Journal of Pure and Applied Algebra 125 (1998) 277-286 # Trace maps from the algebraic *K*-theory of the integers (after Marcel Bökstedt) # John Rognes* Department of Mathematics, University of Oslo, Oslo, Norway Communicated by C.A. Weibel; received 28 October 1995; revised 24 April 1996 #### Abstract Let p be any prime. We consider Bökstedt's topological refinement $K(\mathbb{Z}) \to T(\mathbb{Z}) = \mathrm{THH}(\mathbb{Z})$ of the Dennis trace map from algebraic K-theory of the integers to topological Hochschild homology of the integers. This trace map is shown to induce a surjection on homotopy in degree 2p-1, onto the first p-torsion in the target. Furthermore, Bökstedt's map factors through the S^1 -homotopy fixed points $T(\mathbb{Z})^{hS^1}$ of $T(\mathbb{Z})$, and it is shown that the first p-torsion element in degree 2p-3 of the stable homotopy groups of spheres is detected in the homotopy of $T(\mathbb{Z})^{hS^1}$. Both results are due to Bökstedt, but have remained unpublished. © 1998 Elsevier Science B.V. 1991 Math. Subj. Class.: Primary 19D55; secondary 19D10, 19D50, 55Q52 #### 1. Introduction The purpose of this paper is to provide a reference for two theorems due to Marcel Bökstedt. Let $K(\mathbb{Z})$ be the K-theory spectrum, and $T(\mathbb{Z}) = \operatorname{THH}(\mathbb{Z})$ the topological Hochschild homology spectrum of the integers. We write $K_i(\mathbb{Z}) = \pi_i K(\mathbb{Z})$ and $T_i(\mathbb{Z}) = \pi_i T(\mathbb{Z})$. The trace map $\operatorname{tr}: K(\mathbb{Z}) \to T(\mathbb{Z})$ is the map constructed by Bökstedt in [1], which strengthens the Dennis trace map to ordinary Hochschild homology. By the calculations of [2], reproduced in [7], $T_0(\mathbb{Z}) = \mathbb{Z}$ and $T_{2i-1}(\mathbb{Z}) \cong \mathbb{Z}/i$ for all $i \in \mathbb{N}$, while the remaining groups are zero. ^{*} E-mail: rognes@math.uio.no. **Theorem 1.1** (Bökstedt). Let p be any prime. The trace map induces a surjection $$\pi_{2p-1}(\operatorname{tr}): K_{2p-1}(\mathbb{Z}) \to T_{2p-1}(\mathbb{Z}) \cong \mathbb{Z}/p$$ onto the first p-torsion in $T_*(\mathbb{Z})$. Bökstedt's proof appears in an unpublished Bielefeld preprint [3]. Another proof is given in Section 10 of [5], but that proof apparently assumes p is odd. We give a proof in Section 2, taking special care to cover the case p=2. The topological Hochschild homology spectrum admits the structure of an S^1 -spectrum, and there is a compatible family of factorizations of tr $$K(\mathbb{Z}) \xrightarrow{\operatorname{tr}_{p^n}} T(\mathbb{Z})^{C_{p^n}} \subseteq T(\mathbb{Z}),$$ for a fixed prime p and for all $n \ge 0$. Hence C_{p^n} is the cyclic subgroup of S^1 with p^n elements. See [4] or [7] for more on this and the following material. These factorizations, composed with the standard maps $$\Gamma: T(\mathbb{Z})^{C_{p^n}} \to T(\mathbb{Z})^{hC_{p^n}}$$ from fixed points to homotopy fixed points, induce a map of homotopy limits $$K(\mathbb{Z}) \to \underset{n}{\text{holim}} T(\mathbb{Z})^{C_{p^n}} \to \underset{n}{\text{holim}} T(\mathbb{Z})^{hC_{p^n}}.