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ABSTRACT. We determine the A(1)-homotopy of the topological cyclic homol-
ogy of the connective real K-theory spectrum ko. The answer has an associated
graded that is a free Fo [v%}-module of rank 52, on explicit generators in stems
—1 < % < 30. The calculation is achieved by using prismatic and syntomic
cohomology of ko as introduced by Hahn-Raksit—Wilson, extending work of
Bhatt—Morrow—Scholze from the case of classical commutative rings to Eoo
rings. A new feature in our case is that there are nonzero differentials in
the motivic spectral sequence from syntomic cohomology to topological cyclic
homology.
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1. INTRODUCTION

Work of Hahn—-Raksit—Wilson [HRW] extends the notions of prismatic cohomol-
ogy and syntomic cohomology to the setting of E., rings. This produces a new tool
for computing topological cyclic homology and, consequently, algebraic K-theory.
In the present paper, we use this tool to compute the A(1)-homotopy (cf. Nota-
tion 2.15) of the algebraic K-theory of the Eo, ring ko, known as connective real
K-theory. Throughout, we work at the prime p = 2.

This paper continues the program from [AR02], examining the arithmetic of
ring spectra through the lens of telescopically localized algebraic K-theory. In
particular, the second and third authors put forward, in a bundle of predictions
known as the redshift conjectures [AR08], the assertion that algebraic K-theory
increases chromatic complexity by one. This has now been proven in a qualitative
form, for all Eo, rings, in a tour de force by Burklund—Schlank—Yuan [BSY], building
on [Yua], [CMNN] and [LMMT].

Date: December 19, 2023.
1991 Mathematics Subject Classification.  Primary 14F30, 19D50, 19D55, 55Q51, 55P43;
Secondary 13D03, 19E20, 55N15, 55Q10, 55T25.

1



2 G. ANGELINI-KNOLL, CH. AUSONI AND J. ROGNES

-1 0 1 2 3 4 5 6 7 8 9 10 11 12

FIGURE 1.1. Fafvg]-basis for the syntomic cohomology modulo
(2,m,v1) of ko, with lines of slope —1, 1 and 1/3 indicating multi-
plication by 0, n and v, respectively

To better understand the arithmetic of E, rings, it is still desirable to prove more
quantitative forms of the redshift conjectures, such as the one originally appearing
as the “chromatic redshift problem” in [Rog00]. In the present paper, we solve this
problem in the case of ko. Explicitly, we prove the following theorem.

Theorem A (Theorem 6.2). The A(1)-homotopy A(1). TC(ko) of the topological
cyclic homology of ko is a Z/4[v3?]-module. The associated graded

Gr¥ . A1), TC(ko) 2 Fo{vs |0 <i=0,1 mod 4}
& Falv2]{0, s, v, A, w, Ao}
@® Fa[va){sv, %, 0, vw, vAg, Nj Ao}
@ Fo{vd?w | 0<j =23 mod 4}

of its descending motivic filtration Fil}, . A(1). TC(ko) is a finitely generated and

free Falvs]-module of rank 52. Here |0| = —1, [¢] = 1, |v| = 3, |[N|| = |w| = 5,
lva| =6 and |A2| = 7.

This calculation is carried out by first computing the syntomic cohomology with
A(1)-coefficients, alias modulo (2,n,v1), of connective real K-theory.

Theorem B (Theorem 5.12). The syntomic cohomology modulo (2,71,v1) of ko is

A1)« grior TC(ko) := . (A(1) ® gryyey TC (ko))
= Fovo]{1,0,5, v, \|, w, Aa, sv, V%, Oa, vw, v g, N Ao, 2w},

where the (stem, motivic filtration) bidegrees of the Fava]-module generators are as
displayed in Figure 1.1 and Table 5.1.

See Notation 6.1 for the algebraic filtration Fil},,(—) on A(1), TC(ko) and its
associated graded Gr} ,(—), see Definition 2.14 for the spectrum level filtration
fil} .+ (—) on TC(ko) and its associated graded gr .(—), and see Construction 2.24
for the meaning of A(1) ® (=) := gri, A(1) ®gr_ s (—).

As a consequence, we determine the A(1)-homotopy of the algebraic K-theory
of ko and of its 2-completion ko5
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Theorem C (Theorems 6.4 and 6.5). There are exact sequences of Z/4[v3?]-
modules
trc

0 — X3Fy — A(1), K(ko) — A(1), TC(ko) — F2{d,¢} — 0

and

trc

0 — Y'Fy @ 23Fy — A1), K(kob) — A(1), TC(ko) — Fo{d,c} — 0,
with |0 = —1 and |s] = 1.

Using this, we show in Corollary 6.6 that there is no Eq ring map K(ko) — tmf),
i.e., no spectrum map inducing an isomorphism on my. In contrast, an E., ring
map K(ko) — FEs is guaranteed to exist by [BSY]. Here tmf denotes the topological
modular forms spectrum, and F» is a suitable height 2 Lubin-Tate theory.

As usual, we let K(n) denote the (2-primary) height n Morava K-theory, with
coefficient ring K (n), = Fo[vr!], and let L, and Lf denote Bousfield localization
at K(0)®---®K(n) and at T(0)®---®T(n), respectively, where T(m) = v} F(m)
is the telescope of any v,,-self map of a type m finite 2-local spectrum F(m).

We say that a spectrum X satisfies the (strong, 2-primary) height n telescope
conjecture if the canonical map L{LX — L, X is an equivalence. By recent ground-
breaking work of Burklund—Hahn—Levy—Schlank [BHLS], we know for each n > 2
that not all spectra have this property. However, it is still interesting to consider the
question of which spectra do satisfy this conjecture, see for example [MR99, Conjec-
ture 7.3]. In Theorem 6.7 we deduce from [HRW] and [CMNN20] that the spectra
K(ko), K(ko%) and TC(ko) all satisfy the height 2 telescope conjecture.

We say that a spectrum X has telescopic complexity n if the map X — LI X is
an equivalence in all sufficiently large degrees. In [ARO08], the redshift conjecture
was phrased in terms of this property. In Theorem 6.8 we apply our Theorems A
and C to confirm that the spectra K(ko) ), K(ko))(2) and TC(ko) ) (as well as
their 2-completions) have telescopic complexity 2, as predicted.

Organization. In Section 2 we give a presentation for the associated graded
grr . THH (ko) of the motivic filtration on THH(ko), and calculate its bigraded ho-
motopy modulo (2,7, v;) and modulo (2,v;). In Section 3 we show how some homo-
topy classes from A(1) are detected in homotopy modulo (2,7, v1) of gri .. TC™ (ko).
In Section 4 we study the T-Tate spectral sequence calculating prismatic coho-
mology, i.e., the homotopy modulo (2,v1,v2) and (2,n,v1,v2) of grf . TP(ko).
In Section 5 we study the T-homotopy fixed point spectral sequence calculat-
ing the homotopy of gr} . TC™ (ko) modulo (2,v1,v2) and (2,n,v1,v2), and use
this to calculate syntomic cohomology, i.e., the homotopy of gr¥ . TC(ko) mod-
ulo (2,v1) and (2,7, v1). Finally, in Section 6 we determine the differential pattern
in the motivic spectral sequence calculating A(1), TC(ko), and use known facts
about the cyclotomic trace map to deduce corresponding results for A(1), K (kob)

and A(1).K (ko).

Conventions. We let A and A" denote the mod 2 Steenrod algebra and its dual,
respectively. We set H,(X) := H.(X;F3) and write

v: Hy(X) — AY ® H,(X)

for the AV-coaction. We write A(1) for the subalgebra of A generated by Sq'
and S¢?, and note that A(1)Y = Fa[¢1, &)/ (£, €3).
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We say that a spectrum X is even if its homotopy groups m.(X) = X, are
concentrated in even degrees.

Let Z°P be the category whose objects are integers, such that Homger (n, m) = %
if n > m and = @ otherwise. Let Z° be the integers as a discrete category. Given
a presentably symmetric monoidal stable co-category C, we write

¢ .= Fun(Z°P, C) and C% := Fun(Z°,C).

Given I* € C" and J* € C#, we write I := I(w) and J¥ := J(w). We recall that
there is a monoidal functor

gr’: cil — cer
defined on an object I* by gr [ = I/I**!. As in the notation above, for consis-
tency we use the superscript x as in I* for a filtered object, the superscript * as in
J* for a graded object, and a superscript ® as in K*® for a cosimplicial object.

We use the terminology from [Isal9, Definition 4.1.2] for (hidden) extensions in
spectral sequences.

In Sections 2-5, we use the following conventions: We write THH(A/R) = |[¢] —
A®p---®p A| for the relative topological Hochschild homology of an R-algebra A,
with g+ 1 copies of A in simplicial degree ¢, and simply write THH(A) when R = S.
We implicitly 2-complete each of the following invariants: THH := THH(—)2%,
TC™ := (THH(-)"T)}, TP := (THH(-)")}, TC := TC(~)} and K := K(-)3.
We write ko, ku, KU, MU, MUP, S and BP for the 2-completions of connec-
tive real K-theory, connective complex K-theory, periodic complex K-theory, com-
plex cobordism, periodic complex cobordism, the sphere spectrum and the Brown—
Peterson spectrum, respectively. We will simply write Z for the 2-adic integers.
We write Sp, for the oco-category of 2-complete spectra with symmetric monoidal
product ®. Note that our smash product is implicitly 2-completed in Sections 2—5,
so that @p := (— ®g —)% for any 2-complete E ring R, and we omit R from the
notation when R is the 2-complete sphere spectrum. We also write ® for the (un-
derived) tensor product over the 2-adic integers and expect the intended meaning
to be clear from context. We write T for the circle regarded as the group of complex
numbers of modulus 1, and set CPT := Fun(BT, C).

In Section 6, as in the present Section 1, we explicitly include notation for 2-
completion, especially in the argument of K(—). Note that the canonical map
TC(ko), — TC(koy), is an equivalence by [Mad94, pp. 274-275] (cf. [NSIS,
pp. 351-352]), so we can omit 2-completion in the argument of TC(—)%.

Acknowledgments. The first author would like to thank Jeremy Hahn and
Dylan Wilson for helpful conversations during the course of this project. We thank
Robert Bruner for freely sharing his minimal resolution calculator ext, which is used
in Section 3. We also thank Ishan Levy for pointing out the proof by descent of
Theorem 6.7. This project has received funding from the European Union’s Horizon
2020 research and innovation programme under the Marie Sktodowska-Curie grant
agreement No 1010342555. H

2. HOCHSCHILD HOMOLOGY AND MOTIVIC FILTRATIONS

We first introduce filtrations on THH, TC™, TP and TC. The reader is en-
couraged to read [BHM93, BM94, BM95, HN20] for background on these invariants
and [HRW] for a thorough account of the filtrations that we use in this paper.
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Definition 2.1. Given amap f: A — B of 2-complete E, rings, we write C*(B/A)
for the associated cosimplicial Amitsur complex with C4(B/A) = B®44+1,

Recall that there is a map of E,, rings c¢: ko — ku called the complexification
map, where ko, = Z[n, A, B]/(2n,n3,nA, A2 — 4B), ku, = Zu], A — 2u? and
B u* with || =1, |A] =4, |B| = 8 and |u| = 2.

Lemma 2.2. There exists an Eo, ring map MU — ku. We can choose the gener-
ators of MU, = m,(MU) = Z[z; | i > 1] so that 1 — u and z; — 0 for each i > 2.
Here |x;| = 2i.

Proof. The proof of [HY20, Theorem 4.3] shows the existence of E, ring maps
MU — MUP — KU. Passing to connective covers gives the factorization through ku.
Both MU and ku have first Postnikov k-invariant the generator of H3(HZ;Z) =
Z/2, so Z{x1} = ma(MU) — ma(ku) = Z{u} must be an isomorphism. Dividing the
first choice of 1 by a unit, we can assume that xy — wu. For each i > 2 we can then
subtract a multiple of 2% from the first choice of z; to ensure that z; — 0. O

We hereafter fix MU — ku and the x; as in the lemma above. This provides E.,
ring maps C9(ko/S) — C9(ku/MU), compatibly for all ¢ > 0. We write

T>xi Spg — Spj'
for the monoidal Whitehead filtration [Lurl7, Proposition 1.4.3.6, Example 2.2.1.10].
Definition 2.3. For F € {THH, TC™, TP, THHtCQ} we define E,, algebras
fil} o1 F'(ko) := Tot (152, F(C*(ku/MU) /C*(ko/S)))

mot

grr . F(ko) := gr* (fil%, ., F'(ko))

mot

in Spgl and Sp§', respectively. Here Tot denotes the totalization of a cosimplicial
object. We refer to gr* , TP(ko) as the weight w prismatic cohomology spectrum

mot
of ko, and 7, gr’ , TP(ko) as its the weight w prismatic cohomology groups.

Remark 2.4. We will show in Proposition 2.11 that THH(C?(ku/MU)/C?(ku/S))
is even, for each ¢ > 0, from which the corresponding statements with F' in place
of THH will follow. Hence the double-speed Whitehead filtration in the definition
of fil, ., F(ko) will be well-behaved. As a consequence, we will verify in Proposi-

tion 2.13 that m, gr} . TP(ko) agrees with prismatic cohomology in the sense of

[IRW, Definition 1.2.4], building on [BMS19].
We also fix terminology for gradings.

Definition 2.5. Given M* € Sp§" and z € 7, M™ we say that x has stem n,
weight w and motivic filtration 2w — n, and write ||z|| = (n,2w — n). In [HRW,
Definition 1.3.2], stem and motivic filtration are called degree and Adams weight,
respectively. We refer to the (Adams indexed, Bousfield-Kan) spectral sequences

E;L’%“_" = T, gt F(ko) = 7, F(ko)

for F € {THH, TC™, TP, THHtCZ} as the motivic spectral sequences.

We plot each motivic spectral sequence with stem on the horizontal axis and
motivic filtration on the vertical axis. Given this convention, if ||z| = (n, 2w —n)
then ||d.(z)|| = (n — 1,2w — n + 7). Note that we write E™**~" where it is also
standard to write E2*~™2% in the literature. With these conventions, the motivic
spectral sequence E°-term is concentrated in internal degrees n + s = 2w and,
consequently, d,. = 0 for all even integers r > 2.
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Our first aim is to show that the filtrations from Definition 2.3 agree with the
motivic filtrations considered in [HRW, Variant 4.2.2].

Definition 2.6 ([IRW, Definition 2.3.1]). A map A — B of 2-complete E., rings
is evenly free if for each nonzero even E., A-algebra C' the pushout B ® 4 C is
equivalent as a C-module to a nonzero wedge sum of even suspensions of C'.

Remark 2.7. This condition on B® 4 C' is equivalent to 7. (B ® 4 C) being a nonzero
free C,-module on generators in even stems. An evenly free map A — B of 2-
complete Ey, rings is eff (= evenly faithfully flat), in the sense of [HRW, Defini-
tion 2.2.13], as per [HRW, Remark 2.3.2].

Lemma 2.8. The complexification map ko — ku is evenly free. Moreover, for each
even Eqo ko-algebra C there is an isomorphism of C.-algebras

e (ku @10 C) 2= Cu[b1]/(57)
where IA)% = b? + caby + ¢y for some ca,cq € Cy with |cz| = 2 and |cy| = 4.
Proof. Recall the Wood (homotopy) cofiber sequence
(2.1) Yko - ko - ku —5 S2ko
of ko-modules, where we write R for the map satisfying Ro (u-—) = X2r, with
r: ku — ko the realification map. The resulting cofiber sequence

YO 0 ku®, C 2 220

induces a short exact sequence of C,-modules
(2.2) 0— Cy — mi(ku®yo C) LBy y20, 5o,

since C is even so that n: XC, — C, is zero. We conclude that 7. (ku ®y, C) is
concentrated in even degrees.

