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Abstract
We establish motivic versions of the theorems of Lin
andGunawardena, thereby confirming themotivic Segal
conjecture for the algebraic group 𝜇𝓁 of 𝓁th roots of
unity, where 𝓁 is any prime. To achieve this we develop
motivic Singer constructions associated to the symmet-
ric group 𝑆𝓁 and to 𝜇𝓁 , and introduce a delayed limit
Adams spectral sequence.
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1 INTRODUCTION

Let 𝛾1 ↓ ℝ𝑃∞ ≃ 𝐵𝐶2 be the tautological line bundle over infinite-dimensional real projective
space, let ℝ𝑃∞−𝑚 = 𝑇ℎ(−𝑚𝛾

1) be the Thom spectrum of the negative of 𝑚 times 𝛾1, and let
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ON THEMOTIVIC SEGAL CONJECTURE 1259

ℝ𝑃∞−∞ = holim𝑚 ℝ𝑃
∞
−𝑚. Mahowald conjectured that there is a 2-adic equivalence ℝ𝑃

∞
−∞ ≃ 𝑆

−1;
see Adams [3, p. 5]. More generally, Segal conjectured for finite groups 𝐺 that there is an 𝐼(𝐺)-
adic equivalence (𝑆𝐺)𝐺 ≃ (𝑆𝐺)ℎ𝐺 from the fixed points to the homotopy fixed points of the
𝐺-equivariant sphere spectrum. Here 𝐼(𝐺) denotes the augmentation ideal in the Burnside ring
of 𝐺.
Mahowald’s conjecture, which is equivalent to Segal’s Burnside ring conjecture for 𝐶2, was

proved by Lin in [37, Theorem 1.2]. For odd primes 𝓁, Gunawardena [21] proved Segal’s con-
jecture for 𝐶𝓁 , obtaining an 𝓁-adic equivalence 𝐿∞−∞ ≃ 𝑆

−1. Here 𝐿∞−∞ denotes a homotopy
limit of Thom spectra over the infinite-dimensional lens space 𝐿∞ ≃ 𝐵𝐶𝓁 . Segal’s conjec-
ture was later affirmed for all finite groups by Carlsson [12], building on May-McClure [45],
Adams–Gunawardena–Miller [4] and Caruso–May–Priddy [13].
In this paper we promote the classical theorems of Lin and Gunawardena to the motivic set-

ting, obtaining 𝜋∗,∗-isomorphisms 𝕊 ≃ Σ1,0𝐿∞−∞, after (𝓁, 𝜂)-adic completion, for all primes 𝓁.
Here 𝕊 denotes the motivic sphere spectrum, 𝜂 ∈ 𝜋1,1(𝕊) is the Hopf fibration, and now 𝐿∞−∞ =
holim𝑚 𝐿

∞
−2𝑚

, where 𝐿∞
−2𝑚

is the Thom spectrum of a virtual algebraic vector bundle over the
geometric classifying space 𝐿∞ = 𝐵𝜇𝓁 of the algebraic group 𝜇𝓁 of 𝓁th roots of unity. More pre-
cisely, 𝐿∞

−2𝑚
= hocolim𝑛 𝐿

2𝑛−2𝑚−1
−2𝑚

, where 𝐿2𝑛−2𝑚−1
−2𝑚

= 𝑇ℎ(−𝑚𝛾∗𝑛 ↓ 𝐿
2𝑛−1) and 𝛾∗𝑛 is the dual of the

tautological algebraic line bundle over 𝐿2𝑛−1 = (𝔸𝑛 ⧵ {0})∕𝜇𝓁 .

Theorem 1.1. Let 𝑆 be a finite-dimensional Noetherian scheme, essentially smooth over a field or
Dedekind domain containing 1∕𝓁. There is a 𝜋∗,∗-isomorphism

𝑒∧𝓁,𝜂 ∶ 𝕊
∧
𝓁,𝜂 ⟶

(
Σ1,0𝐿∞−∞

)∧
𝓁,𝜂

in the stable motivic homotopy category 𝑆𝐻(𝑆). If 𝑆 = Spec 𝑘 for 𝑘 a field, then 𝑒∧𝓁,𝜂 is a
motivic equivalence.

In other words, we prove the motivic Segal conjecture in its non-equivariant form, in the case
of the algebraic group 𝜇𝓁 , for any prime 𝓁. For 𝓁 = 2 this is the motivic version of Mahowald’s
conjecture and Lin’s theorem. For 𝓁 odd it is the motivic version of Gunawardena’s theorem.
Already for 𝑆 = Spec 𝑘 in the algebraically closed case 𝑘 = ℂ, the additional information about

motivic weight has proved to be a valuable new tool for calculational purposes; cf. Isaksen [30]
and Isaksen–Wang–Xu [31]. In the real case 𝑘 = ℝ, many new phenomena arise; cf. Hill [24],
Dugger–Isaksen [16] and Belmont–Isaksen [7]. Our results are valid even in the arithmetically
most substantial cases of (rings of 𝓁-integers in) number fields. In particular, we have made an
effort to not have to assume that the mod 𝓁 motivic cohomology groups 𝐻∗,∗ = 𝐻∗,∗(𝑆; ℤ∕𝓁) are
finite in each bidegree. Our results enable an analysis of𝜋∗,∗(𝕊) by comparisonwith the homotopy
spectral sequence associated to the tower {𝐿∞

−2𝑚
}𝑚, that is, the motivic Mahowald root invariants,

refining Mahowald [41] and Mahowald–Ravenel [42]. Such applications have already appeared
in Quigley’s papers [54, 55] and [56]. We expect the interplay between the motivic cohomology of
number fields and the Mahowald root invariants to be very rich.
In Section 2 we review fromVoevodsky’s article [64] theHopf algebroid structure of themotivic

dual Steenrod algebra A∗,∗, and of its quotients 𝐴(𝑛)∗,∗ = A∗,∗∕𝐼(𝑛). In Section 3 we generalize
the approach of Adams–Gunawardena–Miller from [4, §2], and introduce the𝐴(𝑛)∗,∗-𝐴(𝑛 − 1)∗,∗
bicomodule algebras 𝐶(𝑛)∗,∗ = A∗,∗∕𝐽(𝑛) and their localizations 𝐵(𝑛)∗,∗ away from 𝜉1. In Sec-
tion 4 we dualize these constructions, following Boardman [8, §3], obtaining themotivic Steenrod

                                                                                                                                                                                                                                                                                                                                                                       



1260 GREGERSEN and ROGNES

algebra A , its finite subalgebras 𝐴(𝑛), and the 𝐴(𝑛)-𝐴(𝑛 − 1)-bimodules 𝐶(𝑛) and 𝐵(𝑛). In Sec-
tion 5 we generalize the (small) Singer construction of Singer [60] and Li–Singer [36], obtaining
anA -module𝑅𝑆(𝑀) = colim𝑛 𝐵(𝑛) ⊗𝐴(𝑛−1) 𝑀 and a natural homomorphism 𝜖∶ 𝑅𝑆(𝑀) → 𝑀 for
eachA -module𝑀.
We prove in Theorem 5.8 that𝑅𝑆(𝐻∗,∗) ≅ Σ1,0𝐻∗,∗(𝐵𝑆𝓁)loc is a shifted localization of themotivic

cohomology of the geometric classifying space of the symmetric group 𝑆𝓁 on 𝓁 letters. In Sec-
tion 6 we recast Adams–Gunawardena–Miller [4, §5] and construct a (large) Singer construction
𝑅𝜇(𝑀) and a natural A -module homomorphism 𝜖∶ 𝑅𝜇(𝑀) → 𝑀. We show in Corollary 6.6 that
𝑅𝜇(𝐻
∗,∗) ≅ Σ1,0𝐻∗,∗(𝐵𝜇𝓁)loc is a shifted localization of themotivic cohomology of the infinite lens

space 𝐵𝜇𝓁 . In Section 7 we prove that the evaluation homomorphisms 𝜖 are Ext-equivalences.
Here we deviate from the Tor-equivalence approach of [4, §2], due to the two-sided nature of
Hopf algebroids.
In Section 10 we construct the tower {𝐿∞

−2𝑚
}𝑚 of motivic spectra, and the map 𝑒∶ 𝕊 → Σ1,0𝐿∞−∞

to the suspension of their homotopy limit.We show in Proposition 10.10 that the continuous coho-
mology𝐻∗,∗𝑐 (𝐿∞−∞) = colim𝑚 𝐻

∗,∗(𝐿∞
−2𝑚
) is isomorphic as anA -module to𝐻∗,∗(𝐵𝜇𝓁)loc, and that

𝑒 induces the Ext-equivalence 𝜖, via the identifications above. The plan is now to compare the
motivic mod 𝓁 Adams spectral sequence for 𝕊with the tower of Adams spectral sequences associ-
ated to the𝐿∞

−2𝑚
. Thisworks fine in the presence of sufficient finiteness to ensure that the algebraic

limit of these Adams spectral sequences is again a spectral sequence, as is the case in the classical
setting ofCaruso–May–Priddy [13].However, for base schemes𝑆 such that𝐻∗,∗ is not finite in each
bidegree, this approach can fail. Instead, we form amodified Adams spectral sequence, called the
delayed limit Adams spectral sequence, where any lim1-classes arising from non-exactness are
shifted up into the next filtration degree.
In Section 8 we prepare for this construction by introducing some terminology for motivic gen-

eralized Eilenberg–MacLane spectra, and formulate a finiteness condition, called bifinite type,
which lets us identify the 𝐸1- and 𝐸2-terms of motivic Adams spectral sequences in algebraic
terms. In Section 9 we introduce the delayed limit Adams spectral sequence in Definition 9.1,
and identify its 𝐸2-term as Ext for a continuous cohomology A -module in Proposition 9.2. In
Proposition 9.6 we show that the delayed limit Adams spectral sequence converges condition-
ally, and in Proposition 9.7 we adapt a comparison theorem from Boardman [9] for morphisms of
conditionally convergent spectral sequences. In Section 11 the threads are brought together. See
Theorem 11.1 for the proof of Theorem 1.1.
This article is based on the first author’s PhD thesis [19], guided by the second author.

2 THEMOTIVIC STEENROD ALGEBRA AND ITS DUAL

Let 𝑆 be a Noetherian (separated) scheme of finite (Krull) dimension 𝑑, essentially smooth over a
field or a Dedekind domain, and let 𝓁 be a prime that is invertible on 𝑆.
Let 𝑆𝐻(𝑆) be Voevodsky’s motivic stable homotopy category [63, Definition 5.7], [33] associated

to smooth schemes over 𝑆. It is triangulated, and has a compatible closed symmetric monoidal
structure given by the motivic sphere spectrum 𝕊 = Σ∞𝑆+, the smash product pairing − ∧ −, the
twist isomorphism 𝛾 and the function spectrum𝐹(−,−). Let𝐻 = 𝐻ℤ∕𝓁 be themotivic Eilenberg–
MacLane spectrum representingmotivic cohomologywith coefficients inℤ∕𝓁. It is a commutative
ring spectrum, with unit map 𝜂∶ 𝕊 → 𝐻 and product 𝜇∶ 𝐻 ∧ 𝐻 → 𝐻. Moreover, 𝐻 is known to
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be cellular [25, Proposition 8.1], [61, Corollary 10.4], that is, an iterated homotopy colimit of stable
motivic spheres.
Let𝐻∗,∗ = 𝜋∗,∗(𝐻) = 𝐻−∗,−∗ denote the motivic homology and cohomology groups of the base

scheme 𝑆. Then𝐻𝑝,𝑞 = 0unless 0 ⩽ 𝑝 ⩽ min{𝑞 + 𝑑, 2𝑞}; cf. [18, Corollary 4.4], [25, Corollary 4.26].
For 𝑥 ∈ 𝜋𝑡,𝑢(𝑋), where𝑋 is anymotivic spectrum,we refer to 𝑡 and 𝑢 as the topological degree and
weight of 𝑥, respectively. We write |𝑥| = deg(𝑥) = 𝑡,wt(𝑥) = 𝑢 and ‖𝑥‖ = (𝑡, 𝑢). The cup product
induced by 𝜇 gives𝐻∗,∗ = 𝐻−∗,−∗ the structure of a bigraded commutative ℤ∕𝓁-algebra. Only the
parity of the topological degree plays a role in bigraded commutativity.
Let A = 𝐻∗,∗(𝐻) = 𝜋−∗,−∗𝐹(𝐻,𝐻) denote the motivic Steenrod algebra, and let A∗,∗ =

𝐻∗,∗(𝐻) = 𝜋∗,∗(𝐻 ∧ 𝐻) denote its dual. Then A∗,∗ is free as a left 𝐻∗,∗-module, cf. Lemma 2.1,
so the pair (𝐻∗,∗,A∗,∗) admits the structure of a bigraded Hopf algebroid [1, Lecture 3], [47, §1],
[57, Definition A1.1.1]. Its structure maps are the following ℤ∕𝓁-algebra homomorphisms:

(1) the left unit 𝜂𝐿 ∶ 𝐻∗,∗ → A∗,∗ induced by 1 ∧ 𝜂∶ 𝐻 = 𝐻 ∧ 𝕊 → 𝐻 ∧𝐻;
(2) the right unit 𝜂𝑅 ∶ 𝐻∗,∗ → A∗,∗ induced by 𝜂 ∧ 1∶ 𝐻 = 𝕊 ∧ 𝐻 → 𝐻 ∧𝐻;
(3) the product 𝜙∶ A∗,∗ ⊗A∗,∗ → A∗,∗ induced by (𝜇 ∧ 𝜇)(1 ∧ 𝛾 ∧ 1)∶ 𝐻 ∧ 𝐻 ∧ 𝐻 ∧ 𝐻 → 𝐻 ∧
𝐻;

(4) the counit 𝜖∶ A∗,∗ → 𝐻∗,∗ induced by 𝜇∶ 𝐻 ∧ 𝐻 → 𝐻;
(5) the coproduct 𝜓∶ A∗,∗ → A∗,∗ ⊗𝐻∗,∗ A∗,∗ induced by 1 ∧ 𝜂 ∧ 1∶ 𝐻 ∧ 𝐻 = 𝐻 ∧ 𝕊 ∧ 𝐻 → 𝐻 ∧
𝐻 ∧ 𝐻 ≅ (𝐻 ∧ 𝐻) ∧𝐻 (𝐻 ∧ 𝐻);

(6) the conjugation 𝜒∶ A∗,∗ → A∗,∗ induced by 𝛾∶ 𝐻 ∧ 𝐻 → 𝐻 ∧𝐻.

We use the left and right units to viewA∗,∗ as an𝐻∗,∗-𝐻∗,∗-bimodule, and−⊗𝐻∗,∗ − in (5) denotes
the bimodule tensor product.
More explicitly,

A∗,∗ = 𝐻∗,∗[𝜏0, 𝜏1, … , 𝜉1, 𝜉2, … ]∕(𝜏
2
𝑖 − 𝑇𝑖 ∣ 𝑖 ⩾ 0)

is a bigraded commutative𝐻∗,∗-algebra generated by classes 𝜏𝑖 in bidegree ‖𝜏𝑖‖ = (2𝓁𝑖 − 1,𝓁𝑖 − 1)
and 𝜉𝑖 in bidegree ‖𝜉𝑖‖ = (2𝓁𝑖 − 2,𝓁𝑖 − 1), where

𝑇𝑖 =

{
𝜏𝜉𝑖+1 + 𝜌𝜏𝑖+1 + 𝜌𝜏0𝜉𝑖+1 for 𝓁 = 2,
0 for 𝓁 odd.

Here the elements 𝜌 ∈ 𝐻1,1 = 𝐻−1,−1 and 𝜏 ∈ 𝐻0,1 = 𝐻0,−1 are specified for 𝓁 = 2 in [64,
Theorem 6.10]. They shall be interpreted to be zero for 𝓁 odd. In these terms,

(1) the algebra unit is 𝜂𝐿;
(2) 𝜂𝑅 = 𝜒𝜂𝐿 satisfies 𝜂𝑅(𝜌) = 𝜌 and 𝜂𝑅(𝜏) = 𝜏 + 𝜌𝜏0;
(3) the algebra product is 𝜙;
(4) the counit 𝜖 maps each 𝜏𝑖 and 𝜉𝑖 to 0;
(5) the coproduct 𝜓 satisfies

𝜓(𝜏𝑘) = 𝜏𝑘 ⊗ 1 +
∑
𝑖+𝑗=𝑘

𝜉𝓁
𝑗

𝑖
⊗ 𝜏𝑗 and 𝜓(𝜉𝑘) =

∑
𝑖+𝑗=𝑘

𝜉𝓁
𝑗

𝑖
⊗ 𝜉𝑗 ,

where 𝜉0 = 1;

                                                                                                                                                                                                                                                                                                                                                                       



1262 GREGERSEN and ROGNES

(6) the conjugation 𝜒 satisfies

𝜏𝑘 +
∑
𝑖+𝑗=𝑘

𝜉𝓁
𝑗

𝑖
𝜒(𝜏𝑗) = 0 and

∑
𝑖+𝑗=𝑘

𝜉𝓁
𝑗

𝑖
𝜒(𝜉𝑗) = 0 ,

and 𝜒2 = 1.

See [64, Theorem 12.6, Lemma 12.11, Remark 12.12], [66, Theorem 3.49], [58, Théorème 5.2.13], [27,
Theorem 5.6] and [61, Theorem 10.26] for proofs.

Lemma 2.1. The monomials

𝜏𝐸𝜉𝑅 = 𝜏
𝑒0
0
𝜏
𝑒1
1
⋯ 𝜉𝑟1
1
𝜉
𝑟2
2
⋯ ,

where 𝐸 = (𝑒0, 𝑒1, … ) and 𝑅 = (𝑟1, 𝑟2, … ) range through the finite length integer sequences with 𝑒𝑠 ∈
{0, 1} and 𝑟𝑠 ⩾ 0, form a basis for

A∗,∗ =
𝐻∗,∗[𝜏0, 𝜏1, … , 𝜉1, 𝜉2, … ]

(𝜏2
𝑖
− 𝑇𝑖 ∣ 𝑖 ⩾ 0)

as a free left𝐻∗,∗-module.

Proof. For 𝓁 odd this is clear. The claim for 𝓁 = 2 follows from the form of the relations 𝜏2
𝑖
= 𝑇𝑖 ,

since 𝜉𝑖+1, 𝜏𝑖+1 and 𝜏0𝜉𝑖+1 have higher weight than 𝜏2𝑖 . □

Lemma 2.2. The same monomials 𝜏𝐸𝜉𝑅 as in Lemma 2.1 form a basis forA∗,∗ as a free right𝐻∗,∗-
module.

Proof. For 𝑡 ⩾ 0 let

𝐹𝑡A∗,∗ = ⟨𝜏𝐸𝜉𝑅 ∣ deg(𝜏𝐸𝜉𝑅) ⩾ 𝑡⟩ ⊂ A∗,∗

be the left 𝐻∗,∗-submodule generated by the monomials from Lemma 2.1 of topological degree
⩾ 𝑡. These are also right 𝐻∗,∗-submodules, since 𝜖𝜂𝐿 = id = 𝜖𝜂𝑅 implies 𝜂𝐿 ≡ 𝜂𝑅 mod 𝐹1A∗,∗ =
ker(𝜖), and 𝐹𝑡A∗,∗ ⋅ 𝐹1A∗,∗ ⊂ 𝐹𝑡+1A∗,∗ ⊂ 𝐹𝑡A∗,∗. (The first inclusion uses that 𝜏2𝑖 = 𝑇𝑖 has topo-
logical degree less than or equal to that of 𝜉𝑖+1, 𝜏𝑖+1 and 𝜏0𝜉𝑖+1.) This defines a decreasing filtration
of A∗,∗ by 𝐻∗,∗-𝐻∗,∗-bimodules, such that the left and right 𝐻∗,∗-module actions agree on each
filtration quotient

gr𝑡A∗,∗ =
𝐹𝑡A∗,∗

𝐹𝑡+1A∗,∗
.

The (cosets of the) degree = 𝑡 monomials 𝜏𝐸𝜉𝑅 from Lemma 2.1 freely generate this quotient as
a left 𝐻∗,∗-module, hence also as a right 𝐻∗,∗-module. It follows that the degree ⩾ 0 monomials
𝜏𝐸𝜉𝑅 freely generate A∗,∗ as a right 𝐻∗,∗-module, since in any given bidegree 𝐹𝑡A∗,∗ = 0 for all
sufficiently large 𝑡. □

The classical definitions of [62, §II.3, §VI.4] generalize to the motivic setting.
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Definition 2.3. For 𝑛 ⩾ −1, let 𝐼(𝑛) ⊂ A∗,∗ be the ideal

𝐼(𝑛) = (𝜏𝑛+1, 𝜏𝑛+2, … , 𝜉
𝓁𝑛
1 , 𝜉

𝓁𝑛−1
2 , … , 𝜉

𝓁
𝑛 , 𝜉𝑛+1, 𝜉𝑛+2, … )

generated by 𝜏𝑘 for 𝑘 ⩾ 𝑛 + 1 and by 𝜉𝓁
𝑗

𝑖
for 𝑖 ⩾ 1, 𝑗 ⩾ 0 and 𝑖 + 𝑗 ⩾ 𝑛 + 1. Note that 𝑇𝑖 ∈ 𝐼(𝑛) for

𝑖 ⩾ 𝑛. Let

𝐴(𝑛)∗,∗ = A∗,∗∕𝐼(𝑛) =
𝐻∗,∗[𝜏0, … , 𝜏𝑛, 𝜉1, 𝜉2, … , 𝜉𝑛]

(𝜏2
0
− 𝑇0, … , 𝜏

2
𝑛−1
− 𝑇𝑛−1, 𝜏

2
𝑛, 𝜉

𝓁𝑛
1
, 𝜉𝓁
𝑛−1

2
, … , 𝜉𝓁𝑛 )

be the quotient algebra.

Example 2.4.

𝐼(−1) = (𝜏0, 𝜏1, … , 𝜉1, 𝜉2, … )

𝐼(0) = (𝜏1, 𝜏2, … , 𝜉1, 𝜉2, … )

𝐼(1) = (𝜏2, 𝜏3, … , 𝜉
𝓁
1 , 𝜉2, 𝜉3, … )

so

𝐴(−1)∗,∗ = 𝐻∗,∗

𝐴(0)∗,∗ = 𝐻∗,∗[𝜏0]∕(𝜏
2
0)

𝐴(1)∗,∗ = 𝐻∗,∗[𝜏0, 𝜏1, 𝜉1]∕(𝜏
2
0 − 𝑇0, 𝜏

2
1, 𝜉

𝓁
1 ) .

Lemma 2.5. There is a unique Hopf algebroid structure on (𝐻∗,∗, 𝐴(𝑛)∗,∗) making the canonical
projection 𝜋𝑛 ∶ A∗,∗ → A∗,∗∕𝐼(𝑛) = 𝐴(𝑛)∗,∗ a Hopf algebroid homomorphism.

Proof. The Hopf algebroid structure maps of (𝐻∗,∗, 𝐴(𝑛)∗,∗) are ℤ∕𝓁-algebra homomorphisms,
determined as follows:

(1) The left unit 𝜂𝐿,𝑛 ∶ 𝐻∗,∗ → 𝐴(𝑛)∗,∗ is the composite 𝜋𝑛 ◦ 𝜂𝐿.
(2) The right unit 𝜂𝑅,𝑛 ∶ 𝐻∗,∗ → 𝐴(𝑛)∗,∗ is the composite 𝜋𝑛 ◦ 𝜂𝑅.
(3) The algebra product 𝜙𝑛 ∶ 𝐴(𝑛)∗,∗ ⊗ 𝐴(𝑛)∗,∗ → 𝐴(𝑛)∗,∗ is characterized by 𝜙𝑛 ◦ (𝜋𝑛 ⊗ 𝜋𝑛) =
𝜋𝑛 ◦𝜙, and exists because 𝐼(𝑛) ⊂ A∗,∗ is an ideal.

(4) The counit 𝜖𝑛 ∶ 𝐴(𝑛)∗,∗ → 𝐻∗,∗ is characterized by 𝜖𝑛 ◦𝜋𝑛 = 𝜖, and exists because 𝜖(𝑥) = 0
for each generator 𝑥 of 𝐼(𝑛).

(5) The coproduct 𝜓𝑛 ∶ 𝐴(𝑛)∗,∗ → 𝐴(𝑛)∗,∗ ⊗𝐻∗,∗ 𝐴(𝑛)∗,∗ is characterized by 𝜓𝑛 ◦𝜋𝑛 = (𝜋𝑛 ⊗
𝜋𝑛)𝜓, and exists because (𝜋𝑛 ⊗ 𝜋𝑛)𝜓(𝑥) = 0 for each generator 𝑥 of 𝐼(𝑛).

(6) The conjugation 𝜒𝑛 ∶ 𝐴(𝑛)∗,∗ → 𝐴(𝑛)∗,∗ is characterized by 𝜒𝑛 ◦𝜋𝑛 = 𝜋𝑛 ◦𝜒, and exists
because 𝜒(𝑥) ∈ 𝐼(𝑛) for each generator 𝑥 of 𝐼(𝑛).

