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Abstract

Let p be any prime. We consider Bokstedt’s topological refinement K(Z) — T(Z) = THH(Z)
of the Dennis trace map from algebraic K-theory of the integers to topological Hochschild
homology of the integers. This trace map is shown to induce a surjection on homotopy in
degree 2p — 1, onto the first p-torsion in the target. Furthermore, Bokstedt’s map factors through
the S'-homotopy fixed points T (Z)hsl of T(Z), and it is shown that the first p-torsion element in
degree 2p — 3 of the stable homotopy groups of spheres is detected in the homotopy of T(Z)"sl.
Both results are due to Bokstedt, but have remained unpublished. (© 1998 Elsevier Science B.V.

1991 Math. Subj. Class.: Primary 19DS5S5; secondary 19D10, 19D50, 55Q52

1. Introduction

The purpose of this paper is to provide a reference for two theorems due to Marcel
Bokstedt.

Let K(Z) be the K-theory spectrum, and 7(Z) = THH(Z) the topological Hochschild
homology spectrum of the integers. We write Ki(Z) = ;;K(Z) and T(Z) = n,T(Z).
The trace map tr: K(Z) — T(Z) is the map constructed by Bokstedt in [1], which
strengthens the Dennis trace map to ordinary Hochschild homology. By the calculations
of [2], reproduced in [7], To(Z) = Z and Tp;—(Z) = Z/i for all i € N, while the
remaining groups are Zero.
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Theorem 1.1 (Bokstedt). Let p be any prime. The trace map induces a surjection
Top—1(tr): Kop_((Z) — Top_((Z) = Z/p
onto the first p-torsion in Tx(Z).
Bokstedt’s proof appears in an unpublished Bielefeld preprint [3]. Another proof is
given in Section 10 of [5], but that proof apparently assumes p is odd. We give a
proof in Section 2, taking special care to cover the case p=2.

The topological Hochschild homology spectrum admits the structure of an S'-
spectrum, and there is a compatible family of factorizations of tr

tr

K(Z) = T(2)5% CT(Z),

for a fixed prime p and for all n>0. Hence C, is the cyclic subgroup of S' with p”
clements. See [4] or [7] for more on this and the following material. These factoriza-
tions, composed with the standard maps

r:7(2)% — 172"
from fixed points to homotopy fixed points, induce a map of homotopy limits
K(Z) — holim T(Z)%" — holim 7(ZY'%".

After p-adic completion (denoted in this paper by a subscript p) there is a natural
homotopy equivalence

T(2)S =5 holim T(Z)y "
determining a map

trgi - K(Z), — T(Z)"S,

which we call the circle trace map. The cyclotomic trace map trc: K(Z), — TC(Z, p)
of [4] is a further refinement of this map.

There is a second quadrant spectral sequence E%, with d": E}, — E__,, ., con-
verging to
T T(2)S = my Map(ESL, T(Z))5
and having
El, = H ¥ (BS';T(Z)). (1.2)

The spectral sequence arises from the skeleton filtration of a standard model for ES',
a contractible space with a free action of S', and the cohomology groups arise as the
cohomology of the topological group S' acting on T«(Z). Since S! is a path-connected
group the action is trivial, and hence

P2 o { T(Z), when s <0 is even,
s, .
0 otherwise.
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The edge homomorphism
wxT(ZYS' — EgS — Tu(2),
is induced by the natural map
as' 1 S! 1 S~
T(ZY, = Map(ES,,T(Z)), — Map(S;,T(2)), = I(Z),

given by restriction over any choice of S!-equivalent imbedding S. C ES.. This spectral
sequence may be derived from the spectral sequence of a tower of fibrations constructed
by Bousfield and Kan in [6, p. 258].

Hence Theorem 1.1 has the following corollary.

Corollary 1.3. Let p be any prime. There is a class /ap_1 € Kop_1((Z), such that
trgi(Azp—1 )6712/,,_1T(Z)’},SI is detected on a permanent cycle surviving to E> in bide-
gree (0.2p — 1) of the spectral sequence (1.2). When p = 2, the class 1 = A3 €
K3(Z); = Z/16 is a generator.