A choice of a class by € T2 (ku ®y, C) with R(b;) = %21 is equivalent to a choice
of a splitting of (2.2), so that 7, (ku®k, C) = C,{1,b,} is free over C, and nonzero
if C' # 0. Writing b2 = b? + caby + ¢4 for the monic polynomial that vanishes in
ma(ku ®yo C), there is an isomorphism

7. (ku @0 C) = Ci[br]/(B7)
of C,-algebras. O

Remark 2.9. Note that ¢y and ¢4 in the statement of Lemma 2.8 need not be zero.
For example, when C' = ku then b; can be chosen as in [DLR22, Lemma 5.1] so
that b? = b2 — ub;.

Proposition 2.10. The map THH(ko) — THH(ku/MU), induced by the complez-
ification map c: ko — ku and the unit map S — MU, is evenly free.

Proof. Let C' # 0 be an even Eo, THH(ko)-algebra. Then C' = THH(C//C) and
THH(ku/MU) ®@trH(ke) ¢ = THH(ku/MU) @raH(K) THH(C/C)
~ THH(ku @, C/MU ® C)

where the last equivalence holds because THH commutes with pushouts of E.
rings. Since C' is an even E, ring, the Atiyah—Hirzebruch spectral sequence

FE? = H,(MU;C,) = m,(MU® C)
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collapses, and we can choose generators by, € mar(MU ® C) giving an isomorphism
Culbg | k> 1] 2 7. (MU ® C) of C,-algebras. We claim that these generators may
be chosen so that m, (MU ® C') — 7. (ku @y, C) = Ci[b1]/(b?) satisfies by — by and

by — 0 for each k > 2, where b; and b% in the target are fixed as in Lemma 2.8.
To see this, consider the commutative diagram

(MU ® 750C) — 72 (ku @ko 7>0C)

.

(MU ® 750C) ——— ma(X27150C)

where MU denotes the cofiber of the unit map S — MU. The horizontal maps are
isomorphisms because MU — ku is 4-connected and S — ko is 3-connected. We
know that 7.(MU ® 750C) = m.(750C) bk | k > 1], because 7>(C is an even E
ring. The vertical maps both take b; to a mo(C')-module generator of their respective
targets. Consequently, we can adjust our choice of generator b1 € mo(MU ® 750C)
by dividing by a unit in mo(C) so as to ensure that it maps to the previously
chosen b; € ma(ku Qko 7>0C). We then let by € m(MU ® C) be the image of
by € mo(MU®7>(C) via 750C — C'. Thereafter, we adjust the algebra generators by,
for k > 2 so that they map to zero in 7, (ku®y, C), by subtracting a suitable degree
one polynomial in b; from each original choice of generator.

To determine THH of ku ®y, C relative to MU ® C, we first study the Kiinneth
(or Tor) spectral sequence

E? = Tor P E21(C, [by]/(B7), Culba] /(BY))
= T ((ku @1 C) @ muece) (ku @y, C)) .
Since b2 and by, for k > 2 act trivially on C,[b1]/(b2), we compute that
E? = C.[b]/(B7) ® A(ob}, oby | k> 2)

with ob?, oby € Tor;, where the triviality of the square (0b3)? follows from the
fact that the product in Tor is given by the shuffle product. Since the algebra
generators are all in filtration < 1, the Kiinneth spectral sequence collapses at
the E%-term. Note that this is a homological spectral sequence associated to an
increasing filtration. Since the E°°-term is a non-zero free C,-module and the
abutment is also a C,-module, we conclude that the abutment is a free and non-
zero Cy-module.

We can rule out all potential hidden multiplicative extensions, because Torg
splits off from the abutment and all the classes in Kiinneth filtration 1 are in odd
total degree. Therefore, we have an algebra isomorphism

D, = m.((ku ®x C) @muec) (ku Sko C)) = Culbi]/(B2) @ A(ob?, by, | k > 2).
Second, we apply the Kiinneth spectral sequence
E? = TorP+(C.[b1]/(b?), C.[b1]/(b?)) = 7. THH(ku @y, C/MU @ C) .
The E?-term of this spectral sequence, namely
E? = C,b)/(3) @ D(c?02, 0%y, | k > 2),

is concentrated in even degrees, so the spectral sequence collapses at the E2-term
and the abutment is also concentrated in even degrees. Since the E*°-term is a
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non-zero free C,-module and the abutment is also a C,-module, we conclude that
the abutment is a free and non-zero C,-module. O

Proposition 2.11. For each g > 0, the spectrum C?(THH(ku/MU)/ THH(ko)) is
an even Eo ku-algebra whose homotopy groups are free as a ku,-module.

Proof. By Proposition 2.10 and induction, it suffices to show that 7. THH(ku/MU)
is free as a ku,-module and concentrated in even degrees. The Kiinneth spectral
sequence

E? = TorMY* (ku,, ku, ) = TorZ® 2 (7[u], Z[u])
=Zu] @ Aoz, | i > 2) = 7. (ku @mu ku)
collapses at the E2-term. Again, we can rule out all hidden multiplicative ex-

tensions, because Torgy splits off from the abutment and all classes in Kiinneth
filtration 1 are in odd total degrees. Next we apply the Kiinneth spectral sequence

E? = Tor™ ku@mukw) (1, ey, ) = TorZM®A0zili22) (71,] 71))
= Z[u] @ T(0?x; | i > 2) = 7, THH(ku/MU).

This E2-term is also concentrated in even degrees, and is free over Z[u] = ku,.
Hence E? = E*, and the abutment is free over ku, on even degree generators. [

The following fact is stated without proof in [HRW, Example 4.1.5]. We follow
this reference and write Lg§ 4 for the algebraic cotangent complex, with homological
grading, of a homomorphism A — B of (ungraded) commutative rings.
Proposition 2.12. ko,MU 2 Z[u, b2, by, | k > 2] is a polynomial ring on generators
in dimensions 2, 4 and 2k for k > 2. Hence L™® has (2-complete) Tor-

ko.MU/MU.
amplitude contained in [0,1], so that MU — ko ® MU is (2-)quasi-lci.

Proof. Since MU, is free over BP,, we have a ring isomorphism ko,BP ®pp, MU, =
ko,MU. Here H, (ko) = AY Oaq1yv Fa, so H,(ko ® BP) = AY O 4¢)v H,(BP) and
the Es-term of the Adams spectral sequence

Adpy = Ext v (Fy, H, (ko ® BP)) = 7. (ko ® BP)

can be rewritten as Ext4(1)v (F2, H.(BP)). Since H.(BP) = F[&7 | k > 1] is
concentrated in even degrees, its A(1)Y-coaction factors as

H.(BP) 2 A(¢]) ® H.(BP) C A(1)Y ® H,(BP)
1@8+81 fork=1,
&— ;O
To calculate the Adams Es-term we use the Cartan—FEilenberg spectral sequence
CEEQ = EXtA(g%)(]FQ, EXtA(£17£2)(F27 H* (BP))) —— EXtA(l)v (]FQ, H* (BP))

(cf. [CE56, Theorem XVI.6.1]) for the Hopf algebra extension A(£7) — A(1)Y —
A(&1,&). Tts Es-term

CPEy 2 Exty (¢2)(F2, Folvo, v1] ® H(BP)) = Falvo, v1] © Fo[¢1, & | k > 2]

is concentrated in filtration degree 0, so “FE, = “FE_. Hence the Adams Es-
term is concentrated in even stems, so also A4E, = A4E_ . Thus 7, (ko ® BP) =
Zlu,t3, 1 | k > 2], with 2 detected by vg, u detected by vy, t2 detected by & and
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tr, detected by ¢2. Base change along BP — MU replaces the degree 2(2F — 1)
generators fj for k # 1 with degree 2k polynomial generators by, for k # 1, while ¢
is replaced by b3.

Since MU, and ko,MU are polynomial rings, the algebraic cotangent complexes
Li/l[gU*/Z and LiiiMU/Z are free modules over MU, and ko,MU, respectively. By the
transitivity cofiber sequence

alg alg alg
ko, MU ®wmu, Lniv, jz = Lioomuyz = Lrovuymu,

associated to the ring homomorphisms Z — MU, — ko,MU, cf. [Qui70, 5.1], it
follows that Liii MU/MU. has (2-complete) Tor-amplitude concentrated in homo-
logical degrees [0,1]. By definition [IRW, Definition 4.1.1(2)], this means that

MU — ko ® MU is (2-)quasi-lci. O

Proposition 2.13. The filtrations from Definition 2.3 agree with the motivic fil-
trations considered in [HRW, Definition 4.2.1, Variant 4.2.2]. Moreover there exist
maps

can, p: fil; , TC™ (ko) — fil},

mot mot TP(kO)
of Ew algebras in Spgl, which converge to the canonical map and Frobenius map

from [NS18].

Proof. By Proposition 2.10 we can apply [HRW, Corollary 2.2.14] to A = M =
THH(ko) and B = THH(ku/MU). In this case M ®,4 B®49tl = p®aatl —
C%(B/A), which is even by Proposition 2.11, so the totalization of the double-speed
Whitehead filtration agrees with the even filtration.

The map of connective E,, rings S — ko is chromatically 2-quasi-lci in the sense
of [HRW, Definition 4.1.4], because by Proposition 2.12 we know that both MU
and ko ® MU are even, and the map MU — ko ® MU is 2-quasi-lci. Hence the even
filtrations also define the motivic filtrations, as per [HRW, Variant 4.2.2], and this
confirms the first statement.

The second statement then follows directly from [HRW, Theorem 4.2.10]. O

Definition 2.14. In light of Proposition 2.13, we define E., algebras

fil .. TC(ko) := eq(can, p: fil}, , TC™ (ko) — fil}; ,; TP (ko))
8ot TC (ko) := gr™ (£ilf,; TC(ko))

in Spi and Sp&", respectively. By taking the (homotopy) equalizer of can and ¢ we
retain the multiplicative structure, but additively fil , TC(ko) is also the (homo-
topy) fiber of can — ¢. In light of [HRW, §5] and [BMS19] we refer to gr2 . TC(ko)
and 7, gr¥ . TC(ko) as the weight w syntomic cohomology spectrum and syntomic

cohomology groups of ko, refer to the spectral sequence
Ey?UT" =, gr  TC(ko) = m, TC(ko)

as the motivic spectral sequence, and follow the same grading conventions as in
Definition 2.5.

We now introduce the relevant type 2 finite coefficient spectra. Let V(0) = C2
denote the cofiber of the map 2: S — S and let C'y denote the cofiber of the Hopf
map 7: &S — S. By [DM81, Proposition 2.1], there are precisely four equivalence
classes of finite spectra X = (V(0) ® Cn)/v1 with the property that H*(X) = A(1)
as an A(1)-module, each characterized by the Sq*-action in its mod 2 cohomology.
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Notation 2.15. Following [BEM17, §1], we write A(1)[ij] with 4,5 € {0, 1} for the
spectrum (V' (0) ® Cn)/v; where Sq¢* on the cohomology generator in degree 0 is
i times the generator in degree 4, and Sq¢* on the cohomology generator in degree 2
is j times the generator in degree 6. We write A(1) in place of A(1)[¢j] when making
statements that hold for any choice of 4,5 € {0,1}. The identity map A(1) — A(1)
has additive order 4, see Lemma 3.5, and [BEM17, Main Theorem| proves that
A(1) admits a v32-self-map. Hence the A(1)-homotopy A(1),Y = 7. (A(1) ® Y) of
any spectrum Y is naturally a Z/4[v3?]-module.

In view of Proposition 2.11 and the fact that A(1) ® ku is even, we know that
A(1) ® C*(THH(ku/MU)/ THH(ko)) is even. This motivates the following defini-

tion.
Definition 2.16. Let
fil} .. (A(1) ® THH(ko)) := TOt(TZQ* (A(l) ® C'(THH(ku/MU)/THH(ko)))) ,

mot

and write gr}, . (A(1)® THH(ko)) := gr* (fily,. (A(1) ® THH(ko))) for the associated

mot
graded spectrum.

Remark 2.17. The spectrum A(1) ® ko ~ HF5 admits a unique E,, ko-algebra
structure. Hence, for each E,, ko-algebra R the identification

A(1)®@ R=A(1) ® ko ®yo R~ HF3 ®y, R
lets us regard A(1) ® R as an E,, HFs-algebra. For example, we will identify

THH(ko, HF3) := HF3 ®x, THH(ko) with A(1) ® THH(ko), and may therefore
consider the latter as an E, HFy-algebra.

Lemma 2.18. Let A := A(1) ® THH(ko) and B := A(1) @ THH(ku/MU). Then
there is an isomorphism

Ao = AN, Ao) @ Tl
of graded Fo-algebras, where |N|| = 5, |A2| = 7 and |u| = 8. There is also an
isomorphism

B, 2 A(&]) @ Fo[u] @ P
of A, -algebras, where |€2) = 2, |u| = 8 and P is a polynomial algebra with generators
in even degrees. The A,-algebra structure is determined by the map A, — B,
sending \| and Ay to zero and mapping p to p.

Proof. The complexification map c: ko — ku and the unique E., ring map ku —
HTF5 induce monomorphisms

H, (ko) =Fo[¢],85. &, | k > 3] — H.(ku) =F2[¢7,85, &, | k > 3] — AY

of AVY-comodule algebras. By Milnor’s construction of the &;, the composite map
MU — ku — HFs induces the homomorphism H,(MU) = Fqfb; | ¢ > 1] —
H,(HF3) = AY given by by — &2 and b; — 0 for j # 2° — 1. Hence these for-
mulas also hold in H,(ku). Let b; = xb; denote the conjugate classes in H,(MU),
so that byi_y +— & and b; — 0 for j # 2° — 1. Standard Hochschild homology
computations (cf. [MS93, Proposition 2]) yield

HH, (H, (ko)) = H. (ko) ® A(c&}, 063,08, | k > 3)
HH, (H, (ku)) = H,(ku) ® A(0¢},0&3,0& | k > 3).
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The usual argument for hidden extensions in the Bokstedt spectral sequence (see
e.g. [ARO5, Theorem 6.2]) implies that
(0&)” " = ot
and produces identifications
H,.(THH (ko)) = H, (ko) ® A(c€},063) ® Foloés]
H,(THH(ku)) & H,(ku) @ A(0€],063) @ Fa[oés].