$$ After p-adic completion (denoted in this paper by a subscript p) there is a natural homotopy equivalence $$T(\mathbb{Z})_p^{hS^1} \xrightarrow{\simeq} \text{holim } T(\mathbb{Z})_p^{hC_{p^n}}$$ determining a map $$\operatorname{tr}_{S^1}: K(\mathbb{Z})_p \to T(\mathbb{Z})_p^{hS^1},$$ which we call the *circle trace map*. The cyclotomic trace map trc: $K(\mathbb{Z})_p \to TC(\mathbb{Z}, p)$ of [4] is a further refinement of this map. There is a second quadrant spectral sequence E^r_{**} with $d^r: E^r_{s,t} \to E^r_{s-r,t+r-1}$, converging to $$\pi_{s+t}T(\mathbb{Z})_p^{hS^1}=\pi_{s+t}\mathrm{Map}(ES^1_+,T(\mathbb{Z}))_p^{S^1}$$ and having $$E_{s,t}^{2} = H^{-s}(BS^{1}; T_{t}(\mathbb{Z})_{p}). \tag{1.2}$$ The spectral sequence arises from the skeleton filtration of a standard model for ES^1 , a contractible space with a free action of S^1 , and the cohomology groups arise as the cohomology of the topological group S^1 acting on $T_*(\mathbb{Z})$. Since S^1 is a path-connected group the action is trivial, and hence $$E_{s,t}^2 = \begin{cases} T_t(\mathbb{Z})_p & \text{when } s \le 0 \text{ is even,} \\ 0 & \text{otherwise.} \end{cases}$$ The edge homomorphism $$\pi_*T(\mathbb{Z})_p^{hS^1} \to E_{0,*}^\infty \to T_*(\mathbb{Z})_p$$ is induced by the natural map $$T(\mathbb{Z})_p^{hS^1} = \operatorname{Map}(ES_+^1, T(\mathbb{Z}))_p^{S^1} \to \operatorname{Map}(S_+^1, T(\mathbb{Z}))_p^{S^1} \cong T(\mathbb{Z})_p$$ given by restriction over any choice of S^1 -equivalent imbedding $S^1_+ \subset ES^1_+$. This spectral sequence may be derived from the spectral sequence of a tower of fibrations constructed by Bousfield and Kan in [6, p. 258]. Hence Theorem 1.1 has the following corollary. **Corollary 1.3.** Let p be any prime. There is a class $\lambda_{2p-1} \in K_{2p-1}(\mathbb{Z})_p$ such that $\operatorname{tr}_{S^1}(\lambda_{2p-1}) \in \pi_{2p-1}T(\mathbb{Z})_p^{hS^1}$ is detected on a permanent cycle surviving to E^{∞} in bidegree (0,2p-1) of the spectral sequence (1.2). When p=2, the class $\lambda=\lambda_3\in K_3(\mathbb{Z})_2\cong \mathbb{Z}/16$ is a generator. The second theorem concerns the class $\alpha_1 \in \pi_{2p-3}Q(S^0)_p$ generating the first p-torsion in the stable homotopy groups of spheres. When p=2 this is the stable class of the Hopf map $\eta: S^3 \to S^2$. Theorem 1.4 (Bökstedt). The composite $$Q(S^0)_p \to K(\mathbb{Z})_p \xrightarrow{\operatorname{tr}_{S^1}} T(\mathbb{Z})_p^{hS^1}$$ maps $\alpha_1 \in \pi_{2p-3}Q(S^0)_p$ to an element of $\pi_{2p-3}T(\mathbb{Z})_p^{hS^1}$ which is detected on a permanent cycle which survives to E^{∞} in bidegree (-2,2p-1) of the spectral sequence (1.2). We give a proof in Section 3.1 # 2. The trace map $K(\mathbb{Z}) \to T(\mathbb{Z})$ The proof of Theorem 1.1 depends on Waldhausen's Corollary 3.7 of [8], and on Bökstedt and Madsen's Lemma 10.5 of [5]. Let F be a functor with smash product (FSP). See [1] or [4] for the definition of this notion, and for the construction of the K-theory