In more detail, the explicit formulas for the coproduct show that 𝜓(𝜏𝑘), for all 𝑘 ⩾ 𝑛 + 1, and
𝜓(𝜉𝓁

𝑗

𝑖
) = 𝜓(𝜉𝑖)

𝓁𝑗 , for all 𝑖 ⩾ 1, 𝑗 ⩾ 0 with 𝑖 + 𝑗 ⩾ 𝑛 + 1, are in the image of

𝐼(𝑛) ⊗𝐻∗,∗ A∗,∗ ⊕ A∗,∗ ⊗𝐻∗,∗ 𝐼(𝑛)⟶ A∗,∗ ⊗𝐻∗,∗ A∗,∗ ,
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so that 𝜓(𝐼(𝑛)) is contained in this image. Likewise, the recursive formulas for the conjugation
show that 𝜒(𝜏𝑘) and 𝜒(𝜉𝓁

𝑗

𝑖
) = 𝜒(𝜉𝑖)

𝓁𝑗 are in 𝐼(𝑛), for the same 𝑘, 𝑖 and 𝑗, so that 𝜒(𝐼(𝑛)) = 𝐼(𝑛).
The verification that these structure maps make (𝐻∗,∗, 𝐴(𝑛)∗,∗) a Hopf algebroid, with (id, 𝜋𝑛)
a Hopf algebroid homomorphism, follows formally from the fact that (𝐻∗,∗,A∗,∗) is a Hopf
algebroid. □

Lemma 2.6. The monomials 𝜏𝐸𝜉𝑅, where 𝐸 = (𝑒0, … , 𝑒𝑛) and 𝑅 = (𝑟1, … , 𝑟𝑛) range through the
integer sequenceswith 𝑒𝑠 ∈ {0, 1} and 0 ⩽ 𝑟𝑠 < 𝓁𝑛+1−𝑠, forma basis for𝐴(𝑛)∗,∗ as a finitely generated
free left𝐻∗,∗-module.

Proof. The ideal 𝐼(𝑛) equals the free left𝐻∗,∗-submodule ofA∗,∗ generated by themonomials 𝜏𝐸𝜉𝑅
from Lemma 2.1 for which 𝑒𝑠 = 1 for some 𝑠 ⩾ 𝑛 + 1 or 𝑟𝑠 ⩾ 𝓁𝑛+1−𝑠 for some 𝑠 ⩾ 1. This implies
the claim. □

Lemma 2.7. The same monomials 𝜏𝐸𝜉𝑅 as in Lemma 2.6 form a basis for 𝐴(𝑛)∗,∗ as a free right
𝐻∗,∗-module.

Proof. Replace A∗,∗ and Lemma 2.1 in the proof of Lemma 2.2 by 𝐴(𝑛)∗,∗ and Lemma 2.6. □

The inclusions 𝐼(𝑛) ⊂ 𝐼(𝑛 − 1) induce a tower of surjective Hopf algebroid homomorphisms

A∗,∗ ⟶ ⋯⟶𝐴(𝑛)∗,∗ ⟶ 𝐴(𝑛 − 1)∗,∗ ⟶ ⋯⟶𝐻∗,∗ . (2.1)

The composites

𝜆∶ A∗,∗
𝜓
⟶ A∗,∗ ⊗𝐻∗,∗ A∗,∗

𝜋𝑛⊗id
⟶ 𝐴(𝑛)∗,∗ ⊗𝐻∗,∗ A∗,∗

and

𝜌∶ A∗,∗
𝜓
⟶ A∗,∗ ⊗𝐻∗,∗ A∗,∗

id⊗𝜋𝑛−1
⟶ A∗,∗ ⊗𝐻∗,∗ 𝐴(𝑛 − 1)∗,∗

areℤ∕𝓁-algebra homomorphisms givingA∗,∗ the structure of an𝐴(𝑛)∗,∗-𝐴(𝑛 − 1)∗,∗-bicomodule
algebra, and the projection𝜋𝑛 ∶ A∗,∗ → 𝐴(𝑛)∗,∗ is amorphism in the category of such bicomodule
algebras.

Definition 2.8. Let

𝑋(𝑛)∗,∗ = 𝐻∗,∗{𝜏
𝐸𝜉𝑅 ∣ 𝑒0 = ⋯ = 𝑒𝑛 = 0,𝓁

𝑛 ∣ 𝑟1, … ,𝓁 ∣ 𝑟𝑛}

be the free left 𝐻∗,∗-module generated by the monomials 𝜏𝐸𝜉𝑅 with 𝐸 = (𝑒0, 𝑒1, … ) and 𝑅 =
(𝑟1, 𝑟2, … ) satisfying 𝑒𝑠 = 0 for 0 ⩽ 𝑠 ⩽ 𝑛 and 𝓁𝑛+1−𝑠 ∣ 𝑟𝑠 for 1 ⩽ 𝑠 ⩽ 𝑛. Let 𝛼𝑛 ∶ A∗,∗ → 𝑋(𝑛)∗,∗ be
the left 𝐻∗,∗-module homomorphism mapping 𝜏𝐸𝜉𝑅 to the same monomial if 𝑒0 = ⋯ = 𝑒𝑛 = 0
and 𝓁𝑛 ∣ 𝑟1, … ,𝓁 ∣ 𝑟𝑛, and to 0 otherwise.

Lemma 2.9. The composite

A∗,∗
𝜆
⟶ 𝐴(𝑛)∗,∗ ⊗𝐻∗,∗ A∗,∗

id⊗𝛼𝑛
⟶ 𝐴(𝑛)∗,∗ ⊗𝐻∗,∗ 𝑋(𝑛)∗,∗

is a left 𝐴(𝑛)∗,∗-comodule isomorphism.
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Proof. Both 𝜆 and id⊗𝛼𝑛 respect the left 𝐴(𝑛)∗,∗-coactions, so it suffices to show that their com-
posite is a left 𝐻∗,∗-module isomorphism. Each monomial in the basis from Lemma 2.1 for A∗,∗
factors uniquely as 𝜏𝐸𝜉𝑅 = 𝜏𝐸′𝜉𝑅′ ⋅ 𝜏𝐸′′𝜉𝑅′′ with

⎧⎪⎪⎨⎪⎪⎩

𝐸′ = (𝑒0, … , 𝑒𝑛, 0, … )

𝑅′ = (𝑟1, … , 𝑟𝑛, 0, … ) where 𝑟𝑠 < 𝓁𝑛+1−𝑠 for 1 ⩽ 𝑠 ⩽ 𝑛,
𝐸′′ = (0, … , 0, 𝑒𝑛+1, … )

𝑅′′ = (𝑟1, … , 𝑟𝑛, 𝑟𝑛+1, … ) where 𝓁𝑛+1−𝑠 ∣ 𝑟𝑠 for 1 ⩽ 𝑠 ⩽ 𝑛,

and 𝐸 = 𝐸′ + 𝐸′′, 𝑅 = 𝑅′ + 𝑅′′. Hence the restricted multiplication

𝐴(𝑛)∗,∗ ⊗𝐻∗,∗ 𝑋(𝑛)∗,∗
𝜙
⟶ A∗,∗

𝜏𝐸
′
𝜉𝑅
′
⊗ 𝜏𝐸

′′
𝜉𝑅
′′
⟼ 𝜏𝐸

′
𝜉𝑅
′
⋅ 𝜏𝐸
′′
𝜉𝑅
′′

defines a left𝐻∗,∗-module isomorphism. We show that the composite

(id⊗𝛼𝑛)𝜆𝜙∶ 𝐴(𝑛)∗,∗ ⊗𝐻∗,∗ 𝑋(𝑛)∗,∗ ⟶ 𝐴(𝑛)∗,∗ ⊗𝐻∗,∗ 𝑋(𝑛)∗,∗

is bijective. For 𝑡 ⩾ 0 let 𝐹𝑡𝑋(𝑛)∗,∗ be the free left 𝐻∗,∗-submodule generated by the monomials
fromDefinition 2.8 that have topological degree⩾ 𝑡. These define a decreasing filtration of𝑋(𝑛)∗,∗,
with associated graded modules gr𝑡 𝑋(𝑛)∗,∗ = 𝐹𝑡𝑋(𝑛)∗,∗∕𝐹𝑡+1𝑋(𝑛)∗,∗. Direct calculation of 𝜆 =
(𝜋𝑛 ⊗ id)𝜓 shows that

𝜆(𝜏𝐸
′
𝜉𝑅
′
) ≡ 𝜏𝐸

′
𝜉𝑅
′
⊗ 1 mod 𝐴(𝑛)∗,∗ ⊗𝐻∗,∗ 𝐹

1A∗,∗ ,

where 𝐹1A∗,∗ = ker(𝜖) as before, and

𝜆(𝜏𝐸
′′
𝜉𝑅
′′
) = 1 ⊗ 𝜏𝐸

′′
𝜉𝑅
′′
,

since each 𝜏𝑘 for 𝑘 ⩾ 𝑛 + 1 and each 𝜉𝓁
𝑗

𝑖
for 𝑖 + 𝑗 ⩾ 𝑛 + 1 is left 𝐴(𝑛)∗,∗-comodule primitive. It

follows that for 𝜏𝐸′𝜉𝑅′ ∈ 𝐴(𝑛)∗,∗ and 𝜏𝐸
′′
𝜉𝑅
′′
∈ 𝐹𝑡𝑋(𝑛)∗,∗ we have

(id⊗𝛼𝑛)𝜆(𝜏
𝐸′𝜉𝑅
′
⋅ 𝜏𝐸
′′
𝜉𝑅
′′
) ≡ 𝜏𝐸

′
𝜉𝑅
′
⊗ 𝜏𝐸

′′
𝜉𝑅
′′
mod 𝐴(𝑛)∗,∗ ⊗𝐻∗,∗ 𝐹

𝑡+1𝑋(𝑛)∗,∗ .

Hence (id⊗𝛼𝑛)𝜆𝜙 maps 𝐴(𝑛)∗,∗ ⊗𝐻∗,∗ 𝐹
𝑡𝑋(𝑛)∗,∗ to itself, for each 𝑡 ⩾ 0, and the induced

homomorphism

𝐴(𝑛)∗,∗ ⊗𝐻∗,∗ gr
𝑡 𝑋(𝑛)∗,∗ ⟶ 𝐴(𝑛)∗,∗ ⊗𝐻∗,∗ gr

𝑡 𝑋(𝑛)∗,∗

is the identity. The lemma follows, since 𝐴(𝑛)∗,∗ ⊗𝐻∗,∗ 𝐹
𝑡𝑋(𝑛)∗,∗ is eventually zero in any given

bidegree. □
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3 SOME BICOMODULE ALGEBRAS

The classical definitions of [4, §2] also generalize to the motivic setting.

Definition 3.1. For 𝑛 ⩾ 0, let 𝐽(𝑛) ⊂ A∗,∗ be the ideal

𝐽(𝑛) = (𝜏𝑛+1, 𝜏𝑛+2, … , 𝜉
𝓁𝑛−1
2 , 𝜉

𝓁𝑛−2
3 , … , 𝜉

𝓁
𝑛 , 𝜉𝑛+1, 𝜉𝑛+2, … )

generated by 𝜏𝑘 for 𝑘 ⩾ 𝑛 + 1 and by 𝜉𝓁
𝑗

𝑖
for 𝑖 ⩾ 2, 𝑗 ⩾ 0 and 𝑖 + 𝑗 ⩾ 𝑛 + 1. Note that 𝐼(𝑛) = 𝐽(𝑛) +

(𝜉𝓁
𝑛

1
). Let

𝐶(𝑛)∗,∗ = A∗,∗∕𝐽(𝑛) =
𝐻∗,∗[𝜏0, … , 𝜏𝑛, 𝜉1, 𝜉2, … , 𝜉𝑛]

(𝜏2
0
− 𝑇0, … , 𝜏

2
𝑛 − 𝑇𝑛, 𝜉

𝓁𝑛−1
2
, … , 𝜉𝓁𝑛 )

be the quotient algebra. Let

𝐵(𝑛)∗,∗ = 𝐶(𝑛)∗,∗[1∕𝜉1] =
𝐻∗,∗

[
𝜏0, … , 𝜏𝑛, 𝜉

±1
1
, 𝜉2, … , 𝜉𝑛

]
(𝜏2
0
− 𝑇0, … , 𝜏

2
𝑛 − 𝑇𝑛, 𝜉

𝓁𝑛−1
2
, … , 𝜉𝓁𝑛 )

be the localization of 𝐶(𝑛)∗,∗ away from 𝜉1.

Example 3.2.

𝐽(0) = (𝜏1, 𝜏2, … , 𝜉2, 𝜉3, … )

𝐽(1) = (𝜏2, 𝜏3, … , 𝜉2, 𝜉3, … )

𝐽(2) = (𝜏3, 𝜏4, … , 𝜉
𝓁
2 , 𝜉3, … )

so

𝐶(0)∗,∗ = 𝐻∗,∗[𝜏0, 𝜉1]∕(𝜏
2
0 − 𝑇0)

𝐶(1)∗,∗ = 𝐻∗,∗[𝜏0, 𝜏1, 𝜉1]∕(𝜏
2
0 − 𝑇0, 𝜏

2
1)

𝐶(2)∗,∗ = 𝐻∗,∗[𝜏0, 𝜏1, 𝜏2, 𝜉1, 𝜉2]∕(𝜏
2
0 − 𝑇0, 𝜏

2
1 − 𝑇1, 𝜏

2
2, 𝜉

𝓁
2 )

and

𝐵(0)∗,∗ = 𝐻∗,∗[𝜏0, 𝜉
±1
1
]∕(𝜏20 − 𝑇0)

𝐵(1)∗,∗ = 𝐻∗,∗[𝜏0, 𝜏1, 𝜉
±1
1
]∕(𝜏20 − 𝑇0, 𝜏

2
1)

𝐵(2)∗,∗ = 𝐻∗,∗[𝜏0, 𝜏1, 𝜏2, 𝜉
±1
1
, 𝜉2]∕(𝜏

2
0 − 𝑇0, 𝜏

2
1 − 𝑇1, 𝜏

2
2, 𝜉

𝓁
2 ) .

Lemma 3.3.

(a) The monomials 𝜏𝐸𝜉𝑅 , where 𝐸 = (𝑒0, … , 𝑒𝑛) and 𝑅 = (𝑟1, … , 𝑟𝑛) range through all sequences
with 𝑒𝑠 ∈ {0, 1} for 0 ⩽ 𝑠 ⩽ 𝑛, 𝑟1 ⩾ 0 and 0 ⩽ 𝑟𝑠 < 𝓁𝑛+1−𝑠 for 2 ⩽ 𝑠 ⩽ 𝑛, form a basis for 𝐶(𝑛)∗,∗
as a free left𝐻∗,∗-module.
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(b) The monomials

𝜏𝐸𝜉𝑅 = 𝜏
𝑒0
0
⋯ 𝜏𝑒𝑛𝑛 𝜉

𝑟1
1
𝜉
𝑟2
2
⋯ 𝜉𝑟𝑛𝑛

with (𝐸, 𝑅) as in (a), except that 𝑟1 can now be any integer, form a basis for 𝐵(𝑛)∗,∗ as a free left
𝐻∗,∗-module.

Proof. The ideal 𝐽(𝑛) equals the free left𝐻∗,∗-submodule ofA∗,∗ generated by themonomials 𝜏𝐸𝜉𝑅
from Lemma 2.1 for which 𝑒𝑠 = 1 for some 𝑠 ⩾ 𝑛 + 1 or 𝑟𝑠 ⩾ 𝓁𝑛+1−𝑠 for some 𝑠 ⩾ 2. This implies
part (a). Part (b) follows by inverting 𝜉1. □

Lemma 3.4.

(a) The same monomials 𝜏𝐸𝜉𝑅 as in Lemma 3.3(a) form a basis for 𝐶(𝑛)∗,∗ as a free right 𝐻∗,∗-
module.

(b) The same monomials 𝜏𝐸𝜉𝑅 as in Lemma 3.3(b) form a basis for 𝐵(𝑛)∗,∗ as a free right 𝐻∗,∗-
module.

Proof. For part (a), replace A∗,∗ and Lemma 2.1 in the proof of Lemma 2.2 by 𝐶(𝑛)∗,∗ and
Lemma 3.3(a).
For part (b), instead replace these by 𝐵(𝑛)∗,∗ and Lemma 3.3(b), and allow the filtration index 𝑡

in the proof of Lemma 2.2 to run over all integers, noting that in any given bidegree 𝐹𝑡𝐵(𝑛)∗,∗ =
𝐵(𝑛)∗,∗ for all sufficiently negative 𝑡. (Alternatively, part (b) can be deduced frompart (a) by invert-
ing 𝜉1, but the given proof also ensures that the left and right 𝐻∗,∗-actions on gr𝑡 𝐵(𝑛)∗,∗ agree,
which will be needed in Lemma 4.16(b).) □

Example 3.5.

(a) The monomials

{𝜏𝑒0𝜉
𝑟
1 ∣ 𝑒 ∈ {0, 1}, 𝑟 ⩾ 0}

form a basis for 𝐶(0)∗,∗, both as a left𝐻∗,∗-module and as a right𝐻∗,∗-module.
(b) The monomials

{𝜏𝑒0𝜉
𝑟
1 ∣ 𝑒 ∈ {0, 1}, 𝑟 ∈ ℤ}

form a basis for 𝐵(0)∗,∗, both as a left 𝐻∗,∗-module and as a right 𝐻∗,∗-module. The
homological bidegree of 𝜏𝑒

0
𝜉𝑟
1
is (𝑒 + (2𝓁 − 2)𝑟, (𝓁 − 1)𝑟).

The inclusions 𝐽(𝑛) ⊂ 𝐼(𝑛) and the localization homomorphisms yield a commutative diagram
of ℤ∕𝓁-algebras and algebra homomorphisms

(3.1)
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Lemma 3.6. There is a unique 𝐴(𝑛)∗,∗-𝐴(𝑛 − 1)∗,∗-bicomodule algebra structure on 𝐶(𝑛)∗,∗ mak-
ing the canonical projection 𝜋′𝑛 ∶ A∗,∗ → A∗,∗∕𝐽(𝑛) = 𝐶(𝑛)∗,∗ an 𝐴(𝑛)∗,∗-𝐴(𝑛 − 1)∗,∗-bicomodule
algebra homomorphism.

Proof. The bicomodule structure maps are ℤ∕𝓁-algebra homomorphisms, determined as
follows:

(1) The left coaction 𝜆𝑛 ∶ 𝐶(𝑛)∗,∗ → 𝐴(𝑛)∗,∗ ⊗𝐻∗,∗ 𝐶(𝑛)∗,∗ is characterized by 𝜆𝑛 ◦𝜋′𝑛 =
(id⊗𝜋′𝑛) ◦ 𝜆, and exists because (𝜋𝑛 ⊗ 𝜋

′
𝑛)𝜓(𝑥) = 0 for each generator 𝑥 of 𝐽(𝑛).

(2) The right coaction 𝜌𝑛 ∶ 𝐶(𝑛)∗,∗ → 𝐶(𝑛)∗,∗ ⊗𝐻∗,∗ 𝐴(𝑛 − 1)∗,∗ is characterized by 𝜌𝑛 ◦𝜋′𝑛 =
(𝜋′𝑛 ⊗ id) ◦ 𝜌, and exists because (𝜋

′
𝑛 ⊗ 𝜋𝑛−1)𝜓(𝑥) = 0 for each generator 𝑥 of 𝐽(𝑛).

More explicitly, 𝜓(𝜏𝑘) and 𝜓(𝜉𝓁
𝑗

𝑖
) are in the image of both

𝐼(𝑛) ⊗𝐻∗,∗ A∗,∗ ⊕ A∗,∗ ⊗𝐻∗,∗ 𝐽(𝑛)⟶ A∗,∗ ⊗𝐻∗,∗ A∗,∗

and

𝐽(𝑛) ⊗𝐻∗,∗ A∗,∗ ⊕ A∗,∗ ⊗𝐻∗,∗ 𝐼(𝑛 − 1)⟶ A∗,∗ ⊗𝐻∗,∗ A∗,∗

for each 𝑘 ⩾ 𝑛 + 1 and each 𝑖 ⩾ 2, 𝑗 ⩾ 0 and 𝑖 + 𝑗 ⩾ 𝑛 + 1, respectively. The verification that the
algebra homomorphisms 𝜆𝑛 and 𝜌𝑛 define coactions, and that they commute, follows formally
from the fact thatA∗,∗ is an 𝐴(𝑛)∗,∗-𝐴(𝑛 − 1)∗,∗-bicomodule. □

Lemma 3.7. Let ‖𝜉𝓁𝑛
1
‖ = ((2𝓁 − 2)𝓁𝑛, (𝓁 − 1)𝓁𝑛) denote the bidegree of 𝜉𝓁𝑛

1
. There is a short exact

sequence

0 → Σ‖𝜉𝓁𝑛1 ‖𝐶(𝑛)∗,∗ ⋅𝜉𝓁
𝑛

1
⟶ 𝐶(𝑛)∗,∗ ⟶ 𝐴(𝑛)∗,∗ → 0

of 𝐴(𝑛)∗,∗-𝐴(𝑛 − 1)∗,∗-bicomodules, where ⋅𝜉𝓁
𝑛

1
denotes 𝑥 ↦ 𝑥 ⋅ 𝜉𝓁𝑛

1
.

Proof. From the definition of 𝐼(𝑛) and 𝐽(𝑛) it is clear that multiplication by 𝜉𝓁𝑛
1
acts injectively on

𝐶(𝑛)∗,∗ with cokernel 𝐴(𝑛)∗,∗. It remains to verify that ⋅𝜉𝓁
𝑛

1
is an 𝐴(𝑛)∗,∗-𝐴(𝑛 − 1)∗,∗-bicomodule

homomorphism, that is, that it commutes with the left𝐴(𝑛)∗,∗-coaction and the right𝐴(𝑛 − 1)∗,∗-
coaction. This is equivalent to 𝜉𝓁𝑛

1
being left 𝐴(𝑛)∗,∗-comodule primitive and right 𝐴(𝑛 − 1)∗,∗-

comodule primitive, which follows from the observations that

𝜓(𝜉𝓁
𝑛

1 ) ≡ 1 ⊗ 𝜉
𝓁𝑛
1 mod 𝐼(𝑛) ⊗𝐻∗,∗ A∗,∗

and

𝜓(𝜉𝓁
𝑛

1 ) ≡ 𝜉
𝓁𝑛
1 ⊗ 1 mod A∗,∗ ⊗𝐻∗,∗ 𝐼(𝑛 − 1) . □

Definition 3.8. We assign to

𝐵(𝑛)∗,∗ = 𝐶(𝑛)∗,∗[1∕𝜉
𝓁𝑛
1 ] = colim𝑗

(
Σ−𝑗‖𝜉𝓁𝑛1 ‖𝐶(𝑛)∗,∗)
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the 𝐴(𝑛)∗,∗-𝐴(𝑛 − 1)∗,∗-bicomodule structure given by the colimit of the diagram

𝐶(𝑛)∗,∗
⋅𝜉𝓁
𝑛

1
⟶ Σ−‖𝜉𝓁𝑛1 ‖𝐶(𝑛)∗,∗ ⋅𝜉𝓁

𝑛

1
⟶ Σ−2‖𝜉𝓁𝑛1 ‖𝐶(𝑛)∗,∗ ⋅𝜉𝓁

𝑛

1
⟶ ⋯ .

Lemma 3.9. 𝐵(𝑛)∗,∗ is an 𝐴(𝑛)∗,∗-𝐴(𝑛 − 1)∗,∗-bicomodule algebra, and the canonical morphism
𝐶(𝑛)∗,∗ → 𝐵(𝑛)∗,∗ is an 𝐴(𝑛)∗,∗-𝐴(𝑛 − 1)∗,∗-bicomodule algebra homomorphism.

Proof. The left 𝐴(𝑛)∗,∗-coaction

𝜆𝑛 ∶ 𝐵(𝑛)∗,∗ ⟶ 𝐴(𝑛)∗,∗ ⊗𝐻∗,∗ 𝐵(𝑛)∗,∗

is obtained from the left coaction

𝜆𝑛 ∶ 𝐶(𝑛)∗,∗ ⟶ 𝐴(𝑛)∗,∗ ⊗𝐻∗,∗ 𝐶(𝑛)∗,∗

by inverting (a positive power of) 𝜉1. Since the latter coaction is an algebra homomorphism, so is
the former. The case of right 𝐴(𝑛 − 1)∗,∗-coactions is entirely similar. □

Definition 3.10. Let 𝛾𝑛 ∶ 𝐶(𝑛)∗,∗ → 𝐶(0)∗,∗ and 𝛽𝑛 ∶ 𝐵(𝑛)∗,∗ → 𝐵(0)∗,∗ be the ℤ∕𝓁-algebra
homomorphisms shown in (3.1). Let 𝛾′𝑛 ∶ 𝐶(𝑛)∗,∗ → 𝐻∗,∗[𝜉

𝓁𝑛
1
] be the composite of 𝛾𝑛 and the left

𝐻∗,∗-module homomorphism

𝐶(0)∗,∗ = 𝐻∗,∗[𝜏0, 𝜉1]∕(𝜏
2
0 − 𝑇0)⟶ 𝐻∗,∗[𝜉

𝓁𝑛
1 ]

given for 𝑒 ∈ {0, 1} and 𝑟 ⩾ 0 by

𝜏𝑒0𝜉
𝑟
1 ⟼

{
𝜉𝑟
1

if 𝑒 = 0 and 𝓁𝑛 ∣ 𝑟,
0 otherwise,

and let 𝛽′𝑛 ∶ 𝐵(𝑛)∗,∗ → 𝐻∗,∗[𝜉
±𝓁𝑛

1
] be its localization.

Note that 𝜏0 ⋅ 𝜂𝑅(𝜏) in 𝐶(0)∗,∗ maps by 𝛾′0 to 𝜌𝜏𝜉1. Hence 𝛾
′
𝑛 is sometimes not right𝐻∗,∗-linear.

Proposition 3.11. The composites

𝐶(𝑛)∗,∗
𝜆𝑛
⟶ 𝐴(𝑛)∗,∗ ⊗𝐻∗,∗ 𝐶(𝑛)∗,∗

id⊗𝛾′𝑛
⟶ 𝐴(𝑛)∗,∗ ⊗𝐻∗,∗ 𝐻∗,∗[𝜉

𝓁𝑛
1 ]

and

𝐵(𝑛)∗,∗
𝜆𝑛
⟶ 𝐴(𝑛)∗,∗ ⊗𝐻∗,∗ 𝐵(𝑛)∗,∗

id⊗𝛽′𝑛
⟶ 𝐴(𝑛)∗,∗ ⊗𝐻∗,∗ 𝐻∗,∗[𝜉

±𝓁𝑛

1
]

are left 𝐴(𝑛)∗,∗-comodule isomorphisms.