As noted above, H,(A(1) ® ko) = AY. By Remark 2.17 and the evident collapsing
Kiinneth spectral sequence we have

H.(A(1) ® ku) = H,(HF; @10 ku) = AY @41, 10y Hi(ku) 2 AV @ A(£D),
where é% = 1® & + €& @1 denotes the AV-comodule primitive class, so that
A(1)4(ku) = m (A1) ® ku) = A(£2). We conclude that

A, = A(1). THH(ko) = A(X,, A2) & F[y
A(1), THH(ku) = A(E, M1, A2) @ Fao[y]
with A}, A2 and p in A(1), THH(ko) having Hurewicz images o0&}, 083 + & - o¢
and 0&3+&; - 0€2+ & -Uﬁ, respectively, while A1, Ay and p in A(1), THH(ku) have
Hurewicz images 0€?, 0€3 and 0&3 + &1 - 03, cf. [AR05, Proposition 8.7]. Note that
off = 062 - €2 1+ €2 . 0&2 = 0 in the ku-case. Hence the induced homomorphism
A(1). THH(ko) — A(1), THH(ku) is given by A} — 0, A2 — A2 and p +— p.
Next, we compute A(1). THH(ku/MU), using the fact that
(2.3) A(1) ® THH(ku/MU) ~ (A(1) ® THH(ku)) QTHH(MU) MU.
We know that B
7, THH(MU) = MU, ® A(cb; | i > 1)
by [MS93, Remark 4.3], cf. [Rog20, Proposition 4.5]. We expand
THH(MU) — THH(ku) — A(1) ® THH(ku)
as the composite
MU @muemu MU — ku ®yugka ku
— A(1) ® ku ® 4(1)gkueke A(1) @ ku,
where
MU, [b; | i > 1] = 7.(MU ® MU) — m,(ku ® ku)
— m(A(1) @ ku ® ku) = A(€2) © H, (ku)

takes byi_; to £2 for i > 1 and b; to 0 for j # 2! — 1. Hence m, THH(MU) —
A(1), THH(ku) is given by ab; +— 02 = \j, obz + 0&2 = )y, and ob; + 0 for
i ¢ {1,3}. (This uses that obyi_; + 02 = 0&; - & + & - 0&; = 0 for i > 3, while
¢ and & do not exist in H,(ku).) The m, THH(MU)-algebra structure on MU, is
given by mapping z; to z; and mapping ob; trivially for all i > 1. The Kiinneth

spectral sequence associated to (2.3) therefore has E2%-term
A(ED) @ Falu] @ T(0%byi_y | i > 3) @ D(0%b; | j #2 — 1)

This spectral sequence is concentrated in even total degrees and therefore collapses
at the E?-term. We resolve the hidden multiplicative extensions using Steinberger’s
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computation [BMMS86, II1.2] of the Dyer—-Lashof operations on H,(HF3) = AY
and Kochman’s computation [Koc73, Theorem 6] of the Dyer—Lashof operations
on H,(BU) = H,(MU), as in the proof of [HW22, Lemma 2.4.1]. (Note that
Steinberger’s result is used for the ¢2byi_,, while Kochman’s theorem is used for
the remaining aggj.) This produces the identification

B. = A(1), THH(ku/MU) = A(£2) @ Fy[u] @ P,
where

P :=TFsw; |i>0]@Fy;: | j>2even, i > 0]
is a polynomial algebra with algebra generators in even degrees. Here w; is any
choice of lift of vo:(0%b7) and y;; is any choice of lift of v4:i(02b;). We conclude
that B, is an even E, ring, and the A,-algebra structure is determined by \| and

Ao mapping trivially for degree reasons and p mapping to p by the first half of this
proof. O

Corollary 2.19. The map A(1) ® THH(ko) — A(1) ® THH(ku/MU), induced by
the complexification map c: ko — ku and the unit map S — MU, is evenly free.

Proof. This can be proven directly using Lemma 2.18, but instead we simply point
out that it follows from Proposition 2.10 and Remark 2.17 by base change along
ko — HT5, using the following three pushout squares of E., rings.

ko —— THH(ko) —— THH(ku/MU)

L |

HF, —— A(1) ® THH(ko) —— A(1) ® THH(ku/MU)

| |

C ———— THH(ku/MU) @7pp(ko) C
O

Convention 2.20. To be consistent with our implicit 2-completion, we write fil};,
for the functor denoted fil7, » in [IRW, Variant 2.1.7].

Remark 2.21. By [HRW, Corollary 2.2.14], Remark 2.17, and Corollary 2.19, we
can identify

A1 (A(1) ® THH(ko)) ~ fil’, (A(1) ® THH(ko)),
in the sense of [HRW, Remark 2.1.4].

Theorem 2.22. There is an tsomorphism
. 8oy (A(1) @ THH(k0)) 2 AN, A2) © Fal]

mot
of bigraded Fa-algebras, with || \1]| = (5,1), || X2l = (7,1) and ||u]| = (8,0).
Proof. We closely follow [HW22] and [HRW]. Starting with the proof of [HW22,
Proposition 6.1.6], let A := A(1) ® THH(ko) and B := A(1) ® THH(ku/MU),
so that A, = AN, \2) ® Fo[u] and B, = A(£?) ® Fa[u] ® P by Lemma 2.18.
The descent spectral sequence associated to the cosimplicial Amitsur resolution
C*(B/A) = B®4**! for A — B has E;-term

E{(B/A) = m.(B®21)
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for ¢ > 0, and converges to A,. Since B, is concentrated in even stems, Corol-
lary 2.19 implies that ¥ := 7, (B ®4 B) is even and free over B, so that (B, X)
is a flat Hopf algebroid. Let C% (B, B,) denote the associated cobar complex. It
follows by induction on ¢ that the natural homomorphism

CY(B.,B.) =% ®p, - ®p, % — 1.(B®a B)®p - ®p (B®4 B))
¥, (B®a---®a B)=F{(B/A)
is an isomorphism for each ¢ > 0, since the relevant Kiinneth spectral sequences
collapse. Passing to cohomology, we obtain an isomorphism
Ext%,(Bs, B.) 2 E5(B/A),

identifying the descent spectral sequence Fs-term with the Hopf algebroid coho-
mology of (B,,X). We claim that in each stem this Ep-term has the same finite
order as A,, so that the descent spectral sequence for A — B must collapse at
FEy=FEy.

By convergence, the descent Es-term is an upper bound for A.. To show that
the bound is exact, we consider the multiplicative Whitehead filtrations 7>, A and
7> B of A and B, respectively. For each ¢ > 0 we equip B®49"1 with the relative
convolution filtration

fil* B®aatl — (T>*B)®(72*A>q+1 7
having associated graded E., ring
gr* B®aa+l (H,H-*B)®(H7\'*A)Q+1 .

Here Hm,A and Hm,B are to be interpreted as the graded Eo, rings gr(r>,A)
and gr*(7>,B), respectively. We proved in Lemma 2.18 that A, — B, is given by
A — 0, A2 — 0 and p — p, so that

S = (HmBy ®pp.a Hr B) 2 T(0 M), 0X2) @ AED) @ P @ A(E2) @ P @ Fa[y]

is even and free over B,. Hence (B,,Y) is a flat Hopf algebroid, and as above we
have compatible isomorphisms

CL(B.,B.) =% ®p, -+ ®@p, & — (Hr,B)®um a1t

for all ¢ > 0. Since these bigraded groups are concentrated in even stems, and
differentials reduce the stem by one, the convolution filtration spectral sequence

W*((HW*B)®(HW*A)Q+1) — ,R_*(B®Aq+1)

collapses at this term. This proves that m,(B®49T!) = E}(B/A) has a descending
filtration with associated graded given by C’%(B*, B,). These filtrations are com-
patible for varying g > 0, so the descent Fj-term is a filtered differential graded
algebra with associated graded E; = C’%(B*, B,). Passing to cohomology, we obtain
the May—Ravenel spectral sequence

E, = Exts(B., B,) = Exty(B., B.)

converging to the descent Ea-term, cf. [Rav86, Theorem A1.3.9].
We now view the Hopf algebroid (B, X)) as the tensor product of the three Hopf
algebroids

(F2,T(oM],0)2)) . (AE)@PAE) @ PRAE) ®P) and  (Falu], F2[u]) .



14 G. ANGELINI-KNOLL, CH. AUSONI AND J. ROGNES

These have cohomology algebras A(\], \2), Fo and Fa[u], respectively, with Aj, Ay €
Ext! and p € Ext®. This confirms that the May-Ravenel F,-term

Exts(B., B.) = AN}, A2) ® Fa[y]

has the same finite order in each stem as A,, which implies that the May—Ravenel
spectral sequence and the descent spectral sequence both collapse at their Fs-terms.
Moreover, there is no room for hidden multiplicative extensions, since \j and A;
both square to zero in A,.

We have now established that the descent spectral sequence

E{(B/A) = m.(B®41t) —= A,
is concentrated in even internal degrees n + ¢ = 2w, having Es-term
Ba(BJA) = Exts(B,, B.) = A\, A2) © Fay]

with (n,q)-bidegrees ||[A]| = (5,1), ||A2]| = (7,1) and ||p|]| = (8,0). Following
[HRW, Example 4.2.3] we apply [HRW, Corollary 2.2.14(1)] to the evenly free map
A — B, to see that

fil}, A —» Tot(fil}, B¥4*T!) = Tot (70, (B¥4*™1))

is an equivalence. For each integer weight w there is a spectral sequence converging
to m, Tot (ngw (B®A'+1)), with Fj-term given by the part of the descent spectral
sequence F1(B/A) that is located in internal degrees n+q > 2w. The d;-differential
preserves this part, so the Ea-term for weight w is given by the part of Eo(B/A)
in the same range of internal degrees. By naturality, this spectral sequence must
collapse at the Fs-term, since the full descent spectral sequence does so. It follows
that
e fill, A — A,
maps the source isomorphically to the subgroup of classes in internal degree > 2w,
and 7, gre, A is isomorphic to the summand in A, consisting of classes in internal
degree = 2w. Hence
T gley A = AN}, A2) @ Faly]

as bigraded algebras, with (n,2w — n)-bidegrees ||A}]| = (5,1), ||A2|| = (7,1) and
[[ull = (8,0). 0

As shown in the proof of [HRW, Corollary 2.2.17], the map S — MU is evenly
free and MU is even, so that fil}, S ~ Tot(7>2,C*(MU/S)) and

gri. S = Tot Hmo, . C*(MU/S) .

Note that the even filtration is symmetric monoidal, so gr}, S is an E., algebra
in graded 2-complete spectra, and gry, is a lax symmetric monoidal functor from
2-complete spectra to gr¥, S-modules.

Convention 2.23. We will simply write ® for ®g.» s when it is clear from the
context that we are in the category of modules over gr’, S.

Construction 2.24. For finite spectra V' with MU, (V') concentrated in even de-
grees, we shall write V for the gr, S-module gr’, V =~ Tot Hra.(C*(MU/S) ® V).
In particular, this defines the modules V' (0), Cn and A(1).

By [GIKR22], we can identify gr¥, S with Ct in the C-motivic homotopy category
SH(C) (cf. [HRW, Remark 1.1.7]). Consequently, the gr’ S-module V corresponds
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to the even MU, MU-comodule MU, (V) under the equivalence of [GWX21, Theo-
rem 1.13(2)]. Moreover, by [GWX21, Remark 4.15], this equivalence is symmetric
monoidal.

Hence, for each k > 0 there is an essentially unique E., gr’, S-algebra V (k) that
corresponds to the commutative MU, MU-comodule algebra MU, /(2,v1,...,vk).
For k = 0 this gives the previously defined gr, S-module V(0) an E,, algebra
structure, even though V(0) = C2 is not a ring spectrum, and for k > 1 it defines
the Eo, algebras V(k), in spite of V (k) not existing as a spectrum. Furthermore,
the isomorphism

(2.4) MU, (A(1)) = MU, /(2,v1) @uu. MU, (Cn)

of MU, MU-comodules exhibits MU, (A(1)) as an MU, /(2, v1)-module in that cat-
egory. It follows that we have an equivalence A(1) ~ V(1) ® Cn, exhibiting A(1) as
a V(1)-module in the category of gr’, S-modules. Hence we have a cofiber sequence

(2.5) SRV (1) L V(1) -5 A(1) L £207(1)
of V(1)-modules, mapping to the cofiber sequence
(2.6) SRV (2) L V(2) -5 V(2) ® Tn -1 5207(2)
of V(Q)—mgdules.
When V and M* are gry, S-modules, we shall write
V.M* =n. (V&M

for the homotopy groups of the graded spectrum V ® M*, keeping in mind that this
is a bigraded abelian group. Note that we are applying Convention 2.23 throughout
this construction.

Lemma 2.25. The MU, MU-comodules MU, (Cn) and MU,(A(1)) do not admit
MU.MU-comodule algebra structures.

Proof. In view of (2.4), it suffices to prove this for MU, (A(1)). Writing MU, (Cn) =
MU, {1, b1}, so that MU, (A(1)) 2 MU./(2,v1){1, b1}, the coaction

v: MU, (A(1)) — MU, MU @yu. MU, (A(1))

satisfies v(b1) = b1 ®1+1®by. If MU, (A(1)) were an MU, MU-comodule algebra,
we would have v(b?) = (b ®1+1®b1)?2 = b3 @1+ by ®2b; +1®b3. Since 2b; =0
and b? = 0 in MU, (A(1)), this amounts to the contradiction 0 = v(0) =b? @1 # 0
in MU, MU @y, MU. (A(1)) = MU.MU/(2, v1){1,b; ) O

Lemma 2.26. There is an equivalence

A(1) ® gri o THH(ko) ~ gr’ . (A(1) ® THH(ko))

mot
of grk, S-modules.
Proof. Let vy: X2V (0)®Cn — V(0)®Cn be one of the (eight) v;-maps with cofiber
one of the four spectra A(1). Since 2 and 1 come from , grk, S, the structure map
V(0)® Cn @ grr, ku — gr’ (V(0) ® Cn @ ku)

is an equivalence. The cofiber of gr’ (v;) ® 1 acting on the left-hand side is A(1) ®
gr ku, and the cofiber of v; ® 1 acting on V(0) ® Cn @ ku is A(1) ® ku. Since
MU, (V(0) ® Cn ® ku) is concentrated in even degrees, it follows as in [GIKR22,
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Proposition 3.18] that the cofiber of grk (v ® 1) acting on the right-hand side is
grr (A(1) ® ku). Hence

A1) @ grr, ku —» gr’ (A(1) @ ku)

is an equivalence. Using Proposition 2.11, it follows that there are equivalences

A1) ® grr, CY(THH(ku/MU)/ THH (ko))
— gri, (A(1) ® C9(THH(ku/MU)/ THH(ko)))

for all ¢ > 0, compatible with the cosimplicial structure maps. Passing to totaliza-
tions, and using that A(1) is a finite gr¥ S-module, we obtain

A(1) ® Tot(gry, C*(THH(ku/MU)/ THH(ko)))
~ Tot(A(1) ® gr’, C*(THH(ku/MU)/ THH(ko)))
~ Tot gr, (A(1) ® C*(THH(ku/MU)/ THH(ko))) .

In view of Definitions 2.3 and 2.16, this establishes the asserted equivalence. ([l

Remark 2.27. A consequence of Lemma 2.25 is that Cn and A(1) are not E; algebras
in gr¥, S-modules. However, by Lemma 2.26, there is an identification of gr’, S-
modules

A(1) @ grer THH(ko) = gry, o (A(1) ® THH(ko)),
where the right-hand side is an Eo, gr}, S-algebra. We therefore use this to equip
the left-hand side with an E., gr}, S-algebra structure. Note that the left-hand side
also has a canonical action of the circle T, but this T-action is not an action through
E. ring maps, because the right-hand side is not equipped with a compatible T-
action. See Remark 4.7 for an algebraic incarnation of this.

Lemma 2.28. Let M* be a gr}, ko-module. Then Cn @ M* ~ gri ku Qgps ko M*
and there is a natural, trigraded, n-Bockstein spectral sequence

(2.7) Ey = (O M*) [n] = m.(M*).
If M* is uniformly bounded below, then this spectral sequence is conditionally con-

vergent. If M* is a grl, ko-algebra, then this is an algebra spectral sequence.

