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EXPONENTIALS OF NON-SINGULAR SIMPLICIAL SETS
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(communicated by J. Daniel Christensen)

Abstract
A simplicial set is non-singular if the representing map of

each non-degenerate simplex is degreewise injective. The sim-
plicial mapping set XK has n-simplices given by the simplicial
maps ∆[n]×K → X. We prove that XK is non-singular when-
ever X is non-singular. It follows that non-singular simplicial
sets form a cartesian closed category with all limits and colim-
its, but it is not a topos.

1. Introduction

Let sSet be the category of simplicial sets, and let nsSet denote its full subcategory
of non-singular simplicial sets, i.e., thoseX such that for each non-degenerate simplex
x ∈ Xn the representing map x̄ : ∆[n] → X is degreewise injective. The geometric
realization |X| of each non-singular simplicial set admits a well-defined PL (piecewise-
linear) structure, and the category nsSet plays a key role in the passage between
simplicial sets and PL manifolds in the proof of the stable parametrized h-cobordism
theorem [WJR13, Thm. 0.1, §3.4].

The inclusion U : nsSet→ sSet admits a left adjoint D : sSet→ nsSet, called
desingularization, cf. [WJR13, Rmk. 2.2.12] and [Fje, Def. 2.2], and the adjunc-
tion unit ηX : X → UDX is degreewise surjective. The category nsSet has all (small)
limits and colimits, which are preserved by U andD, respectively. Let (Sd,Ex) denote
Kan’s adjoint pair [Kan57] of endofunctors of sSet. The first author [Fje, Thm. 1.2]
has exhibited a model structure on the category nsSet, and has furthermore shown
that the adjunction

DSd2 : sSet⇄ nsSet : Ex2U

defines a Quillen equivalence from the standard model structure on simplicial sets.
The proofs of these two results depend on knowing that the endofunctor of nsSet
X 7→ X ×∆[1] preserves all colimits, and one purpose of the present paper is to
establish this fact.

For any simplicial sets X and K let XK be the simplicial mapping set, with n-
simplices the set of maps ∆[n]×K → X. Our main result follows.

Theorem 1.1. Let X and K be any two simplicial sets. If X is non-singular, then
so is XK .
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It follows that X 7→ XK restricts to an endofunctor of nsSet. This implies the
following generalization of the aforementioned fact.

Proposition 1.2. Let K be any non-singular simplicial set. Then the endofunctor
X 7→ X ×K of nsSet preserves all colimits.

The proof of Theorem 1.1 follows easily from the following special case, which also
directly implies the case K = ∆[1] of Proposition 1.2.

Proposition 1.3. If X is non-singular, then so is X∆[1].

We may restate Theorem 1.1 by saying that the non-singular simplicial sets form
an exponential ideal in the cartesian closed category [ML98, §IV.6] of simplicial
sets. The adjunction (D,U) exhibits nsSet as a reflective full subcategory [ML98,
§IV.3] of sSet, which is closed under exponentiation in the sense of [Day72]. In
this situation, Day’s reflection theorem [Day72, Thm. 1.2, Cor. 2.1] shows that the
reflector D : sSet→ nsSet preserves finite products, making nsSet a cartesian closed
category.

Proposition 1.4. Desingularization D : sSet→ nsSet preserves finite products.

Remark 1.5. The category nsSet is not a topos in the sense of [ML98, §IV.10],
because it does not admit a subobject classifier t : ∆[0] → Ω. Here Ω0 would have
to consist of precisely two elements, so Ω would be at most 1-dimensional, and could
not classify all the subobjects of ∆[2]. This is related to the fact that desingular-
ization does not in general preserve equalizers, as the example of the two maps
∆[0] ⇒ ∆[2]/δ1∆[1] illustrates.

We give the proof of Proposition 1.3 in Section 2, and deduce the remaining results
in Section 3.

