Remark 6.48. Blumberg and Mandell also set up T-Tate spectral sequences
in line with Greenlees–May and Hesselholt–Madsen in [BM17]; let us elaborate on
how our spectral sequences compare to theirs. While the homotopy theoretical tech-
nicalities are resolved in a different manner to what we have done in this memoir,
the main ideas are the same: their Hesselholt–Madsen filtration [BM17, Section
12] is essentially the same as ours. It is worth noting that Blumberg and Man-
dell prove that conditional convergence for the Hesselholt–Madsen T-Tate spectral
sequence always holds [BM17, Lemma 3.16, p. 38], something that we have not
proved in this memoir. We believe that a similar argument to theirs works to show
that the Hesselholt–Madsen G-Tate spectral sequence is conditionally convergent
for all compact Lie groups G, but refrain from making any definite statement before
the details are checked.

As mentioned in Section 4.3, some form of cofibrant replacement of maps is
necessary to solve homotopy theoretical difficulties when dealing with sequences
of spectra. Blumberg–Mandell deal with these by referring to model structures
on such categories, with a focus on h-cofibrations [BM17, Section 6]. While such
model structures do exist, and we also started out trying to solve technicalities
in such a manner, we were ultimately unable to locate a reference for why such
a model structure is monoidal, which is needed for multiplicative structures on
spectral sequences. This was one of the main reasons that we ended up choosing
to work with explicit models for our homotopy colimits (with convenient monoidal
properties), as well as with strong h-cofibrations (so that we can use Theorem 4.17),
rather than referring to the framework of model categories.
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