The second theorem concerns the class o; € nzp_3Q(S°),, generating the first
p-torsion in the stable homotopy groups of spheres. When p = 2 this is the stable
class of the Hopf map 5: §° — S2.

Theorem 1.4 (Bokstedt). The composite
0(s"), — K@), > T(@)S

maps ) € my,—3Q(S%), to an element of 712‘,7,3T(Z)';Sl which is detected on a per-
manent cycle which survives to E™ in bidegree (—2,2p — 1) of the spectral sequence
(1.2).

We give a proof in Section 3.!

2. The trace map K(Z) — T(Z)

The proof of Theorem 1.1 depends on Waldhausen’s Corollary 3.7 of [8], and on
Bokstedt and Madsen’s Lemma 10.5 of [5].

Let £ be a functor with smash product (FSP). See [1] or [4] for the definition of
this notion, and for the construction of the K-theory K(F') and topological Hochschild
homology T(F) of such a functor, together with the trace map tr: K(F) — T(F).

Let F* be the underlying ring spectrum of F, associated to the prespectrum {F(S")},,
and let M(F) be its zeroth space. moM (F) = noF* is a ring, and GL(F)C M (F)

"1 thank Marcel Bokstedt for explaining these results, and many others, to me.
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is defined as the union of the components corresponding to units in moM;(F ). Then
GL,(F) is an associative topological monoid. Let F(;, be the k x k matrix FSP with

Fiy(X) = Map([k], [k] A F(X))

(based maps) where [k] = {0,1,...,k}. Indeed, £y 1s the k x k matrix algebra over
T e, Write Mk(F) = M](F(k)) and GLk(F) = GL](F(}()).

Let BGLy(F) and N9GL4(F) be the classifying space and the cyclic nerve
of GLi(F), respectively. There is a natural projection n: NYGL;(F) — BGL(F),
with a (weak homotopy) section i: BGLi(F) — NYGLi(F). The K-theory K(F)
is constructed as a group completion of the topological monoid ][, ,BGL(F). Let
the cyclic K-theory K¥(F) be likewise constructed from the topological monoid
szo NYGLL(F).

There is a natural projection n: K% (F) — K(F), with a section i: K(F) — K¥(F).
The trace map tr: K(F) — T(F') factors though / by construction. A standard inclusion
GL(F) — GLi(F) induces maps BGL{(F) — K(F) and NYGL|(F) — KY(F),
compatible with the projections and sections 7« and i.

The composite

s: NYGL(F) = K¥(F) — T(F)
is given in simplicial degree ¢ by
(f[]a“-afq)’_)fo/\”'/\fq'

Here each f;: 8" — F(S™) is assumed to stabilize to a class in ngGL(F) C noM;(F)
as n; — oo. Clearly the map s may also be factorized as

NYGL{(F) — NYM\(F) — T(F).

Let A: SL A M|(F) — T(F) be given by the S'-action on T(F) combined with
the inclusion of M,(F) as the zero-simplices T'(F )y = hocolim, ¢ ;Map(S”, F(S")) into
T(F). In simplicial degree g the map A identifies (Cyy1 )+ A M\ (F) with the maps

fo/\,”/\fq:S"u/\.../\S”q—>F(S"”)A---AF(S"“)

in T(F), where all but one of the f; equal a unit map lg : §" — F(S™). Here C,
is the cyclic group with (g + 1) elements, viewed as the g-simplices in a simplicial
model for S'.

Restricting 4 over S! A GLi(F) — S! A Mij(F) we get a factorization through
s: NY(GL{(F)) — T(F):

(Cyet)s A GLI(F) — N¥(GLy(F)),
T Af = (Lo L]

with /" in the ith position, for i € [q]. Here 1,11 is a generator of C,y).
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Hence we have the following commutative diagram, natural in F:

1

BGL,(F) NYGL,(F) S AGL,(F)
K(F) K(F) T (F) £ SIAM(F)