Proof. The Wood cofiber sequence (2.1) induces a cofiber sequence
»hlgrt ko -5 grf ko - gr’, ku Ay 2.0 gri ko

in the category of gr, ko-modules, where c is a map of E., algebras. This follows
as in [GIKR22, Proposition 3.18], since MU, (ko) is concentrated in even degrees
by Proposition 2.12. Hence C'n @ M* and gry, ku ®g 1o M™ are both the cofiber
of n: TMM* — M*.

The Bousfield-Kan homotopy (= descent) spectral sequence for the cosimplicial
E gri, ko-algebra

C*(grey ku/ gre, ko)

is well-known to be multiplicative, and converges conditionally (and strongly) to
7, grs, ko. The normalized Tot-filtration is the same as the n-adic tower

222 g% ko —L B ark ko —5s grf ko,
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so we can equally well call this the -Bockstein spectral sequence. In particular, its
F1-term is

E;I = z%qﬂ-* gr:v ku = (ﬂ-* ngV ku){nq}

for each ¢ > 0, and is concentrated in even internal degrees (= integer weights).
Tensoring over grk, ko with AM™, the Bousfield-Kan spectral sequence for the
cosimplicial gry, ko-module

C*(gra, ku/ gry, ko) ®@grx ko M™

has abutment 7, M*, and is multiplicative if M* is a gr}, ko-algebra. The normal-
ized Tot-filtration is the same as the n-adic tower

D 30/ AR Yty V ARy
and the Ei-term is
Ey =7 (Cne M) [n].

If M* is uniformly bounded below, then its n-adic tower has trivial (homotopy)
limit, which ensures conditional convergence. ([l

Ezample 2.29. The n-Bockstein spectral sequence
Ey = (m, grey ku) [n] = m. grg, ko

has By = Z[n,u], di(u) = 2n and Ey = E = Zn,u?]/(2n) = 7. grl ko. The
motivic (= Novikov) spectral sequence

Es = 7, gri, ko = m.ko

has B> = Zln,u?)/(2n) with [nl = (1,1), [u2]] = (4,0), ds(u?) = 7® and By =
Ey = (Z{1,2u*} ® Z/2{n,n*}) ® Z[u?]. Here A € my(ko) and B € mg(ko) are
detected by 2u? and u*, respectively. The bigraded homotopy rings of the E.
gry, ko-algebras

gry, ko : Cn ® gy, ko ~ gr ku

- :

V(0) ® grr, ko —— V(0) ® Cn ® gr’, ko ~ V(0) @ gr’, ku

- ;

V(1) ® grt, ko —— A(1) ® gr’, ko ~ V(1) ® gr’, ku

are thus
Z[n, uT/ (2n) ZT]
Z/2[n, ] Z2[u]

J

7./2[n] Z/2.
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Definition 2.30. Let vy: 6%V (1) — V(1) be the gr?, S-module map correspond-
ing to the MU,MU-comodule homomorphism vy: X6MU., /(2,v1) — MU, /(2,v1),
so that there is a cofiber sequence
SO0V (1) 42 V(1) -2 V(2) 22 2717 (1)

of gr}, S-modules. The induced map

vy: ROV (1) @ grt, ko — V(1) ® gr’, ko
of gr¥ ko-modules is null-homotopic, and there is a unique class

g9 € V(2), gri, ko
in bidegree [leo|| = (7, —1) with ja(e2) = 7711 We have €3 = 0, since the group
in bidegree (14, —2) is trivial. Then V(2). gri, ko & A(e2) ® V (1), grk, ko, and in
general we have a natural algebra isomorphism
Ae2) @ V(1) M* =V (2),M*

for any gr?, ko-algebra M*.
Corollary 2.31. There are preferred isomorphisms of bigraded Fa-algebras

A(1). g1}, THH(k0) = A(X, A2) & Falp

mot
and

(V(2) @ Cn)y gl o THH(ko) =2 A(e2, N, A2) @ Fa[u] .

Proof. The first isomorphism is a direct consequence of Theorem 2.22, Lemma 2.26
and Remark 2.27. The second isomorphism arises as in Definition 2.30 with M* =
Cn ® gri . THH (ko). O

~ We now apply Lemma 2.28 with M* = V(1) ® grt,.. THH(ko) and Cny @ M* =
A1) ® gry . THH(ko).
Proposition 2.32. The n-Bockstein spectral sequence
(2.8) By = A(1). g0 THH(ko) [1] = V(1) g1} THH(ko)
has differentials
di(A2) =0\
d3(MA2) = n’p

and no further differentials besides those generated by the Leibniz rule. Moreover,
there is no room for n-extensions. Consequently, we can identify

Faln, A1, p]
(AL, (A)? = e nPp, n’p)
as a bigraded Fa-algebra, where ||n|| = (1,1), ||ull = (8,0) and |\{]| = (5,1) and
c eFs,.

V(1). gri .. THH(ko) =

mot

Proof. We deduce these differentials using a small part of the known (implicitly 2-
complete) computation of 7w, THH (ko) from [AHL10, §7]. The unit ko — THH (ko)
and augmentation e: THH(ko) — ko exhibit ko as a retract of THH(ko) in the
category of Eo rings. We write THH(ko)/ko for the complementary summand in
ko-modules. In degrees x < 12 we have H, (ko){o&},0€2,0&3} = H,(THH(ko)/ko),
so there is an 11-connected map X°ksp ~ ko ® (S° U, e” Uy €8) — THH(ko)/ko.
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By [AHL10, Corollary 7.3, Figure 5], the n?-multiple in 7gksp = 711 X°ksp maps to
zero in THH, so m,(THH(ko)/ko) = (Z,0,0,0,Z,Z/2,0) for 5 < % < 11.
We consider the n-Bockstein spectral sequence
By = A, A2) @ Fa[n, p] == V(1) g1} THH(ko)
with [\ = (5,1), [Aall = (7,1), llul = (8,0) and ]| = (1,1), the v;-Bockstein
spectral sequence
E; =V(1),grk . THH(ko) [v1] — V(0). gr:,. THH(ko)

with |Ju1]| = (2,0), the vo-Bockstein spectral sequence
E; = V(0). grk,.. THH(ko) [vg] = 7. gr¥,,. THH(ko)
with |lvg|| = (0,0), and the motivic spectral sequence
By = 7, gr’. ., THH(ko) = m, THH(ko).

In each case the spectral sequence for ko splits off as a direct summand. Taking
this into account, there is no possible source or target for a differential affecting A}
in any of these spectral sequences. Hence \| survives in bidegree (5,1) to detect
the generator of 75 (THH(ko)/ko) = Z. Since mg(THH(ko)/ko) = 0, it follows that
N} in bidegree (6,2) is an infinite cycle that detects zero, i.e., a boundary in one
of these spectral sequences. Since )] is not a v1- or vo-multiple, it cannot be a v;-
Bockstein or vg-Bockstein boundary. Since the motivic Fo-term is readily seen to be
zero in bidegree (7,0), it can also not be a motivic boundary. Hence dy(A\2) = nA]
in the n-Bockstein spectral sequence is the only remaining possibility.

There is no room for other n-Bockstein d;-differentials, so the next differential
to be determined is d3(\j\2) € Fo{n3u}. On one hand, if d3(\;A2) = n3u then the
n-Bockstein Eo.-term (modulo the summand for ko) will be

Fo {1, pnpt 1}
in stems < 12. On the other hand, if d3(AjA2) = 0 then it will be

Fo{ AL, o npes P, i}

in stems < 11, with the 12-stem concentrated in motivic filtrations > 2. In either
case this determines V (1), g’ . THH(ko) in these stems.

The first nonzero v1-Bockstein differential is dy (1) = v1A]. If it were not there,
then v;\] would survive to V(0). grf ., THH (ko) and . gri . THH(ko) to detect
a nonzero class in m7(THH(ko)/ko) = 0, which is impossible. There is no room for
other v;-Bockstein differentials affecting stems < 11, so if d3(A\jA2) = 73 then the

vi-Bockstein Eoo-term (modulo the summand for ko) will be

F2{\}, np 0, vinu}
in stems < 11, while if d3(AjA2) = 0 then it will be

Fo { Ny, m, 7 1% s vimpe}
in these stems. In either case the 12-stem is concentrated in motivic filtrations > 2,
and these expressions determine V (0). gr . THH (ko) in this range of stems.

In the vp-Bockstein spectral sequence, there is no room for differentials on (A}
and) nu. Multiplying by 7?2, it follows that 73u is an infinite cycle (but possibly
zero). Since it is not a vo-multiple, it cannot be a wvg-Bockstein boundary, and
since it is in motivic filtration 3, and the motivic Fs-term is now known to be
zero in bidegrees (12,0) and (12,1), it cannot be a motivic d,-boundary for r > 2.
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Hence if d3(\j\2) were zero, then n®u would survive to V(0), gr,, THH(ko) and
7 gl o THH(ko) to detect a nonzero class in 3 (THH(ko)/ko) = 0, which is
impossible.

This contradiction shows that dz(M;A2) = 73, as claimed. This leaves the
n-Bockstein E4-term

A(X) @ Fa[n, p]
(AL DPR)

There is no room for further differentials, so this is also the E-term. The only
possible multiplicative extension in the abutment V (1), gr¥,,, THH(ko) is the one
stated, with A} - \] € Fo{n?u}. O

Corollary 2.33. We can identify

FQ [777 )‘/17 :U/]

V(2)« gri o THH(ko) =2 A(e2) ®
(2): 8tmor THH(ko) = Aea) © 7 ie — i i)

as a bigraded Fy-algebra, for some ¢ € Fy.

Proof. Here e is chosen as in Definition 2.30 with M* = gr} .. THH (ko). O

mot

Remark 2.34. We will show in Proposition 4.11 that, in fact, ¢ = 1 and A\}-\| = n°p.
We can therefore give the complete computation of V(1) gr , THH(ko), including
its multiplicative structure, in Corollary 4.12.

3. DETECTION

The classical mod 2 Adams spectral sequence
AdEy(X) = Extqv (Fo, Ho (X)) = m.(X3)

is strongly convergent for bounded below spectra X with H,(X) of finite type. Its
Fs-term can be calculated as the cohomology of the normalized cobar complex

0 — H.(X) 2 AV 0 B (X) 2 4V 0 A @ Ho(X) —> ...

Here AV = cok(Fy — AY), and we will use the notation [a]m = a@m € AY@H,(X).
Recall that dY is given by the normalized AY-coaction on H,(X), while di also
involves the coproduct 1: A4Y — AY @ AY.

When X = A(1)[ij] as in Notation 2.15, the Adams FEs-terms

AMEy (A(1)[if]) = Exta(H*(A(1)[ij]), F2) = m.A(1)[ij]

are readily calculated in a finite range using Bruner’s ext software [Bru93, BR]).
The results in stems * < 28 are shown in Figure 3.1, with the usual (stem, Adams
filtration) bigrading. Lines of bidegree (0,1), (1,1) and (3,1) (dashed) indicate
multiplications by hg, h1 and hs, respectively. In each case, the three 1-cochains

(3.1) €11, G+l and (&)1 + (€6 + [€1)6

in AV ® A(1)Y are cocycles, but not coboundaries, hence represent nonzero classes
in AEy(A(1)[ig]) in bidegrees (3,1), (5,1) and (6,1), respectively. For sparsity
reasons, these survive to A*4E,(A(1)[ij]), and detect nonzero homotopy classes in
stems 3, 5 and 6, denoted

v , w and vy

in 7. A(1)[ij], for each 4, € {0,1}. Observe that v is only defined modulo v?, and
209 = 0 if 4 = 0 while 20y = 2 if 4 = 1.
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FIGURE 3.2. vy-Bockstein Foo = Extpp,p(BP., BP./I2)

Lemma 3.1. In the Adams spectral sequences for the A(1)[ij] the differentials
originating in stems x < 24 are all zero. The class vk € ma3(S) maps to zero in
7T23A(1)[Z]]

Proof. This mostly follows from sparsity and the module structure over the Adams
spectral sequence for S, using that da(hy) = hoh3 maps to zero under S — A(1).
Only the Adams do-differential from bidegree (¢t — s,s) = (19,2) requires special
attention, but the Novikov Ea-term (see Figure 3.4) shows that m9A(1) has order
22 = 4, so there is no room for such an Adams differential.

In each case, the map 29E5(S) — A4FE,(A(1)) of Adams Fo-terms takes the
bidegree (23,5) class hog detecting vi to zero, as can be checked with ext, and
the target has no classes in stem 23 and Adams filtration > 6. It follows that
vk — 0. ]

To calculate the Novikov Fs-term
Nov B, (A(1)) = Extyu,mu(MU,, MU, A(1)) = Extgp, gp(BP., BP.A(1))
for these spectra, we can note that BP,A(1) = BP,/I2{1,#1} and use the long
exact sequence obtained by applying Extpp,sp(BP., —) to the BP,BP-comodule
extension
0 — BP./I; — BP.A(1) — %?BP. /I, — 0
classified by
hio = [t1] € Extgp,pp(BP., BP.)
in (stem, Novikov filtration) bidegree (1,1). The groups
EXth*Bp (BP*, BP*/IQ)
are calculated in a range as in [Rav86, §4.4, p. 162], starting with the isomorphism
Ext 4(F2,Fa) = Extpp,pp(BPs, BP./Ix)
that doubles internal degrees, followed by the v,,-Bockstein spectral sequences

El = EXth*Bp (BP*, BP*/In+1) [Un] - EXth*Bp (BP*7 BP*/In)

for descending n > 2. The vo-Bockstein spectral sequence Eo-term for BP, /15 in
stems * < 26 is shown in Figure 3.2, corresponding to [Rav86, Fig. 4.4.23(c)]. Lines
of bidegree (1,1), (3,1) and (7,1) (dashed) indicate multiplications by hig = [t1],
hi1 = [t3] and hi = [t]], respectively. (Some) hidden extensions are shown in
black. We emphasize the relation

(3.2) ’Ughi)l = vghifo ,
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FIGURE 3.4. vy-Bockstein E, = Extgp,sp(BP., BP.A(1))

which follows from voh12 = v3h1g, which in turn follows from the formula ng(v3) =
v3 + vat] + v3t; mod Iy for the right unit in BP.BP, see [Rav86, 4.3.1].
Alternatively, one can start with the internal-degree-doubling isomorphism

Ext4(H*(C2),Fy) = Extgp,gp(BP., BP./I0{1,t1})
and calculate the v,-Bockstein spectral sequences
E, = Extpp,pp(BP«, BP./I,,11{1,t1}) [vn] = Extpp,pp(BP«, BP./L,{1,#1})
for descending n > 2. The Adams Es-term for C2 in stems x < 16 is shown in
Figure 3.3, and the resulting vo-Bockstein Eo.-term for BP,/I2{1,¢;} = BP,.A(1)

in stems * < 26 is shown in Figure 3.4. Again, (some) hidden extensions are shown
in black.

Lemma 3.2. In the Novikov spectral sequences for the A(1)[ij] the nonzero differ-
entials originating in stems x < 22 are

d3(v3) = hiw and ds(v3) = voh? w .

In the cases A(1)[10] and A(1)[11] there is a nonzero ds from bidegree (t — s,s) =
(23,1).
In every case dz(v3) =0 and ds(v3) # 0.