Proof. The ℤ∕𝓁-algebra homomorphism

(id⊗𝛾𝑛)𝜆𝑛 ∶ 𝐶(𝑛)∗,∗ ⟶ 𝐴(𝑛)∗,∗ ⊗𝐻∗,∗ 𝐶(0)∗,∗
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is left𝐻∗,∗-linear and maps the remaining algebra generators by

⎧⎪⎪⎨⎪⎪⎩

𝜏0 ⟼ 𝜏0 ⊗ 1 + 1 ⊗ 𝜏0

𝜏𝑘 ⟼ 𝜏𝑘 ⊗ 1 + 𝜉𝑘 ⊗ 𝜏0 for 1 ⩽ 𝑘 ⩽ 𝑛,
𝜉1 ⟼ 𝜉1 ⊗ 1 + 1 ⊗ 𝜉1

𝜉𝑘 ⟼ 𝜉𝑘 ⊗ 1 + 𝜉
𝓁
𝑘−1
⊗ 𝜉1 for 2 ⩽ 𝑘 ⩽ 𝑛.

In particular, it and (id⊗𝛾′𝑛)𝜆𝑛 respect the decreasing (𝜉
𝓁𝑛
1
)-adic filtrations defined (internally to

this proof) for𝑚 ⩾ 0 by

𝐹𝑚𝐶(𝑛)∗,∗ = 𝐶(𝑛)∗,∗ ⋅ (𝜉
𝓁𝑛
1 )
𝑚

𝐹𝑚𝐶(0)∗,∗ = 𝐶(0)∗,∗ ⋅ (𝜉
𝓁𝑛
1 )
𝑚

𝐹𝑚𝐻∗,∗[𝜉
𝓁𝑛
1 ] = 𝐻∗,∗[𝜉

𝓁𝑛
1 ] ⋅ (𝜉

𝓁𝑛
1 )
𝑚 .

The induced homomorphism

𝐹𝑚𝐶(𝑛)∗,∗

𝐹𝑚+1𝐶(𝑛)∗,∗
⟶ 𝐴(𝑛)∗,∗ ⊗𝐻∗,∗

𝐹𝑚𝐻∗,∗
[
𝜉𝓁
𝑛

1

]
𝐹𝑚+1𝐻∗,∗

[
𝜉𝓁
𝑛

1

]
of associated graded left 𝐴(𝑛)∗,∗-comodules is the isomorphism given by

𝜏𝐸𝜉𝑅 ⋅
(
𝜉𝓁
𝑛

1

)𝑚
⟼ 𝜏𝐸𝜉𝑅 ⊗

(
𝜉𝓁
𝑛

1

)𝑚
,

where 𝑒𝑠 ∈ {0, 1} for 0 ⩽ 𝑠 ⩽ 𝑛 and 0 ⩽ 𝑟𝑠 < 𝓁𝑛+1−𝑠 for 1 ⩽ 𝑠 ⩽ 𝑛. Each filtration is eventually zero
in each bidegree, so this implies that (id⊗𝛾′𝑛)𝜆𝑛 is an isomorphism. Inverting 𝜉

𝓁𝑛
1
, it follows that

(id⊗𝛽′𝑛)𝜆𝑛 ∶ 𝐵(𝑛)∗,∗
≅
⟶ 𝐴(𝑛)∗,∗ ⊗𝐻∗,∗ 𝐻∗,∗[𝜉

±𝓁𝑛

1
]

is also an isomorphism. □

Proposition 3.12. The composite

𝐵(𝑛)∗,∗
𝜌𝑛
⟶ 𝐵(𝑛)∗,∗ ⊗𝐻∗,∗ 𝐴(𝑛 − 1)∗,∗

𝛽𝑛⊗id
⟶ 𝐵(0)∗,∗ ⊗𝐻∗,∗ 𝐴(𝑛 − 1)∗,∗

is a right 𝐴(𝑛 − 1)∗,∗-comodule algebra isomorphism.

Proof. The ℤ∕𝓁-algebra homomorphism (𝛽𝑛 ⊗ id)𝜌𝑛 is left 𝐻∗,∗-linear and maps the remaining
algebra generators by

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜏0 ⟼ 𝜏0 ⊗ 1 + 1 ⊗ 𝜏0

𝜏𝑘 ⟼ 𝜉
𝓁𝑘−1
1
⊗ 𝜏𝑘−1 + 1 ⊗ 𝜏𝑘 for 1 ⩽ 𝑘 ⩽ 𝑛,

𝜉1 ⟼ 𝜉1 ⊗ 1 + 1 ⊗ 𝜉1

𝜉𝑘 ⟼ 𝜉
𝓁𝑘−1
1
⊗ 𝜉𝑘−1 + 1 ⊗ 𝜉𝑘 for 2 ⩽ 𝑘 ⩽ 𝑛,

𝜉−𝓁
𝑛

1
⟼ 𝜉−𝓁

𝑛

1
⊗ 1 .
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Letting {
𝜏̌𝑘 = 𝜏𝑘 ⋅ 𝜉

−𝓁𝑘−1
1

for 1 ⩽ 𝑘 ⩽ 𝑛,
𝜉̌𝑘 = 𝜉𝑘 ⋅ 𝜉

−𝓁𝑘−1
1

for 2 ⩽ 𝑘 ⩽ 𝑛,

we can rewrite the presentation in Definition 3.1 as

𝐵(𝑛)∗,∗ =
𝐻∗,∗

[
𝜏0, 𝜏̌1, … , 𝜏̌𝑛, 𝜉

±1
1
, 𝜉̌2, … , 𝜉̌𝑛

]
(
𝜏2
0
− 𝑇0, 𝜏̌

2
1
− 𝑇̌1, … , 𝜏̌

2
𝑛 − 𝑇̌𝑛, 𝜉̌

𝓁𝑛−1
2
, … , 𝜉̌𝓁𝑛

) ,
where for 1 ⩽ 𝑖 ⩽ 𝑛 we use the notation

𝑇̌𝑖 =

{
𝜏𝜉̌𝑖+1 + 𝜌𝜏̌𝑖+1 + 𝜌𝜏0𝜉̌𝑖+1 for 𝓁 = 2,
0 for 𝓁 odd.

Note that 𝜏̌𝑘 = 𝜏𝑘 ⋅ 𝜉𝓁
𝑛−𝓁𝑘−1
1

⋅ 𝜉−𝓁
𝑛

1
and 𝜉̌𝑘 = 𝜉𝑘 ⋅ 𝜉𝓁

𝑛−𝓁𝑘−1
1

⋅ 𝜉−𝓁
𝑛

1
. Hence (𝛽𝑛 ⊗ id)𝜌𝑛 satisfies

𝜏̌𝑘 ⟼ 1⊗ 𝜏𝑘−1 + 𝜉
−𝓁𝑘−1
1 ⊗ 𝜏𝑘 +⋯ + 𝜉

𝓁𝑘−1−𝓁𝑛
1 ⊗ 𝜏𝑘−1𝜉

𝓁𝑛−𝓁𝑘−1
1 + 𝜉−𝓁

𝑛

1 ⊗ 𝜏𝑘𝜉
𝓁𝑛−𝓁𝑘−1
1

for 1 ⩽ 𝑘 ⩽ 𝑛, and

𝜉̌𝑘 ⟼ 1⊗ 𝜉𝑘−1 + 𝜉
−𝓁𝑘−1
1 ⊗ 𝜉𝑘 +⋯ + 𝜉

𝓁𝑘−1−𝓁𝑛
1 ⊗ 𝜉𝓁

𝑛−𝓁𝑘−1
1 𝜉𝑘−1 + 𝜉

−𝓁𝑛
1 ⊗ 𝜉

𝓁𝑛−𝓁𝑘−1
1 𝜉𝑘

for 2 ⩽ 𝑘 ⩽ 𝑛. The omitted summands involve binomial coefficients, and each summand after
the first has a negative power of 𝜉1 as its left-hand tensor factor. Hence (𝛽𝑛 ⊗ id)𝜌𝑛 respects the
increasing filtrations defined (internally to this proof) for𝑚 ∈ ℤ by

𝐹𝑚𝐵(𝑛)∗,∗ = 𝐻∗,∗{𝜏
𝑒0
0
𝜏̌
𝑒1
1
⋯ 𝜏̌𝑒𝑛𝑛 𝜉

𝑟1
1
𝜉̌
𝑟2
2
⋯ 𝜉̌𝑟𝑛𝑛 ∣ 𝑒0 + 2𝑟1 ⩽ 𝑚}

𝐹𝑚𝐵(0)∗,∗ = 𝐻∗,∗{𝜏
𝑒0
0
𝜉
𝑟1
1
∣ 𝑒0 + 2𝑟1 ⩽ 𝑚} ,

where 𝑒𝑠 ∈ {0, 1} for 0 ⩽ 𝑠 ⩽ 𝑛, 𝑟1 ∈ ℤ and 0 ⩽ 𝑟𝑠 < 𝓁𝑛+1−𝑠 for 2 ⩽ 𝑠 ⩽ 𝑛 as in Lemma 3.3(b). The
induced homomorphism

𝐹𝑚𝐵(𝑛)∗,∗

𝐹𝑚−1𝐵(𝑛)∗,∗
⟶
𝐹𝑚𝐵(0)∗,∗

𝐹𝑚−1𝐵(0)∗,∗
⊗𝐻∗,∗ 𝐴(𝑛 − 1)∗,∗

of associated graded right 𝐴(𝑛 − 1)∗,∗-comodules is the left𝐻∗,∗-module isomorphism given by

𝜏
𝑒0
0
𝜏̌
𝑒1
1
⋯ 𝜏̌𝑒𝑛𝑛 𝜉

𝑟1
1
𝜉̌
𝑟2
2
⋯ 𝜉̌𝑟𝑛𝑛 ⟼ 𝜏

𝑒0
0
𝜉
𝑟1
1
⊗ 𝜏
𝑒1
0
⋯ 𝜏𝑒𝑛
𝑛−1
𝜉
𝑟2
1
⋯ 𝜉𝑟𝑛
𝑛−1

for 𝑒0 + 2𝑟1 = 𝑚. In particular, 𝜏̌𝑘 ↦ 𝜏𝑘−1 and 𝜉̌𝑘 ↦ 𝜉𝑘−1. Each filtration is exhaustive and
eventually zero in each bidegree, so this implies that (𝛽𝑛 ⊗ id)𝜌𝑛 is an isomorphism. □
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4 ⋯ AND THEIR DUAL BIMODULES

We now dualize the results of the previous section, following [8].

Definition 4.1 [8, Definition 3.2]. Given a left𝐻∗,∗-module𝑀we define the dual left𝐻∗,∗-module
to be

𝑀∨ = Hom𝐻∗,∗(𝑀,𝐻∗,∗) .

The left action of ℎ ∈ 𝐻∗,∗ on 𝑓 ∈ 𝑀∨ is given by

(ℎ𝑓)(𝑚) = ℎ 𝑓(𝑚) = (−1)|ℎ||𝑓|𝑓(ℎ𝑚)
for𝑚 ∈ 𝑀, where |ℎ| and |𝑓| are the topological degrees of ℎ and 𝑓, respectively. If𝑀 is an𝐻∗,∗-
𝐻∗,∗-bimodule then𝑀∨ is also a bimodule, with right action defined by

(𝑓ℎ)(𝑚) = (−1)|ℎ||𝑚|𝑓(𝑚ℎ) .
Example 4.2. The canonical isomorphism 𝐻∨∗,∗ ≅ 𝐻∗,∗ = 𝐻

−∗,−∗, taking 𝑓 to 𝑓(1), is 𝐻∗,∗-𝐻∗,∗-
bilinear.

Lemma 4.3 [8, Lemma 3.3]. Let𝑀 be an𝐻∗,∗-𝐻∗,∗-bimodule and let𝑁 be a left𝐻∗,∗-module.

(a) There is a natural homomorphism 𝜃∶ 𝑀∨ ⊗𝐻∗,∗ 𝑁
∨ ⟶ (𝑀 ⊗𝐻∗,∗ 𝑁)

∨ of left𝐻∗,∗-modules (or
of𝐻∗,∗-𝐻∗,∗-bimodules, if𝑁 is a bimodule), given by

𝜃(𝑓 ⊗ g)(𝑚 ⊗ 𝑛) = (−1)|g||𝑚|𝑓(𝑚 g(𝑛))

for 𝑓 ∈ 𝑀∨, g ∈ 𝑁∨,𝑚 ∈ 𝑀 and 𝑛 ∈ 𝑁.
(b) If 𝐿 is another bimodule, the diagram

commutes.
(c) Both composites 𝑀∨ ≅ 𝑀∨ ⊗𝐻∗,∗ 𝐻

∨
∗,∗

𝜃
⟶ (𝑀 ⊗𝐻∗,∗ 𝐻∗,∗)

∨ = 𝑀∨ and 𝑀∨ ≅ 𝐻∨∗,∗ ⊗𝐻∗,∗
𝑀∨
𝜃
⟶ (𝐻∗,∗ ⊗𝐻∗,∗ 𝑀)

∨ = 𝑀∨ are the identity homomorphism.

Lemma 4.4 [8, Lemma 3.4].

(a) Let (𝐻∗,∗, Γ) be a Hopf algebroid. The dual Γ∨ is a bigraded ℤ∕𝓁-algebra, containing 𝐻∨∗,∗ as a
subalgebra.

(b) Let𝑀 be a left Γ-comodule. The dual𝑀∨ is a left Γ∨-module.
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(c) Let (𝐻∗,∗, Σ) be a second Hopf algebroid, and let 𝑁 be a Γ-Σ-bicomodule. The dual 𝑁∨ is a Γ∨-
Σ∨-bimodule.

Proof. Let 𝜓∶ Γ → Γ⊗𝐻∗,∗ Γ be the coproduct, and let 𝜆∶ 𝑀 → Γ⊗𝐻∗,∗ 𝑀 be the left coaction.
Boardman uses Lemma 4.3 to define the multiplication on Γ∨ as the composite

Γ∨ ⊗ Γ∨ ⟶ Γ∨ ⊗𝐻∗,∗ Γ
∨ 𝜃⟶ (Γ⊗𝐻∗,∗ Γ)

∨
𝜓∨

⟶ Γ∨

and to define the left action on𝑀∨ as the composite

Γ∨ ⊗𝑀∨⟶ Γ∨ ⊗𝐻∗,∗ 𝑀
∨ 𝜃⟶ (Γ⊗𝐻∗,∗ 𝑀)

∨ 𝜆
∨

⟶𝑀∨ .

Likewise, we define the bimodule action on 𝑁∨ as the now evident composite

Γ∨ ⊗ 𝑁∨ ⊗ Σ∨ ⟶ Γ∨ ⊗𝐻∗,∗ 𝑁
∨ ⊗𝐻∗,∗ Σ

∨ ⟶ (Γ⊗𝐻∗,∗ 𝑁 ⊗𝐻∗,∗ Σ)
∨ ⟶ 𝑁∨ .

The dual 𝜖∨ ∶ 𝐻∨∗,∗ → Γ
∨ of the Hopf algebroid counit is split by 𝜂∨

𝐿
(and by 𝜂∨

𝑅
), and exhibits𝐻∨∗,∗

as a subalgebra of Γ∨. □

The dual ℤ∕𝓁-algebra Γ∨ is usually non-commutative. Switching to cohomological grading,
we now refer to the duals of (left or right) 𝐻∗,∗-module actions as (left or right) 𝐻∗,∗-module
actions.

Notation 4.5. The motivic Steenrod algebra A = A ∨∗,∗ is the dual of the Hopf algebroid
(𝐻∗,∗,A∗,∗), cf. [64, §13], and contains 𝐻∗,∗ as a subalgebra. It is freely generated as a left 𝐻∗,∗-
module by the Milnor basis {𝜌(𝐸, 𝑅)}𝐸,𝑅, defined to be dual to the monomial basis {𝜏𝐸𝜉𝑅}𝐸,𝑅 of
Lemma 2.1. The cohomological bidegree of 𝜌(𝐸, 𝑅) is equal to the homological bidegree of 𝜏𝐸𝜉𝑅.
In particular, the Steenrod operation 𝛽𝑒𝑃𝑟 is dual to 𝜏𝑒

0
𝜉𝑟
1
, for 𝑒 ∈ {0, 1} and 𝑟 ⩾ 0, cf. [64, Lem-

mas 13.1 and 13.5]. By [64, Lemma 11.1, Corollary 12.5] and the Adem relations [64, Theorem 10.3],
[58, Théorème 4.5.1] the operations 𝛽, 𝑃1, 𝑃𝓁 , 𝑃𝓁2 , … , together with the elements of 𝐻∗,∗, gener-
ate A as a ℤ∕𝓁-algebra. When 𝓁 = 2 we write 𝑆𝑞2𝑟 for 𝑃𝑟 in cohomological bidegree (2𝑟, 𝑟) and
𝑆𝑞2𝑟+1 for 𝛽𝑃𝑟 in cohomological bidegree (2𝑟 + 1, 𝑟).

Lemma 4.6. The operations 𝜌(𝐸, 𝑅), for (𝐸, 𝑅) as in Lemma 2.1, also form a basis forA as a right
𝐻∗,∗-module.

Proof. Recall the decreasing 𝐻∗,∗-𝐻∗,∗-bimodule filtration 𝐹𝑡A∗,∗ of A∗,∗ from the proof of
Lemma 2.2. For 𝑡 ⩾ 0 let

𝐹𝑡−1A = ⟨𝜌(𝐸, 𝑅) ∣ deg(𝜏𝐸𝜉𝑅) < 𝑡⟩ ⊂ A

be the left 𝐻∗,∗-submodule generated by the operations 𝜌(𝐸, 𝑅) of cohomological topological
degree < 𝑡. This is also a right𝐻∗,∗-submodule, in view of the short exact sequence

0 → 𝐹𝑡−1A ⟶ A ∨∗,∗ ⟶ (𝐹
𝑡A∗,∗)

∨ → 0 .
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Hence {𝐹𝑡A }𝑡 is an increasing filtration ofA by𝐻∗,∗-𝐻∗,∗-bimodules, with filtration quotients

gr𝑡A =
𝐹𝑡A

𝐹𝑡−1A
≅ (gr𝑡A∗,∗)

∨ .

Since the left and right𝐻∗,∗-module actions agree on gr𝑡A∗,∗, the dual left and right𝐻∗,∗-module
actions on gr𝑡A are also equal. Hence the (cosets of the) operations 𝜌(𝐸, 𝑅) of degree = 𝑡 freely
generate gr𝑡A as a right 𝐻∗,∗-module. Since the filtration is exhaustive, the set of degree ⩾ 0
operations is a right𝐻∗,∗-module basis for A . □

Definition 4.7. For 𝑛 ⩾ −1 let the ℤ∕𝓁-algebra 𝐴(𝑛) = 𝐴(𝑛)∨∗,∗ ⊂ A be the dual of the Hopf
algebroid (𝐻∗,∗, 𝐴(𝑛)∗,∗).

Lemma 4.8. The operations 𝜌(𝐸, 𝑅), for (𝐸, 𝑅) as in Lemma 2.6, form a basis for 𝐴(𝑛) as a
finitely generated free left𝐻∗,∗-module. In particular, there is an exhaustive sequence ofℤ∕𝓁-algebra
homomorphisms

𝐻∗,∗ ⊂ ⋯ ⊂ 𝐴(𝑛 − 1) ⊂ 𝐴(𝑛) ⊂⋯ ⊂ A .

Proof. This follows from (the proof of) Lemma 2.6, since 𝐼(𝑛) ⊂ A∗,∗ is a monomial ideal. The
sequence is dual to the tower (2.1). □

Lemma 4.9. The operations 𝜌(𝐸, 𝑅), for (𝐸, 𝑅) as in Lemma 2.6, also form a basis for𝐴(𝑛) as a free
right𝐻∗,∗-module.

Proof. Replace A∗,∗ and Lemma 2.2 in the proof of Lemma 4.6 by 𝐴(𝑛)∗,∗ and Lemma 2.7. □

Example 4.10.

(a) 𝐴(0) = 𝐻∗,∗⟨𝛽⟩∕(𝛽2) with [𝛽, 𝑥] = 𝛽(𝑥) for 𝑥 ∈ 𝐻∗,∗, where [𝛽, 𝑥] = 𝛽𝑥 − (−1)|𝑥|𝑥𝛽 denotes
the graded commutator.

(b) For 𝓁 = 2,

𝐴(1) =
𝐻∗,∗⟨𝛽, 𝑃1⟩

(𝛽2, 𝑃1𝑃1 = 𝜏𝛽𝑃1𝛽, (𝛽𝑃1)2 = (𝑃1𝛽)2)

with [𝛽, 𝑥] = 𝛽(𝑥) and [𝑃1, 𝑥] = 𝑃1(𝑥) for 𝑥 ∈ 𝐻∗,∗. In the figure below, each bullet repre-
sents a copy of 𝐻∗,∗, the operations 𝛽 = 𝑆𝑞1 and 𝑃1 = 𝑆𝑞2 map one and two columns to the
right, respectively, and the dashed arrow indicates that𝑃1𝑃1 = 𝑆𝑞2𝑆𝑞2 is 𝜏 times the generator
𝛽𝑃1𝛽 = 𝑆𝑞3𝑆𝑞1.

The following property is sometimes taken as the definition of 𝐴(𝑛).
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Lemma 4.11. For 𝑛 ⩾ 0 the operations 𝛽, 𝑃1, 𝑃𝓁 , … , 𝑃𝓁𝑛−1 , together with the elements of 𝐻∗,∗,
generate 𝐴(𝑛) as a ℤ∕𝓁-algebra.

Proof. For 𝓁 odd, the Adem relations [64, Theorem 10.3] show that the subalgebra of 𝐴(𝑛) gen-
erated by 𝛽, 𝑃1, 𝑃𝓁 , … , 𝑃𝓁𝑛−1 is isomorphic to the classical finite subalgebra 𝐴(𝑛)cl of the classical
Steenrod algebra. By [48, Proposition 2] it has ℤ∕𝓁-module basis equal to the 𝐻∗,∗-module basis
for 𝐴(𝑛) of Lemma 4.8.
For 𝓁 = 2, the 𝜏- and 𝜌-coefficients in the Adem relations [58, Théorème 4.5.1] (correcting [64,

Theorem 10.2]) mean that Milnor’s product formula [48, Theorem 4b] requires adjustment in the
motivic setting. For 𝑖 ⩾ 0 let 𝑄𝑖 be the Milnor basis element dual to 𝜏𝑖 , and for 𝑖 ⩾ 1 and 𝑗 ⩾ 0 let
𝑃
𝑗
𝑖
be the Milnor basis element dual to 𝜉𝓁𝑗

𝑖
. In particular, 𝑄0 = 𝛽 and 𝑃

𝑗
1
= 𝑃𝓁

𝑗 . The arrays

may be helpful; cf. [44, p. 232]. Let 𝑛 ⩾ 1 and suppose, by induction, that the lemma holds for
𝐴(𝑛 − 1). We show that the inclusions

𝐴(𝑛 − 1)⟨𝑃𝑛−11 ⟩ ⊂ 𝐴(𝑛 − 1)⟨𝑃𝑛−11 , 𝑃𝑛−22 ⟩ ⊂ …
⊂ 𝐴(𝑛 − 1)⟨𝑃𝑛−11 , … , 𝑃0𝑛, 𝑄𝑛⟩ ⊂ 𝐴(𝑛)

are all equalities. Here we write 𝐴(𝑛 − 1)⟨𝑃𝑛−1
1
, … , 𝑃𝑛−𝑘
𝑘

⟩ to denote the subalgebra of 𝐴(𝑛) gener-
ated by𝐴(𝑛 − 1) and the 𝑃𝑛−𝑡𝑡 with 1 ⩽ 𝑡 ⩽ 𝑘, and similarly in the case with𝑄𝑛. This will complete
the inductive step, since𝐴(𝑛 − 1)⟨𝑃𝑛−1

1
⟩ is generated by 𝛽, 𝑃1, … , 𝑃𝓁𝑛−2 , 𝑃𝓁𝑛−1 and the elements of

𝐻∗,∗. Consider 2 ⩽ 𝑘 ⩽ 𝑛. We claim that

[𝑃𝑛+1−𝑘
𝑘−1
, 𝑃𝑛−𝑘1 ] = 𝑃

𝑛−𝑘
𝑘
mod 𝐴(𝑛 − 1) . (4.1)

The left-hand commutator is an𝐻∗,∗-linear combination ofMilnor basis elements 𝜌(𝐸, 𝑅) in𝐴(𝑛),
as in Lemma 4.8. The𝐻∗,∗-coefficient of 𝜌(𝐸, 𝑅) is the sum of the𝐻∗,∗-coefficients of

𝜉𝓁
𝑛+1−𝑘

𝑘−1
⊗ 𝜉𝓁

𝑛−𝑘

1 and 𝜉𝓁
𝑛−𝑘

1 ⊗ 𝜉
𝓁𝑛+1−𝑘
𝑘−1

(4.2)

in 𝜓(𝜏𝐸𝜉𝑅), where we can ignore signs since 𝓁 = 2. The basis element 𝑃𝑛−𝑘
𝑘

appears with
coefficient 1, due to the term 𝜉𝓁𝑛+1−𝑘

𝑘−1
⊗ 𝜉𝓁

𝑛−𝑘

1
in 𝜓(𝜉𝓁𝑛−𝑘

𝑘
).