K(F) and topological Hochschild homology T(F) of such a functor, together with the trace map $\operatorname{tr}: K(F) \to T(F)$. Let F^s be the underlying ring spectrum of F, associated to the prespectrum $\{F(S^n)\}_n$, and let $M_1(F)$ be its zeroth space. $\pi_0 M_1(F) = \pi_0 F^s$ is a ring, and $GL_1(F) \subset M_1(F)$ ¹ I thank Marcel Bökstedt for explaining these results, and many others, to me. is defined as the union of the components corresponding to units in $\pi_0 M_1(F)$. Then $GL_1(F)$ is an associative topological monoid. Let $F_{(k)}$ be the $k \times k$ matrix FSP with $$F_{(k)}(X) = \operatorname{Map}([k], [k] \wedge F(X))$$ (based maps) where $[k] = \{0, 1, ..., k\}$. Indeed, $\pi_* F_{(k)}^s$ is the $k \times k$ matrix algebra over $\pi_* F^s$. Write $M_k(F) = M_1(F_{(k)})$ and $GL_k(F) = GL_1(F_{(k)})$. Let $BGL_k(F)$ and $N^{cy}GL_k(F)$ be the classifying space and the cyclic nerve of $GL_k(F)$, respectively. There is a natural projection $\pi: N^{cy}GL_k(F) \to BGL_k(F)$, with a (weak homotopy) section $i: BGL_k(F) \to N^{cy}GL_k(F)$. The K-theory K(F) is constructed as a group completion of the topological monoid $\coprod_{k\geq 0} BGL_k(F)$. Let the cyclic K-theory $K^{cy}(F)$ be likewise constructed from the topological monoid $\coprod_{k\geq 0} N^{cy}GL_k(F)$. There is a natural projection $\pi: K^{\text{cy}}(F) \to K(F)$, with a section $i: K(F) \to K^{\text{cy}}(F)$. The trace map $\text{tr}: K(F) \to T(F)$ factors though i by construction. A standard inclusion $\text{GL}_1(F) \to \text{GL}_k(F)$ induces maps $\text{BGL}_1(F) \to K(F)$ and $N^{\text{cy}}\text{GL}_1(F) \to K^{\text{cy}}(F)$, compatible with the projections and sections π and i. The composite $$s: N^{\operatorname{cy}}\operatorname{GL}_1(F) \to K^{\operatorname{cy}}(F) \to T(F)$$ is given in simplicial degree q by $$(f_0,\ldots,f_q)\mapsto f_0\wedge\cdots\wedge f_q.$$ Here each $f_i: S^{n_i} \to F(S^{n_i})$ is assumed to stabilize to a class in $\pi_0 GL_1(F) \subset \pi_0 M_1(F)$ as $n_i \to \infty$. Clearly the map s may also be factorized as $$N^{\text{cy}}\text{GL}_1(F) \to N^{\text{cy}}M_1(F) \to T(F)$$. Let $\lambda: S_+^1 \wedge M_1(F) \to T(F)$ be given by the S^1 -action on T(F) combined with the inclusion of $M_1(F)$ as the zero-simplices $T(F)_0 = \text{hocolim}_{n \in I} \text{Map}(S^n, F(S^n))$ into T(F). In simplicial degree q the map λ identifies $(C_{q+1})_+ \wedge M_1(F)$ with the maps $$f_0 \wedge \cdots \wedge f_q : S^{n_0} \wedge \cdots \wedge S^{n_q} \to F(S^{n_0}) \wedge \cdots \wedge F(S^{n_q})$$ in $T(F)_q$ where all but one of the f_i equal a unit map $1_{S^{n_i}}: S^{n_i} \to F(S^{n_i})$. Here C_{q+1} is the cyclic group with (q+1) elements, viewed as the q-simplices in a simplicial model for S^1 . Restricting λ over $S_+^1 \wedge \operatorname{GL}_1(F) \to S_+^1 \wedge M_1(F)$ we get a factorization through $s: N^{\operatorname{cy}}(\operatorname{GL}_1(F)) \to T(F)$: $$(C_{q+1})_+ \wedge \operatorname{GL}_1(F) \to N^{\operatorname{cy}}(\operatorname{GL}_1(F))_q$$ $$\tau_{q+1}^i \wedge f \mapsto (1,\ldots,1,f,1,\ldots,1)$$ with f in the *i*th position, for $i \in [q]$. Here τ_{q+1} is a generator of C_{q+1} . Hence we have the following commutative diagram, natural in F: $$BGL_{1}(F) \xrightarrow{i} N^{cy}GL_{1}(F) \xrightarrow{s} \int_{+}^{1} \wedge GL_{1}(F)$$ $$\downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad$$ Let F_1 be the identity FSP with $F_1(X) = X$, and let F_2 be the Eilenberg-Mac Lane FSP of the integers, with $F_2(S^n) = K(\mathbb{Z}, n)$. There is a linearization morphism $\ell: F_1 \to \mathbb{Z}$ F_2 of FSPs, inducing a π_0 -isomorphism on underlying ring spectra $$\ell: F_1^s = S^0 \rightarrow F_2^s = H\mathbb{Z}.$$ Let $SG \subset G$ be the identity component and the homotopy units of $Q(S^0)$, respectively. We have $M_1(F_1) \simeq Q(S^0)$, $M_1(F_2) \simeq \mathbb{Z}$, $GL_1(F_1) \simeq G$ and $GL_1(F_2) \simeq \{\pm 1\} \cong \mathbb{Z}/2$. We identify N^{cy}SG with the free loop space ABSG as usual. Consider the diagram of homotopy fibers of maps induced by ℓ in the diagram above: BSG $$\xrightarrow{i}$$ \wedge ABSG \xrightarrow{s} \downarrow^{\simeq} \downarrow Here $K(F_1 \to F_2) = \text{hofib}(\ell : K(F_1) \to K(F_2))$, and so on. The map $\ell : F_1^s \to F_2^s$ is r = (2p - 3)-connected when localized at p. We need the following two lemmas. **Lemma 2.2.** Let F_1 be the identity FSP, and F_2 the Eilenberg–Mac Lane FSP of the integers, as above. Then $$\lambda: S^1_+ \wedge \mathrm{SG}_{(p)} \to T(F_1 \to F_2)_{(p)}$$ is $$(2r+1)=(4p-5)$$ -connected. **Proof.** Let $F_0(X) = \text{hofib}(\ell : F_1(X) \to F_2(X))$ for all X. Then F_0 is a $F_1 - F_1$ bimodule FSP. Let $T(F_1, F_0)$ be the topological Hochschild homology space of F_1 with coefficients in F_0 , as defined in Section 10 of [5]. $T(F_1, F_0)$ is the geometric realization of a simplicial space with q-simplices $$T(F_1,F_0)_q = \underset{(n_i)_i \in I^{q+1}}{\text{hocolim}} \operatorname{Map}(S^{n_0} \wedge \cdots \wedge S^{n_q},F_0(S^{n_0}) \wedge S^{n_1} \wedge \cdots \wedge S^{n_q}).$$ Here we are using the assumption that F_1 is the identity FSP. The inclusion of the zero-simplices $$T(F_1, F_0)_0 = \underset{n \in I}{\text{hocolim}} \operatorname{Map}(S^n, F_0(S^n)) \to T(F_1, F_0)$$ is a weak homotopy equivalence, because for $n \in \mathbb{N}$ the map $$\Omega^n F_0(S^n) \to \Omega^n O(F_0(S^n))$$ is (n+1)-connected. Thus, if we identify $M_1(F_0)$ with the zero-simplices $T(F_1, F_0)_0$, we obtain a homotopy equivalence $$SG = M_1(F_0) \to T(F_1, F_0).$$ In [5, p. 130–134], there is constructed a map $S^1_+ \wedge T(F_1, F_0) \to T(F_1 \to F_2)$, and it is easy to see that there is a factorization of λ as $$S^1_+ \wedge M_1(F_0) \to S^1_+ \wedge T(F_1, F_0) \to T(F_1 \to F_2).