Proof. This follows by comparison of the order in each stem of the Adams E.-
term, which equals that of the abutment 7, A(1)[ij], with the order in each stem of
the Novikov Fa-term. In particular, 2 A(1) = Z/2 implies that v3 must support a

nonzero differential. Similarly, the group w84 (1) has order 22, so v3 must support
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a nonzero differential. The groups ma2A(1)[ij] have order 23 = 8 for i = 0 and
order 22 = 4 for i = 1, while the groups m23A(1)[ij] have order 2¢ for i = 0
and 23 for 4 = 1. To account for this, the Novikov differential d3 from bidegree
(t—s,8) =(23,1) to (22,4) must be nonzero when i« = 1. Moreover, there must be
a rank 1 Novikov differential from the 24-stem to the 23-stem. By hi;-linearity, it
cannot originate in bidegree (24,2), hence it is either a ds3 or a ds starting on vj.
Inspection of the Novikov FEs-term for S in [Rav86, Figure 4.4.45] shows that
VR € ma3(S) is detected by a generator x of the Z/8 in (stem, Novikov filtration)
bidegree (23,5) of N°VE5(S). The unit map S — A(1) takes this generator = to the
generator y of the Z/2 in the same bidegree of N°VEy(A(1)), see Figure 3.4. Since
vk maps to zero in ma3A(1) (by Lemma 3.1) it follows that this nonzero class y is
a boundary, and so ds(v3) = y # 0 is the only possibility. In particular, we must
have d3(v3) = 0. O

The circle group T acts freely on S € $2 C --- € §* = ET, and we can form the
“approximate homotopy fixed point” spectrum F (5%, THH(ko))T, as in [BRO5, §2]
and [AKACT, §7]. There is a cofiber sequence

(3.3) ¥ 2THH(ko) — F(5%, THH (ko))" - THH(ko) =+ ¥ ~! THH (ko)
where o is induced by the T-action on THH(ko), and a commutative diagram

S —— TC™ (ko) —— F(S3, THH (ko))"

| )

ko THH (ko) .

By truncating the homotopy fixed point spectral sequence
E? = A(1), THH(ko) [t] = A(1), TC™ (ko),

where t is in stem —2, we obtain a two-column approximate homotopy fixed point
spectral sequence

(3.4) E? = A(1), THH(ko){1,t} = A(1).F(S3, THH(ko))",

which is really just the long exact sequence in A(1)-homotopy associated to the
cofiber sequence (3.3). We have the following analogue of [AR02, Proposition 4.8].

Proposition 3.3. The unit images in A(1), TC™ (ko) and A(1),F (5%, THH (ko))"
of the classes v, w and ve € T, A(1) are detected by

t\] , thy and tu,

respectively, in the homotopy fixed point and approximate fized point spectral se-
quences.

Proof. By naturality, it suffices to prove this in the approximate fixed point case.
The unit map takes the infinite cycles in (3.1), detecting v, w and vq in 7, A(1), to
the 1-cocycles

(3.5) [E11®1) + (G ®1)
Gl )+ @G+ [d(E®l)
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in A @ A(1)V ® H.(F(5%, THH(ko))"). We claim that these are not in the image
of the coboundary d? from the O-cochains

A1) ® H (F(S3, THH(ko))"),

hence represent nonzero classes in *4E.(A(1) ® F(S%, THH(ko))T), detecting the
(nonzero) images of v, w and vy in A(1),F(S3, THH(ko))".

Recall that H, (ko) = Fy[¢f,£2,&3,...], H, THH(ko) = H,(ko) ® A(c€t,0€2) ®
Foloés] and A(1)Y = Fal€1, &/ (£4,€2). In the long exact sequence associated

o0 (3.3), the map o has kernel Fo{1, ¢}, c€2} in degrees < 7, and the image of i
consists of t-multiples. In the extension

0 — A(1)Y ®im(i) — A1) ® H.F(S%, THH(ko))" — A(1)" @ ker(c) — 0

the coboundaries on classes in A(1)Y @ im(i) will lie in AY ® A(1)Y ® im(i), hence
do not contribute any terms of the form [a](m ® 1). The classes 1, o€} and o2 are
AY-comodule primitive in ker(c), hence lift to classes in H,F(S%, THH(ko))" that
are AY-comodule primitive modulo im(7), so also the coboundaries on (the lifts of)
A1) @ Fo{1, 0}, 062} do not contain any terms of the form in (3.5). This proves
our claim.

It remains to be determined where in (3.4) the (nonzero) unit images of v, w
and vy are detected. Recall that A(1), THH(ko) = A(N, A2) ® Fa[u] is equal to
Fo{1, A}, A2, u} in stems < 8. The composite map

A1) — A1) ® F(S%, THH (ko))" -2+ A(1) ® THH(ko)

factors through A(1) ® ko ~ Fa, so the images of v, w and v in A(1), THH(ko)
are all zero. (This was obvious for v and vy.) Hence the nonzero images of v, w
and vo must all be detected by ¢t-multiples in the approximate fixed point spectral
sequence, and for degree reasons the only possible detecting classes are tA\], t\s and
tu, respectively. (I

Since MU, A(1) is even, the motivic spectral sequence

(3.6) By =mA(l) = . A1)
can be identified with the Novikov spectral sequence
Nov B, (A(1)) = Extgp,sp(BP., BPLA(1)) = 1. A(1),

as in [HRW, Corollary 2.2.17]. The spectral sequence must collapse in stems < 10,
for sparsity reasons, so the three classes denoted hiy, w and vy in Figure 3.4 must
detect v, w and vy in m,A(1), respectively. We can also identify m,V (1) with
Extpp,pp(BP«, BP./I5), with classes hi; and vy as shown in Figure 3.2, but in this
case there is no Novikov spectral sequence to 7.V (1), since the spectrum V(1) does

not exist.

Corollary 3.4. The classes h11, w and ve in . A(1) map by the unit to classes in

A1) grer TC™ (ko)

detected by tN|, tha and tu, respectively. Likewise, the images of h11 and w in
7. (V(2) @ Cn) are detected by t\} and thy in (V(2) @ Cn), gri.. TC™ (ko).
The classes h11 and vy in W*V(l) map by the unit to classes in

V(1)s griner TC™ (ko)
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detected by t\, and tu, respectively. Likewise, the image of hy in m.V(2) in
V(2). grios TC™ (ko) is detected by t\].

In each of these cases, for Ve {V(1),A(1),V(2),V(2) ® Cn}, a unit image de-
tected by a class in V , gr} o TC™ (ko) is also detected in V. gri, o F(S%, THH(ko))T,
by the class with the same name.

Proof. Naturality of the motivic spectral sequences with respect to

q: g TC™ (ko) =~ (grh o THH(ko))"" — F(S%, gr}, o THH(ko))"

mot

shows that it suffices to prove these assertions in the case of the approximate ho-
motopy fixed points. The motivic spectral sequence

By = A(1).F(S%, gri0 THH(k0))™ = A(N}, Ao) @ Fa[] {1, 1}
= A(1),F(S%, THH(ko))"
is concentrated in filtrations 0 < % < 2 and integer weights, hence collapses, and
the result follows from Proposition 3.3. The claim with coefficients in V(2) ® Cn

follows by passing to cofibers for multiplication by vs.
The FEs-term of the motivic spectral sequence

V(1).F(S%, grio THH(ko))" = (V(1). gry,o THH(K0)) {1, ¢}
= V(1).F (5%, THH(ko))"

was dgtermined (up to the coefﬁcientic € Fy) in Propositiog?.?;?. Since h11 and vo
in m,. V(1) map to hy; and vy in 7, A(1), the claim with V(1)-coeflicients follows
from the commuting square

V(1) : A(1)

J J

V(1) @ F(S3, g, THH(ko))T —25 A(1) @ F(S2, grt, THH(ko))T .

Again, the claim with V(2)-coefficients follows by passing to cofibers for multipli-
cation by vs. ([

In Section 5 we shall calculate the syntomic cohomology A(1), grk .. TC(ko),
and in Section 6 we shall use the associated motivic spectral sequence to calculate
A(1)« TC(ko). The following lemma and corollary will be used to show that the
ds-differentials in this spectral sequence propagate in a v3-periodic pattern. Recall
from [Lan73, Proposition 2.11] that

Fa[va] = Extdp_pp(BP4, BP./(2,v1)) C BP./(2,v1).

Lemma 3.5. Let End A(1) = F(A(1), A(1)) be the endomorphism S-algebra of any
one of the spectra A(1)[ij]. The induced BP,.BP-comodule BP,-algebra structure on
BP. End A(1) descends to a BP.BP-comodule BP, /(2,v1)-algebra structure. Hence
the Eo-term of the Novikov spectral sequence

Nov B, (End A(1)) = Extgp, gp(BP., BP, End A(1)) = 7, End A(1)
is an algebra over Extgp,p(BP., BP./(2,v1)) D Falve]. In particular,
do(v3) =0 and d3(vy) =0

in this Novikov spectral sequence. Moreover, 4 -id = 0 in mo End A(1).
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Proof. To see that the BP,-algebra structure in BP,BP-comodules descends to a
BP./(2,v1)-algebra structure in that category, it suffices to check that the homo-
morphism BP, — BP, End A(1), induced by the S-algebra unit map, sends 2 and v,
to zero. This can be verified using the map of Adams spectral sequences

AdE,(BP) = Ext 4(H*BP, Fy)
— Ext4(H*(BP ® End A(1)),Fy) = Y Ey(BP @ End A(1)) .

Standard minimal resolution calculations, which can be obtained from Bruner’s
ext program [Bru93, BR], show that multiplication by hg and (hg, h1, —) both act
trivially from bidegree (0,0) on the right-hand side, and that there are no classes
in stems 0 or 2 that have Adams filtration > 2. The last fact also implies that
4-id =0 in mo End A(1), and a closer inspection shows that 2 -id # 0 in each case.

The functor Extgp,pp(BP., —) is lax symmetric monoidal, so it follows that
Nov By (End A(1)) is an Extgp,gp(BP.«, BP./(2,v1))-algebra. In particular, it is an
Fa[vs]-algebra, with vy acting centrally and 1+ 1 = 0. Hence da(v3) = da(v2) - v2 +
vg - da(v2) = 0 and d3(vg) = d3(v3) - v3 + v3 - d3(v3) = 0. O

The tautological left action of End A(1) on A(1) induces a left action of the
Novikov filtration of End A(1) on the Novikov filtration of A(1). The latter is
equivalent to the even filtration fil}, A(1), since MU, A(1) is concentrated in even

degrees. Hence fil,, End A(1) also acts on the convolution product filtration
fil, A1) ®g1x_ s fil},,; TC(ko) ,

mot

and induces a left action of the Novikov spectral sequence for End A(1) on the
motivic spectral sequence converging to A(1). TC(ko).

Corollary 3.6. The differentials in the motivic spectral sequence
Ey = A(1),. gri . TC(ko) = A(1). TC(ko)
satisfy ds(v3 - y) = v - d3(y) for ally € Es.

Proof. This follows from the Leibniz rule d3(v5 - y) = d3(v3) - y + v - d3(y) for the
pairing of spectral sequences

Nov By (End A(1)) @ A(1), grlo, TC(ko) — A(1). gl TC(ko),
since d3(v3) = 0 by Lemma 3.5. O
4. PRISMATIC COHOMOLOGY
We consider the V(2)-homotopy T-Tate spectral sequence
" E(T) = V(2). g}, THA(Ko) [
= V(2). gr} . TP (ko)
with ¢ in stem —2, and the V(2) ® Cn-homotopy T-Tate spectral sequence
E*(T) = (V(2) ® C1). grinee THH(ko) [t*]
= (V(2) ® Cn). g TP (ko).

They can be reindexed as cohomologically graded periodic t-Bockstein spectral
sequences, in which case EQT(T) and d?" correspond to E, and d,. However, we
shall need to make a comparison with similar Cs-Tate spectral sequences, for which
our indexing is convenient.

(4.2)
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Theorem 4.1 (Prismatic cohomology modulo (2, vy, v2) of ko). The V(2)-homotopy
T-Tate spectral sequence (4.1) is an algebra spectral sequence with E?-term

- Foln, 1, u]

EX(T) = A(e2) ® ® Fy[tt!
N A R
and differentials
d*(t71) =n d*(e9) = tu
do(t7%) =t d°(t7IN) = 2 (\)? = 0P,

leading to R
E>(T) = Fo{1, X}, (£°A1)%, X} } @ F[t+].
Hence there is a preferred isomorphism
V(2)* gr?not TP(kO) = ]F2{17 1, 7727 /\/1} ® Fa [ti4] )
where 1, 9, n%, N, and t** in bidegrees (0,0), (1,1), (2,2), (5,1) and (F8,0) are
detected by 1, 2N}, (t2X))2 = t*n?u, Ny and t™*, respectively.
Theorem 4.2 (Prismatic cohomology modulo (2,7, v1,v2) of ko). The V(2) ® Cn-

homotopy T-Tate spectral sequence (4.2) is a module spectral sequence over (4.1),
with E?-term

E2(T) = Ae2) ® AXD{L, Ao} @ Falu] @ Fo[t*]

and differentials

d*(e9) = tp
do(t™) =2\ d®(t72) = t\}
dO(t7 o) = 2N Ay d®(t72 ) = tA| Ay
d3(t73) =ty dB(t7IN) = N Ay

leading to R
E®(T) = AAD{L A2} @ Fo[t™4].
Hence there is a preferred isomorphism
(V(2) © T). grines TP(k0) 2 A {1, A2} © Faft*4],
where 1, N}, Ao, NjA2 and t*% in bidegrees (0,0), (5,1), (7,1), (12,2), and (F8,0)
are detected by the classes in the E>°-term with the same names.

The proofs of these theorems will occupy the remainder of this section. By
Corollary 2.33, we can identify the E2-term in (4.1) as

~ FQ[Th)\/laM]
E?(T) = A(e9) ®
(1) = Me2) © o2 = o i)

where we have yet to determine the coefficient ¢ € F.

® Fy[tt!],

Proposition 4.3. The spectral sequence (4.1) is multiplicative and has differentials
() =n d*(n) =0 d*(X}) =0
d*(e9) = tu and d*(p) = tnp.
Consequently, we can identify
EY(T) = Fa{1,tX1, M, 0} @ Faft]
with N = n3ey.
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Proof. The first claim follows as in [HR, §6.7], because V(1) ® grf,,, THH(ko) is a
naively T-equivariant (E.) gr’, S-algebra. Using the T-equivariant attaching maps
of the standard T-CW complex structure on S>° = ET, we compute differentials
d*(t71) =1 and d*(n) =0
as in [Hes96, Lemma 1.4.2].
We know that d?(t\;) = 0, because t\] detects v € {hi;} by Corollary 3.4.
Consequently, d?(\}) = 0 by the Leibniz rule and the fact that - \j = 0.

To show that dao(ea) = tp we apply the graded analogue of [BR22, Proposi-
tion 2.3] (a variant of [BG95, Lemma 2.2]) to the smash product of cofiber sequences

»4=1V(1) ® THH(ko) — X80V (1) @ F(S%, THH(ko))T % £6:07(1) © THH (ko)

%271V (1) @ THH(ko) — V(1) ® F(S3, THH(ko))T —— V(1) ® THH (ko)

: ; :

$-2-17(2) ® THH(ko) — V(2) ® F(S%, THH(ko))" —>— V/(2) ® THH(ko) .

Starting in the upper right-hand corner, the unit X6°1 lifts over the connecting
map jo to €9 in the lower right-hand corner and maps under the connecting map o
to d?(ez) in the lower left-hand corner. This is the same as the result of lifting to
¥6:91 at the top, mapping to vy in the center, lifting to tu at the left, and pushing
to tu in the lower left-hand corner.