For other 𝜌(𝐸, 𝑅) not in 𝐴(𝑛 − 1), degree considerations show that exactly one of
𝜉𝓁
𝑛−1

1
, … , 𝜉𝓁

𝑛+1−𝑘

𝑘−1
must divide 𝜏𝐸𝜉𝑅. When 1 ⩽ 𝑡 ⩽ 𝑘 − 2, no term of the coproduct

𝜓(𝜉𝓁
𝑛−𝑡

𝑡 ) =
∑
𝑖+𝑗=𝑡

𝜉𝓁
𝑛−𝑖

𝑖
⊗ 𝜉𝓁

𝑛−𝑡

𝑗
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divides either one of the tensor products in (4.2). Hence the 𝜌(𝐸, 𝑅)with these 𝜉𝓁𝑛−𝑡𝑡 dividing 𝜏𝐸𝜉𝑅
do not contribute to the commutator in (4.1). In the one remaining case, 𝑡 = 𝑘 − 1, the coproduct
𝜓(𝜉𝓁

𝑛+1−𝑘

𝑘−1
) contains two terms dividing those in (4.2), namely 1 ⊗ 𝜉𝓁𝑛+1−𝑘

𝑘−1
and 𝜉𝓁𝑛+1−𝑘
𝑘−1
⊗ 1. The

complementary factors 𝜉𝓁𝑛−𝑘
1
⊗ 1 and 1 ⊗ 𝜉𝓁𝑛−𝑘

1
only appear in

𝜓(𝜉𝓁
𝑛−𝑘

1 ) = 1 ⊗ 𝜉
𝓁𝑛−𝑘
1 + 𝜉

𝓁𝑛−𝑘
1 ⊗ 1 ,

so the last possible contribution to (4.1) is 𝜌(𝐸, 𝑅) dual to 𝜉𝓁𝑛−𝑘
1

⋅ 𝜉𝓁
𝑛+1−𝑘

𝑘−1
, with𝐻∗,∗-coefficient the

sum of the𝐻∗,∗-coefficients in

𝜓(𝜉𝓁
𝑛−𝑘

1 ⋅ 𝜉𝓁
𝑛+1−𝑘

𝑘−1
) = 𝜓(𝜉𝓁

𝑛−𝑘

1 ) ⋅ 𝜓(𝜉
𝓁𝑛+1−𝑘
𝑘−1
) .

Since each of 𝜉𝓁𝑛+1−𝑘
𝑘−1
⊗ 𝜉𝓁

𝑛−𝑘

1
and 𝜉𝓁𝑛−𝑘

1
⊗ 𝜉𝓁

𝑛+1−𝑘

𝑘−1
occurs twice in this product, this last

contribution is 0 mod 𝓁. This establishes claim (4.1). The analogous formula

[𝑃0𝑛, 𝑄0] = 𝑄𝑛 (4.3)

holds strictly in 𝐴(𝑛), and was already proved in [64, Proposition 13.6]. It follows by induction
on 𝑘 that

𝐴(𝑛 − 1)⟨𝑃𝑛−11 ⟩ = 𝐴(𝑛 − 1)⟨𝑃𝑛−11 , … , 𝑃0𝑛⟩ = 𝐴(𝑛 − 1)⟨𝑃𝑛−11 , … , 𝑃0𝑛, 𝑄𝑛⟩ .
Finally, the identity

𝐴(𝑛 − 1)⟨𝑃𝑛−11 , … , 𝑃0𝑛, 𝑄𝑛⟩ = 𝐴(𝑛)
follows by classical filtration-by-excess considerations, as in [44, Proposition 15.8], where the
excess of 𝜌(𝐸, 𝑅) is defined to be

∑
𝑠 𝑒𝑠 + 2

∑
𝑠 𝑟𝑠. □

Lemma 4.12. The operations 𝜌(𝐸, 𝑅) for (𝐸, 𝑅) as in Definition 2.8 form a basis forA as a free left
𝐴(𝑛)-module.

Proof. This follows by dualization from Lemma 2.9. □

Lemma 4.13. Let 𝐸𝑛 = (1, … , 1) and 𝑅𝑛 = (𝓁𝑛 − 1,… ,𝓁 − 1), so that 𝑡𝑛 = deg(𝜏𝐸𝑛𝜉𝑅𝑛 ) is the high-
est topological degree of a monomial in𝐴(𝑛)∗,∗. Then𝐴(𝑛)𝑝,𝑞 = 0 unless 0 ⩽ 𝑝 ⩽ 𝑞 + 𝑑 + 𝑡𝑛. Hence
the subset

{(𝑒, 𝑟) ∣ 𝐴(𝑛)𝑝−𝑒−(2𝓁−2)𝑟,𝑞−(𝓁−1)𝑟 ≠ 0} ⊂ {0, 1} × ℤ

is finite, for each given cohomological bidegree (𝑝, 𝑞).

Proof. The 𝐻∗,∗-module generators of 𝐴(𝑛)∗,∗ lie in homological bidegrees (𝑡, 𝑢) with 0 ⩽ 𝑡 ⩽ 𝑡𝑛
and 𝑢 ⩾ 0. Hence the 𝐻∗,∗-module generators of 𝐴(𝑛) lie in cohomological bidegrees (𝑝, 𝑞) with
0 ⩽ 𝑝 ⩽ 𝑡𝑛 and 𝑞 ⩾ 0. Since 𝐻∗,∗ is concentrated in bidegrees with 0 ⩽ 𝑝 ⩽ 𝑞 + 𝑑, it follows that
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𝐴(𝑛) is concentrated in the infinite triangular region where 0 ⩽ 𝑝 ⩽ 𝑞 + 𝑑 + 𝑡𝑛. Each line of slope
1∕2 in the (𝑝, 𝑞)-plane intersects this triangular region in a bounded interval, which implies the
finiteness assertion. □

Definition 4.14. For 𝑛 ⩾ 0 let the 𝐴(𝑛)-𝐴(𝑛 − 1)-bimodules 𝐶(𝑛) = 𝐶(𝑛)∨∗,∗ ⊂ A and 𝐵(𝑛) =
𝐵(𝑛)∨∗,∗ be the duals of the 𝐴(𝑛)∗,∗-𝐴(𝑛 − 1)∗,∗-bicomodules 𝐶(𝑛)∗,∗ and 𝐵(𝑛)∗,∗, respectively. Let
the symbol

𝜌(𝐸, 𝑅) ∈ 𝐵(𝑛)

be dual to 𝜏𝐸𝜉𝑅 in the monomial left 𝐻∗,∗-module basis for 𝐵(𝑛)∗,∗. The dual of the localization
monomorphism 𝐶(𝑛)∗,∗ → 𝐵(𝑛)∗,∗ is a canonical 𝐴(𝑛)-𝐴(𝑛 − 1)-bimodule epimorphism 𝐵(𝑛) →
𝐶(𝑛).

Lemma 4.15.

(a) The operations 𝜌(𝐸, 𝑅), for (𝐸, 𝑅) as in Lemma 3.3(a), form a basis for 𝐶(𝑛) as a free left 𝐻∗,∗-
module.

(b) The symbols 𝜌(𝐸, 𝑅), for (𝐸, 𝑅) as in Lemma 3.3(b), form a basis for 𝐵(𝑛) as a free left 𝐻∗,∗-
module.

(c) The canonical epimorphism 𝐵(𝑛) → 𝐶(𝑛) satisfies

𝜌(𝐸, 𝑅)⟼

{
𝜌(𝐸, 𝑅) for 𝑟1 ⩾ 0,
0 for 𝑟1 < 0.

Proof. Part (a) follows from (the proof of) Lemma 3.3(a), since 𝐽(𝑛) ⊂ A∗,∗ is a monomial ideal.
Part (b) likewise follows from Lemma 3.3(b). The restriction of 𝜌(𝐸, 𝑅) to 𝐶(𝑛)∗,∗ is then dual to
𝜏𝐸𝜉𝑅 if 𝑟1 ⩾ 0, and zero otherwise, proving (c). □

Lemma 4.16.

(a) The operations 𝜌(𝐸, 𝑅), for (𝐸, 𝑅) as in Lemma 3.3(a), also form a basis for 𝐶(𝑛) as a free right
𝐻∗,∗-module.

(b) The symbols 𝜌(𝐸, 𝑅), for (𝐸, 𝑅) as in Lemma 3.3(b), also form a basis for 𝐵(𝑛) as a free right
𝐻∗,∗-module.

Proof. For part (a), replace A∗,∗ and Lemma 2.2 in the proof of Lemma 4.6 by 𝐶(𝑛)∗,∗ and
Lemma 3.4(a).
For part (b), instead replace these by 𝐵(𝑛)∗,∗ and Lemma 3.4(b), and allow the filtration index 𝑡

in the proof of Lemma 4.6 to run over all integers, noting that in any given bidegree 𝐹𝑡𝐵(𝑛) = 0
for all sufficiently negative 𝑡. □

Example 4.17.

(a) The Steenrod operations

{𝛽𝑒𝑃𝑟 ∣ 𝑒 ∈ {0, 1}, 𝑟 ⩾ 0}
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form a basis for 𝐶(0) ⊂ A as a left 𝐻∗,∗-module, and as a right 𝐻∗,∗-module. When 𝓁 = 2,
these are the Steenrod operations 𝑆𝑞𝑘 for 𝑘 ⩾ 0.

(b) The symbols

{𝛽𝑒𝑃𝑟 ∣ 𝑒 ∈ {0, 1}, 𝑟 ∈ ℤ} ,

with 𝛽𝑒𝑃𝑟 dual to 𝜏𝑒
0
𝜉𝑟
1
, form a basis for 𝐵(0) as a left𝐻∗,∗-module, and as a right𝐻∗,∗-module.

When 𝓁 = 2, these are the symbols 𝑆𝑞𝑘 for 𝑘 ∈ ℤ. The homomorphism 𝐵(0) → 𝐶(0) maps
𝛽𝑒𝑃𝑟 to the corresponding Steenrod operation for 𝑟 ⩾ 0, and to zero for 𝑟 < 0.

Lemma 4.18. For each 𝑛 ⩾ 0 there is a commutative diagram of 𝐴(𝑛)-𝐴(𝑛 − 1)-bimodules

where the bimodule structures on the right-hand side are obtained by restriction from the inherent
𝐴(𝑛 + 1)-𝐴(𝑛)-bimodule structures.

Proof. This is readily obtained by comparing diagram (3.1) to its analoguewith𝑛 replaced by𝑛 + 1,
and dualizing. □

Proposition 4.19.

(a) The inclusion𝐻∗,∗[𝜉𝓁
𝑛

1
]∨ ⊂ 𝐶(𝑛) extends to an isomorphism

𝐴(𝑛) ⊗𝐻∗,∗ 𝐻∗,∗[𝜉
𝓁𝑛
1 ]
∨ ≅⟶ 𝐶(𝑛)

of left 𝐴(𝑛)-modules. Hence the Steenrod operations

{𝑃𝑟 ∣ 𝑟 ⩾ 0 with 𝓁𝑛 ∣ 𝑟}

form a basis for 𝐶(𝑛) as a free left 𝐴(𝑛)-module.
(b) The inclusion𝐻∗,∗[𝜉

±𝓁𝑛

1
]∨ ⊂ 𝐵(𝑛) extends to an isomorphism

𝐴(𝑛) ⊗𝐻∗,∗ 𝐻∗,∗[𝜉
±𝓁𝑛

1
]∨
≅
⟶ 𝐵(𝑛)

of left 𝐴(𝑛)-modules. Hence the symbols

{𝑃𝑟 ∣ 𝑟 ∈ ℤ with 𝓁𝑛 ∣ 𝑟}

form a basis for 𝐵(𝑛) as a free left 𝐴(𝑛)-module. The cohomological bidegree of 𝑃𝑟 is ((2𝓁 −
2)𝑟, (𝓁 − 1)𝑟).
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Proof. The homomorphisms

𝜃∶ 𝐴(𝑛)∨∗,∗ ⊗𝐻∗,∗ 𝐻∗,∗[𝜉
𝓁𝑛
1 ]
∨ ⟶ (𝐴(𝑛)∗,∗ ⊗𝐻∗,∗ 𝐻∗,∗[𝜉

𝓁𝑛
1 ])
∨

and

𝜃∶ 𝐴(𝑛)∨∗,∗ ⊗𝐻∗,∗ 𝐻∗,∗[𝜉
±𝓁𝑛

1
]∨ ⟶ (𝐴(𝑛)∗,∗ ⊗𝐻∗,∗ 𝐻∗,∗[𝜉

±𝓁𝑛

1
])∨

are isomorphisms. This follows from Lemmas 4.3(c) and 4.13, since in each case the source of 𝜃
is a direct sum of shifted copies of 𝐴(𝑛), the target of 𝜃 is the corresponding product, and in each
bidegree (𝑝, 𝑞) only finitely many of the factors in the product are non-zero.
The claims in (a) and (b) then follow by dualization from Proposition 3.11. □

Proposition 4.20. The inclusion 𝐵(0) ⊂ 𝐵(𝑛) extends to an isomorphism

𝐵(0) ⊗𝐻∗,∗ 𝐴(𝑛 − 1)
≅
⟶ 𝐵(𝑛)

of right 𝐴(𝑛 − 1)-modules. Hence the symbols

{𝛽𝑒𝑃𝑟 ∣ 𝑒 ∈ {0, 1}, 𝑟 ∈ ℤ}

form a basis for 𝐵(𝑛) as a free right 𝐴(𝑛 − 1)-module. The cohomological bidegree of 𝛽𝑒𝑃𝑟 is (𝑒 +
(2𝓁 − 2)𝑟, (𝓁 − 1)𝑟).

Proof. The homomorphism

𝜃∶ 𝐵(0)∨∗,∗ ⊗𝐻∗,∗ 𝐴(𝑛 − 1)
∨
∗,∗ ⟶ (𝐵(0)∗,∗ ⊗𝐻∗,∗ 𝐴(𝑛 − 1)∗,∗)

∨

is an isomorphism, by Lemmas 4.3(c) and 4.13. Thus the claim follows by dualization from
Proposition 3.12 and Example 4.17(b). □

5 THE SMALLMOTIVIC SINGER CONSTRUCTION

In this section and the next, we generalize the classical Singer construction 𝑅+(𝑀) of [60] and
[36] to the motivic context, following the strategy of [4]. We shall write 𝑅𝑆(𝑀) for the (small)
construction associated to the symmetric group 𝑆𝓁 , which is denoted 𝑅+(𝑀) in [36] and 𝑇′′(𝑀)
in [4], and whose desuspension Σ−1𝑅𝑆(𝑀) is denoted 𝑅+(𝑀) in [59] and [60] and 𝑇′(𝑀) in [4]. We
shall write 𝑅𝜇(𝑀) for the (large) construction associated to the cyclic group 𝐶𝓁 and the algebraic
group 𝜇𝓁 of 𝓁th roots of unity, which is denoted 𝑇(𝑀) in [4] and 𝑅+(𝑀) in [39]. For 𝓁 = 2 the two
constructions agree.

Lemma 5.1. Let 𝑛 ⩾ 0.

(a) For each left𝐴(𝑛 − 1)-module𝑀, the tensor product 𝐵(𝑛) ⊗𝐴(𝑛−1) 𝑀 is a left𝐴(𝑛)-module. The
inclusion 𝐵(0) ⊂ 𝐵(𝑛) induces an isomorphism

𝐵(0) ⊗𝐻∗,∗ 𝑀
≅
⟶ 𝐵(𝑛) ⊗𝐴(𝑛−1) 𝑀 .
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(b) If𝑀 is a left 𝐴(𝑛)-module, then the inclusion 𝐵(𝑛) ⊂ 𝐵(𝑛 + 1) induces an isomorphism

𝐵(𝑛) ⊗𝐴(𝑛−1) 𝑀
≅
⟶ 𝐵(𝑛 + 1) ⊗𝐴(𝑛) 𝑀

of left 𝐴(𝑛)-modules.
(c) If 𝑀 is a left A -module, then the composition 𝐵(𝑛) → 𝐶(𝑛) ⊂ A induces a left 𝐴(𝑛)-module

homomorphism

𝜖𝑛 ∶ 𝐵(𝑛) ⊗𝐴(𝑛−1) 𝑀⟶ A ⊗𝐴(𝑛−1) 𝑀⟶𝑀 ,

and these are compatible for varying 𝑛.

Proof.

(a) This is clear from the 𝐴(𝑛)-𝐴(𝑛 − 1)-bimodule structure of 𝐵(𝑛) and Proposition 4.20.
(b) The morphism exists because 𝐵(𝑛) ⊂ 𝐵(𝑛 + 1) is an 𝐴(𝑛)-𝐴(𝑛 − 1)-bimodule homomor-

phism, with respect to the restricted bimodule structure on the target. It is an isomorphism
by comparison with the isomorphisms of part (a) for 𝑛 and 𝑛 + 1.

(c) This follows because the inclusions 𝐶(𝑛) ⊂ 𝐶(𝑛 + 1) ⊂ A are 𝐴(𝑛)-𝐴(𝑛 − 1)-bimodule
homomorphisms. In each case the morphism A ⊗𝐴(𝑛−1) 𝑀⟶𝑀 is induced by the left
module action A ⊗𝑀 → 𝑀. □

Definition 5.2. Let𝑀 be any leftA -module.

(a) Let the small motivic Singer construction

𝑅𝑆(𝑀) = colim𝑛
(𝐵(𝑛) ⊗𝐴(𝑛−1) 𝑀)

be the colimit of the sequence of isomorphisms

𝐵(0) ⊗𝐻∗,∗ 𝑀
≅
⟶ …

≅
⟶ 𝐵(𝑛) ⊗𝐴(𝑛−1) 𝑀

≅
⟶ 𝐵(𝑛 + 1) ⊗𝐴(𝑛) 𝑀

≅
⟶ …,

equippedwith the unique leftA -module structure for which the canonicalmap𝐵(𝑛) ⊗𝐴(𝑛−1)
𝑀 → 𝑅𝑆(𝑀) is an isomorphism of 𝐴(𝑛)-modules, for each 𝑛 ⩾ 0.

(b) Let the small evaluation homomorphism

𝜖∶ 𝑅𝑆(𝑀)⟶𝑀

be the left A -module homomorphism such that its restriction to 𝐵(𝑛) ⊗𝐴(𝑛−1) 𝑀 is equal to
the 𝐴(𝑛)-module homomorphism 𝜖𝑛 of Lemma 5.1(c), for each 𝑛 ⩾ 0.

Evidently,𝑅𝑆 is an exact and colimit-preserving endofunctor of leftA -modules, and 𝜖∶ 𝑅𝑆 → id
is a natural transformation.

Lemma 5.3. As a left 𝐴(0)-module, the small motivic Singer construction is given by the tensor
product

𝑅𝑆(𝑀) ≅ 𝐵(0) ⊗𝐻∗,∗ 𝑀

= 𝐻∗,∗{𝛽𝑒𝑃𝑟 ∣ 𝑒 ∈ {0, 1}, 𝑟 ∈ ℤ} ⊗𝐻∗,∗ 𝑀 ,
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with the 𝐴(0)-action from 𝐵(0). Each element of 𝑅𝑆(𝑀) is thus a finite sum of terms 𝛽𝑒𝑃𝑟 ⊗ 𝑚,
with 𝑒 ∈ {0, 1}, 𝑟 ∈ ℤ and 𝑚 ∈ 𝑀, where 𝛽(𝑃𝑟 ⊗ 𝑚) = 𝛽𝑃𝑟 ⊗𝑚 and 𝛽(𝛽𝑃𝑟 ⊗ 𝑚) = 0. The small
evaluation homomorphism is given by

𝜖(𝛽𝑒𝑃𝑟 ⊗ 𝑚) =

{
𝛽𝑒𝑃𝑟(𝑚) for 𝑟 ⩾ 0,
0 for 𝑟 < 0.

Proof. Clear. □

The following formulas generalize the one of Singer [59, (2.1)] for 𝓁 = 2 and a rewriting of the
those of Li–Singer [36, §3] for 𝓁 odd. By 𝜏𝑗 mod 2 we mean 𝜏0 = 1 for 𝑗 even and 𝜏1 = 𝜏 for 𝑗 odd.

Proposition 5.4. For 𝓁 = 2 and 𝑎 ⩾ 0 even the action of 𝑆𝑞𝑎 on 𝑅𝑆(𝑀) is given by

𝑆𝑞𝑎(𝑆𝑞𝑏 ⊗𝑚) =

[𝑎∕2]∑
𝑗=0

(
𝑏 − 1 − 𝑗

𝑎 − 2𝑗

)
𝜏𝑗 mod 2 ⋅ 𝑆𝑞𝑎+𝑏−𝑗 ⊗ 𝑆𝑞𝑗(𝑚)

for 𝑏 ∈ ℤ even, and

𝑆𝑞𝑎(𝑆𝑞𝑏 ⊗ 𝑚) =

[𝑎∕2]∑
𝑗=0

(
𝑏 − 1 − 𝑗

𝑎 − 2𝑗

)
𝑆𝑞𝑎+𝑏−𝑗 ⊗ 𝑆𝑞𝑗(𝑚)

+

[𝑎∕2]∑
𝑗=1
odd

(
𝑏 − 1 − 𝑗

𝑎 − 2𝑗

)
𝜌 ⋅ 𝑆𝑞𝑎+𝑏−𝑗−1 ⊗ 𝑆𝑞𝑗(𝑚)

for 𝑏 ∈ ℤ odd.
For 𝓁 odd and 𝑎 ⩾ 0 the action of 𝑃𝑎 on 𝑅𝑆(𝑀) is given by

𝑃𝑎(𝑃𝑏 ⊗𝑚) =

[𝑎∕𝓁]∑
𝑗=0

(−1)𝑎+𝑗
(
(𝓁 − 1)(𝑏 − 𝑗) − 1
𝑎 − 𝓁𝑗

)
𝑃𝑎+𝑏−𝑗 ⊗ 𝑃𝑗(𝑚)

and

𝑃𝑎(𝛽𝑃𝑏 ⊗𝑚) =

[𝑎∕𝓁]∑
𝑗=0

(−1)𝑎+𝑗
(
(𝓁 − 1)(𝑏 − 𝑗)
𝑎 − 𝓁𝑗

)
𝛽𝑃𝑎+𝑏−𝑗 ⊗ 𝑃𝑗(𝑚)

+

[(𝑎−1)∕𝓁]∑
𝑗=0

(−1)𝑎+𝑗−1
(
(𝓁 − 1)(𝑏 − 𝑗) − 1
𝑎 − 𝓁𝑗 − 1

)
𝑃𝑎+𝑏−𝑗 ⊗ 𝛽𝑃𝑗(𝑚)

for all 𝑏 ∈ ℤ.

Proof. For 𝑎 = 0 the formulas confirm that 𝑆𝑞0 and 𝑃0 are the identity operations.
For 𝓁 = 2 and 𝑎 > 0 even, choose 𝑛 so that 𝑆𝑞𝑎 ∈ 𝐴(𝑛). Then 𝑆𝑞𝑗 ∈ 𝐴(𝑛 − 1) for all 0 ⩽
𝑗 ⩽ [𝑎∕2], and 𝑆𝑞𝑖𝑆𝑞𝑗 ⊗ 𝑚 = 𝑆𝑞𝑖 ⊗ 𝑆𝑞𝑗(𝑚) in 𝐵(𝑛) ⊗𝐴(𝑛−1) 𝑀. When 𝑎 < 2𝑏 the formulas for

                                                                                                                                                                                                                                                                                                                                                                       



1282 GREGERSEN and ROGNES

𝑆𝑞𝑎(𝑆𝑞𝑏 ⊗𝑚) then follow from the Adem relations [64, Theorem 10.2] for 𝑆𝑞𝑎𝑆𝑞𝑏, as corrected
in [58, Théorème 4.5.1].
Similarly, for 𝓁 odd and 𝑎 > 0, choose 𝑛 so that 𝑃𝑎 ∈ 𝐴(𝑛). Then 𝑃𝑗, 𝛽𝑃𝑗 ∈ 𝐴(𝑛 − 1) for all
0 ⩽ 𝑗 ⩽ [𝑎∕𝓁], and 𝑃𝑖𝑃𝑗 ⊗ 𝑚 = 𝑃𝑖 ⊗ 𝑃𝑗(𝑚) and 𝑃𝑖𝛽𝑃𝑗 ⊗ 𝑚 = 𝑃𝑖 ⊗ 𝛽𝑃𝑗(𝑚) in 𝐵(𝑛) ⊗𝐴(𝑛−1) 𝑀.
When 𝑎 < 𝓁𝑏 the formulas for 𝑃𝑎(𝑃𝑏 ⊗𝑚) and 𝑃𝑎(𝛽𝑃𝑏 ⊗𝑚) then follow from the Adem rela-
tions [64, Theorem 10.3] for 𝑃𝑎𝑃𝑏 and 𝑃𝑎𝛽𝑃𝑏. (The last Adem relation is valid for 0 < 𝑎 ⩽ 𝓁𝑏;
cf. [58, Théorème 4.5.2].)
For the rest of the argument,𝓁 can be even or odd. ByDefinition 3.8, the left𝐴(𝑛)∗,∗-coaction on
𝐵(𝑛)∗,∗ commutes with multiplication by 𝜉𝓁

𝑛

1
, so the left 𝐴(𝑛)-action on 𝐵(𝑛) commutes with the

operation 𝛽𝑒𝑃𝑟 ↦ 𝛽𝑒𝑃𝑟+𝓁𝑛 . All mod 𝓁 binomial coefficients in sight also repeat 𝓁𝑛-periodically
in 𝑏. Hence the formulas for 𝑎 ⩾ 𝓁𝑏 follow from those for 𝑎 < 𝓁𝑏. □

Corollary 5.5. For 𝓁 = 2 and 𝑎 ⩾ 0 even the action of 𝑆𝑞𝑎 on 𝑅𝑆(𝐻∗,∗) ≅ 𝐵(0) is given by

𝑆𝑞𝑎(𝑆𝑞𝑏) =

(
𝑏 − 1

𝑎

)
𝑆𝑞𝑎+𝑏

for 𝑏 ∈ ℤ.
For 𝓁 odd and 𝑎 ⩾ 0 the action of 𝑃𝑎 on 𝑅𝑆(𝐻∗,∗) ≅ 𝐵(0) is given by

𝑃𝑎(𝑃𝑏) = (−1)𝑎
(
(𝓁 − 1)𝑏 − 1
𝑎

)
𝑃𝑎+𝑏

and

𝑃𝑎(𝛽𝑃𝑏) = (−1)𝑎
(
(𝓁 − 1)𝑏
𝑎

)
𝛽𝑃𝑎+𝑏

for 𝑏 ∈ ℤ.