Let F; be the identity FSP with F;(X) = X, and let F, be the Eilenberg—Mac Lane
FSP of the integers, with F2(S8")=K(Z,n). There is a linearization morphism ¢ : F; —
F> of FSPs, inducing a mp-isomorphism on underlying ring spectra

(:F=5"—-F5=HZ

Let SG C G be the identity component and the homotopy units of Q(S°), respectively.
We have M\ (F;) ~ Q(S°), M\(F,) ~Z, GL(Fy) ~ G and GL|(F;) ~ {£1} = 7/2.
We identify NSG with the free loop space ABSG as usual. Consider the diagram of
homotopy fibers of maps induced by ¢ in the diagram above:

BSG ABSG s!ASG
S ~ @1
K(F,~ F)) ————= K*(F, > F) ———T(F, > F,) ~—— 515G

Here K(F), — F3) = hofib(¢ : K(F) — K(F,)), and so on.
The map £: Fj — F3 is r = (2p — 3)-connected when localized at p. We need the
following two lemmas.

Lemma 2.2. Let Fy be the identity FSP, and F, the Eilenberg—Mac Lane FSP of the
integers, as above. Then

Al Sl ANSGp) = T(Fy — Fy)p
is (2r +1) = (4p — S)-connected.

Proof. Let Fy(X) = hofib(/: Fi(X) — F»(X)) for all X. Then Fy is a F|, — F-
bimodule FSP. Let T(F,Fy) be the topological Hochschild homology space of F|
with coefficients in Fy, as defined in Section 10 of [5). T(#),Fy) is the geometric
realization of a simplicial space with g-simplices

T(Fi,Fo), = hocolim Map(S™ /- A 8", Fo(S™) A S™ A - A S™).

Here we are using the assumption that F) is the identity FSP.
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The inclusion of the zero-simplices
T(F1.Fo)o = hocolim Map(S", Fo(S")) — T(F1,Fo)
is a weak homotopy equivalence, because for n € N the map
QUF(S") — Q" O(Fo(S"))

is (n + 1)-connected. Thus, if we identify M)(Fy) with the zero-simplices T(Fy, Fo)o,
we obtain a homotopy equivalence

SG = M\(Fo) — T(F1, £o).

In [5, p. 130—134], there is constructed a map S. A T(F\,Fy) — T(F; — F»), and it
is easy to see that there is a factorization of 4 as

SUAM(Fy) — S AT(F1,Fy) — T(Fy — F).

Lemma 10.5 of [5] states that the second map in this factorization is (2r)-connected,
and in fact their proof shows that the map is (2r + 1)-connected. (The map S} A
T(F,Fy) — T(Fi — F>) is the geometric realization of a map of simplicial spaces
which is a homotopy equivalence in simplicial degree zero, and (2r)-connected in all
other degrees. The results follows).

Thus 4 is the composite of a weak homotopy equivalence and a (2r + 1)-connected
map. This completes the proof of Lemma 2.2. O

Lemma 2.3. Let Fy and F, be as above. Localized at p,

Zip if pis odd,

~ ST(F, — F ‘] =
o2 T(F) = Fa)ip) {z,ﬁz-@Z/z fp=2

and likewise
7y 2ABSG ) = { Z/p 1f p is odd,
7272 if p=2.

Proof. The inclusion of the zero-simplices Q(S°) ~ T(F))y — T(F)) is a homotopy
equivalence, so the map /: 7(F|) — T(F3) factors up to homotopy through the zero-
simplices Z ~ T(Fy)y — T(F,). Thus / induces an inessential map on connected
components, and so 7, 2 T(F) — Fy) = sz_](Z)Eanp_zQ(SO).

The fiber sequence QBSG — ABSG — BSG has a section, so m, 2ABSG =
72p—28BSG & 7;3,_2BSG. Now 7m2,_3SG(p,) = Z/p for all p, while 75,-,8G(,, =0
for p odd and n,SG = 7Z/2. (]

We return to the proof of the theorem. Consider the diagram of homotopy fibers
(2.1). We implicitly localize at the prime p. The map 2 is (4p—5) > (2p—2)-connected,
S0 myp_2(4) is a surjection (in fact an isomorphism). Thus 7,,_>(s) is a split surjection
of isomorphic finite groups, and therefore, injective. 72,_,(i) is a split injection, so the
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composite Z/p = my, 2BSG — m3, 2 T(F| — F») is also injective, and is in particular
nonzero. Hence the relative trace map mp, 2K(F1 — F3) — myp 2T(F) — F3) is
nonzero.