$$ Lemma 10.5 of [5] states that the second map in this factorization is (2r)-connected, and in fact their proof shows that the map is (2r+1)-connected. (The map $S_+^1 \wedge T(F_1, F_0) \to T(F_1 \to F_2)$ is the geometric realization of a map of simplicial spaces which is a homotopy equivalence in simplicial degree zero, and (2r)-connected in all other degrees. The results follows). Thus λ is the composite of a weak homotopy equivalence and a (2r+1)-connected map. This completes the proof of Lemma 2.2. \square **Lemma 2.3.** Let F_1 and F_2 be as above. Localized at p, $$\pi_{2p-2}T(F_1 \to F_2)_{(p)} \cong \begin{cases} \mathbb{Z}/p & \text{if } p \text{ is odd,} \\ \mathbb{Z}/2 \oplus \mathbb{Z}/2 & \text{if } p = 2, \end{cases}$$ and likewise $$\pi_{2p-2}\Lambda \mathrm{BSG}_{(p)}\cong \left\{egin{array}{ll} \mathbb{Z}/p & \mbox{if } p \mbox{ is odd}, \\ \mathbb{Z}/2\oplus\mathbb{Z}/2 & \mbox{if } p=2. \end{array}\right.$$ **Proof.** The inclusion of the zero-simplices $Q(S^0) \simeq T(F_1)_0 \to T(F_1)$ is a homotopy equivalence, so the map $\ell: T(F_1) \to T(F_2)$ factors up to homotopy through the zero-simplices $\mathbb{Z} \simeq T(F_2)_0 \to T(F_2)$. Thus ℓ induces an inessential map on connected components, and so $\pi_{2p-2}T(F_1 \to F_2) \cong T_{2p-1}(\mathbb{Z}) \oplus \pi_{2p-2}Q(S^0)$. The fiber sequence $\Omega BSG \to \Lambda BSG \to BSG$ has a section, so $\pi_{2p-2}\Lambda BSG \cong \pi_{2p-2}\Omega BSG \oplus \pi_{2p-2}BSG$. Now $\pi_{2p-3}SG_{(p)} \cong \mathbb{Z}/p$ for all p, while $\pi_{2p-2}SG_{(p)} = 0$ for p odd and $\pi_2SG \cong \mathbb{Z}/2$. \square We return to the proof of the theorem. Consider the diagram of homotopy fibers (2.1). We implicitly localize at the prime p. The map λ is (4p-5) > (2p-2)-connected, so $\pi_{2p-2}(\lambda)$ is a surjection (in fact an isomorphism). Thus $\pi_{2p-2}(s)$ is a split surjection of isomorphic finite groups, and therefore, injective. $\pi_{2p-2}(s)$ is a split injection, so the composite $\mathbb{Z}/p \cong \pi_{2p-2}BSG \to \pi_{2p-2}T(F_1 \to F_2)$ is also injective, and is in particular nonzero. Hence the relative trace map $\pi_{2p-2}K(F_1 \to F_2) \to \pi_{2p-2}T(F_1 \to F_2)$ is nonzero. Now consider the following diagram, where the vertical maps are boundary maps in the fiber sequences induced by $\ell: F_1 \to F_2$, and the top horizontal map is the map we wish to show induces a surjection on π_{2p-2} . $$\Omega K(F_2) \xrightarrow{\Omega \text{tr}} \Omega T(F_2)$$ $$\downarrow \qquad \qquad \downarrow$$ $$K(F_1 \longrightarrow F_2) \xrightarrow{} T(F_1 \longrightarrow F_2)$$ By Waldhausen's Corollary 3.7 of [8], the map $\Omega K(F_2) \to K(F_1 \to F_2)$ induces a surjection on π_{2p-2} . Hence the composite $\Omega K(F_2) \to T(F_1 \to F_2)$ induces a nonzero map on π_{2p-2} , and it follows that $$\pi_{2p-2}(\Omega \operatorname{tr}): \pi_{2p-2}\Omega K(F_2) \to \pi_{2p-2}\Omega T(F_2) \cong \mathbb{Z}/p$$ is nonzero, and thus surjective. This completes the proof of Bökstedt's Theorem 1.1. \square ## 3. The circle trace map We now turn to the proof of Theorem 1.4. Let $E = ES^1$ be a contractible S^1 -space with free S^1 -action. We will use as a concrete model for E the (thin) geometric realization of the usual simplicial space $[q] \mapsto (S^1)^{q+1}$. Let \bar{E} be the corresponding thick realization, where the degenerate simplices are not collapsed. There is a natural S^1 -homotopy equivalence $\bar{E} \to E$ induced by collapsing degenerate simplices. Let $\bar{E}^{(k)}$ and $E^{(k)}$ denote the respective k-skeleta. Then $\bar{E}^{(0)} = E^{(0)} = S^1$. $\bar{E}^{(1)}$ can be described as the quotient space $$S^1 \cup (S^1 \times S^1 \times I)/\sim$$ with $(g_0, g_1, 0) \sim g_0$ and $(g_0, g_1, 1) \sim g_1$. $E^{(1)}$ is the further quotient space where we also identify $(g, g, t) \sim g$ for all $t \in I$. So $\bar{E}^{(1)}$ is the equalizer of the two projection maps $\operatorname{pr}_1,\operatorname{pr}_2:S^1\times S^1\to S^1$. The map $\bar{E}^{(1)}\to E^{(1)}$ identifies a diagonal torus to a circle by a projection map $\Delta S^1\times (I/\widehat{c}I)\to S^1$ onto the first factor. Here $\Delta S^1\subset S^1\times S^1$ is the diagonal circle. We remark that $E^{(1)} \cong S^3$, and the skeleton filtration $E^{(0)} \subset E^{(1)} \subset \cdots$ of $E = ES^1$ agrees with the unit sphere filtration $S^1 = S(\mathbb{C}^1) \subset S^3 = S(\mathbb{C}^2) \subset \cdots$ of $S^{\infty} = S(\mathbb{C}^{\infty}) \cong ES^1$. Let $\Sigma_+(X) = \Sigma(X_+) = X_+ \wedge S^1$. ## Lemma 3.1. There is a map of Puppe cofibration sequences $$(S^{1} \times S^{1})_{+} \xrightarrow{pr_{2}} S^{1}_{+} \longrightarrow \bar{E}^{(1)}_{+} \longrightarrow \Sigma_{+}(S^{1} \times S^{1}) \xrightarrow{a} \Sigma_{+} S^{1}$$ $$\downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad$$ where a is homotopic to $\Sigma_+(pr_2) - \Sigma_+(pr_1)$, and c is the suspension of the collapse map $(S^1 \times S^1)_+ \to S^1 \times S^1/\Delta S^1$. **Proof.** The diagram is induced by the skeleton-preserving map $\vec{E} \to E$. The claim about a follows from making the obvious choice of homotopy inverse to the collapse map $$\bar{E}_{+}^{(1)} \cup C(S_{+}^{1}) \xrightarrow{\simeq} \bar{E}_{+}^{(1)}/S_{+}^{1} \cong \Sigma_{+}(S^{1} \times S^{1}).$$ There is an S^1 -homeomorphism $h: S^1_+ \wedge S^1_+ \to (S^1 \times S^1)_+$ given by h(g,s) = (g,gs), which descends over c to another S^1 -homeomorphism $S^1_+ \wedge S^1_- \to (S^1 \times S^1)/\Delta S^1_-$. Hence we can make compatible identifications $$\operatorname{Map}(S_{+}^{1}, T(\mathbb{Z}))^{S^{1}} \cong T(\mathbb{Z}), \operatorname{Map}(\Sigma_{+}(S^{1} \times S^{1}), T(\mathbb{Z}))^{S^{1}} \cong \Omega \Lambda T(\mathbb{Z}), \operatorname{Map}(\Sigma(S^{1} \times S^{1}/\Delta S^{1}), T(\mathbb{Z}))^{S^{1}} \cong \Omega^{2} T(\mathbb{Z}).$$ (3.2) For example, an S^1 -map $f: S^1_+ \to T(\mathbb{Z})$ is identified with $f(1) \in T(\mathbb{Z})$. ### **Lemma 3.3.** There is a map of Puppe fiber sequences $$\Omega T(\mathbb{Z}) \xrightarrow{\alpha} \Omega \Lambda T(\mathbb{Z}) \xrightarrow{\beta} \Omega \Lambda T(\mathbb{Z}) \xrightarrow{\beta} Map(\bar{E}_{+}^{(1)}, T(\mathbb{Z}))^{S^{1}} \xrightarrow{\gamma} T(\mathbb{Z})$$ $$\downarrow \qquad \qquad \downarrow \qquad$$ where α is the looped difference of the adjoints to the circle action map $\mu: S^1_+ \wedge T(\mathbb{Z}) \to T(\mathbb{Z})$ and the trivial action map $\nu: S^1_+ \wedge T(\mathbb{Z}) \to T(\mathbb{Z})$. γ is the usual looped inclusion $\Omega(\Omega T(\mathbb{Z})) \to \Omega(\Lambda T(\mathbb{Z}))$. **Proof.