In particular, tu is a d?-cycle, and the Leibniz rule implies that d?(u) = tnu.
This leads to the E*-term shown in Figure 4.1. [

Proposition 4.4. The classes t** and N| are permanent cycles in the spectral
sequence (4.1). Moreover, there are differentials

d®(t72) = t\} and — d°(t7'\)) = c-t*n*u,
for some ¢ € Fa. The spectral sequence (4.1) collapses at ES(T) = E°°(T).

Proof. We know that £\] is an infinite cycle in (4.1), because it detects v € {h11} in

V(2)x grio. TC™ (ko) by Corollary 3.4. There is a commutative square of homotopy
fixed point and Tate spectral sequences, for the groups T and Cs, converging to

- h J—

V(2), gri, TC™ (ko) —— V(2), gr’.., THH (ko)C>

V(2), gt TP(ko) —— V(2), gr*.., THH(ko)'C? ,
with E2-terms

V(2). gri o, THH(ko) ® Fa[t] ——— V/(2), gr,. THH(ko) ® A(up) ® Falt]

" |

V(2). gt o THH(ko) @ Fa[t+!] —— V(2), grt o THH(ko) ® A(u;) ® Fo[t*!].
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FIGURE 4.1. T-Tate E4(T) = V(2). gr*,,, TP (ko)

In the two right-hand cases, u; has (stem, motivic filtration) bidegree |lui| =
(—1,-1).

We know that v € {hy;} maps to zero in V(2), grf,. THH(ko), because the
target is zero in the relevant bidegree by Corollary 2.33. A chase in the diagram

S

TF (ko) THH(ko)2 — & THH(ko)

FJ 1N Jfl :(Pgﬂl‘

R"=can

TC™ (ko) — " THH(ko)"®> — =5, THH (ko)

QJ Fh

F(S%, THH (ko))" ——~—— THH ko),

similar to the proof of [AR02, Theorem 5.5], shows that tA] must be boundary
in the V(2)-homotopy Cs-Tate spectral sequence. There is no earlier Cy-Tate d"-
differential hitting ¢t\], for 2 < r < 5, since 7 is an infinite cycle. Consequently,

do(t72) = t\}
in the V(2)-homotopy Cy-Tate spectral sequence, and therefore also in the V(2)-
homotopy T-Tate spectral sequence, cf. Figure 4.1. To complete the proof, we use
the Leibniz rule to deduce that d®(t=*\}) = d®(t\] - t=2) = (t\])? = c - t?nu, that
dS(t=%) = t\y 72 +¢72 . ¢t\] = 0, and that d5(¢*) = 0. All later differentials are
zero, because the target groups are trivial. ([l
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Remark 4.5. The coefficients denoted ¢ € Fy in Proposition 2.32, Corollary 2.33,
and Proposition 4.4 are all the same. We determine that ¢ = 1 in Proposition 4.11.

Even with incomplete information about (\})? and d®(t=*)\}), we can extract
the following computation.

Corollary 4.6. We can identify

Fo{1} forn =0,

Fo{t?\|}  forn=1,
V(2)n grios TP (ko) 22 < Fo{t*n?u}  forn =2,

0 forn =34,

Fo{\} forn =75.

Moreover, if c =0 then

Fo{n?u} for n =6,

V(2)n grie: TP (ko) =
(2)n 8Tmot (ko) {]Fz{t—l)\ll} forn =71,

whereas if c =1 then
V(2), gr%o, TP (ko) = {o forn=6,17.
These repeat 8-periodically, via multiplication by t*2. O

We now move towards computing the spectral sequence (4.2). By Corollary 2.31,
its E2-term has the form asserted in Theorem 4.2.

Remark 4.7. In general the differentials in (4.2) do not satisfy the Leibniz rule.
This is commensurable with Remark 2.27.

Proposition 4.8. The spectral sequence (4.2) is a module over the spectral se-
quence (4.1). There are differentials

Ble)=tn ,  d@E2)=tN,  and  dBE) =t

in (4.2), and multiplication by t** and N commutes with all differentials in this
spectral sequence.

Proof. The unit map V(2) — V(2) ® Cn is a map of V(2)-modules, so (4.2) is a
module spectral sequence over (4.1), and the map from (4.1) to (4.2) respects this
module structure. This implies that multiplication by the infinite cycles t+% and
A} will commute with each differential in (4.2). The module structure also implies
that d?(eq - 1) = tp- 1 — 9 - d?(1), so that d?(e2) = tu in (4.2). It follows that

EYT) = AN, ho) @ Fo[t*1].

See Figure 4.2. B -
We showed in Corollary 3.4 that the images in (V(2) ® Cn), gr¥ . TC™ (ko) of

mot

v € {h11} and w are detected by t\| and t\y, respectively, so the same holds
in (V(2) ® Cn). gri,,, THH(ko)"“2. We also know that the images of v and w

are trivial in (V(2) ® On). gry,o THH(ko), so this means that classes detected by

tA\] and tA map trivially to (V(2) ® Cn). gk, THH(ko)*“2. It follows that t\}
and tAy must be hit by differentials in the V(2) ® Cn-homotopy Co-Tate spectral
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FIGURE 4.2. T-Tate E4(T) = (V(2) ® Cn). gr*,,, TP (ko)

sequence. By examination of bidegrees, the only possibility is that d®(t=2) = t\]
and d8(t=3) = tAy. Since the map of spectral sequences converging to

F': (V(2) @ Tn). gty TP (ko) — (V(2) © C). gy, THH(ko)'C>

is injective in the relevant bidegrees, we also have the stated differentials in the
spectral sequence (4.2). O

Proposition 4.9. There are differentials
dO(t7h) = 2\] dO(t71 ) = 2N \e
dO(t72 o) = tA] My d®(\2) =0
in the spectral sequence (4.2).

Proof. We must have d°(t=3) = 0 in the spectral sequence (4.2), since t~3 survives
to its E®-term by Proposition 4.8. By Proposition 4.4 we have d®(t~2?) = t\] in the
spectral sequence (4.1). Using the module structure of (4.2) over (4.1), we deduce
that dS(t75) = dS(¢t72-¢t73) =\t 2 +t72.0=t"2\] and d°(t 7 !) = t*-d°(t5) =
2.

Since t\g is a d®-boundary by Proposition 4.8 it must be a dS-cycle, which implies
that dS(t7 X)) = dO(t72 - tha) = tA] - tha + 172 -0 = t2\) o,

The fact that t\y is a dS-boundary also implies that | - tAy = A\ must
be a d"-boundary for some r < 8. Since t73\] = t=* . )] is a d®-boundary, it
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cannot be the source of this d"-differential, so the only remaining possibility is that
dG(tiz)\Q) = t)\/1>\2
Using the module structure over the spectral sequence (4.1), we can also conclude

that d®(Ay) = d®(t? - £72Xg) = £7] - 172X + 7 - EA A2 = 0. O
Corollary 4.10. There are isomorphisms
Fo{1} forn =0,
7 = 0 forn=1,2,3
V2®CnrfnoTPkog ]
(V(2) ® Cn)n grimor TP (ko) Fo {0} form =4,
RN} forn=5,

and these repeat 8-periodically, via multiplication by t+2.
Proof. This follows directly from Proposition 4.8 and Proposition 4.9. O

Proposition 4.11. We have the following results:
(a) The multiplicative relation
(A)? = n’p
holds in the abutment V (1), gri .. THH(ko) of the n-Bockstein spectral se-

mot
quence (2.8).
(b) There is a nonzero differential

d°(t7IA) = 0P

in the V(2)-homotopy T-Tate spectral sequence (4.1). Hence

V(2), grio. TP(ko) = {0 forn € {6,7},

repeating 8-periodically via multiplication by t**.

¢ e unit images of n and n* are detected by and t*n”p, respectively,
Th it i dn? detected by t2\) and t'n? tivel
in the spectral sequence (4.1).

(d) There is a nonzero differential
d3(tTIN) = 3N Ay
in the V(2) ® Cn-homotopy T-Tate spectral sequence (4.2). Hence

— — 0 forn =6,
V(2) ® Cn), grr o TP(ko) &
(V(2) & T g5ty TP(K) {Mm A

repeating 8-periodically via multiplication by t**.

Proof. The V(2)-module cofiber sequence (2.6) induces a long exact sequence

> (V(2) @ On)pa grit TP (ko) —2 V(2), g1, TP (ko)

mot

L V(2)na1 g TP (ko) == (V(2) ® Cn)pgr grit! TP (ko) —» ... .

mot

By case n = 0 of Corollary 4.6, the cases n € {0,1} of Corollary 4.10, and the
fact that i(1) = 1, we deduce from exactness that V(2), gri,. TP(ko) = 0 for
n = —1 mod 8. Referring back to Proposition 4.4, this implies that t=1\} in stem
7 = —1+ 8 cannot survive to the E>-term of (4.1), so the differential d®(t=*\}) =
t2(\])? = ¢ - t*n*u must be nonzero. Hence ¢ = 1, which proves that (\})? = n’u
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and d®(t7*)\}) = t?n?u. This means that the E°°-term of (4.1), and its abutment,
must be trivial in stems 6 and 7.

By the cases n € {1,2} of Corollary 4.10, and exactness, it also follows that n
and 7% generate V(2), gr’ ., TP(ko) & Fy for n = 1 and 2, hence are detected by
the only classes in stems 1 and 2, namely t2)\] and t*n?pu, in the E>-term of (4.1).

By item (b) and exactness, it follows that (V(2) ® Cn), gtk TP(ko) is 0 for
n = 6 and Fy for n = 7. Hence t?’)\’l)\g in stem 6 cannot survive to the E°°-term
of (4.2), and since d®(\y) = 0 by Proposition 4.9 the only possible source of a
differential killing it is t=1\]. Hence d®(t~1)\}) = t3A{ A2, and the lone surviving
class in stem 7 of the E*-term of (4.2) is As.

In summary, the homomorphisms in the long exact sequence above are given,
at the level of detecting classes, by n: 1 — 32X}, n: t2A] — t*n%u, i: 1 — 1,
it A= A g N e = 1% and G Ag = ML O

Corollary 4.12. We have a preferred isomorphism of bigraded Fa-algebras

T Fa[n, A1, 1]
V(1).gri o, THH(ko) = .
(- 8t THH(O) = G300 )
We can now prove Theorems 4.1 and 4.2.

Proof of Theorem /.1. By Corollary 4.12, the spectral sequence (4.1) has E%-term:

~9 - c F2[77? /\/17 M]
(4.3) BT = Me) ® oo 0 = )

The differentials follow from Propositions 4.3, 4.4 and 4.11 leaving
E4(T) = EG(T) = ]FQ{]-at)‘/h >‘/17 (>‘/1)2} ® FQ[ti2]

® Fy[tEl].

and

EOO(T) = F2{17t2 ,1’ (tz)‘ll)2a )‘,1} ® FQ[ti4] )
with 1, n, n%, \i and t** being detected by 1, t2\1, (£2X})?, N} and t*4 respectively
in the E°°-term. [l

Proof of Theorem /.2. By Corollary 2.31, the spectral sequence (4.2) has E2-term:

FQ [77? A/17 /’L]
(AL, (AD)? + nPw)
The differentials follow from Propositions 4.8, 4.9 and 4.11, leaving

EX(T) = AAND{L, Ao} ® Fo[t™]

(4.4) E(T) = Ales) ® ® Fo[tT1].

and
E>(T) = AND{L Ao} @ Fo[tH]. O

5. SYNTOMIC COHOMOLOGY

We shall now calculate the syntomic cohomology modulo (2,v1) and (2,7, v1)
of ko (cf. Definition 2.14). We first carry out these computations in V(2)- and
V(2)®Cn-homotopy, and then use vo-Bockstein spectral sequences to lift the results
to V(1)- and A(1)-homotopy.
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By restricting the T-Tate spectral sequences (4.1) and (4.2) to the second quad-
rant, we obtain the V(2)-homotopy T-homotopy fixed point spectral sequence
E*(T)

V(2)« grinor THH (ko) [¢]
A

Faln, N, u]
(A1, (AD)? + 02 )
= 7(2)* grr o TC™ (ko)

T-

(5.1) (e2) ® ® Falt]

and the V(2) ® Cn-homotopy
E*(T) = (V(2) ® C1). grino THH(ko) [¢]

(5.2) = Ale2) ® AN {1, A2} ® Falu] @ Falt]
= (V(2) ® Cn)u grinoy TC™ (ko).

homotopy fixed point spectral sequence

The former is an algebra spectral sequence, and the latter is a module spectral
sequence over it. They can be reindexed as cohomologically graded ¢-Bockstein
spectral sequences, but the current indexing is the one inherited from the homo-
logically graded Cs- and T-Tate spectral sequences. See Figures 5.1. and 5.2.

Proposition 5.1. There is an isomorphism
V(2)x grinoe TC™ (ko) 22 Fa[t]{1, 42X, A7, (\)*}
@ Fa{tXy, (tA)%}
& Fa[n]{n, n'e2}
& Fal {1, nit, n* i, Ny}
with fi = u+ nee, where (N))? = n?p # 02, n-n*i = ntey and p? = p?.

Proof. The map of spectral sequences induced by can: TC™ (ko) — TP (ko) is given
at the E%-terms by inverting ¢, so the differentials in (4.1) from Theorem 4.1 lift to
differentials

d*(t) = t*n d*(e9) = tu
&) = 12X, dO(N) = ()
in (5.1). Moreover, n, \] and ty are infinite cycles. Some bookkeeping shows that
EY(T) = F[t*[{1, A}, N}, (A])?}
® Faln){n, n"e2}
& Fal {7, nfi, n* i, M}
with i = i+ nes and 1 - 7%k = ntey, and
E%(T) = E>(T) = Fo[t']{1, )}, X1, (\)*}
® Fo{tAy, (1X))*}
@ Faln){n,n"e2}
& Fa[){ i, i, n° i, Ay} O
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FIGURE 5.1. T-homotopy fixed point spectral sequence converging
to V(2). gri o TC™ (ko)
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Proposition 5.2. There is an isomorphism

4
(V(2) 0. 5500 TO (k0) F?iﬁﬁ;)’“‘} © AL A)

D FQ{tQ t/\z, tg)\/ Ao, t2)\/ Ao, t\! )\2}

Proof. The differentials in (4.2) from Theorem 4.2 lift over the canonical map to
differentials d?(e2) = tu (repeating t-periodically) and

d®(t?) = t5\) d°(t?) =%\
d®(t2 o) = PN \o d®(t*Xg) = N \o
dé(t) = 5y dB(3N]) = "N Ao

(repeating t*-periodically) in (5.2). It follows that
EY(T) = Fa[t, u/(tn) @ AO{L, Ao},
and E'0(T) = E>(T) is equal to
Fot?
2[4 alu’] ®
()

As discussed in the proof of Proposition 4.4, there is a V(2)-homotopy Ca-Tate
spectral sequence

E*(Cy) =

AND{L, A} @ Fo{t2 Nt tha, t3N Mg, 2N Mg, tAN) A2} O

V(2)s 8rfnos THH(ko) ® A(u1) ® Fo[t™]
Fa[n, AL, p)
Aley) @ k
(22) © X VR )
V( )x Elrot THH(ko)tC2 .

(5.3) ® A(ur) @ Fa[t*]

Similarly, we have a V(2) ® Cn-homotopy Ca-Tate spectral sequence

E?(Cy) = (V(2) ® Cn). grie, THH(ko) @ A(ur) @ Fa[t*]
Ae2) @ AAD{L, A2} @ Fa[p] @ A(ur) @ Fa[tt!]
( ( ) ® CU)* grmot THH(kO)tC2 .