Now consider the following diagram, where the vertical maps are boundary maps in
the fiber sequences induced by 7 : F| — F5, and the top horizontal map is the map
we wish to show induces a surjection on m,,_».

Qtr

QK(F)) QT(F))

K(F—F)— T(F— F))

By Waldhausen’s Corollary 3.7 of [8], the map QK(F;) — K(F, — F») induces a
surjection on my,—>. Hence the composite QK(F2) — T(F1 — F2) induces a nonzero
map on 7z,_2, and it follows that

Top—2(82tr) @ mop 2 QK(F2) — m2p 2 QT(F2) = Z/p

is nonzero, and thus surjective. This completes the proof of Bokstedt’s
Theorem 1.1. O

3. The circle trace map

We now turn to the proof of Theorem 1.4.

Let £ = ES' be a contractible S'-space with free S'-action. We will use as a
concrete model for E the (thin) geometric realization of the usual simplicial space
[g] — (S')?*!. Let E be the corresponding thick realization, where the degenerate
simplices are not collapsed. There is a natural §'-homotopy equivalence £ — E in-
duced by collapsing degenerate simplices. Let £4) and E*) denote the respective k-
skeleta.

Then E© = E©® = §'. E) can be described as the quotient space

S'US' xSt x 1)/ ~

with (g0,g1,0) ~ go and (go,g1,1) ~ g1. E") is the further quotient space where we
also identify (g,g,t) ~ g for all ¢t € I.

So £ is the equalizer of the two projection maps pr,pr, : S' xS' — §'. The map
EM — EM identifies a diagonal torus to a circle by a projection map AS' x (//é1) — S'
onto the first factor. Here AS' C ! x S! is the diagonal circle.

We remark that £(") 2 §3, and the skeleton filtration E‘O C EV ... of E = ES!
agrees with the unit sphere filtration ' = S(C')C 8 = S(C?)C--- of §° = §(C™) =
ES' Let 2, (X)=X(X,) =X, AS".
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Lemma 3.1. There is a map of Puppe cofibration sequences

P —
($'x8Y, —= s! - E') >3 (S'xSH —2L 3z 8

148}

s! EV — + 5(S'x SYAS") —2—s X §

where a is homotopic to X (pr,) — Z,(pr,), and c is the suspension of the collapse
map (S' x S'), — S x §'/AS".

Proof. The diagram is induced by the skeleton-preserving map £ — E. The claim about
a follows from making the obvious choice of homotopy inverse to the collapse map

EDucEh) SHEVSL>2r (8T x s O
There is an S'-homeomorphism 4 : SL ASL — (S x S"). given by A(g,s) = (g,9s),

which descends over ¢ to another S'-homeomorphism S1 A S' — (' x §')/AS!.
Hence we can make compatible identifications

Map (S}, 7(2))% = T(2),
Map (2.(S' x §'), T(Z))’ = QAT(Z), (3.2)
Map (2(S' x SY/ASY, T(Z))® = PT(7).

For example, an S'-map 1 : S} — T(Z) is identified with f(1)€T(Z).

Lemma 3.3. There is a map of Puppe fiber sequences

QT(@Z) —2—= QAT(Z) Map(E ", T(Z)) ———— T(Z)

| -

QA1) Map(E",T(Z)) ——— T(2)

QT(Z)

where o is the looped difference of the adjoints to the circle action map pu : SL A
T(Z) — T(Z) and the trivial action map v : S AT(Z) — T(Z). y is the usual looped
inclusion Q(QT(Z)) — QUAT(2)).