** We apply $\operatorname{Map}(-,T(\mathbb{Z}))^{S^1}$ to the map of Puppe cofibration sequences in Lemma 3.1, and make the identification of (3.2). Then γ is induced by the collapse map $S_+^1 \to S^1$ taking $1_+ \subset S_+^1$ to the base point. Finally, pr_2 corresponds under (3.2) to the circle action map μ , and pr_1 to the trivial action map ν which forgets the S_+^1 -factor. The lemma follows. \square We momentarily change to spectrum level notation. Recall the splitting from [2] $$T(\mathbb{Z}) \simeq H\mathbb{Z} \vee \bigvee_{i \geq 2} \Sigma^{2i-1} H\mathbb{Z}/i.$$ Here the inclusion of the zero-simplices $\iota: H\mathbb{Z} \to T(\mathbb{Z})$ gives the map to the first summand. Let $\mathscr{A}_* = H_*(H\mathbb{Z}/p;\mathbb{Z}/p)$ be the dual of the Steenrod algebra, with polynomial generators $(\xi_i)_{i\geq 1}$ and exterior generators $(\tau_i)_{i\geq 0}$ when p is odd, and polynomial generators $(\zeta_i)_{i\geq 1}$ when p=2. Let χ denote the canonical anti-involution on \mathscr{A}_* . Then $H_*(H\mathbb{Z};\mathbb{Z}/p)$ is the subalgebra of \mathscr{A}_* generated by $(\xi_i)_{i\geq 1}$ and $(\chi\tau_i)_{i\geq 1}$ when p is odd, and by $(\zeta_1^2,\chi\zeta_2,\chi\zeta_3,\dots)$ when p=2. For p odd, $\xi_1\in\mathscr{A}_{2p-2}$ is dual to the Steenrod pth power operation p1, while for p=2 the class $\zeta_1^2\in\mathscr{A}_2$ is dual to Sq^2 . (We are following Milnor in writing ζ_i rather than ξ_i for the polynomial generators in the case p=2, to better distinguish between the even and odd cases.) Let $X = \operatorname{Map}(E_+^{(1)}, T(\mathbb{Z}))_p^{S^1}$ be the *p*-completed mapping spectrum, and let $X[0, \infty)$ be its connective cover. From the bottom fibration sequence in Lemma 3.3 it is clear that the first nonzero homotopy groups of $X[0, \infty)$ are $\pi_0 X = \hat{\mathbb{Z}}_p$, and $\pi_{2p-3} X \cong \mathbb{Z}/p$. **Lemma 3.4.** The first k-invariant of the connective cover of Map $(E_+^{(1)}, T(\mathbb{Z}))_p^{S^1}$ is the Steenrod pth power operation $$P^1: H\hat{\mathbb{Z}}_p \stackrel{\iota}{\longrightarrow} T(\mathbb{Z})_p \stackrel{\beta}{\longrightarrow} \Sigma^{-1}T(\mathbb{Z})_p \to \Sigma^{2p-2}H\mathbb{Z}/p$$ when p is odd, respectively, the Steenrod squaring operation $Sq^2: H\hat{\mathbb{Z}}_2 \to \Sigma^2 H\mathbb{Z}/2$ when p=2. **Proof.