Proof. This is the special case 𝑀 = 𝐻∗,∗ of Proposition 5.4, where we identify 𝑅𝑆(𝐻∗,∗) ≅
𝐵(0) ⊗𝐻∗,∗ 𝐻

∗,∗ = 𝐵(0) and note that 𝑆𝑞𝑗(1) = 0 and 𝑃𝑗(1) = 0 in 𝐻∗,∗ for all 𝑗 > 0. When
𝓁 = 2, the formulas for 𝑃𝑎(𝑃𝑏) and 𝑃𝑎(𝛽𝑃𝑏) agree with the given formulas for 𝑆𝑞2𝑎(𝑆𝑞2𝑏) and
𝑆𝑞2𝑎(𝑆𝑞2𝑏+1), since

(𝑏−1
𝑎

)
≡
(2𝑏−1
2𝑎

)
and

(𝑏
𝑎

)
≡
(2𝑏
2𝑎

)
mod 2. □

Notation 5.6. Let 𝐵𝜇𝓁 and 𝐵𝑆𝓁 be the geometric classifying spaces of the linear algebraic
groups 𝜇𝓁 and 𝑆𝓁 , respectively. In particular, 𝐵𝜇𝓁 ≃ hocolim𝑛 𝐿2𝑛−1 as discussed in Section 10.
Recall from [64, Theorems 6.10 and 6.16] that

𝐻∗,∗(𝐵𝜇𝓁) = 𝐻
∗,∗[𝑢, 𝑣]∕(𝑢2 = 𝜏𝑣 + 𝜌𝑢)

with 𝛽(𝑢) = 𝑣, and

𝐻∗,∗(𝐵𝑆𝓁) = 𝐻
∗,∗[𝑐, 𝑑]∕(𝑐2 = 𝜏𝑑 + 𝜌𝑐)

with 𝛽(𝑐) = 𝑑, as graded commutativeA -module𝐻∗,∗-algebras. The cohomological bidegrees of
𝑢, 𝑣, 𝑐 and 𝑑 are (1,1), (2,1), (2𝓁 − 3,𝓁 − 1) and (2𝓁 − 2,𝓁 − 1), respectively. The coefficients 𝜏
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and 𝜌 are interpreted as 0 when 𝓁 is odd. Any choice of a primitive 𝓁th root of unity 𝜁 defines a
map 𝑝𝜁 ∶ 𝐵𝜇𝓁 → 𝐵𝑆𝓁 inducing

𝑝∗
𝜁
∶ 𝑐⟼ −𝑢𝑣𝓁−2

𝑝∗
𝜁
∶ 𝑑⟼ −𝑣𝓁−1 .

We suppress 𝑝∗
𝜁
from the notation, viewing 𝐻∗,∗(𝐵𝑆𝓁) as an A -module subalgebra of 𝐻∗,∗(𝐵𝜇𝓁).

The natural leftA -module structure on𝐻∗,∗(𝐵𝜇𝓁) is determined by the cases

𝛽𝑒𝑃𝑟(𝑢) =

⎧⎪⎨⎪⎩
𝑢 for (𝑒, 𝑟) = (0, 0),
𝑣 for (𝑒, 𝑟) = (1, 0),
0 otherwise,

𝛽𝑒𝑃𝑟(𝑣) =

⎧⎪⎨⎪⎩
𝑣 for (𝑒, 𝑟) = (0, 0),
𝑣𝓁 for (𝑒, 𝑟) = (0, 1),
0 otherwise,

and the Cartan formula [64, Proposition 9.7], leading to the expressions

𝑃𝑟(𝑢𝑣𝑘) =

(
𝑘

𝑟

)
𝑢𝑣(𝓁−1)𝑟+𝑘

𝛽𝑃𝑟(𝑢𝑣𝑘) =

(
𝑘

𝑟

)
𝑣(𝓁−1)𝑟+1+𝑘

𝑃𝑟(𝑣𝑘) =

(
𝑘

𝑟

)
𝑣(𝓁−1)𝑟+𝑘

𝛽𝑃𝑟(𝑣𝑘) = 0 .

The restrictedA -module action on𝐻∗,∗(𝐵𝑆𝓁) is given by

𝑃𝑟(𝑐𝑑𝑘) = (−1)𝑟
(
(𝓁 − 1)(𝑘 + 1) − 1

𝑟

)
𝑐𝑑𝑟+𝑘

𝛽𝑃𝑟(𝑐𝑑𝑘) = (−1)𝑟
(
(𝓁 − 1)(𝑘 + 1) − 1

𝑟

)
𝑑𝑟+1+𝑘

𝑃𝑟(𝑑𝑘) = (−1)𝑟
(
(𝓁 − 1)𝑘
𝑟

)
𝑑𝑟+𝑘

𝛽𝑃𝑟(𝑑𝑘) = 0 ,

for 𝑟 ⩾ 0 and 𝑘 ⩾ 0; cf. [58, Proposition 4.4.6].

In particular, 𝛽(𝑣𝓁𝑛 ) = 0 and 𝑃𝑟(𝑣𝓁𝑛 ) = 0 for all 0 < 𝑟 < 𝓁𝑛, so multiplication by 𝑣𝓁𝑛 acts
left 𝐴(𝑛)-linearly on 𝐻∗,∗(𝐵𝜇𝓁); cf. Lemma 4.11. Likewise, multiplication by 𝑑𝓁

𝑛 acts left 𝐴(𝑛)-
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linearly on𝐻∗,∗(𝐵𝑆𝓁). Hence the following two localizations inherit compatible left𝐴(𝑛)-module
structures for all 𝑛 ⩾ 0. These combine to well-defined left A -module structures, such that the
localization homomorphisms are maps of A -module𝐻∗,∗-algebras.

Definition 5.7. Let

𝐻∗,∗(𝐵𝜇𝓁)loc = 𝐻
∗,∗(𝐵𝜇𝓁)[1∕𝑣] = 𝐻

∗,∗[𝑢, 𝑣±1]∕(𝑢2 = 𝜏𝑣 + 𝜌𝑢)

= 𝐻∗,∗{𝑢𝑖𝑣𝑘 ∣ 𝑖 ∈ {0, 1}, 𝑘 ∈ ℤ}

and

𝐻∗,∗(𝐵𝑆𝓁)loc = 𝐻
∗,∗(𝐵𝑆𝓁)[1∕𝑑] = 𝐻

∗,∗[𝑐, 𝑑±1]∕(𝑐2 = 𝜏𝑑 + 𝜌𝑐)

= 𝐻∗,∗{𝑐𝑖𝑑𝑘 ∣ 𝑖 ∈ {0, 1}, 𝑘 ∈ ℤ}

denote the localizations away from 𝑣 and 𝑑, respectively.

Theorem 5.8. Let Σ = Σ1,0. There is a leftA -module isomorphism

𝑅𝑆(𝐻
∗,∗)
≅
⟶ Σ𝐻∗,∗(𝐵𝑆𝓁)loc

defined by

𝑃𝑘 ⟼ Σ𝑐𝑑𝑘−1 and 𝛽𝑃𝑘 ⟼ −Σ𝑑𝑘

for 𝑘 ∈ ℤ. The composite Σ𝐻∗,∗(𝐵𝑆𝓁)loc ≅ 𝑅𝑆(𝐻∗,∗)
𝜖
⟶ 𝐻∗,∗ is the left A -linear homomorphism

given by

Σ𝑐𝑑−1 ⟼ 1 and Σ𝑐𝑖𝑑𝑘 ⟼ 0

for (𝑖, 𝑘) ≠ (1, −1), where 𝑖 ∈ {0, 1} and 𝑘 ∈ ℤ.

Proof. By Corollary 5.5, Notation 5.6 and Definition 5.7 the indicated 𝐻∗,∗-module isomorphism
maps 𝑃𝑟(𝑃𝑘) and 𝑃𝑟(𝛽𝑃𝑘) to 𝑃𝑟(Σ𝑐𝑑𝑘−1) and 𝑃𝑟(−Σ𝑑𝑘), respectively, for all 𝑟 ⩾ 0 and 𝑘 ∈ ℤ. More-
over, 𝛽(Σ𝑐𝑑𝑘−1) = −Σ𝑑𝑘 and 𝛽(−Σ𝑑𝑘) = 0. Hence the isomorphism is A -linear. The calculation
of the composite follows by noting that 𝛽𝑒𝑃𝑟(1) = 0 in𝐻∗,∗ unless (𝑒, 𝑟) = (0, 0). □

6 THE LARGEMOTIVIC SINGER CONSTRUCTION

Our next aim, following [4, §5], is to construct the large Singer construction𝑅𝜇(𝑀) as an extension
of 𝑅𝑆(𝑀), with 𝑅𝜇(𝐻∗,∗) ≅ Σ𝐻∗,∗(𝐵𝜇𝓁)loc. We first note that𝐻∗,∗(𝐵𝑆𝓁)loc ⊂ 𝐻∗,∗(𝐵𝜇𝓁)loc is a pair
of graded Frobenius algebras. These duality structures provide a conceptual origin for the explicit
formulas that appear in [4, Lemma 5.1].
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Definition 6.1. Let the residue homomorphisms

res∶ Σ𝐻∗,∗(𝐵𝜇𝓁)loc ⟶ 𝐻
∗,∗

res∶ Σ𝐻∗,∗(𝐵𝑆𝓁)loc ⟶ 𝐻
∗,∗

be the left𝐻∗,∗-linear Frobenius forms defined for 𝑖 ∈ {0, 1} and 𝑘 ∈ ℤ by

res(Σ𝑢𝑖𝑣𝑘) = res(Σ𝑐𝑖𝑑𝑘) =

{
1 for (𝑖, 𝑘) = (1, −1),
0 otherwise.

The associated Frobenius pairings

Σ𝐻∗,∗(𝐵𝜇𝓁)loc ⊗𝐻∗,∗ 𝐻
∗,∗(𝐵𝜇𝓁)loc ⟶ 𝐻

∗,∗

Σ𝐻∗,∗(𝐵𝑆𝓁)loc ⊗𝐻∗,∗ 𝐻
∗,∗(𝐵𝑆𝓁)loc ⟶ 𝐻

∗,∗

map Σ𝑥 ⊗ 𝑦 to res(Σ𝑥𝑦), and the adjoint 𝐻∗,∗-linear homomorphisms

Σ𝐻∗,∗(𝐵𝜇𝓁)loc
≅
⟶ (𝐻−∗,−∗(𝐵𝜇𝓁)loc)

∨

Σ𝐻∗,∗(𝐵𝑆𝓁)loc
≅
⟶ (𝐻−∗,−∗(𝐵𝑆𝓁)loc)

∨

are the isomorphisms given by

Σ𝑣𝑘 ⟼ (𝑢𝑣−𝑘−1)∨

Σ𝑢𝑣𝑘−1 ⟼ (𝑣−𝑘)∨ + 𝜌 ⋅ (𝑢𝑣−𝑘)∨

and

Σ𝑑𝑘 ⟼ (𝑐𝑑−𝑘−1)∨

Σ𝑐𝑑𝑘−1 ⟼ (𝑑−𝑘)∨ + 𝜌 ⋅ (𝑐𝑑−𝑘)∨

for 𝑘 ∈ ℤ.

Lemma6.2. TheFrobenius forms, the associatedFrobenius pairings, and the adjoint isomorphisms,
are all leftA -linear.

Proof. The residue homomorphism in the case of 𝐵𝜇𝓁 is A -linear, because for 𝑟 > 0 we have
𝑃𝑟(𝑢𝑣𝑘) = 0 whenever (𝓁 − 1)𝑟 + 𝑘 = −1, since(

(𝓁 − 1)(−𝑟) − 1
𝑟

)
= (−1)𝑟

(
𝓁𝑟
𝑟

)
≡ 0 mod 𝓁 .

The case of 𝐵𝑆𝓁 follows from this, or from the second part of Theorem 5.8. TheA -linearity of the
remaining homomorphisms follows formally. □
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Recall the cotensor product□ of comodules, for example, from [17, §2].

Definition 6.3. Let

𝑅𝑆(𝐻∗,∗) = lim𝑛
(𝐵(𝑛)∗,∗□𝐴(𝑛−1)∗,∗ 𝐻∗,∗) ≅ 𝐵(0)∗,∗

be the (achieved) limit of the right 𝐴(𝑛 − 1)∗,∗-comodule primitives in 𝐵(𝑛)∗,∗. It is a left 𝐴(𝑛)∗,∗-
comodule algebra for each 𝑛 ⩾ 0, and these coactions combine to a completed leftA∗,∗-comodule
algebra structure. We write

𝑅𝑆(𝐻∗,∗) = 𝐻
∗,∗[𝜏̃, 𝜉̃±1]∕(𝜏̃2 = 𝜏𝜉̃ + 𝜌𝜏̃𝜉̃) ,

with 𝜏̃ and 𝜉̃ mapping to 𝜏0 and 𝜉1 in 𝐵(0)∗,∗, respectively. Note that 𝑅𝑆(𝐻∗,∗) ≅ 𝑅𝑆(𝐻∗,∗)∨, with
𝛽𝑒𝑃𝑟 dual to 𝜏̃𝑒𝜉̃𝑟 in the monomial basis.

Lemma 6.4. The composite leftA -module isomorphism

𝑅𝑆(𝐻
∗,∗)
≅
⟶ Σ𝐻∗,∗(𝐵𝑆𝓁)loc

≅
⟶ (𝐻−∗,−∗(𝐵𝑆𝓁)loc)

∨

is the dual of the𝐻∗,∗-algebra isomorphism

Φ∶ 𝐻−∗,−∗(𝐵𝑆𝓁)loc
≅
⟶ 𝑅𝑆(𝐻∗,∗)

given by

𝑐⟼ −𝜏̃𝜉̃−1 + 𝜌 ⋅ 1 and 𝑑⟼ 𝜉̃−1 .

Proof. The composite isomorphismmaps 𝑃𝑘 to (𝑑−𝑘)∨ + 𝜌 ⋅ (𝑐𝑑−𝑘)∨ andmaps 𝛽𝑃𝑘 to−(𝑐𝑑−𝑘−1)∨,
hence is dual to the 𝐻∗,∗-linear homomorphism mapping 𝑑−𝑘 to (𝑃𝑘)∨ = 𝜉̃𝑘 and mapping 𝑐𝑑−𝑘
to −(𝛽𝑃𝑘−1)∨ + 𝜌 ⋅ (𝑃𝑘)∨ = −𝜏̃𝜉̃𝑘−1 + 𝜌 ⋅ 𝜉̃𝑘. This is indeed an algebra isomorphism. □

For a leftA∗,∗-comodule𝑀∗,∗, the𝐴(𝑛)∗,∗-𝐴(𝑛 − 1)∗,∗-bicomodule algebra product𝜙 on𝐵(𝑛)∗,∗
induces a pairing

(𝐵(𝑛)∗,∗ □𝐴(𝑛−1)∗,∗ 𝐻∗,∗) ⊗𝐻∗,∗ (𝐵(𝑛)∗,∗□𝐴(𝑛−1)∗,∗ 𝑀∗,∗)

⟶ (𝐵(𝑛)∗,∗□𝐴(𝑛−1)∗,∗ 𝑀∗,∗)

of left 𝐴(𝑛)∗,∗-comodules for each 𝑛 ⩾ 0, making

𝑅𝑆(𝑀∗,∗) = lim𝑛
(𝐵(𝑛)∗,∗ □𝐴(𝑛−1)∗,∗ 𝑀∗,∗)

an 𝑅𝑆(𝐻∗,∗)-module in completed left A∗,∗-comodules. Viewing 𝑅𝑆(𝑀∗,∗) as an 𝐻−∗,−∗(𝐵𝑆𝓁)loc-
module via the algebra isomorphism Φ, we can form the induced𝐻−∗,−∗(𝐵𝜇𝓁)loc-module

𝑅𝜇(𝑀∗,∗) = 𝐻
−∗,−∗(𝐵𝜇𝓁)loc ⊗

𝐻−∗,−∗(𝐵𝑆𝓁)loc

𝑅𝑆(𝑀∗,∗) .
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As a left 𝐴(𝑛)∗,∗-comodule, it is isomorphic to a finite direct sum

𝑅𝜇(𝑀∗,∗) ≅ 𝐻
∗,∗{1, 𝑣𝓁

𝑛
, … , 𝑣𝓁

𝑛(𝓁−2)} ⊗𝐻∗,∗ 𝑅
𝑆(𝑀∗,∗) ,

where each power of 𝑣𝓁𝑛 is 𝐴(𝑛)∗,∗-comodule primitive.
Dually, for a left A -module𝑀 the completed 𝐴(𝑛)-𝐴(𝑛 − 1)-bimodule coproduct

𝐵(𝑛) = 𝐵(𝑛)∨∗,∗
𝜙∨

⟶ (𝐵(𝑛)∗,∗ ⊗𝐻∗,∗ 𝐵(𝑛)∗,∗)
∨ = 𝐵(𝑛) ⊗̂𝐻∗,∗ 𝐵(𝑛)

induces a ‘copairing’

𝐵(𝑛) ⊗𝐴(𝑛−1) 𝑀⟶ (𝐵(𝑛) ⊗𝐴(𝑛−1) 𝐻
∗,∗) ⊗̂𝐻∗,∗ (𝐵(𝑛) ⊗𝐴(𝑛−1) 𝑀)

of left 𝐴(𝑛)-modules for each 𝑛 ⩾ 0, making the small Singer construction

𝑅𝑆(𝑀) = colim𝑛
(𝐵(𝑛) ⊗𝐴(𝑛−1) 𝑀)

a completed 𝑅𝑆(𝐻∗,∗)-comodule in left A -modules. Here 𝑅𝑆(𝐻∗,∗) has the completed 𝐻∗,∗-
coalgebra structure dual to the 𝐻∗,∗-algebra structure on 𝑅𝑆(𝐻∗,∗) that appears in Lemma 6.4.
It corresponds via the isomorphism in Theorem 5.8 to a completed 𝐻∗,∗-coalgebra structure
on Σ𝐻∗,∗(𝐵𝑆𝓁)loc. Moreover, the algebra inclusion 𝐻−∗,−∗(𝐵𝑆𝓁)loc ⊂ 𝐻−∗,−∗(𝐵𝜇𝓁)loc in left A -
modules corresponds under duality and the Frobenius isomorphisms from Definition 6.1 to a
completed𝐻∗,∗-coalgebra epimorphism

𝜋∶ Σ𝐻∗,∗(𝐵𝜇𝓁)loc ↠ Σ𝐻
∗,∗(𝐵𝑆𝓁)loc

in leftA -modules, given by

Σ𝑣(𝓁−1)𝑘 ⟼ (−1)𝑘Σ𝑑𝑘 and Σ𝑢𝑣(𝓁−1)𝑘−1 ⟼ (−1)𝑘Σ𝑐𝑑𝑘−1 ,

while the remaining 𝐻∗,∗-module generators Σ𝑢𝑖𝑣𝑘 with 𝑖 ∈ {0, 1} and 𝑘 ∈ ℤ map to zero. This
discussion motivates the following definition.

Definition 6.5. Let𝑀 be any left A -module.

(a) Let the large motivic Singer construction

𝑅𝜇(𝑀) = Σ𝐻
∗,∗(𝐵𝜇𝓁)loc □

Σ𝐻∗,∗(𝐵𝑆𝓁)loc

𝑅𝑆(𝑀)

be the left A -module coinduced from 𝑅𝑆(𝑀) along the completed 𝐻∗,∗-coalgebra epimor-
phism 𝜋. As a left 𝐴(𝑛)-module it is isomorphic to the finite direct sum

𝑅𝜇(𝑀) ≅ 𝐻
∗,∗{1, 𝑣𝓁

𝑛
, … , 𝑣𝓁

𝑛(𝓁−2)} ⊗𝐻∗,∗ 𝑅𝑆(𝑀)

where 𝐴(𝑛) acts trivially, that is, via 𝜂∨
𝐿,𝑛
∶ 𝐴(𝑛) → 𝐻∗,∗, on each power of 𝑣𝓁𝑛 .
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(b) Let the large evaluation homomorphism

𝜖∶ 𝑅𝜇(𝑀)⟶𝑀

be the composite 𝜖(𝜋□ 1)∶ 𝑅𝜇(𝑀) → 𝑅𝑆(𝑀) → 𝑀.

Corollary 6.6. There is a leftA -module isomorphism

𝑅𝜇(𝐻
∗,∗) ≅ Σ𝐻∗,∗(𝐵𝜇𝓁)loc .

The composite Σ𝐻∗,∗(𝐵𝜇𝓁)loc ≅ 𝑅𝜇(𝐻∗,∗)
𝜖
⟶ 𝐻∗,∗ equals the residue homomorphism for 𝐵𝜇𝓁 .

Proof. This follows directly from Theorem 5.8. □

Lemma 6.7. As a left 𝐴(0)-module, the large motivic Singer construction is given by the tensor
product

𝑅𝜇(𝑀) ≅ 𝐻
∗,∗{Σ𝑢𝑖𝑣𝑘 ∣ 𝑖 ∈ {0, 1}, 𝑘 ∈ ℤ} ⊗𝐻∗,∗ 𝑀

with the 𝐴(0)-action from Σ𝐻∗,∗(𝐵𝜇𝓁)loc. Each element of 𝑅𝜇(𝑀) is thus a finite sum of terms
Σ𝑢𝑖𝑣𝑘 ⊗ 𝑚, with 𝑖 ∈ {0, 1}, 𝑘 ∈ ℤ and 𝑚 ∈ 𝑀, where 𝛽(Σ𝑢𝑣𝑘 ⊗𝑚) = −Σ𝑣𝑘+1 ⊗𝑚 and 𝛽(Σ𝑣𝑘 ⊗
𝑚) = 0.

Proof. Clear. □

The following formulas generalize the classical one of Singer [60, (3.2)] for𝓁 = 2, and of Lunøe–
Nielsen and the second author [39, Definition 3.1] for 𝓁 odd. The latter two formulas were surely
known to the authors of [4].

Proposition 6.8. For 𝓁 = 2 and 𝑟 ⩾ 0 the action of 𝑆𝑞2𝑟 on 𝑅𝜇(𝑀) ≅ 𝑅𝑆(𝑀) is given by

𝑆𝑞2𝑟(Σ𝑢𝑣𝑘 ⊗𝑚) =

[𝑟∕2]∑
𝑗=0

(
𝑘 − 𝑗

𝑟 − 2𝑗

)
Σ𝑢𝑣𝑟+𝑘−𝑗 ⊗ 𝑆𝑞2𝑗(𝑚)

+

[(𝑟−1)∕2]∑
𝑗=0

(
𝑘 − 𝑗

𝑟 − 2𝑗 − 1

)
𝜏 ⋅ Σ𝑣𝑟+𝑘−𝑗 ⊗ 𝑆𝑞2𝑗+1(𝑚)

and

𝑆𝑞2𝑟(Σ𝑣𝑘 ⊗𝑚) =

[𝑟∕2]∑
𝑗=0

(
𝑘 − 𝑗

𝑟 − 2𝑗

)
Σ𝑣𝑟+𝑘−𝑗 ⊗ 𝑆𝑞2𝑗(𝑚)

+

[(𝑟−1)∕2]∑
𝑗=0

(
𝑘 − 𝑗 − 1

𝑟 − 2𝑗 − 1

)
Σ(𝑢 + 𝜌)𝑣𝑟+𝑘−𝑗−1 ⊗ 𝑆𝑞2𝑗+1(𝑚) .

Here Σ(𝑢 + 𝜌)𝑣𝑟+𝑘−𝑗−1 = Σ𝑢𝑣𝑟+𝑘−𝑗−1 + 𝜌 ⋅ Σ𝑣𝑟+𝑘−𝑗−1.
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For 𝓁 odd and 𝑟 ⩾ 0 the action of 𝑃𝑟 on 𝑅𝜇(𝑀) is given by

𝑃𝑟(Σ𝑢𝑣𝑘−1 ⊗ 𝑚) =

[𝑟∕𝓁]∑
𝑗=0

(
𝑘 − (𝓁 − 1)𝑗 − 1
𝑟 − 𝓁𝑗

)
Σ𝑢𝑣𝑘+(𝓁−1)(𝑟−𝑗)−1 ⊗ 𝑃𝑗(𝑚)

and

𝑃𝑟(Σ𝑣𝑘 ⊗𝑚) =

[𝑟∕𝓁]∑
𝑗=0

(
𝑘 − (𝓁 − 1)𝑗
𝑟 − 𝓁𝑗

)
Σ𝑣𝑘+(𝓁−1)(𝑟−𝑗) ⊗ 𝑃𝑗(𝑚)

+

[(𝑟−1)∕𝓁]∑
𝑗=0

(
𝑘 − (𝓁 − 1)𝑗 − 1
𝑟 − 𝓁𝑗 − 1

)
Σ𝑢𝑣𝑘+(𝓁−1)(𝑟−𝑗)−1 ⊗ 𝛽𝑃𝑗(𝑚) .