(5.4)

There is a map F* of algebra spectral sequences from (4.1) to (5.3), and (5.4) is a
module spectral sequence over (5.3).

Proposition 5.3. There is an isomorphism
V(2)+ 8 uoc THH(k0)™? 2 Fo {1, 7, 7%, A1} ® A(u1) @ Fo[t™],

where 1, n? and Ny are detected by t2)\y, (t>X}))? and N, respectively. Under this
correspondence, the cyclotomic structure map

@21 V(2)x grlo. THH(ko) — V(2), gl THH(ko)!¢>

is given by g9 > urt™4, n>n, N = N and p+— t=%, hence can be identified with
the localization homomorphism

V(2). g%, THH(ko) —> 11~ V(2). gt} THH (ko)
that inverts L.
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Proof. We shall use naturality with respect to the complexification map c¢: ko — ku
to access the cyclotomic structure map o for ko and the differentials in (5.3), so
we first review the results of Hahn—Wilson about the complex case.

By [HW22, Proposition 6.1.6], we have V (1), gr¥,,, THH(ku) = A(\1, o) @F2[u],
with [A1]] = (3,1), [[X2]| = (7,1) and ||u|| = (8,0). Hence V(2). gr THH(ku) =
A(g2, M1, A2) ® Fap], with |le2|| = (7,—1). The V(1)-homotopy Ca-Tate spectral
sequence

E?(Cy,ku) = V(1), gri, THH(ku) ® A(uy) © Fo[tT!
— V(1) grlo, THH (ku)'“>

is an algebra spectral sequence with differentials d*(¢t=1) = tAy, d®(t72) = 2\, and

d(urt=*) = t, leaving E>(Cy, ku) = A(A1, Ao) ®F[t*4], and the cyclotomic struc-

ture map is given in V(1)-homotopy by A1 — A1, Ao — Ao and g+~ t~%, hence is

identified with the ring homomorphism that inverts u, as in [HRW, Theorem 6.1.2].
It follows that the V(2)-homotopy C»-Tate spectral sequence

E?(Cy,ku) = V(2), gri THH(ku) ® A(uy) © Fo[tT!]
— V(2), gr’,. THH(ku)!“?

has differentials d?(e2) = tu, d*(t71) = tA; and d®(¢t~2) = t?)\q, leaving behind the
E>-term E>®(Cy, ku) = A\, A2) ® A(uy) @ Fo[t=4]. By exactness of localization,
the cyclotomic structure map

@21 V(2)x grlo; THH(ku) — V(2), gr,. THH(ku)!¢?

must also agree with the ring homomorphism that inverts p. Hence it is given on
A1, A2 and p as in the V(1)-case, while ¢a(e2) can only be detected by uit—*.
Next we appeal to naturality. We saw in the proof of Lemma 2.18 that

c: A(1), gri . THH(ko) — A(1), grk,,. THH(ku)

is given by A| — 0, Ay — Ao and p — p. It follows by naturality with respect to
i: V(1) — A(1) that c¢: V(1) gr, THH(ko) — V (1), gr,,, THH(ku) is given by
n+ 0, X} = 0 and p — p, and similarly with V(2)-coefficients, where also g5 + €.
Chasing €9 and p around the commutative diagram

V(2), grt,o, THH(ko) —2— V(2), grl,o, THH (ko) C2

V(2). grf, THH(ku) —2— V(2), gt THH(ku)!C2 |

mot

we see that @a(eg) and w2(p) in the real case must be detected in the same, or
higher, Tate filtration as the detecting classes in the complex case, namely ut~*
and t~*. There are no classes of higher Tate filtration in the same total degrees,
so the only possibility is that oo(e2) is detected by uit=* and o (1) is detected by
t~*, also in the real case.

In particular, this shows that u; = t*-u;¢t~* is a permanent cycle in the spectral
sequence (5.3). By naturality with respect to the map F*, we deduce that we have
the same differentials in the Cs-Tate spectral sequence as in the T-Tate spectral
sequence (4.1), listed in Theorem 4.1. This leaves

E(Cy) = Fo{1, 2N}, (X)), M} @ A(ur) @ Fa[t].
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It is clear that the S-algebra map @y takes 1 to n, which we saw is detected by
t2)\}. The relation (\;)? = n?u now shows that (\})? must be detected by
(t2A])? - t7% = (\])? # 0, which can only happen if po()\]) is detected by A].
Summarizing, we have an isomorphism

V(2)* gr:not THH(kO)tCQ = FQ{lv m, 772’ )‘Il} ® A(ul) ® Fo [ti4] )

where ¢, is given by e — uit™*, n+— n, A} = M| and p — t=*. The claim about
localization then amounts to the isomorphism

—1 F2[77>>\117M]
(AL (AD)2 +n2p)

Proposition 5.4. There is an isomorphism

(V(2) © O1)s grinoy THH(k0) % 22 AX){1, A2} ® A(ur) @ Folt™],

= Fo{l,n,m% X} @ Fo[u*!]. O

where 1, N, Ao and Ny A2 are detected by classes with the same names. Under this
correspondence, the cyclotomic structure map

21 (V(2) © Cn). grios THH(ko) — (V(2) © Cn). gryor THH (ko) 2

mot

is given by eo — uit=%, N = N, Ao = Ao and p — t~*, hence can be identified
with the localization homomorphism

(V(2) ® Cn)s g THH (ko) — 171 (V/(2) ® ). grpor THH (ko)
that inverts p.

Proof. Naturality with respect toi: V(2) — V(2)®C7n shows that u; is a permanent
cycle in the spectral sequence (5.4). When combined with the differentials in (4.2),
listed in Theorem 4.2, this shows that

EY(Co) = AND{L, A2} @ A(uy) ® Fo[tT!]

and
B(Co) = A1, Ao} @ Alun) ® Foft=4).

The detection results then follow from those in Theorem 4.2. The evaluation of ,
on £2, A} and pu follows from that in Proposition 5.3 by comparison along the same
map 1.

To show that ¢a(A2) is detected by A2, we note that by naturality with respect
to jo: V(2) ® On — 71 A(1) it cannot be detected by u;¢t~%. On the other hand,
by naturality along j: V(2) ® Cn — X29V(2) it is nonzero, since we saw in the
proof of Proposition 4.11 that j: Ay — X29\]. Hence ¢2()\2) must be the class
detected by As. O

Remark 5.5. The computations in Theorems 4.1 and 4.2 and Propositions 5.3
and 5.4 are consistent with isomorphisms

V(2). 8fpeq TP (ko) = V(L) g1}, THH(k0)'
(V(2) © Cn). gipeq TP (ko) = A(1). gt} THH(ko)'? |

mot

in analogy with [HRW, Theorem 6.2.1].
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Theorem 5.6 (Syntomic cohomology modulo (2, v1, v2) of ko). We have an algebra
isomorphism
V(2)« grios TC(ko) = Fa[n){1,n'e2} @ F2{0, v, A, 0N, 2, (M)},

with generators in bidegrees ||0|| = (—1,1), |l = (1, 1), [[v]| = (3,1), [[A\1]l = (5,1)
and |[n*es|| = (11,3). See Figure 5.3 for a view of the algebra structure of the
right-hand side.

Proof. To calculate the effect in V(2)-homotopy of can: TC™ (ko) — TP(ko), we
use the map of spectral sequences from (5.1) to (4.1), described in Proposition 5.1
and Theorem 4.1, given at the E2-terms by inverting ¢. To calculate the effect of
©hT: TC™ (ko) — (THH(ko)*“2)"T we appeal to Proposition 5.3 to see that there
is a T-homotopy fixed point spectral sequence

p~ E(T) = V(2). glfnor THH(ko)™? [¢]
(5.5) = A(e2) @ Fo{L,m,n* N} @ Fo[p™'] @ Falt]

= V(2). gl (THH (ko))" |
and 4T is calculated by the map of spectral sequences from (5.1) to (5.5) that is
given at the E2-terms by inverting u. The differentials
d*(e2) =tp  and  d*(u) = tnp

carry over from the proof of Proposition 5.1, leaving

/14_1E4(T) = :U’_IEOO(T) = F2{17"777727 )‘/1} ® ]Fz[ﬂil] >
concentrated on the vertical axis. As before, i = u + ne2. We know a priori that

G: TP(ko) — (THH(ko)*“2)"T is an equivalence, by [BBLNR14, Proposition 3.8],
(cf. [NS18, Lemma I1.4.2]). The V(2)-homotopy isomorphism

Fo{1,m,7%, M} ® Fo[t=1] = Fo{1,m, 7, A1} ® Fs i)
induced by the equivalence G can then only be given by n — n, A — | and
t o g ¥l
We claim that the map can — ¢ (which is short for G o can — p4T) induces
isomorphisms

(5.6)  Falt']{t*} @ Fof1, 22X, (2M)% A} — Fol ' J{i "'} @ Faf1,m, %, X))
(5.7) Falal{} @ Fo{l,mn* M} — Falal{iz} @ Fo{l,n,n* A}
(5.8) Fo{t* Xy, (°X))°} — Fa{n,n’}
and the zero homomorphism

Falnl{1,n"e2} @ F2{tA}, AL, (1A1)%, (A)*) = Fo{L X}

The isomorphism (5.6) occurs in horizontal degrees (= filtrations) where invert-
ing ¢ (or %) is an isomorphism, and AT is zero. The isomorphism (5.7) occurs in
vertical degrees where inverting p (or fi) is an isomorphism, and can is zero. The
isomorphism (5.8) uses that 7 and n? in (5.1) are detected by t?\] and (t2\})?
n (4.1), but map to zero in (5.5). The homomorphisms G o can and p4T agree on
classes coming from V(2), gry, S, such as 1, n and v, hence their difference is zero
on Fa[n]{1} and Fo{t\}, (t\})?}. Both Gocan(\}) and piT(\]) are detected by M},
hence agree in V(2)-homotopy since there are no other classes in the same total
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FIGURE 5.3. V(2). gr. TC(ko), with lines of slope —1, 1 and 1/3
indicating multiplication by 0, n and v, respectively

degree, which implies that G o can — BT is zero on A} and its square. Both G ocan
and 5T take nt*es = n3[1 to zero, so their difference is zero on Fa[n]{n'e2}.
Hence we have an isomorphism

V(2)s gtior TC(ko) = Faly]{1,7%ea} @ F2{8, 0N, tA1, AL, (1A1)?, (M)} -
The classes tA\] and (tA\;)? detect v and v?, respectively. The algebra structure is
evident from the notation and sparsity, except for the fact that - A} = 0, which
follows from Proposition 5.7 below. U
Next, we compute the vo-Bockstein spectral sequence
(5.9) By =V (2), grk . TC(ko) [vg] = V (1), gr,.. TC(ko) .
Proposition 5.7. In the spectral sequence (5.9) there is a dy-differential
di(1*e2) = van’*
together with its various n- and ve-power multiples. This produces an algebra iso-

morphism

V (1)« grinet TC(ko)
A(a) ® Fo [777 v, )‘/1a UZ]
(87% 8”7 nv, 77)‘/1? V/\lla V3 = U2773 = a()\/1>27 (/\,1)3 =d- U%’I’]3) ’

where d € Fy (and we have not resolved this indeterminacy).

~

Proof. The unit map S — TC(ko) induces a map of vo-Bockstein spectral sequences,
from

(5.10) Fi = EXth*Bp(BP*,BP*/Ig) [’1}2] — EXth*Bp (BP*7BP*/IQ)

shown in Figure 3.2 to (5.9) shown in Figure 5.4. Since v3h{, = 0 in the abutment
of the former, we must have that v3n? is a boundary in the latter. Consider-
ing bidegrees and vy-powers, this can only happen if dj(vantes) = v3n*. Hence
dq (vénjsg) = vé“nj for all ¢ > 0 and j > 4, as claimed. There is no room for other
vo-Bockstein differentials, so Fy = Eo in (5.9).

The relation v2h3; = v3h3, in the abutment of (5.10), see (3.2), also implies that
vor3 = v3n? in the abutment of (5.9). Hence we have hidden v-extensions from

vi1? to v§+1n3 for all 7 > 0, as shown by black lines of slope 1/3 in Figure 5.4.



ALGEBRAIC K-THEORY OF REAL TOPOLOGICAL K-THEORY 43

Qe

FIGURE 5.4. vy-Bockstein By = V/(1), gr’,.. TC(ko)
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FIGURE 5.5. Fa[vg]-basis for A(1), grk,, TC(ko)

The products 9% and 07 lie in trivial groups. The well-known relation nv = 0
implies the vanishing of dv, n\] and v\]. We postpone the proof that d(\;)? is
equal to v® = van3 to Remark 5.10. We have not determined whether (\})® €
Fo{v3n3} is zero or not. O

Proposition 5.8. We have an isomorphism

A1), 8 TO(ko) 2 Fofin] &
(A(@, )\ll){l, )\2} D FQ{t2 /1, t)\/l, tho, t3)\/1)\2, t2)\/1)\2, t)\/l)\g})

of finitely generated and free Falva]-modules, where ||vs] = (6,0), ||19]] = (-1,1),
IM ] = (5,1), [[A2]l = (7,1) and ||t]| = (—2,0). See Figure 5.5.

Proof. This proof is similar to that of Theorem 5.6, to which we refer for a more
elaborate review of some of the notations. To calculate the effect of can in V (2)@Chn-
homotopy we use the map of spectral sequences from (5.2) to (4.2), described in
Proposition 5.2 and Theorem 4.2, given at the E2-terms by inverting t. To calculate
the effect of 4T we use Corollary 2.31 and Proposition 5.4 to see that there is a
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T-homotopy fixed point spectral sequence
P ER(T) = (V(2) © Cn). g0 THH(ko) 2 [{]
(5.11) = A(e2) ® AAD{L, Ao} @ Fa[u™'] @ Fot]
= (V(2) @ Cn). grpor (THH (ko) )",
(5

0
and 4T is given by the map of spectral sequences from (5.2) to (5.11) that is given
at the E2-terms by inverting p. The differential d?(e9) = tu carries over from the
proof of Proposition 5.2, leaving

p ENT) = pm E(T) = AAD{L, Ao} @ Fo[u™]
concentrated on the vertical axis. The V(2) ® Cn-homotopy isomorphism
AGD{L A2) ® Falt™] = AL, Ae) @ Folu™]
induced by the equivalence G must thus be given by \] — M, A2 — Ay and
t+4 s L
The map G o can — 4T induces isomorphisms
Fa[t'){t*} © AQD{L A2} — AND{L Ao} @ Fafp ™ ]{u")
Falul{u} © AQAD{L A2} —> AND{L, Ao} © Falul{u}
and the zero homomorphism
AND{L, Ao} @ Fo{E2N), t, tAa, 3N Mg, 12X Ag, EA) Ag} — AND{TL, Ao},

by the same arguments as in the proof of Theorem 5.6. Hence we have an isomor-
phism

(V(2) ® Cn) griot TC(ko) = A9, X)){1, A}
© Fo{t2 N N, Ao, 2N Ao, 2N Ao, N A2 }
There is no room for differentials in the vs-Bockstein spectral sequence
E1 = (V(2) @ Cn). gri o, TC(ko) [ve] = A(1), gr,. TC(ko) . O
Lemma 5.9. The unit map
e A1) — A(1), gl TC(ko)

sends the classes 1, hy1, w, h%l = hipw, h1iw and h%lw to classes that are detected
by 1, tA], tha, t2A1 A2 mod OXo, 2N Ny and ON) \a, respectively. The product hiy Ao
is detected by t\]Ag.