Proof. We apply Map(—,T(Z))SI to the map of Puppe cofibration sequences in
Lemma 3.1, and make the identification of (3.2). Then y is induced by the collapse
map S} — S' taking 1, CS! to the base point. Finally, pr, corresponds under (3.2)
to the circle action map p, and pr, to the trivial action map v which forgets the
S -factor. The lemma follows. [J
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We momentarily change to spectrum level notation. Recall the splitting from [2]

T(Z)~HZv \ 2* 'HZ/i
i>2
Here the inclusion of the zero-simplices 1 : HZ — T(Z) gives the map to the first
summand.

Let o/« = Hx(HZ/p;Z/p) be the dual of the Steenrod algebra, with polynomial
generators (&;);>; and exterior generators (7;);>9 when p is odd, and polynomial
generators ({;);>1 when p =2. Let y denote the canonical anti-involution on .&/x.
Then H«(HZ;Z/p) is the subalgebra of /% generated by (&;);> and (x1;);>1 when
p is odd, and by (C%,XCz,;(Cg,... ) when p=2. For p odd, &, € %/5,_, is dual to the
Steenrod pth power operation P!, while for p =2 the class {? € o/, is dual to Sg°.
(We are following Milnor in writing {; rather than ¢; for the polynomial generators in
the case p =2, to better distinguish between the even and odd cases.)

Let X = Map (E(+l), T (Z))‘Z‘ be the p-completed mapping spectrum, and let X[0, o)
be its connective cover. From the bottom fibration sequence in Lemma 3.3 it is clear
that the first nonzero homotopy groups of X[0,00) are mpX = Zp, and 7w, 3 X = Z/p.

Lemma 3.4. The first k-invariant of the connective cover of Map (E\", T(Z ))f,] is the
Steenrod pth power operation

P H7, T2, 5 5 T(2), — TP HZ)p

when p is odd, respectively, the Steenrod squaring operation Sq* : H 7, — ZHZ)2
when p =2.

Proof. The maps p and v : S} A T(Z) — T(Z) restrict over 1 : HZ — T(Z) to give
maps 4 and vo1: S} A HZ — T(Z), which agree on 1. A HZ C S A HZ. Their
difference thus extends over S' A HZ — T(Z), and induces the derivation

o:H«(HZ,Z/p) — Hu s (T(Z); Z] p)

given by o(x) = Ax([S'] ® x), where [S'] € Hi(S};Z/p) is the fundamental class.

By the calculations of [2], o0 maps &, € Hy,_2(HZ;Z/p) to the spherical element
exp—1 € Hoyp_((T(Z); Z/ p) for p odd, while ¢ maps (i € Hy(HZ;Z/2) to the spherical
element e; € H3(T(Z); Z/2) when p=2. So the k-invariant HZ , — X*~2HZ7/p maps
& or (% to the fundamental class of X% 2HZ/p, and is therefore equal to the dual
cohomology operation, namely P' or S¢°, respectively. [

We may now prove Bokstedt’s Theorem 1.4. We return to space level notation (see
Fig. 1).

Here the vertical maps are part of the bottom fiber sequence of Lemma 3.3, and p
is given by restriction over the S'-inclusion E\'’ C E, = ES!. On the level of spectral
sequences, p induces the natural map from (1.2) to its two rightmost nonzero columns,
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QT@),
try |
s, K@), ——T@)" X
ir
1),
Fig. I.
where s = 0 or s = —2. The resulting two-column spectral sequence is simply the long

exact homotopy sequence of the cited fiber sequence.

Recall that the first nonzero homotopy groups of Q(S%), are myQ(S°), = 7, and
map—30(S°), = Z/p, and the first k-invariant is P! detecting o in the odd primary
case, and Sg* detecting n in the case p = 2.

The composite Q(So)p — X[0,00) induces a my-isomorphism, and by Lemma 3.4
the first k-invariants of these spaces agree. Hence the induced map on connected com-
ponents induces a m,_3-isomorphism, taking «; to the generator of m;, 3X.

Thus, « € nz,,_3Q(SO) is detected in the rightmost two nonzero columns of the
spectral sequence (1.2), where the only nonzero summand in total degree 2p — 3 is
in bidegree (—2,2p — 1). Thus a generator in this bidegree is hit. This completes the
proof of Theorem 1.4. [
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