Proof. For 𝓁 = 2, the formulas are obtained from Proposition 5.4 by replacing 𝑆𝑞2𝑘 and 𝑆𝑞2𝑘+1
by Σ𝑐𝑑𝑘−1 = Σ𝑢𝑣𝑘−1 and −Σ𝑑𝑘 = Σ𝑣𝑘, respectively, as in Theorem 5.8. The summations over 0 ⩽
𝑗 ⩽ [𝑎∕2] split into two cases, according to the parity of 𝑗, and the resulting terms can be collected
as shown.
For 𝓁 odd, we first rewrite 𝑅𝑆(𝑀) as

Σ𝐻∗,∗(𝐵𝑆𝓁)loc ⊗𝐻∗,∗ 𝑀 = 𝐻
∗,∗{Σ𝑐𝑖𝑑𝑘 ∣ 𝑖 ∈ {0, 1}, 𝑘 ∈ ℤ} ⊗𝐻∗,∗ 𝑀 ,

replacing 𝑃𝑘 and 𝛽𝑃𝑘 by Σ𝑐𝑑𝑘−1 and −Σ𝑑𝑘, respectively. For 𝑟 ⩾ 0 the action of 𝑃𝑟 on 𝑅𝑆(𝑀) is
then given by

𝑃𝑟(Σ(𝑐𝑑−1)(−𝑑)𝑏 ⊗ 𝑚) =

[𝑟∕𝓁]∑
𝑗=0

(
(𝓁 − 1)(𝑏 − 𝑗) − 1
𝑟 − 𝓁𝑗

)
Σ(𝑐𝑑−1)(−𝑑)𝑟+𝑏−𝑗 ⊗ 𝑃𝑗(𝑚)

and

𝑃𝑟(Σ(−𝑑)𝑏 ⊗ 𝑚) =

[𝑟∕𝓁]∑
𝑗=0

(
(𝓁 − 1)(𝑏 − 𝑗)
𝑟 − 𝓁𝑗

)
Σ(−𝑑)𝑟+𝑏−𝑗 ⊗ 𝑃𝑗(𝑚)

+

[(𝑟−1)∕𝓁]∑
𝑗=0

(
(𝓁 − 1)(𝑏 − 𝑗) − 1
𝑟 − 𝓁𝑗 − 1

)
Σ(𝑐𝑑−1)(−𝑑)𝑟+𝑏−𝑗 ⊗ 𝛽𝑃𝑗(𝑚)

for 𝑏 ∈ ℤ. Substituting 𝑐𝑑−1 = 𝑢𝑣−1, −𝑑 = 𝑣𝓁−1 and 𝑘 = (𝓁 − 1)𝑏 we obtain the claimed formu-
las, in the cases where 𝑘 is a multiple of 𝓁 − 1. The general cases follow, since for 𝑛 so large that
0 < 𝑟 < 𝓁𝑛 the action of 𝑃𝑟 on 𝑅𝜇(𝑀) commutes with multiplication by 𝑣𝓁

𝑛 , and 𝓁𝑛 is relatively
prime to 𝓁 − 1. All mod 𝓁 binomial coefficients in sight are 𝓁𝑛-periodic as functions of 𝑘 ∈ ℤ. □

7 THE EVALUATIONS ARE 𝐄𝐱𝐭-EQUIVALENCES

We can now adapt [4, Lemma 2.2] to the motivic setting. We sidestep their use of 𝔽𝑝 ⊗A

(−) and Tor-equivalences, since 𝐻∗,∗ is not naturally a right A -module, and pass directly to
HomA (−,𝐻

∗,∗) and Ext-equivalences.
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Lemma 7.1. Let𝑀 be a free leftA -module. The Singer constructions 𝑅𝑆(𝑀) and 𝑅𝜇(𝑀) are free as
left 𝐴(𝑛)-modules, for each 𝑛, and flat as leftA -modules.

Proof. Since𝑀 is left A -free, it is left 𝐴(𝑛 − 1)-free by Lemma 4.12. Hence the left 𝐴(𝑛)-module
𝑅𝑆(𝑀) = 𝐵(𝑛) ⊗𝐴(𝑛−1) 𝑀 is a direct sum of (suitably suspended) copies of 𝐵(𝑛), each of which is
left 𝐴(𝑛)-free by Proposition 4.19(b). Therefore 𝑅𝑆(𝑀) is left 𝐴(𝑛)-free for each 𝑛, so that

TorA𝑠 (𝐾, 𝑅𝑆(𝑀)) ≅ colim𝑛
Tor𝐴(𝑛)𝑠 (𝐾, 𝑅𝑆(𝑀)) = 0

for each rightA -module 𝐾 and 𝑠 ⩾ 1. Equivalently, 𝑅𝑆(𝑀) is left A -flat.
Moreover, 𝑅𝜇(𝑀) is a direct sum, as a left 𝐴(𝑛)-module, of copies of 𝑅𝑆(𝑀). Hence it is also left
𝐴(𝑛)-free for each 𝑛, and therefore left A -flat, by the same argument as before. □

Proposition 7.2. Let 𝑀 be a free left A -module. The evaluation homomorphisms induce
isomorphisms

Hom(𝜖, id)∶ HomA (𝑀,𝐻
∗,∗)
≅
⟶ HomA (𝑅𝑆(𝑀),𝐻

∗,∗)

Hom(𝜖, id)∶ HomA (𝑀,𝐻
∗,∗)
≅
⟶ HomA (𝑅𝜇(𝑀),𝐻

∗,∗) .

Proof. It suffices to consider the case𝑀 = A = colim𝑛 𝐴(𝑛 − 1). Then

Hom𝐴(𝑛)(𝑅𝑆(𝐴(𝑛 − 1)),𝐻
∗,∗) = Hom𝐴(𝑛)(𝐵(𝑛) ⊗𝐴(𝑛−1) 𝐴(𝑛 − 1),𝐻

∗,∗)

= Hom𝐴(𝑛)(𝐵(𝑛),𝐻
∗,∗)

≅ Hom𝐻∗,∗(𝐻
∗,∗{𝑃𝑟 ∣ 𝑟 ∈ ℤ with 𝓁𝑛 ∣ 𝑟}, 𝐻∗,∗)

≅
∏
𝓁𝑛∣𝑟

𝐻∗,∗{𝜉𝑟1}

by Proposition 4.19(b), where we identify 𝜉𝑟
1
with the dual of the left 𝐴(𝑛)-module generator 𝑃𝑟 ∈

𝐵(𝑛). The bidegrees of the classes 𝜉𝑟
1
with 𝓁𝑛 ∣ 𝑟 are integer multiples of ((2𝓁 − 2)𝓁𝑛, (𝓁 − 1)𝓁𝑛).

In any fixed bidegree, only the factor generated by 𝜉0
1
can make a non-zero contribution to this

product when 𝑛 is sufficiently large. Hence

HomA (𝑅𝑆(A ), 𝐻
∗,∗) ≅ lim

𝑛
Hom𝐴(𝑛)(𝑅𝑆(𝐴(𝑛 − 1)),𝐻

∗,∗)

≅ lim
𝑛

∏
𝓁𝑛∣𝑟

𝐻∗,∗{𝜉𝑟1} ≅ 𝐻
∗,∗{𝜉01} .

Since 𝜖 maps 𝑃0 ⊗ 1 to 𝑃0(1) = 1, it follows that

𝐻∗,∗ ≅ HomA (A , 𝐻
∗,∗)
Hom(𝜖,1)
⟶ HomA (𝑅𝑆(A ), 𝐻

∗,∗) ≅ 𝐻∗,∗{𝜉01}

is an isomorphism.
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Similarly,

Hom𝐴(𝑛)(𝑅𝜇(𝐴(𝑛 − 1)),𝐻
∗,∗) ≅ 𝐻∗,∗{1, 𝑣𝓁

𝑛
, … , 𝑣𝓁

𝑛(𝓁−2)} ⊗𝐻∗,∗
∏
𝓁𝑛∣𝑟

𝐻∗,∗{𝜉𝑟1} .

The bidegrees of the classes 𝑣𝓁𝑛𝑗 ⊗ 𝜉𝑟
1
with 0 ⩽ 𝑗 ⩽ 𝓁 − 2 and 𝓁𝑛 ∣ 𝑟 are integer multiples of

(2𝓁𝑛,𝓁𝑛). Again, in any fixed bidegree, only the factor generated by 𝑣0 ⊗ 𝜉0
1
can make a non-zero

contribution for 𝑛 sufficiently large. Hence

HomA (𝑅𝜇(A ), 𝐻
∗,∗) ≅ lim

𝑛
Hom𝐴(𝑛)(𝑅𝜇(𝐴(𝑛 − 1)),𝐻

∗,∗)

≅ 𝐻∗,∗{𝑣0 ⊗ 𝜉01} .

Since 𝜖(𝜋□ 1)maps 𝑣0 ⊗ 𝑃0 to 𝑃0(1) = 1, it follows that

𝐻∗,∗ ≅ HomA (A , 𝐻
∗,∗)
Hom(𝜖,1)
⟶ HomA (𝑅𝜇(A ), 𝐻

∗,∗) ≅ 𝐻∗,∗{𝑣0 ⊗ 𝜉01}

is an isomorphism. □

The Ext-groups for modules over A or 𝐴(𝑛) are trigraded. In the case of an A -module𝑀 we
write Ext𝑠,𝑡,𝑢

A
(𝑀,𝐻∗,∗) for the group in tridegree (𝑠, 𝑡, 𝑢), where 𝑠 is the cohomological degree and

(𝑡, 𝑢) is the internal bidegree.

Definition 7.3. An A -module homomorphism 𝜃∶ 𝐿 → 𝑀 will be said to be an Ext-equivalence
if the induced homomorphism

𝜃∗ ∶ Ext∗,∗,∗
A
(𝑀,𝐻∗,∗)⟶ Ext∗,∗,∗

A
(𝐿,𝐻∗,∗)

is an isomorphism.

We can now generalize part of [4, Proposition 1.2, Theorem 1.3].

Theorem 7.4. Let𝑀 be any leftA -module. The (small and large) evaluation homomorphisms

𝜖∶ 𝑅𝑆(𝑀)⟶𝑀 and 𝜖∶ 𝑅𝜇(𝑀)⟶𝑀

are Ext-equivalences.

Proof. Let

⋯⟶𝐹1⟶ 𝐹0⟶𝑀 → 0

be a freeA -module resolution of𝑀. Then

⋯⟶𝑅𝑆(𝐹1)⟶ 𝑅𝑆(𝐹0)⟶ 𝑅𝑆(𝑀) → 0
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is a flat A -module resolution, and a free 𝐴(𝑛)-module resolution for each 𝑛, by Lemma 7.1. By
Proposition 7.2 the evaluation homomorphism induces an isomorphism

Hom(𝜖, 1)∶ HomA (𝐹𝑠, 𝐻
∗,∗)
≅
⟶ HomA (𝑅𝑆(𝐹𝑠), 𝐻

∗,∗)

for each 𝑠 ⩾ 0. Passing to cohomology, it also induces isomorphisms

𝜖′ ∶ Ext𝑠
A
(𝑀,𝐻∗,∗)

≅
⟶ 𝐻𝑠(HomA (𝑅𝑆(𝐹∗),𝐻

∗,∗))

for all 𝑠 ⩾ 0. Let

⋯⟶𝐸1⟶ 𝐸0⟶ 𝑅𝑆(𝑀) → 0

be a free A -module resolution of 𝑅𝑆(𝑀), and choose an A -module chain map 𝜁 ∶ 𝐸∗ → 𝑅𝑆(𝐹∗)
over 𝑅𝑆(𝑀). There is then an induced map 𝜁∗ of lim-lim1 short exact sequences, from

0 → lim1
𝑛
𝐻𝑠−1(Hom𝐴(𝑛)(𝑅𝑆(𝐹∗),𝐻

∗,∗))⟶ 𝐻𝑠(HomA (𝑅𝑆(𝐹∗),𝐻
∗,∗))

⟶ lim
𝑛
𝐻𝑠(Hom𝐴(𝑛)(𝑅𝑆(𝐹∗),𝐻

∗,∗)) → 0

to

0 → lim1
𝑛
Ext𝑠−1
𝐴(𝑛)
(𝑅𝑆(𝑀),𝐻

∗,∗)⟶ Ext𝑠
A
(𝑅𝑆(𝑀),𝐻

∗,∗)

⟶ lim
𝑛
Ext𝑠
𝐴(𝑛)
(𝑅𝑆(𝑀),𝐻

∗,∗) → 0 ,

cf. [44, Propositions 11.9 and 13.4].When viewed as an𝐴(𝑛)-module chainmap, 𝜁 becomes a chain
homotopy equivalence, hence induces isomorphisms

𝜁∗ ∶ 𝐻𝑠(Hom𝐴(𝑛)(𝑅𝑆(𝐹∗),𝐻
∗,∗))

≅
⟶ Ext𝑠

𝐴(𝑛)
(𝑅𝑆(𝑀),𝐻

∗,∗)

for all 𝑛 and 𝑠. Applying lim𝑛 and lim1𝑛, we deduce that

𝜁∗ ∶ 𝐻𝑠(HomA (𝑅𝑆(𝐹∗),𝐻
∗,∗))

≅
⟶ Ext𝑠

A
(𝑅𝑆(𝑀),𝐻

∗,∗)

is an isomorphism. Hence the composite 𝜖∗ = 𝜁∗𝜖′ is also an isomorphism, as claimed.
The proof for 𝑅𝜇 in place of 𝑅𝑆 is identical. □

Corollary 7.5. The residue homomorphisms

res∶ Σ𝐻∗,∗(𝐵𝑆𝓁)loc ⟶ 𝐻
∗,∗ and res∶ Σ𝐻∗,∗(𝐵𝜇𝓁)loc ⟶ 𝐻

∗,∗

are Ext-equivalences.

Proof. In view of Theorem 5.8 and Corollary 6.6, this is the case𝑀 = 𝐻∗,∗ of Theorem 7.4. □
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8 GENERALIZED EILENBERG–MACLANE SPECTRA

Since 𝐻 is cellular, the monomial basis {𝜏𝐸𝜉𝑅}(𝐸,𝑅) for A∗,∗ as a right (or left) 𝐻∗,∗-module
determines an equivalence 𝐻 ∧𝐻 ≃

⋁
(𝐸,𝑅) Σ

‖𝐸,𝑅‖𝐻 of right (or left) 𝐻-module spectra. Here
(𝐸, 𝑅) ranges over the sequences in Lemma 2.1, and ‖𝐸, 𝑅‖ = ‖𝜏𝐸𝜉𝑅‖. It follows that the natural
homomorphism

A∗,∗ ⊗𝐻∗,∗ 𝐻∗,∗(𝑋)
≅
⟶ 𝜋∗,∗((𝐻 ∧ 𝐻) ∧𝐻 (𝐻 ∧ 𝑋)) = 𝜋∗,∗(𝐻 ∧ 𝐻 ∧ 𝑋)

is an isomorphism for any motivic spectrum 𝑋, and that 1 ∧ 𝜂 ∧ 1∶ 𝐻 ∧ 𝑋 = 𝐻 ∧ 𝕊 ∧ 𝑋 → 𝐻 ∧
𝐻 ∧ 𝑋 induces a natural left A∗,∗-coaction on𝐻∗,∗(𝑋).
If𝑀 ≃ 𝐻 ∧ 𝑋 for some motivic spectrum 𝑋, then the fork

is split by 𝜇∶ 𝜋∗,∗(𝐻 ∧𝑀) ≅ 𝜋∗,∗(𝐻 ∧ 𝐻 ∧ 𝑋) → 𝜋∗,∗(𝐻 ∧ 𝑋) ≅ 𝜋∗,∗𝑀 and 𝜇∶ 𝜋∗,∗(𝐻 ∧ 𝐻 ∧
𝑀) → 𝜋∗,∗(𝐻 ∧𝑀), hence exhibits 𝜋∗,∗𝑀 as a split equalizer [40, §VI.6]. Under the identi-
fications 𝜋∗,∗(𝐻 ∧𝑀) = 𝐻∗,∗(𝑀) and 𝜋∗,∗(𝐻 ∧ 𝐻 ∧𝑀) ≅ A∗,∗ ⊗𝐻∗,∗ 𝐻∗,∗(𝑀), this provides an
isomorphism

𝜋∗,∗𝑀 ≅ 𝐻∗,∗□A∗,∗
𝐻∗,∗(𝑀) ≅ HomA∗,∗

(𝐻∗,∗, 𝐻∗,∗(𝑀)) (8.1)

of 𝜋∗,∗𝑀 with the left A∗,∗-comodule primitives in 𝐻∗,∗(𝑀).

Definition 8.1. By amotivic GEM (short for motivic generalized Eilenberg–MacLane spectrum)
we shall mean a left𝐻-module spectrum

𝑀 ≃
⋁
𝛼∈𝐽

Σ𝑝𝛼,𝑞𝛼𝐻

that is equivalent to a wedge sum of bigraded suspensions of 𝐻.

These are precisely the𝐻-cellularmodule spectra𝑀, in the sense of [14, §7.9], with the property
that 𝜋∗,∗(𝑀) is free as a left 𝐻∗,∗-module. This generalizes the split Tate objects of [66, §2.4], in
that we allow arbitrary bigraded suspensions.
If𝑀 is a motivic GEM, we can write𝑀 ≃ 𝐻 ∧ 𝑋 with 𝑋 =

⋁
𝛼∈𝐽 𝑆
𝑝𝛼,𝑞𝛼 . Then

𝐻∗,∗(𝑋) ≅
⨁
𝛼∈𝐽

Σ𝑝𝛼,𝑞𝛼𝐻∗,∗

as left A∗,∗-comodules, and the natural homomorphism

𝜋∗,∗𝐹(𝑋,𝐻) = 𝜋∗,∗𝐹𝐻(𝐻 ∧ 𝑋,𝐻)
≅
⟶ Hom𝐻∗,∗(𝐻∗,∗(𝑋),𝐻∗,∗) = 𝐻∗,∗(𝑋)

∨

is an isomorphism, so that

𝐻∗,∗(𝑋) ≅
∏
𝛼∈𝐽

Σ𝑝𝛼,𝑞𝛼𝐻∗,∗

as left A -modules.
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Definition 8.2. With these notations we say that𝐻 ∧ 𝑋 (or𝐻∗,∗(𝑋), or𝐻∗,∗(𝑋)) has bifinite type
if for each bidegree (𝑝, 𝑞) there are only finitely many 𝛼 ∈ 𝐽 for which

𝑝𝛼 ⩽ 𝑝 or 𝑝𝛼 − 𝑞𝛼 ⩽ 𝑝 − 𝑞 .

This condition is more restrictive than the notions of motivically finite type from [15,
Definitions 2.11 and 2.12] and of finite type from [29, §2]. It ensures that both inclusions⨁

𝛼∈𝐽

Σ𝑝𝛼,𝑞𝛼𝐻∗,∗
≅
⟶

∏
𝛼∈𝐽

Σ𝑝𝛼,𝑞𝛼𝐻∗,∗

⨁
𝛼∈𝐽

Σ𝑝𝛼,𝑞𝛼𝐻∗,∗
≅
⟶

∏
𝛼∈𝐽

Σ𝑝𝛼,𝑞𝛼𝐻∗,∗

are isomorphisms, so that the canonical homomorphism

𝐻∗,∗(𝑋)
≅
⟶ Hom𝐻∗,∗(𝐻

∗,∗(𝑋),𝐻∗,∗) = 𝐻∗,∗(𝑋)∨

is an isomorphism. Moreover, if 𝐻 ∧ 𝑋 has bifinite type, then so does 𝐻 ∧𝐻 ∧ 𝑋 ≃⋁
(𝐸,𝑅) Σ

‖𝐸,𝑅‖𝐻 ∧ 𝑋. Hence 𝑓 ↦ 𝑓∨ defines an isomorphism
HomA∗,∗

(𝐻∗,∗, 𝐻∗,∗(𝑋))
≅
⟶ HomA (𝐻

∗,∗(𝑋),𝐻∗,∗) (8.2)

from the A∗,∗-comodule homomorphisms 𝐻∗,∗ → 𝐻∗,∗(𝑋) to the A -module homomorphisms
𝐻∗,∗(𝑋) → 𝐻∗,∗.

9 A DELAYED LIMIT ADAMS SPECTRAL SEQUENCE

Let

⋯→ 𝑌(𝑚 + 1)
𝑓𝑚+1
⟶ 𝑌(𝑚)

𝑓𝑚
⟶ 𝑌(𝑚 − 1) → ⋯ (9.1)

be any tower of motivic spectra. Its homotopy limit 𝑌 = holim𝑚 𝑌(𝑚) sits in a homotopy cofiber
sequence

Σ−1
∏
𝑚

𝑌(𝑚)
𝑖
⟶ 𝑌

𝑗
⟶

∏
𝑚

𝑌(𝑚)
𝑘
⟶

∏
𝑚

𝑌(𝑚) ,

cf. [49, Lemma 2], where 𝑘 is the difference between the identity map and the product of the
maps 𝑓𝑚. Let
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be the canonical mod 𝓁 Adams resolution of the motivic sphere spectrum 𝕊 = 𝕊0, inductively
defined by the homotopy cofiber sequences

𝕊𝑠+1
𝛼
⟶ 𝕊𝑠

𝛽
⟶ 𝐻 ∧ 𝕊𝑠

𝛾
⟶ Σ𝕊𝑠+1

where 𝛽 = 𝜂 ∧ 1; cf. [2, p. 318]. (Dashed arrows indicatemorphisms of degree−1.) Form the smash
products

𝑌𝑠(𝑚) = 𝕊𝑠 ∧ 𝑌(𝑚)

𝐾𝑠(𝑚) = 𝐻 ∧ 𝕊𝑠 ∧ 𝑌(𝑚)

so as to obtain a tower of canonical Adams resolutions

(9.2)

Let

𝑌𝑠 = holim𝑚
𝑌𝑠(𝑚)

𝐾𝑠 = holim𝑚
𝐾𝑠(𝑚)

be the homotopy limits of the terms in these Adams resolutions. These fit in a commutative
diagram

(9.3)

with horizontal homotopy cofiber sequences extending to

Σ−1
∏
𝑚

𝑌𝑠(𝑚)
𝑖
⟶ 𝑌𝑠

𝑗
⟶

∏
𝑚

𝑌𝑠(𝑚)
𝑘
⟶

∏
𝑚

𝑌𝑠(𝑚)

Σ−1
∏
𝑚

𝐾𝑠(𝑚)
𝑖
⟶ 𝐾𝑠

𝑗
⟶

∏
𝑚

𝐾𝑠(𝑚)
𝑘
⟶

∏
𝑚

𝐾𝑠(𝑚) .
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The subdiagram

(9.4)

is not generally an Adams resolution. Nonetheless, one may consider its associated homotopy
spectral sequence, with 𝐸1-term

lim𝐸𝑠,∗,∗
1
= 𝜋∗,∗(𝐾𝑠)

and abutment 𝜋∗,∗(𝑌0) = 𝜋∗,∗(𝑌). Under finiteness hypotheses which ensure that all limits in
sight are exact, the 𝐸2-term of this limit Adams spectral sequence was described in [13, Proposi-
tion 7.1] and [39, Proposition 2.2]. In our motivic context, these finiteness hypotheses are only
realistic if 𝐻∗,∗ is finite in each bidegree, which excludes some very interesting base schemes 𝑆,
such as Spec of a global field. (For example, Euclid knew that 𝐻1,1(Specℚ) = ℚ×∕(ℚ×)𝓁 ≅
ℤ∕(2,𝓁) ⊕

⨁
𝑝 prime ℤ∕𝓁 is infinitely generated.)

To avoid this restrictive hypothesis, we shall instead show that there is a modified Adams spec-
tral sequence, in the style of [46, Lemma 5.3.1] and [10], with the same abutment as before, whose
𝐸2-term is recognizable under more flexible finiteness conditions. This kind of modification is
referred to in [11, §12.6] as a delayed Adams spectral sequence, to distinguish it from another kind
(the hastened one) of modified Adams spectral sequence in current usage; cf. [6, §3].
To construct the delayed limit Adams spectral sequence we may assume that the maps 𝑖 and 𝛼

in (9.3) are all cofibrations, let𝑊0 = 𝑌0, and form the pushouts

𝑊𝑠 = 𝑌𝑠 ∪ Σ
−1

∏
𝑚

𝑌𝑠−1(𝑚)

along Σ−1
∏
𝑚 𝑌𝑠(𝑚), for all 𝑠 ⩾ 1. There are then homotopy cofiber sequences

𝑊1⟶𝑊0
𝛽𝑗
⟶ 𝐿0 =

∏
𝑚

𝐾0(𝑚)⟶ Σ𝑊1

and

𝑊𝑠+1 ⟶𝑊𝑠
𝛽𝑗∪𝛽
⟶ 𝐿𝑠 =

∏
𝑚

𝐾𝑠(𝑚) ∨ Σ
−1

∏
𝑚

𝐾𝑠−1(𝑚)⟶ Σ𝑊𝑠+1

for all 𝑠 ⩾ 1, defining the spectra 𝐿𝑠. This produces a delayed resolution

(9.5)

of𝑊0 = 𝑌0 ≃ 𝑌. The inclusions 𝑌𝑠 ⊂ 𝑊𝑠 induce a map of diagrams from (9.4) to (9.5).
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Definition 9.1. The delayed limit Adams spectral sequence of the tower (9.1) is the homotopy
spectral sequence associated to the resolution (9.5), with 𝐸1-term

del𝐸𝑠,∗,∗
1
= 𝜋∗,∗(𝐿𝑠)

and 𝑑1-differential induced by the composite

𝛽𝛾∶ 𝐿𝑠 ⟶ Σ𝑊𝑠+1 ⟶ Σ𝐿𝑠+1 .