Proof. The V(1)-module cofiber sequence (2.5) induces a long exact sequence

V), gt TC(ko) N A1), gri . TC(ko)
L 2207 (1), grt,, TC(ko) 15 ...

mot

of F3[vs]-modules, see Figures 5.4 and 5.5. Having chosen A} € V (1), grf,,. TC (ko)
we choose A}, Ay € A(1), gri TC(ko) so that i(\]) = A and j(A2) = ¥2°)\]. By
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exactness, ¢ is then given by
1—1
or—0
v tA]
A — ]
ON| — O]
2 — 3\ Ao mod 9y
(N))? — tX] A2 mod w0,
while j is given by
t2\] — 209
thg — 220
Ay — B2ON]
Og — X209\
2N g — £202
N g — B2O0(\))2
ON Ag — 22013
The formulas for i imply the claims for 1, v = hy; and v? = h%,. We know from
l(/]gro_llzz q;;lnt;layg 11:) is }(;IQetzcted by tAg, so the formulas for j imply the claims for
= = A w.

The V(1)-module action on A(1) shows that v+ Ay = h1 Az is detected by tA] - Aa,
since the latter product is nonzero in A(1), gr,.. TC™ (ko). O

Remark 5.10. We can now complete the unfinished business in the proof of Propo-
sition 5.7. Since v?w is detected by ON| A2, and j maps w to % and \p to 2O\,
it follows that 2922 is detected by ¥2:°9(\])?, so d(\])? is equal to v3 = ven? in

V(1).gri . TC(ko).

Lemma 5.11. Let ¢ € A(1). gri TC(ko) be the class in bidegree (1,1) detected
by t2\). Then sv is the class in bidegree (4,2) detected by ON,.

Proof. By [BHM93, Theorem 5.17], [Rog02, Corollary 1.21] there is a 2-complete
equivalence TC(S) ~ S @ XCP2, and by [BM94, Proposition 10.9], [Dun97, Main
Theorem] the 3-connected map S — ko induces a 4-connected map TC(S) —
TC(ko). For each i > —1 let £8; € Hg;11(XCP%) denote the generator. The
Atiyah—Hirzebruch spectral sequence
E? = H,(XCP%; 1. A(1)) = A(1).(ZCP%)
has nonzero differentials d*(33;) = v¥8_1 and d®(Xf2) = wXS_1. This follows
from [Mos68, Proposition 5.2, Proposition 5.4], using that w € (v,n,¢) in m, A(1),
where ¢ is the class of S — A(1). Hence
A(l)* TC(S) = ]FQ{Eﬁ—la Ly E/807 v, VE/BO}
in stems —1 < * < 4, mapping isomorphically to
A1), TC(ko) = Fo{0, 1,1\, t\], O\ }
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in this range. It follows that X3y maps to the class ¢ detected by t2\] and vXf,
to the class detected by dA], which must therefore be equal to ¢v. (]

Theorem 5.12 (Syntomic cohomology modulo (2,7, v1) of ko). We have an iso-
morphism

A1), gri oy TC(ko) = Falva] ® (F2{1,0,v,w,1* = nw,vw, | A2, v’w = O Ao}
@ ]FQ{C, )\/1, SV = 8)\’1} EB ]FQ{)\Q, 8)\2, I/)\Q})
of V(1) gri o, TC(ko)-modules, where the (stem, motivic filtration) bidegrees and

detecting classes of the Falvs]-module generators are as in Table 5.1. See also
Figure 1.1.

Proof. This summarizes the results of Proposition 5.8 and Lemmas 5.9 and 5.11.
The lift of t3\j A2 over m: TC(ko) — TC™ (ko) is only defined modulo 9\, in the
image under 9: X! TP (ko) — TC(ko), but the image of v? specifies one such
choice of lift. ]

generator bidegree  detecting class

1 ©,0) 1
0 (-1,1) 0
S (1,1) 2\
v (3,1) t\]
w (5, 1) t)\g
Ay (5,1) Ay
Ao (7,1) o
37 4,2) O]
OAa (6,2) OXa
l/2 (6, 2) ts)\/1>\2 mod 8)\2
vw (8,2) 2N Ao
Vo (10, 2) N Ao
A2 (12,2) YR
viw (11, 3) 0N Aa

TABLE 5.1. Bidegrees and detecting classes for the Fo[vg]-module
generators of A(1), grk . TC(ko)

6. TOPOLOGICAL CYCLIC HOMOLOGY AND ALGEBRAIC K-THEORY

We now use the motivic spectral sequence

(6.1) Ey = A(1). grie; TC(ko) = A(1), TC(ko)

to compute the A(1)-homotopy of the topological cyclic homology of ko. The FEa-
term, given in Theorem 5.12, is concentrated in even total degrees and motivic
filtrations 0 < *x < 3, so the only possibly nonzero differentials are

ds(vh) € Fo{vi 212w}

for ¢ > 2. We show that some, but not all, of these differentials are nonzero. This
contrasts with the motivic spectral sequence converging to V (1), TC(¢) at odd
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primes p, which was shown to collapse at the Fs-term by Hahn—Raksit—Wilson in
[HRW, Corollary 1.3.3].

Notation 6.1. We equip A(1) ® TC(ko) with the relative convolution filtration
fil},or (A(1) ® TC(ko)) := fil%, A(1) ®q1x, s fil},,, TC(ko),

mot mot

with associated graded gr . (A(1) ® TC(ko)) ~ A(1) ® gr} . TC(ko). (In view of
Lemma 2.26, this filtration agrees with the motivic filtration on A(1) ® TC(ko)
as defined in [HRW, Variants 2.1.9 and 4.2.2] for the 2-cyclotomic module spec-
trum A(1) @ THH(ko), using [HRW, Corollary 2.2.15].) The motivic spectral se-

quence (6.1) is the associated spectral sequence, converging to 7, (A(1) @ TC(ko)) =

A1), TC(ko).
We write
FilY ; A(1), TC(ko) = im(m, fil}y , (A(1) ® TC(ko)) — A(1), TC(ko))
Gry.. A(1). TC(ko) = Filpy . A(1). TC(ko)/ Filr’fljtl A(1). TC(ko)

for the induced (algebraic) filtration on A(1). TC(ko) and its associated graded, so
that

FEo = Gryy A(1). TC(ko) .

mot

In each stem n the F.,-term contains at most two nonzero groups, in motivic
filtrations s € {0,2} or s € {1, 3}, according to the parity of n.

Bhattacharya-Egger-Mahowald [BEM17, Main Theorem| proved for each ver-
sion of A(1) that there exists a viZ-self map ¥'924(1) — A(1). We noted in
Lemma 3.5 that id: A(1) — A(1) has additive exponent 4. Hence there is a nat-
ural Z/4[v3?]-module structure on (6.1) and its abutment. This factors through a
finitely generated and free Fa[v3]-module structure on the associated graded.
Theorem 6.2. The motivic spectral sequence (6.1) has nonzero differentials

ds(vh) = vi 21w

fori=2,3 mod 4. The remaining differentials are zero. Hence

Gri o A(1). TC(ko) = Fo{vi | i=0,1 mod 4}
@ Falvo]{0, s, v, A, w, A2}
@ Folvo]{sv, 2, OAg, v, vAz, N| A2}
®Fo{vi’w |j=2,3 mod 4}
is a finitely generated and free Fo[vi]-module of rank 52. Here |0| = —1, |s| = 1,

lv| =3, |\ = |w| =5, |[va] =6 and |Na| = 7.

Proof. The unit map S — TC(ko) induces a map from the Novikov spectral se-
quence for A(1), as discussed in Lemma 3.2, to the motivic spectral sequence (6.1).
By Lemma 5.9 this map of Es-terms sends v} to v3 and vih? w to viON| Ay for
each i > 0. Since d3(1) = d3(ve) = 0, d3(v3) = h3,w and dz(v3) = veh3 w in
the Novikov spectral sequence, we must have d3(1) = dz(v2) = 0, d3(v3) = O\ A2
and d3(v3) = v20A] A2 in the motivic spectral sequence. This handles the cases
0 < i < 4. By Corollary 3.6, we know that these ds-differentials propagate vj-
periodically, as claimed.
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It follows that all classes in motivic filtrations 1 and 2 survive to Fo. In fil-
trations 0 and 3, only the classes v} with 0 < i = 0,1 mod 4 and vé_zyzw with
2<i=0,1 mod 4 survive. Setting 0 < j =i — 2 gives the asserted formula. O

Remark 6.3. The additive extensions

0— B2 — A(1), TC(ko) — E% — 0
(with s = 0 for n even, s = 1 for n odd) are sometimes nontrivial. For example, we
see from Figure 3.1 that 2 - vy = 2 in mgA(1)[ij] if (and only if) [ij] € {[10], [11]},
which implies that A(1)g TC(ko) = Z/4{va} ® Z/2{0A2} in these two cases. We
have not carried out a complete analysis of these extension problems.

Theorem 6.2 allows us to determine the A(1)-homotopy of the algebraic K-theory
spectra of ko and ko). We begin with the 2-complete case.

Theorem 6.4. There is an exact sequence of Z/4[v3?]-modules
0 — S'Fy @ Z3F, — A(1), K(ko)) 2% A(1), TC(ko) — F2{0,¢} — 0,
with 0] = —1 and |s| = 1.

Proof. Let Zo = mo(ko)) denote the 2-adic integers. By [[IM97, Theorem D] and
[Dun97, Main Theorem)] (cf. [DGM13, Theorem 7.3.1.8]) applied to the 1-connected
E., ring map koy — HZ; there is a cofiber sequence

K(kob), 25 TC(ko)y 25 S HZ, .

The associated long exact sequence in A(1)-homotopy breaks up into four-term
exact sequences, as above.

In more detail, the 3-connected map A(1) — H = HF; identifies A(1),HZs with
Fo{l,£7, &, 626} ¢ H .HZy C AY. By [BM94, Proposition 10.9], K(ko}) — K(Z3)
is 2-connected, where Ko(Z3) = Z and K;(Zs) = Z5, so that A(1)gK(ko}) =
AMoK(Z2) = 2/2 and A(L) K(koj) = A1), K(Zo) = 23 /(H(Z5)?) = Z/2,
generated by any w € Z5 congruent to 3 or 5 modulo 8. This uses that €
m1(S) maps to —1 € Z5 = K;(Z2). By exactness, we know p: & — X711 and
p: s = L2 Multiplication by v acts trivially on HZs, so p: v — 0 does not hit
»1€2€,. There is no class in degree 2 that p could map to £7'&,. Hence these two
classes instead appear as ¥ 72&, and X 72¢2&, in A(1). K(ko}), in degrees 1 and 3,
respectively. [l

The proof in the integral case relies on the proven Lichtenbaum—Quillen conjec-
ture for Z[1/2], cf. [Voc03] and [RWO00].

Theorem 6.5. There is an exact sequence of Z/4[v3?]-modules
0 — L3F, — A(1). K(ko) =% A(1), TC(ko) — Fo{d,<} — 0,
with |0 = —1 and |s] = 1.
Proof. By [Rog02, Theorem 3.13] there are two cofiber sequences
K(ko)y <% TC(ko)y —4 X

S 2%ku) -5 Y4ko) — X
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with equivalent third terms. Passing to A(1)-homotopy, the second cofiber sequence
ensures that A(1),X = Fo{ax_1, 21,24}, where |z;| = i. The long exact sequence as-
sociated to the first cofiber sequence then breaks up into four-term exact sequences,
as shown.

This time, the details are as follows. The 3-connected E,, ring map S — ko
induces a 4-connected map K(S) — K(ko), where

K(S) ~ S @ WhPif (x)

Here Wh' (%) is 2-connected with 73 WhP™ (x) = 7/2, cf. [Rog02, Theorem 5.8].
Hence A(1)gK(ko) = A(1)gK(S) = Z/2{1}, A(1); K(ko) = A(1); K(S) = 0,
A(1)2K(ko) = A(1)2K(S) = 0 and A(1)sK(ko) = A(1)3K(S) = Z/2{v} & Z/2.
By exactness, we know ¢: 0 — x_1 and ¢: ¢ — x1, while 4 must contribute to
A(1)3 K(ko) and cannot be in the image of ¢q. (It follows that ve; =0 # z4.) O

Corollary 6.6. The unit map S — tmf does not factor through K (ko).

Proof. In fact, the unit map A(1) — A(1) ® tmf does not factor through A(1) ®
K(ko), since magA(1) — A(1)g(tmf) = (Z/2)? is surjective, as can be seen using
Bruner’s ext program or from [Pha22, Figure 16], while

A(1)20 K(ko) =2 A(1)90 TC(ko) = Z/2{v3vw}
by Theorems 6.2 and 6.5, cf. Figure 1.1. O

The proof by Hahn-Raksit—Wilson [HRW] of the height 2 telescope conjecture
for TC(ku) can be adapted to prove the corresponding statement for TC(ko), using
our Proposition 2.10 and Theorem 2.22. However, as was kindly pointed out to us
by Ishan Levy, this is also a direct consequence of the descent result of Clausen—
Mathew—Naumann—Noel [CMNN20], as we summarize below.

Theorem 6.7. For each X € {K(ko), K(ko}), TC(ko)} the canonical map LiX —
Lo X is an equivalence. In other words, these spectra all satisfy the height 2 telescope
conjecture (at the prime 2).

Proof. According to [Dun97], [IM97] and [RWO00] there are equivalences
L2y K(ku) ~ Ly K(kuj) ~ Ly ) TC(ku) .

By [HRW, Theorem 6.6.4], L] TC(ku) ~ Ly TC(ku), which by [Hov95, Corol-
lary 2.2] implies that Lp) TC(ku) ~ Lg (o) TC(ku) is K(2)-local. Applying de-
scent [CMNN20, Theorem 1.8] along ko — ku or ko — ku}, for E = K or TC, it
follows that Ly (2) K(ko), Ly (2) K(koy) and L2, TC(ko) are all limits of K (2)-local
spectra, hence are K (2)-local. In particular, Lp)X ~ L 2)X in each case. Stan-
dard telescopic and chromatic fracture squares [DFHH14, Proposition 6.2.2], and
the known validity of the height 1 telescope conjecture [Mah81], [Bou79, Proposi-
tion 4.2], then imply that L X ~ L, X in each case. O

Our calculations also show that TC(ko) has fp-type 2 in the sense of Mahowald—
Rezk [MR99], with the following consequence.

Theorem 6.8. For X € {K(ko),K(koj), TC(ko)} and Y € {X(2), X4'}, the canon-
ical map Y — LgY 18 an equivalence in all sufficiently large degrees.
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Proof. Theorems 6.5, 6.4 and 6.2 show, respectively, that (A(1)/(v32)), X% is finite
for each of the three choices for X. This implies that X2 has fp-type 2 in the sense
of [MR99, p. 5], by [MR99, Proposition 3.2]. According to [MR99, Theorem 8.2,
this implies that the Brown-Comenetz dual spectrum [ C’g X4 is bounded below

and, consequently, that the fiber sz X2 of the map X5 — Lg X4 is bounded above
(cf. [HW22, Theorem 3.1.3]). Using the pullback square

X(g) ——— X3

L]

Xo[1/2] — X2[1/2],

and the fact that X(5)[1/2] and X4'[1/2] are Li-local, it also follows that Xy —
Lg X() is an equivalence in all sufficiently large degrees. (]
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