** The maps μ and $\nu: S^1_+ \wedge T(\mathbb{Z}) \to T(\mathbb{Z})$ restrict over $\iota: H\mathbb{Z} \to T(\mathbb{Z})$ to give maps λ and $\nu \circ \iota: S^1_+ \wedge H\mathbb{Z} \to T(\mathbb{Z})$, which agree on $1_+ \wedge H\mathbb{Z} \subset S^1_+ \wedge H\mathbb{Z}$. Their difference thus extends over $S^1 \wedge H\mathbb{Z} \to T(\mathbb{Z})$, and induces the derivation $$\sigma: H_*(H\mathbb{Z}; \mathbb{Z}/p) \to H_{*+1}(T(\mathbb{Z}); \mathbb{Z}/p)$$ given by $\sigma(x) = \lambda_*([S^1] \otimes x)$, where $[S^1] \in H_1(S^1_+; \mathbb{Z}/p)$ is the fundamental class. By the calculations of [2], σ maps $\xi_1 \in H_{2p-2}(H\mathbb{Z}; \mathbb{Z}/p)$ to the spherical element $e_{2p-1} \in H_{2p-1}(T(\mathbb{Z}); \mathbb{Z}/p)$ for p odd, while σ maps $\zeta_1^2 \in H_2(H\mathbb{Z}; \mathbb{Z}/2)$ to the spherical element $e_3 \in H_3(T(\mathbb{Z}); \mathbb{Z}/2)$ when p=2. So the k-invariant $H\hat{\mathbb{Z}}_p \to \Sigma^{2p-2}H\mathbb{Z}/p$ maps ξ_1 or ζ_1^2 to the fundamental class of $\Sigma^{2p-2}H\mathbb{Z}/p$, and is therefore equal to the dual cohomology operation, namely P^1 or Sq^2 , respectively. \square We may now prove Bökstedt's Theorem 1.4. We return to space level notation (see Fig. 1). Here the vertical maps are part of the bottom fiber sequence of Lemma 3.3, and ρ is given by restriction over the S^1 -inclusion $E_+^{(1)} \subset E_+ = ES_+^1$. On the level of spectral sequences, ρ induces the natural map from (1.2) to its two rightmost nonzero columns, Fig. 1. where s = 0 or s = -2. The resulting two-column spectral sequence is simply the long exact homotopy sequence of the cited fiber sequence. Recall that the first nonzero homotopy groups of $Q(S^0)_p$ are $\pi_0 Q(S^0)_p \cong \hat{\mathbb{Z}}_p$ and $\pi_{2p-3}Q(S^0)_p \cong \mathbb{Z}/p$, and the first k-invariant is P^1 detecting α_1 in the odd primary case, and Sq^2 detecting η in the case p=2. The composite $Q(S^0)_p \to X[0,\infty)$ induces a π_0 -isomorphism, and by Lemma 3.4 the first k-invariants of these spaces agree. Hence the induced map on connected components induces a π_{2p-3} -isomorphism, taking α_1 to the generator of $\pi_{2p-3}X$. Thus, $\alpha_1 \in \pi_{2p-3}Q(S^0)$ is detected in the rightmost two nonzero columns of the spectral sequence (1.2), where the only nonzero summand in total degree 2p-3 is in bidegree (-2, 2p-1). Thus a generator in this bidegree is hit. This completes the proof of Theorem 1.4. \square ### References - [1] M. Bökstedt, Topological Hochschild homology, Topology, to appear. - [2] M. Bökstedt, The topological Hochschild homology of \mathbb{Z} and \mathbb{Z}/p , Ann. of Math., to appear, - [3] M. Bökstedt, The natural transformation from $K(\mathbb{Z})$ to THH(\mathbb{Z}), Bielefeld, preprint. - [4] M. Bökstedt, W.C. Hsiang and I. Madsen, The cyclotomic trace and algebraic K-theory of spaces, Invent. Math. 11 (1993) 465–540. - [5] M. Bökstedt and I. Madsen, Topological cyclic homology of the integers, Asterisque 226 (1994) 57-143. - [6] A.K. Bousfield and D.M. Kan, Homotopy Limits, Completions and Localizations, Lecture Notes in Math., Vol. 304 (Springer, Berlin, 1972). - [7] L. Hesselholt and I. Madsen, On the K-theory of finite algebras over Witt vectors of finite fields, Topology, to appear. - [8] F. Waldhausen, Algebraic K-theory of spaces, a manifold approach, Canadian Math. Soc. Conf. Proc., Vol. 2, Part 1 (AMS, Providence, RI, 1982) 141–184.