We now make the assumption that each 𝐻 ∧ 𝑌(𝑚) is a motivic GEM of bifinite type. For
example, this is the case if each𝑌(𝑚) is cellular with𝐻∗,∗(𝑌(𝑚)) free of bifinite type as a left𝐻∗,∗-
module. It follows by induction on 𝑠 that each 𝐾𝑠(𝑚) is a motivic GEM of bifinite type. Hence the
isomorphisms (8.1) and (8.2) identify the (𝐸1, 𝑑1)-term

⋯⟵𝜋∗,∗𝐾2(𝑚)⟵ 𝜋∗,∗𝐾1(𝑚)⟵ 𝜋∗,∗𝐾0(𝑚) ← 0

of the Adams spectral sequence for 𝑌(𝑚) with HomA (−,𝐻
∗,∗) applied to the free A -module

resolution

⋯⟶𝐻∗,∗(𝐾2(𝑚))
𝜕
⟶ 𝐻∗,∗(𝐾1(𝑚))

𝜕
⟶ 𝐻∗,∗(𝐾0(𝑚)) → 0

of𝐻∗,∗(𝑌(𝑚)). In view of (9.2), these resolutions are compatible for varying𝑚. Passing to colimits
over𝑚, we obtain a flat A -module resolution

⋯⟶𝐻∗,∗𝑐 (𝐾2)
𝜕
⟶ 𝐻∗,∗𝑐 (𝐾1)

𝜕
⟶ 𝐻∗,∗𝑐 (𝐾0) → 0

of𝐻∗,∗𝑐 (𝑌), where we write

𝐻∗,∗𝑐 (𝑌) = colim𝑚
𝐻∗,∗(𝑌(𝑚))

𝐻∗,∗𝑐 (𝐾𝑠) = colim𝑚
𝐻∗,∗(𝐾𝑠(𝑚))

for the ‘continuous’ cohomology groups of the towers {𝑌(𝑚)}𝑚 and {𝐾𝑠(𝑚)}𝑚, respectively. The
A -module 𝐻∗,∗𝑐 (𝐾𝑠)might not be free, but remains flat, since such modules are preserved under
filtered colimits. These colimits can also be written as cokernels, as in the following diagramwith
exact rows and columns.
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Omitting the bottom row and the right-hand column, we have a bicomplex of free A -modules,
whose total complex (𝐹∗, 𝜕) is a free resolution of𝐻

∗,∗
𝑐 (𝑌). Here

𝐹0 =
⨁
𝑚

𝐻∗,∗(𝐾0(𝑚))

and

𝐹𝑠 =
⨁
𝑚

𝐻∗,∗(𝐾𝑠(𝑚)) ⊕
⨁
𝑚

𝐻∗,∗(Σ−1𝐾𝑠−1(𝑚))

for 𝑠 ⩾ 1. Hence we can recognize

del𝐸0,∗,∗
1
= 𝜋∗,∗𝐿0 =

∏
𝑚

𝜋∗,∗𝐾0(𝑚) ≅
∏
𝑚

HomA (𝐻
∗,∗(𝐾0(𝑚)),𝐻

∗,∗)

≅ HomA (
⨁
𝑚

𝐻∗,∗(𝐾0(𝑚)),𝐻
∗,∗) = HomA (𝐹0,𝐻

∗,∗)

and
del𝐸𝑠,∗,∗
1
= 𝜋∗,∗𝐿𝑠 ≅

∏
𝑚

𝜋∗,∗𝐾𝑠(𝑚) ⊕
∏
𝑚

𝜋∗,∗Σ
−1𝐾𝑠−1(𝑚)

≅
∏
𝑚

HomA (𝐻
∗,∗(𝐾𝑠(𝑚)),𝐻

∗,∗) ⊕
∏
𝑚

HomA (𝐻
∗,∗(Σ−1𝐾𝑠−1(𝑚)),𝐻

∗,∗)

≅ HomA (
⨁
𝑚

𝐻∗,∗(𝐾𝑠(𝑚)) ⊕
⨁
𝑚

𝐻∗,∗(Σ−1𝐾𝑠−1(𝑚)),𝐻
∗,∗)

= HomA (𝐹𝑠, 𝐻
∗,∗)

for 𝑠 ⩾ 1. Moreover, 𝑑1 ∶ del𝐸
𝑠,∗,∗
1
→ del𝐸𝑠+1,∗,∗

1
is induced by the boundary operator 𝜕∶ 𝐹𝑠+1 → 𝐹𝑠

in the total complex, as can be verified by tracing through the definitions. Since (𝐹∗, 𝜕) is a free
A -module resolution of𝐻∗,∗𝑐 (𝑌), we obtain the desired isomorphism

del𝐸𝑠,∗,∗
2
≅ Ext𝑠,∗,∗

A
(𝐻∗,∗𝑐 (𝑌),𝐻

∗,∗)

for each 𝑠 ⩾ 0.

Proposition 9.2. Let⋯→ 𝑌(𝑚 + 1) → 𝑌(𝑚) →⋯ be a tower of motivic spectra, with each 𝐻 ∧
𝑌(𝑚) amotivic GEMof bifinite type. Let𝑌 = holim𝑚 𝑌(𝑚) and𝐻

∗,∗
𝑐 (𝑌) = colim𝑚 𝐻

∗,∗(𝑌(𝑚)). The
delayed limit Adams spectral sequence

del𝐸𝑠,∗,∗
1
⟹ 𝜋∗,∗(𝑌)

has 𝐸2-term
del𝐸𝑠,∗,∗
2
= Ext𝑠,∗,∗

A
(𝐻∗,∗𝑐 (𝑌),𝐻

∗,∗) ,

with Ext calculated in the category ofA -modules.

Proof. This summarizes the discussion so far in this section. □
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Let 𝑌∞(𝑚) = holim𝑠 𝑌𝑠(𝑚). The Adams spectral sequence for 𝑌(𝑚) is conditionally conver-
gent [9, Definition 5.10] to 𝜋∗,∗𝑌(𝑚) if and only if 𝜋∗,∗𝑌∞(𝑚) = 0. This fails in many interesting
examples, such as when 𝜋∗,∗𝑌(𝑚) contains torsion of order prime to 𝓁, but often becomes true
after (𝓁, 𝜂)-adic completion in the following sense.

Definition 9.3. Let 𝓁 ∈ 𝜋0,0(𝕊) be 𝓁 times the class of the identitymap𝕊 → 𝕊, and let 𝜂 ∈ 𝜋1,1(𝕊)
be the class of the Hopf fibration 𝑆3,2 ≃ 𝔸2 − {0} → ℙ1 ≃ 𝑆2,1. For any motivic spectrum 𝑋 let

𝑋∧𝓁 = holim𝑛
𝑋∕𝓁𝑛

𝑋∧𝓁,𝜂 = holim𝑛
(𝑋∧𝓁 )∕𝜂

𝑛 ≃ holim
𝑛
𝑋∕(𝓁𝑛, 𝜂𝑛)

be the 𝓁- and (𝓁, 𝜂)-adic completions of 𝑋, respectively, as in [29, p. 574] and [43, Definition 3.2.9].
There are canonical completion maps 𝑋 → 𝑋∧𝓁 → 𝑋

∧
𝓁,𝜂.

We note that 𝑋∧𝓁 ≃ 𝑋
∧
𝓁,𝜂 when 𝜂 acts nilpotently, for example, for 𝓁 odd.

Lemma 9.4. For each 𝐻-module spectrum 𝑀 the completion map 𝑀 → 𝑀∧𝓁,𝜂 is a 𝜋∗,∗-
isomorphism.

Proof. Multiplication by 𝓁 and by 𝜂 act trivially on𝐻∗,∗, hence also on 𝜋∗,∗𝑀. The tower of short
exact sequences

and the lim-lim1 sequence imply that𝑀 → 𝑀∧𝓁 is a𝜋∗,∗-isomorphism. Likewise, the tower of short
exact sequences

and the lim-lim1 sequence imply that𝑀∧𝓁 → 𝑀
∧
𝓁,𝜂 is a 𝜋∗,∗-isomorphism. □
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Applying (𝓁, 𝜂)-adic completion to the tower of Adams resolutions (9.2) yields another diagram
of the same shape. At its lower edge, the tower of spectra

⋯→ 𝑌(𝑚 + 1)∧𝓁,𝜂 ⟶ 𝑌(𝑚)
∧
𝓁,𝜂 ⟶ 𝑌(𝑚 − 1)

∧
𝓁,𝜂 → ⋯

has homotopy limit 𝑌∧𝓁,𝜂. For each𝑚 the Adams resolution of 𝑌(𝑚)maps to the diagram

of homotopy cofiber sequences, and by Lemma 9.4 the induced map of homotopy spectral
sequences is an isomorphism from the 𝐸1-term and onward. The new spectral sequence has abut-
ment 𝜋∗,∗(𝑌(𝑚)∧𝓁,𝜂), and is conditionally convergent to this target if and only if 𝜋∗,∗(𝑌∞(𝑚)

∧
𝓁,𝜂) =

0.
We now make the additional assumption, for each 𝑚, that the Adams spectral sequence

for 𝑌(𝑚) converges conditionally to 𝜋∗,∗(𝑌(𝑚)∧𝓁,𝜂). The following theorem was proved by Hu–
Kriz–Ormsby [29, Theorem 1] in the case of a cellular spectrum 𝑋 of finite type over Spec 𝑘 for 𝑘
a field of characteristic 0. It was generalized to bounded below spectra𝑋 over 𝑆, in our generality,
by Mantovani [43].
The homotopy 𝑡-structure on 𝑆𝐻(𝑆) is defined as in [25, §2.1], and a motivic spectrum is

bounded below if it lies in 𝑆𝐻(𝑆)⩾−𝑚 for some finite 𝑚. (When 𝑆 = Spec 𝑘 for a field 𝑘, Morel’s
stable 𝔸1-connectivity theorem [51, Theorem 3] shows that 𝑋 lies in 𝑆𝐻(𝑆)⩾−𝑚 if and only if the
homotopy sheaves 𝜋

𝑡,𝑢
(𝑋) vanish whenever 𝑡 − 𝑢 < −𝑚.)

Theorem 9.5. Suppose that 𝑋 in 𝑆𝐻(𝑆) is bounded below in the homotopy 𝑡-structure. Then the
mod 𝓁 Adams spectral sequence for 𝑋 is conditionally convergent to 𝜋∗,∗(𝑋∧𝓁,𝜂).

Proof. As reviewed in [43, §5], this is an application of [43, Theorems 1.0.2 and 1.0.4] in the case
𝐸 = 𝐻, which satisfies Mantovani’s hypotheses because of [25, Theorems 3.8 and 7.12] and [61,
Theorem 10.3]. □

Proposition 9.6. Let 𝑌 = holim𝑚 𝑌(𝑚) be the homotopy limit of a tower of motivic spectra. Sup-
pose, for each 𝑚, that the mod 𝓁 Adams spectral sequence for 𝑌(𝑚) converges conditionally to
𝜋∗,∗(𝑌(𝑚)

∧
𝓁,𝜂). Then the limit and delayed limit Adams spectral sequences

lim𝐸𝑠,∗,∗
1
= 𝜋∗,∗(𝐾𝑠)⟹ 𝜋∗,∗(𝑌

∧
𝓁,𝜂)

del𝐸𝑠,∗,∗
1
= 𝜋∗,∗(𝐿𝑠)⟹ 𝜋∗,∗(𝑌

∧
𝓁,𝜂)

are both conditionally convergent to the bigraded homotopy groups of the (𝓁, 𝜂)-adic completion of𝑌.

Proof. Let 𝑌∞ = holim𝑠 𝑌𝑠 and𝑊∞ = holim𝑠 𝑊𝑠. The inclusions

𝑊𝑠+1 ⊂ 𝑌𝑠 ⊂ 𝑊𝑠 ⊂ 𝑌𝑠−1
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imply that 𝑌∞ ≃ 𝑊∞. Granting that 𝜋∗,∗(𝑌∞(𝑚)∧𝓁,𝜂) = 0 for all 𝑚, the short exact lim-lim
1

sequence shows that 𝜋∗,∗((𝑌∞)∧𝓁,𝜂) ≅ 𝜋∗,∗((𝑊∞)
∧
𝓁,𝜂) = 0, so that both the limit Adams spec-

tral sequence and the delayed limit Adams spectral sequence are conditionally convergent to
𝜋∗,∗(𝑌

∧
𝓁,𝜂). □

Let g ∶ 𝑋 → 𝑌 = holim𝑚 𝑌(𝑚) be a map of motivic spectra. The resulting compatible maps
from the canonical Adams resolution of 𝑋 to the canonical Adams resolutions of the 𝑌(𝑚)
induce a map from the former to the diagram (9.4), which can be naturally continued to map
to the delayed limit Adams resolution (9.5). Applying (𝓁, 𝜂)-adic completion, and passing to the
associated homotopy spectral sequences, we obtain morphisms of spectral sequences

g ∶ 𝐸∗,∗,∗
1
(𝑋)⟶ lim𝐸∗,∗,∗

1
(𝑌)⟶ del𝐸∗,∗,∗

1
(𝑌)

with abutment

g ∶ 𝜋∗,∗(𝑋
∧
𝓁,𝜂)⟶ 𝜋∗,∗(𝑌

∧
𝓁,𝜂)
=
⟶ 𝜋∗,∗(𝑌

∧
𝓁,𝜂) .

We can now appeal to a special case of Boardman’s comparison theorem [9, Theorem 7.2] for
conditionally convergent spectral sequences. This version of the comparison theorem is partic-
ularly convenient, in view of the failure of strong convergence for the motivic Adams spectral
sequence for the sphere spectrum over a number field, demonstrated by Kylling–Wilson in [35,
Corollary 7.8].

Proposition 9.7. Let g ∶ 𝑋 → 𝑌 = holim𝑚 𝑌(𝑚), with 𝐻 ∧ 𝑋 and each 𝐻 ∧ 𝑌(𝑚) a motivic
GEM of bifinite type. Suppose that the mod 𝓁 Adams spectral sequences for 𝑋 and the 𝑌(𝑚)
are conditionally convergent to 𝜋∗,∗(𝑋∧𝓁,𝜂) and 𝜋∗,∗(𝑌(𝑚)

∧
𝓁,𝜂), respectively. If the A -module

homomorphism

g∗ ∶ 𝐻∗,∗𝑐 (𝑌)⟶ 𝐻
∗,∗(𝑋)

is an Ext-isomorphism, so that

g ∶ 𝐸𝑠,∗,∗
2
(𝑋) = Ext𝑠,∗,∗

A
(𝐻∗,∗(𝑋),𝐻∗,∗)

≅
⟶ del𝐸𝑠,∗,∗

2
(𝑌) = Ext𝑠,∗,∗

A
(𝐻∗,∗𝑐 (𝑌),𝐻

∗,∗)

is an isomorphism, then g induces an isomorphism

g ∶ 𝜋∗,∗(𝑋
∧
𝓁,𝜂)
≅
⟶ 𝜋∗,∗(𝑌

∧
𝓁,𝜂) .

Proof. The identification of the (𝐸1- and) 𝐸2-term for 𝑋 follows as usual from (8.1) and (8.2), and
the delayed limit 𝐸2-term for 𝑌 is given by Proposition 9.2. We now apply [9, Theorem 7.2(i)].
If g induces an isomorphism of 𝐸2-terms, then it certainly also induces isomorphisms of 𝐸∞- and
𝑅𝐸∞-terms. Hence g induces the stated isomorphism of (filtered) abutments. □
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10 A TOWER OF THOM SPECTRA

Our next aim is to construct a diagram

of motivic Thom spectra, with 𝐻∗,∗𝑐 (𝐿∞−∞) realizing 𝐻
∗,∗(𝐵𝜇𝓁)loc. The left-hand square will com-

mute up to a generalized sign, and replacing 𝑖 by 𝑖4 will give a strictly commuting diagram in the
stable homotopy category 𝑆𝐻(𝑆).
For an algebraic vector bundle 𝛼 ↓ 𝑋 over a smooth scheme 𝑋 (over our base scheme 𝑆) we let
𝐸(𝛼) denote its total space, let 𝐸0(𝛼) = 𝐸(𝛼) ⧵ 𝑧(𝑋) be the complement of its zero section, and let
the Thom space 𝑇ℎ(𝛼) = 𝐸(𝛼)∕𝐸0(𝛼) be the motivic quotient space, formed as in [64, §4].
For 𝑛 ⩾ 1 let 𝜇𝓁 act diagonally on 𝔸𝑛, let 𝔸𝑛0 = 𝔸

𝑛 ⧵ {0}, and let 𝐿2𝑛−1 = 𝔸𝑛
0
∕𝜇𝓁 denote the 𝑛th

algebraic lens space,which is smooth and quasi-projective.Write [𝑥1, … , 𝑥𝑛] in𝐿2𝑛−1 for the image
of (𝑥1, … , 𝑥𝑛) in 𝔸𝑛0 . The inclusion 𝜇𝓁 ⊂ 𝔾𝑚 induces a projection 𝐿

2𝑛−1 → ℙ𝑛−1. Let 𝛾𝑛 = 𝛾1𝑛 ↓
𝐿2𝑛−1 be the pullback of the tautological line bundle O(−1) over ℙ𝑛−1, with total space given by
the balanced product

𝐸(𝛾𝑛) = 𝔸
𝑛
0 ×𝜇𝓁 𝔸

1

and bundle projection mapping [𝑥1, … , 𝑥𝑛; 𝑦] to [𝑥1, … , 𝑥𝑛]. Let 𝜖𝑛 = 𝜖𝑛𝑛 ↓ 𝐿
2𝑛−1 be the trivial

rank 𝑛 bundle over 𝐿2𝑛−1, with total space 𝐸(𝜖𝑛) = 𝐿2𝑛−1 × 𝔸𝑛 and bundle projection to the first
factor. There is a canonical embedding 𝛾𝑛 → 𝜖𝑛, given in coordinates by

[𝑥1, … , 𝑥𝑛; 𝑦]⟼ ([𝑥1, … , 𝑥𝑛], 𝑥1𝑦, … , 𝑥𝑛𝑦) .

Let 𝜁𝑛 = 𝜁𝑛−1𝑛 ↓ 𝐿
2𝑛−1 be its cokernel, so that there is a short exact sequence

0 → 𝛾𝑛 ⟶ 𝜖𝑛 ⟶ 𝜁𝑛 → 0

of algebraic vector bundles over 𝐿2𝑛−1. Let 𝛾∗𝑛, 𝜖
∗
𝑛 and 𝜁

∗
𝑛 denote the dual bundles, fitting in a short

exact sequence

0 → 𝜁∗𝑛
𝑗
⟶ 𝜖∗𝑛 ⟶ 𝛾

∗
𝑛 → 0 . (10.1)

Here the total space of 𝛾∗𝑛 is given by the orbit space 𝐸(𝛾∗𝑛) = (𝔸
𝑛
0
× 𝔸1)∕𝜇𝓁 , where 𝜇𝓁

acts diagonally.
More generally, the total space of the 𝑘-fold direct sum 𝑘𝛾∗𝑛 = 𝛾

∗
𝑛 ⊕⋯⊕ 𝛾∗𝑛, where 𝑘 ⩾ 0, is

𝐸(𝑘𝛾∗𝑛) = (𝔸
𝑛
0 × 𝔸
𝑘)∕𝜇𝓁 ,
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which comes with a canonical map to 𝔸𝑛+𝑘
0
∕𝜇𝓁 = 𝐿

2𝑛+2𝑘−1. By [53, Lemma 3.1.6], the inclusion

𝑇ℎ(𝑘𝛾∗𝑛) =
𝐸(𝑘𝛾∗𝑛)

𝐸0(𝑘𝛾
∗
𝑛)
=
(𝔸𝑛
0
× 𝔸𝑘)∕𝜇𝓁

(𝔸𝑛
0
× 𝔸𝑘
0
)∕𝜇𝓁
⟶
(𝔸𝑛 × 𝔸𝑘)0∕𝜇𝓁

(𝔸𝑛 × 𝔸𝑘
0
)∕𝜇𝓁

is an equivalence of Nisnevich sheaves, and by [53, Example 3.2.2] the projection (𝔸𝑛 × 𝔸𝑘
0
)∕𝜇𝓁 →

𝔸𝑘
0
∕𝜇𝓁 = 𝐿

2𝑘−1 is an 𝔸1-homotopy equivalence, so there is a homotopy cofiber sequence

𝐿2𝑘−1
𝑖𝑛

⟶ 𝐿2𝑛+2𝑘−1 ⟶ 𝑇ℎ(𝑘𝛾∗𝑛) (10.2)

ofmotivic spaces. Following James [32, p. 117], Atiyah [5, Proposition 4.3] andKambe–Matsunaga–
Toda [34, Theorem 1] we may therefore write 𝑇ℎ(𝑘𝛾∗𝑛) = 𝐿

2𝑛+2𝑘−1
2𝑘

for the Thom space of 𝑘𝛾∗𝑛 over
𝐿2𝑛−1, and refer to it as a motivic stunted lens space.
Following Mahowald and Adams [3, p. 4], we are, however, more interested in the cases where
𝑘 = −𝑚 is negative, corresponding to Thom spectra 𝑇ℎ(−𝑚𝛾∗𝑛) = 𝐿

2𝑛−2𝑚−1
−2𝑚

of virtual bundles
−𝑚𝛾∗𝑛. In view of (10.1),−𝑚𝛾∗𝑛 ≡ 𝑚𝜁

∗
𝑛 − 𝑚𝜖

∗
𝑛 as virtual bundles over 𝐿

2𝑛−1, where𝑚𝜖∗𝑛 is trivial of
rank𝑚𝑛, which leads to the following definition.

Definition 10.1. For𝑚 ⩾ 0 let

𝐿2𝑛−2𝑚−1−2𝑚 = 𝑇ℎ(−𝑚𝛾∗𝑛) = Σ
−2𝑚𝑛,−𝑚𝑛𝑇ℎ(𝑚𝜁∗𝑛)

denote a (finite, motivic) stunted lens spectrum.

Consider the inclusion 𝑖 ∶ 𝐿2𝑛−1 → 𝐿2𝑛+1. There are natural isomorphisms 𝑖∗(𝛾𝑛+1) ≅ 𝛾𝑛,
𝑖∗(𝜖𝑛+1) ≅ 𝜖𝑛 ⊕ 𝜖

1
𝑛 and 𝑖

∗(𝜁𝑛+1) ≅ 𝜁𝑛 ⊕ 𝜖
1
𝑛, where 𝜖

1
𝑛 is trivial of rank 1. Dually, 𝑖∗(𝛾∗

𝑛+1
) ≅ 𝛾∗𝑛,

𝑖∗(𝜖∗
𝑛+1
) ≅ 𝜖∗𝑛 ⊕ (𝜖

1
𝑛)
∗ and 𝑖∗(𝜁∗

𝑛+1
) ≅ 𝜁∗𝑛 ⊕ (𝜖

1
𝑛)
∗.

Consider also the inclusion 𝑗 ∶ 𝜁∗𝑛 → 𝜖
∗
𝑛 of bundles over 𝐿

2𝑛−1.

Definition 10.2. Let

𝑖 ∶ 𝐿2𝑛−2𝑚−1−2𝑚 = 𝑇ℎ(−𝑚𝛾∗𝑛)⟶ 𝑇ℎ(−𝑚𝛾
∗
𝑛+1) = 𝐿

2𝑛−2𝑚+1
−2𝑚

and

𝑗 ∶ 𝐿2𝑛−2𝑚−3−2𝑚−2 = 𝑇ℎ(−(𝑚 + 1)𝛾
∗
𝑛)⟶ 𝑇ℎ(−𝑚𝛾

∗
𝑛) = 𝐿

2𝑛−2𝑛−1
−2𝑚

be the maps obtained by applying Σ−2𝑚(𝑛+1),−𝑚(𝑛+1) and Σ−2(𝑚+1)𝑛,−(𝑚+1)𝑛 to

Σ2𝑚,𝑚𝑇ℎ(𝑚𝜁∗𝑛)
sh
≅ 𝑇ℎ(𝑚(𝜁∗𝑛 ⊕ (𝜖

1
𝑛)
∗))
𝑚𝑖
⟶ 𝑇ℎ(𝑚𝜁∗𝑛+1)

and

𝑇ℎ((𝑚 + 1)𝜁∗𝑛)
𝑚 id⊕𝑗
⟶ 𝑇ℎ(𝑚𝜁∗𝑛 ⊕ 𝜖

∗
𝑛) = Σ

2𝑛,𝑛𝑇ℎ(𝑚𝜁∗𝑛) ,
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respectively. Here sh denotes the isomorphism of spectra induced by the shuffle𝑚𝜁∗𝑛 ⊕𝑚(𝜖
1
𝑛)
∗ ≅

𝑚(𝜁∗𝑛 ⊕ (𝜖
1
𝑛)
∗).

Definition 10.3. Let −𝜖 ∈ 𝜋0,0(𝕊) be the class of the symmetry isomorphism 𝛾∶ 𝑆2,1 ∧ 𝑆2,1 ≅
𝑆2,1 ∧ 𝑆2,1. It satisfies (−𝜖)2 = 1, since 𝛾2 = id.

Lemma 10.4. The rectangle

commutes up to homotopy.

Proof. The diagrams

and

commute strictly, where 𝜒𝑚,𝑛 is induced by the symmetry isomorphism

𝜖∗𝑛 ⊕ 𝑚(𝜖
1
𝑛)
∗ ≅ 𝑚(𝜖1𝑛)

∗ ⊕ 𝜖∗𝑛 ,

hence is homotopic to multiplication by (−𝜖)𝑚𝑛. Applying

Σ−2(𝑚+1)(𝑛+1),−(𝑚+1)(𝑛+1)

yields the stated homotopy commutative rectangle. □
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Corollary 10.5. The square

commutes up to homotopy.

Proof. This follows from Lemma 10.4, since 𝑚𝑛 +𝑚(𝑛 + 1) + 𝑚(𝑛 + 2) + 𝑚(𝑛 + 3) is always
even. □

Definition 10.6. Let the (infinite, motivic) stunted lens spectrum

𝐿∞−2𝑚 = hocolim𝑛
𝐿2𝑛−2𝑚−1−2𝑚 = hocolim

𝑛
𝑇ℎ(−𝑚𝛾∗𝑛)

be the homotopy colimit of the maps

⋯→ 𝐿2𝑛−2𝑚−1−2𝑚

𝑖
⟶ 𝐿2𝑛−2𝑚+1

−2𝑚
→ ⋯ .

For a fixed choice of commuting homotopies in Corollary 10.5, let 𝑗 ∶ 𝐿∞
−2𝑚−2
⟶ 𝐿∞

−2𝑚
be the

induced map. Let

𝐿∞−∞ = holim𝑚
𝐿∞−2𝑚

be the homotopy limit of the resulting tower

⋯→ 𝐿∞−2𝑚−2
𝑗
⟶ 𝐿∞−2𝑚 → ⋯ .

Recall Notation 5.6.

Lemma 10.7.

𝐻∗,∗(𝐿2𝑛−1) = 𝐻∗,∗[𝑢, 𝑣]∕(𝑢2 = 𝜏𝑣 + 𝜌𝑢, 𝑣𝑛) ,

where 𝑣 is the mod 𝓁 Euler class of 𝛾∗𝑛 ↓ 𝐿
2𝑛−1 and 𝛽(𝑢) = 𝑣.

Proof. This follows by the same argument as for [64, Theorem 6.10], working with 𝐿2𝑛−1 → ℙ𝑛−1
in place of 𝐵𝜇𝓁 → ℙ∞. □

Definition 10.8. Let𝑈𝑚𝜁∗𝑛 ∈ 𝐻
2𝑚(𝑛−1),𝑚(𝑛−1)(𝑇ℎ(𝑚𝜁∗𝑛)) be themod𝓁 Thomclass of𝑚𝜁∗𝑛 ↓ 𝐿

2𝑛−1.
Let

𝑈−𝑚𝛾∗𝑛 ∈ 𝐻
−2𝑚,−𝑚(𝐿2𝑛−2𝑚−1−2𝑚 ) = 𝐻−2𝑚,−𝑚(𝑇ℎ(−𝑚𝛾∗𝑛))
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be its image under the (de-)suspension isomorphism. We write 𝑥 ↦ 𝑥 ⋅𝑈𝑚𝜁∗𝑛 and 𝑥 ↦ 𝑥 ⋅𝑈−𝑚𝛾∗𝑛
for the Thom isomorphisms

𝐻∗,∗(𝐿2𝑛−1) ≅ 𝐻∗+2𝑚(𝑛−1),∗+𝑚(𝑛−1)(𝑇ℎ(𝑚𝜁∗𝑛))

𝐻∗,∗(𝐿2𝑛−1) ≅ 𝐻∗−2𝑚,∗−𝑚(𝑇ℎ(−𝑚𝛾∗𝑛)) ,

cf. [64, Proposition 4.3].

Lemma 10.9. The homomorphisms

𝑖∗ ∶ 𝐻∗,∗(𝑇ℎ(−𝑚𝛾∗𝑛+1))⟶ 𝐻
∗,∗(𝑇ℎ(−𝑚𝛾∗𝑛))

𝑗∗ ∶ 𝐻∗,∗(𝑇ℎ(−𝑚𝛾∗𝑛))⟶ 𝐻
∗,∗(𝑇ℎ(−(𝑚 + 1)𝛾∗𝑛))

are given by

𝑖∗(𝑥 ⋅𝑈−𝑚𝛾∗
𝑛+1
) = 𝑖∗(𝑥) ⋅𝑈−𝑚𝛾∗𝑛

𝑗∗(𝑥 ⋅𝑈−𝑚𝛾∗𝑛 ) = 𝑥𝑣 ⋅𝑈−(𝑚+1)𝛾∗𝑛 .

Proof. The Thom class of𝑚𝜁∗
𝑛+1

maps under 𝑖∗ to the Thom class of 𝑖∗(𝑚𝜁∗
𝑛+1
) = 𝑚(𝜁∗𝑛 ⊕ (𝜖

1
𝑛)
∗),

which corresponds under the suspension isomorphism to the Thom class of𝑚𝜁∗𝑛. This proves the
first formula, where 𝑥 ∈ 𝐻∗,∗(𝐿2𝑛+1).
The Thom class of 𝑚𝜁∗𝑛 corresponds under the suspension isomorphism to the Thom class of
𝑚𝜁∗𝑛 ⊕ 𝜖

∗
𝑛. By the Jouanolou trick [64, Lemma 4.7] it maps under 𝑗

∗ to the Euler class 𝑣 of 𝛾∗𝑛 times
the Thom class of (𝑚 + 1)𝜁∗𝑛. This proves the second formula, where 𝑥 ∈ 𝐻

∗,∗(𝐿2𝑛−1). □

Proposition 10.10. The structure maps 𝐿2𝑛−2𝑚−1
−2𝑚

→ 𝐿∞
−2𝑚

and 𝐿∞−∞ → 𝐿
∞
−2𝑚

induce A -module
isomorphisms

𝐻∗,∗(𝐿∞−2𝑚) ≅ 𝐻
∗,∗(𝐵𝜇𝓁){𝑈−𝑚𝛾∗} ≅ 𝐻

∗,∗(𝐵𝜇𝓁){𝑣
−𝑚}

and

𝐻∗,∗𝑐 (𝐿
∞
−∞) = colim𝑚

𝐻∗,∗(𝐿∞−2𝑚) ≅ 𝐻
∗,∗(𝐵𝜇𝓁)loc .

Proof. Since each 𝑖∗ ∶ 𝐻∗,∗(𝑇ℎ(−𝑚𝛾∗
𝑛+1
)) → 𝐻∗,∗(𝑇ℎ(−𝑚𝛾∗𝑛)) is surjective, the lim-lim

1 sequence
gives an isomorphism

𝐻∗,∗(𝐿∞−2𝑚) ≅ lim𝑛
𝐻∗,∗(𝑇ℎ(−𝑚𝛾∗𝑛)) ≅ lim𝑛

𝐻∗,∗(𝐿2𝑛−1){𝑈−𝑚𝛾∗𝑛 } .

Letting 𝑈−𝑚𝛾∗ correspond to the compatible sequence (𝑈−𝑚𝛾∗𝑛 )𝑛 gives the first isomor-
phism. The second isomorphism sends 𝑈−𝑚𝛾∗ to 𝑣−𝑚. The induced homomorphism
𝑗∗ ∶ 𝐻∗,∗(𝐵𝜇𝓁){𝑈−𝑚𝛾∗} → 𝐻

∗,∗(𝐵𝜇𝓁){𝑈−(𝑚+1)𝛾∗}maps𝑈−𝑚𝛾∗ to 𝑣 ⋅𝑈−(𝑚+1)𝛾∗ , hence corresponds
to the homomorphism

𝐻∗,∗(𝐵𝜇𝓁){𝑣
−𝑚}⟶ 𝐻∗,∗(𝐵𝜇𝓁){𝑣

−𝑚−1}
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sending 𝑣−𝑚 to 𝑣 ⋅ 𝑣−𝑚−1. It follows that colim𝑚 𝐻∗,∗(𝐿∞−2𝑚), that is, the continuous cohomology
𝐻∗,∗𝑐 (𝐿

∞
−∞), is isomorphic to the localization𝐻

∗,∗(𝐵𝜇𝓁)[1∕𝑣] = 𝐻
∗,∗(𝐵𝜇𝓁)loc.

It remains to justify that these isomorphisms are compatible with the Steenrod operations. The
short exact sequence

0 → 𝐻∗,∗(𝑇ℎ(𝑚𝛾∗𝑛))⟶ 𝐻
∗,∗(𝐿2𝑛+2𝑚−1)

𝑖𝑛∗

⟶ 𝐻∗,∗(𝐿2𝑚−1) → 0

induced from (10.2) shows that the Steenrod action on 𝑈𝑚𝛾∗𝑛 matches that on 𝑣𝑚 in
𝐻∗,∗(𝐿2𝑛−1){𝑣𝑚}. By another application of the Jouanolou trick, and the Cartan formula, it follows
that the Steenrod action on 𝑈𝑚𝜁∗𝑛 is compatible with that on Σ

2𝑚𝑛,𝑚𝑛𝑣−𝑚. Hence, by stability, the
Steenrod action on 𝑈−𝑚𝛾∗𝑛 matches that on 𝑣

−𝑚 in 𝐻∗,∗(𝐿2𝑛−1){𝑣−𝑚}. Passing to the limit over 𝑛
and the colimit over𝑚 completes the argument. □

The next two lemmas confirm the assumptions required (for recognition of the 𝐸2-term and
conditional convergence) of the delayed limit Adams spectral sequence for Σ𝐿∞−∞.

Lemma 10.11. The spectra 𝐿2𝑛−2𝑚−1
−2𝑚

are cellular of finite type. The spectra 𝐿∞
−2𝑚

are cellular and
bounded below.

Proof. The Zariski cover of 𝐿2𝑛−1 by the affines (𝔸𝑖−1 × 𝔸1
0
× 𝔸𝑛−𝑖)∕𝜇𝓁 , with 1 ⩽ 𝑖 ⩽ 𝑛, is com-

pletely stably cellular in the sense of [14, Definition 3.7]. It trivializes 𝛾𝑛, hence also 𝑚𝜁∗𝑛. It
follows as in [14, Corollary 3.10] that 𝐿2𝑛−2𝑚−1

−2𝑚
= Σ−2𝑚𝑛,−𝑚𝑛𝑇ℎ(𝑚𝜁∗𝑛) is cellular. Inspection of the

argument shows that it admits a cell structure with finitely many cells, all in bidegrees (𝑝𝛼, 𝑞𝛼)
satisfying 𝑝𝛼 − 𝑞𝛼 ⩾ −𝑚.
Since this bound is uniform, it follows by passage to the homotopy colimit that 𝐿∞

−2𝑚
is also

cellular, with cells in the same range of bidegrees. Hence 𝐿∞
−2𝑚

lies in 𝑆𝐻(𝑆)⩾−𝑚 of the homotopy
𝑡-structure. □

Recall Definitions 8.1 and 8.2.

Lemma 10.12. The 𝐻-module spectra 𝐻 ∧ 𝐿2𝑛−2𝑚−1
−2𝑚

and 𝐻 ∧ 𝐿∞
−2𝑚

are motivic GEMs of
bifinite type.

Proof. These spectra are𝐻-cellular by Lemma 10.11. The homology version of Lemma 10.7 shows
that 𝐻∗,∗(𝐿2𝑛−1) is finitely generated and free over 𝐻∗,∗ on generators in bidegrees (𝑖 + 2𝑘, 𝑖 + 𝑘)
for 𝑖 ∈ {0, 1} and 0 ⩽ 𝑘 < 𝑛. It then follows from the Thom isomorphism inmotivic homology that
𝐻∗,∗(𝐿

2𝑛−2𝑚−1
−2𝑚

) is finitely generated and free on similar generators for 𝑖 ∈ {0, 1} and −𝑚 ⩽ 𝑘 <
𝑛 −𝑚, and that 𝐻∗,∗(𝐿∞−2𝑚) is free on one generator in each bidegree (𝑖 + 2𝑘, 𝑖 + 𝑘) for 𝑖 ∈ {0, 1}
and 𝑘 ⩾ −𝑚. In particular,𝐻∗,∗(𝐿∞−2𝑚) is of bifinite type. □

Finally, we construct maps

(10.3)

                                                                                                                                                                                                                                                                                                                                                                       



1308 GREGERSEN and ROGNES

whose composite induces the (large) residue homomorphism fromDefinition 6.1 inmotivic coho-
mology.
To define ℙ∞−∞, let the (finite, motivic) stunted projective spectrum ℙ𝑛−𝑚−1−𝑚 = 𝑇ℎ(−𝑚𝛾

∗
𝑛 ↓

ℙ𝑛−1) be the Thom spectrum of the negative of 𝑚𝛾∗𝑛 = O(1)𝑚 over ℙ𝑛−1. We have
maps 𝑖 ∶ ℙ𝑛−𝑚−1−𝑚 → ℙ

𝑛−𝑚
−𝑚 and 𝑗 ∶ ℙ𝑛−𝑚−2

−𝑚−1
→ ℙ𝑛−𝑚−1−𝑚 as in Definition 10.2, and let ℙ∞−𝑚 =

hocolim𝑛 ℙ
𝑛−𝑚−1
−𝑚 and ℙ∞−∞ = holim𝑚 ℙ

∞
−𝑚 as in Definition 10.6. We obtain 𝐻∗,∗𝑐 (ℙ∞−∞) ≅

𝐻∗,∗[𝑣±1], by the same arguments as for lens spectra.

Proposition 10.13. There is a map 𝑐∶ 𝕊 → Σ2,1ℙ−1−∞ inducing

Σ2,1𝑣−1 ⟼ 1

in cohomology. The𝐻∗,∗-module generators Σ2,1𝑣𝑘 for 𝑘 ⩽ −2map to zero.

Proof. We use that ℙ𝑛−1 is a smooth projective variety, with stable normal bundle

𝜈 = 𝜖1𝑛 − 𝑛𝛾
∗
𝑛 = O − O(1)𝑛 .

By the construction leading to algebraic Atiyah duality, see [65, Proposition 2.7], [28, Claim 2]
and [26, §5.3], there is a Pontryagin–Thom collapse map

𝑐𝑛 ∶ 𝕊⟶ 𝑇ℎ(𝜈 ↓ ℙ
𝑛−1) = Σ2,1ℙ−1−𝑛

inducing the homomorphism Σ2,1𝑣−1 ↦ 1 in cohomology. The generators Σ2,1𝑣𝑘 for−𝑛 ⩽ 𝑘 ⩽ −2
map to zero for bidegree reasons.When combinedwith the Thomdiagonal and an adjunction, this
leads to the Atiyah duality equivalence 𝑇ℎ(𝜈 ↓ ℙ𝑛−1) ≃ 𝐷(ℙ𝑛−1+ ) = 𝐹(ℙ

𝑛−1
+ , 𝕊), under which 𝑐𝑛 is

functionally dual to the collapse map ℙ𝑛−1+ → 𝑆
0. In particular, these maps are compatible up to

homotopy for varying𝑛, and combine to define amap 𝑐∶ 𝕊 → Σ2,1ℙ−1−∞ ≃ 𝐷(ℙ
∞
+ ), as required. □

Since 𝐿2𝑛−1 is only quasi-projective, we need a different method to obtain the second map
of (10.3).

Proposition 10.14. There is a map 𝑑∶ Σ2,1ℙ−1−∞ → Σ𝐿
−1
−∞ inducing

Σ𝑢𝑣−1 ⟼ Σ2,1𝑣−1

in cohomology, modulo𝐻∗,∗-multiples of Σ2,1𝑣𝑘 for 𝑘 ⩽ −2.

Proof. For algebraic vector bundles 𝛼, 𝛽 ↓ 𝑋 over the same smooth scheme 𝑋, where 𝛽 may be
virtual, there is a homotopy cofiber sequence

𝑇ℎ(𝑝∗𝛽 ↓ 𝐸0(𝛼))⟶ 𝑇ℎ(𝛽 ↓ 𝑋)⟶ 𝑇ℎ(𝛼 ⊕ 𝛽 ↓ 𝑋)

of motivic spectra. Here 𝑝∶ 𝐸0(𝛼) → 𝑋 denotes the projection, and 𝑝∗𝛽 is the pullback of 𝛽
along𝑝.We apply thiswith𝑋 = ℙ𝑛−1,𝛼 = 𝛾⊗𝓁𝑛 = O(−𝓁) and𝛼 ⊕ 𝛽 = 𝜈, the stable normal bundle
of ℙ𝑛−1. We identify 𝐸0(𝛾

⊗𝓁
𝑛 ) ≅ 𝐿

2𝑛−1, as in [64, Lemma 6.3]. Moreover, 𝑝∗𝛾⊗𝓁𝑛 ≅ 𝜖1𝑛 over 𝐿
2𝑛−1,

that is, O(−𝓁) and O pull back to the same bundle, which implies that 𝑝∗𝛽 ≅ −𝑛𝛾∗𝑛 as a stable
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bundle over 𝐿2𝑛−1. This leads to the homotopy cofiber sequence

𝐿−1−2𝑛 ⟶ 𝑇ℎ(𝛽 ↓ ℙ
𝑛−1)⟶ Σ2,1ℙ−1−𝑛

𝑑𝑛
⟶ Σ𝐿−1−2𝑛 .

The long exact sequence in cohomology shows that the connecting map 𝑑𝑛 induces a homomor-
phismmapping Σ𝑢𝑣−1 to Σ2,1𝑣−1, modulo𝐻∗,∗-multiples of Σ2,1𝑣𝑘 for−𝑛 ⩽ 𝑘 ⩽ −2. Again, these
maps are compatible up to homotopy for varying𝑛, and combine to define the requiredmap𝑑. □

Proposition 10.15. There is a map 𝑒∶ 𝕊 → Σ𝐿∞−∞ of motivic spectra, inducing the residue
homomorphism

𝑒∗ = res∶ Σ𝐻∗,∗(𝐵𝜇𝓁)loc ⟶ 𝐻
∗,∗

in cohomology.

Proof. We take 𝑒 to be 𝑑𝑐 followed by the inclusion Σ𝐿−1−∞ → Σ𝐿
∞
−∞ (of the homotopy fiber of

Σ𝐿∞−∞ → Σ𝐿
∞
0
). To check that 𝑒 induces the residue homomorphism, we use Corollary 7.5 in

cohomological degree 0, giving an isomorphism

res∶ HomA (𝐻
∗,∗, 𝐻∗,∗)

≅
⟶ HomA (Σ𝐻

∗,∗(𝐵𝜇𝓁)loc, 𝐻
∗,∗) .

In other words, any A -module homomorphism Σ𝐻∗,∗(𝐵𝜇𝓁)loc → 𝐻∗,∗ is characterized by its
value on Σ𝑢𝑣−1. Since 𝑒∗ and res agree on this element, they are equal. □

11 THEMOTIVIC LIN AND GUNAWARDENA THEOREMS

We can now prove a motivic refinement of the classical theorems of Lin [37] (for 𝓁 = 2) and
Gunawardena [21] (for 𝓁 an odd prime).
Recall that 𝜇𝓁 denotes the algebraic group of 𝓁th roots of unity, 𝐿2𝑛−1 = (𝔸𝑛 ⧵ {0})∕𝜇𝓁 is an

algebraic lens space, 𝛾∗𝑛 ↓ 𝐿
2𝑛−1 is the dual of the tautological line bundle, 𝐿2𝑛−2𝑚−1

−2𝑚
= 𝑇ℎ(−𝑚𝛾∗𝑛)

is a stunted lens spectrum, and 𝐿∞
−2𝑚
= hocolim𝑛 𝐿

2𝑛−2𝑚−1
−2𝑚

and 𝐿∞−∞ = holim𝑚 𝐿
∞
−2𝑚

are infinite
lens spectra. The continuous mod 𝓁 cohomology 𝐻∗,∗𝑐 (𝐿∞−∞) = colim𝑚 𝐻

∗,∗(𝐿∞
−2𝑚
) is isomorphic

to the localization 𝐻∗,∗(𝐵𝜇𝓁)loc = 𝐻∗,∗[𝑢, 𝑣±1]∕(𝑢2 = 𝜏𝑣 + 𝜌𝑢). The map 𝑒∶ 𝕊 → Σ𝐿∞−∞ induces
the Ext-equivalence res∶ Σ𝐻∗,∗(𝐵𝜇𝓁)loc → 𝐻∗,∗.

Theorem 11.1. Let 𝑆 be a Noetherian scheme of finite dimension 𝑑, essentially smooth over a field
or Dedekind domain, and let 𝓁 be a prime that is invertible on 𝑆. The (𝓁, 𝜂)-completed map

𝑒∧𝓁,𝜂 ∶ 𝕊
∧
𝓁,𝜂 ⟶ (Σ𝐿

∞
−∞)
∧
𝓁,𝜂

is a 𝜋∗,∗-isomorphism. If 𝑆 = Spec 𝑘 for 𝑘 a field, then 𝑒∧𝓁,𝜂 is a motivic equivalence.

Proof. We apply Proposition 9.7 with 𝑋 = 𝕊, 𝑌 = Σ𝐿∞−∞, 𝑌(𝑚) = Σ𝐿
∞
−2𝑚

and g = 𝑒.

𝕊
𝑒
⟶ Σ𝐿∞−∞ → ⋯→ Σ𝐿∞−2𝑚 → ⋯ .
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The 𝐻-modules 𝐻 ∧ 𝕊 and 𝐻 ∧ Σ𝐿∞
−2𝑚

are motivic GEMs of bifinite type by Lemma 10.12. More-
over, 𝕊 and each Σ𝐿∞

−2𝑚
is bounded below in the homotopy 𝑡-structure on 𝑆𝐻(𝑆) by Lemma 10.11.

By Theorem 9.5 the Adams spectral sequences for 𝕊 and the Σ𝐿∞
−2𝑚

are conditionally con-
vergent to the (𝓁, 𝜂)-adic completions. By Proposition 9.6 the delayed limit Adams spectral
sequence for Σ𝐿∞−∞ is also conditionally convergent to the (𝓁, 𝜂)-adic completion. TheA -module
homomorphism

𝑒∗ ∶ 𝐻∗,∗𝑐 (Σ𝐿
∞
−∞)⟶ 𝐻

∗,∗(𝕊)

agrees with

res∶ Σ𝐻∗,∗(𝐵𝜇𝓁)loc ⟶ 𝐻
∗,∗

via the isomorphism of Proposition 10.10, by Proposition 10.15. Finally, res is an Ext-equivalence
by Corollary 7.5. Hence the induced map of spectral sequences

𝑒∶ 𝐸𝑠,∗,∗
2
(𝕊) = Ext𝑠,∗,∗

A
(𝐻∗,∗, 𝐻∗,∗)

≅
⟶ del𝐸𝑠,∗,∗

2
(Σ𝐿∞−∞) = Ext

𝑠,∗,∗
A
(Σ𝐻∗,∗(𝐵𝜇𝓁)loc, 𝐻

∗,∗)

is an isomorphism, from the 𝐸2-term and onward, and the map of abutments

𝑒∶ 𝜋∗,∗(𝕊
∧
𝓁,𝜂)
≅
⟶ 𝜋∗,∗((Σ𝐿

∞
−∞)
∧
𝓁,𝜂)

is an isomorphism of (filtered) bigraded abelian groups.
Let 𝐶𝑒∧𝓁,𝜂 denote the homotopy cofiber of 𝑒

∧
𝓁,𝜂. If 𝑆 = Spec 𝑘 for a field 𝑘, then the homotopy

sheaves 𝜋
∗,∗
(𝐶𝑒∧𝓁,𝜂) are pure in the sense of [51, Definition 6.4.9], hence unramified in the sense

of [52, Definition 2.1], by [51, Lemma 6.4.11] and [52, Theorem 1.9]. For any (irreducible) smooth
𝑘-scheme 𝑈 with function field 𝑘(𝑈), the vanishing of 𝜋∗,∗(𝐶𝑒∧𝜂,𝓁) over Spec 𝑘(𝑈) implies the
vanishing of 𝜋∗,∗(𝐶𝑒∧𝜂,𝓁) over 𝑈, so that 𝜋∗,∗(𝐶𝑒

∧
𝜂,𝓁) = 0 and 𝑒

∧
𝜂,𝓁 is a motivic equivalence. This

application of Morel’s theorems also appears in [23, Proposition 4]. □

Remark 11.2. As an alternative to our fairly explicit construction of 𝑒∶ 𝕊 → Σ𝐿∞−∞ in Propo-
sition 10.15, one might appeal to the weight 0 part of the delayed limit Adams spectral
sequence

del𝐸𝑠,𝑡,0
2
= Ext𝑠,𝑡,0

A
(Σ𝐻∗,∗(𝐵𝜇𝓁)loc, 𝐻

∗,∗)⟹𝑠 𝜋𝑡−𝑠,0((Σ𝐿
∞
−∞)
∧
𝓁,𝜂)

for Σ𝐿∞−∞ to show the existence of a homotopy class 𝑒′ ∈ 𝜋0,0((Σ𝐿∞−∞)
∧
𝓁,𝜂) detected in Adams

filtration 𝑠 = 0 by res∶ Σ𝐻∗,∗(𝐵𝜇𝓁)loc → 𝐻∗,∗ in

del𝐸0,0,0∞ ⊂
del𝐸0,0,0
2
= HomA (Σ𝐻

∗,∗(𝐵𝜇𝓁)loc, 𝐻
∗,∗) .

By Corollary 7.5
del𝐸𝑠,𝑡,0
2
≅ Ext𝑠,𝑡,0

A
(𝐻∗,∗, 𝐻∗,∗) ,

and res corresponds to id∶ 𝐻∗,∗ → 𝐻∗,∗ in HomA (𝐻
∗,∗, 𝐻∗,∗).
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If 𝑑 < 𝓁 − 1, which is always the case for 𝑆 = Spec 𝑘, the canonical (or normalized cobar)
A -module resolution of 𝐻∗,∗ shows that del𝐸𝑠,𝑡,0

2
≅ Ext𝑠,𝑡,0

A
(𝐻∗,∗, 𝐻∗,∗) = 0 whenever 𝑡 − 𝑠 = −1.

Hence 𝑑0,0,0𝑟 = 0 for all 𝑟 ⩾ 2, so that del𝐸
0,0,0
∞ =

del𝐸0,0,0
2

and res is an infinite cycle.
To ensure that res detects a homotopy class, we also need strong convergence in its bidegree.

By [9, Theorem 7.3], see also [22, Theorem 3.9], it suffices to know that 𝑅𝐸𝑠,𝑡,0∞ = 0 whenever
𝑡 − 𝑠 = +1. By [35, Corollary 6.1] this condition is satisfied for 𝑆 = Spec 𝑘, subject to the addi-
tional hypothesis for 𝓁 = 2 that 𝑘 has finite virtual cohomological dimension. The class 𝑒′ is then
represented by a map 𝑒′ ∶ 𝕊 → (Σ𝐿∞−∞)

∧
𝓁,𝜂, which can be used in place of 𝑒.
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