Remark 1.6. We learned from handling editor Dan Christensen that our Theorem 1.1
has a parallel in earlier work by Michel Zisman [Zis09], who defined a class of sim-
plicial sets that he called regular (régulier), which properly contains the class of
non-singular simplicial sets. Zisman’s Theorem 2 states that XK is regular for each
regular simplicial set X, where K is an arbitrary simplicial set, and his key technical
Lemma 4 can serve as a replacement for our Lemma 2.4. We explain this relationship
in more detail after the proof of the latter lemma.
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2. Rigidity of prisms

Informally, Proposition 1.3 asserts that maps Φ: ∆[n]×∆[1] → X from prisms to
non-singular simplicial sets are very rigid.

We recall some terminology and notation before turning to the proofs. For each
n ⩾ 0 let [n] denote the totally ordered set {0 < 1 < · · · < n}. Following [FP90, §4.1],
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we shall refer to the functions α : [m] → [n] such that α(i) ⩽ α(j) for all i ⩽ j as
operators. These are the objects and morphisms of the category ∆. For a simplicial
set X : [n] 7→ Xn we write xα ∈ Xm for the value of the operator α : [m] → [n] on a
simplex x ∈ Xn. The standard n-simplex ∆[n] is the simplicial set [m] 7→ ∆([m], [n])
represented by [n].

An injective operator is said to be a face operator, and a surjective operator is said
to be a degeneracy operator. Special face operators are the elementary face operators
δni : [n− 1] → [n] that omit the element i, and the vertex operators εni : [0] → [n] that
hit the element i. Special degeneracy operators are the elementary degeneracy oper-
ators σn

i : [n+ 1] → [n] that send i and its successor i+ 1 to i. Usually, we omit the
superscript in the notation.

A face operator or degeneracy operator is proper if it is not the identity. A simplex x
is a (proper) face of a simplex y if x = yµ for a (proper) face operator µ. Analogously,
x is a (proper) degeneracy of y if x = yρ for a (proper) degeneracy operator ρ. A
simplex is degenerate if it is a proper degeneracy of some simplex. Otherwise, it is
said to be non-degenerate.

By the Eilenberg–Zilber lemma [FP90, Thm. 4.2.3] any simplex x in a simplicial
set X can be uniquely expressed as a degeneration x = x♯x♭ of a non-degenerate
simplex. We call the non-degenerate simplex x♯ the non-degenerate part of x, and
will refer to the degeneracy operator x♭ as the degenerate part of x. By the Yoneda
lemma, the n-simplices x of a simplicial set X are in natural bijective correspondence
with the simplicial maps x̄ : ∆[n] → X. The map x̄ is the representing map of x.

Lemma 2.1. Let x ∈ Xn be any simplex. The representing map x̄ : ∆[n] → X is
degreewise injective if and only if the n+ 1 vertices xε0, . . . , xεn ∈ X0 are pairwise
distinct.

Lemma 2.2. Let x be a simplex in a non-singular simplicial set X, and suppose that
xεk = xεl for some k < l. Then the degenerate part x♭ of x factors uniquely through
the proper degeneracy operator σk · · ·σl−1.

Proof. The representing map of the non-degenerate part x♯ is degreewise injective,
since X is non-singular, so its vertices are pairwise distinct. It follows that x♭(k) =
x♭(l). Since x♭ is order-preserving, it also follows that x♭(k) = x♭(j) for all k ⩽ j ⩽ l.
Let ρ = σk · · ·σl−1. Then x♭(i) = x♭(j) whenever ρ(i) = ρ(j), and this implies that
x♭ = (x♭µ)ρ, where µ is any choice of section to ρ. Thus the asserted factorization
exists. Its uniqueness is automatic, since ρ is surjective.

Proof of Proposition 1.3. Suppose that X is non-singular. We must show that each
non-degenerate n-simplex Φ in the simplicial mapping set X∆[1] has n+ 1 distinct
vertices Φε0, . . . ,Φεn. Equivalently, we must show that if the k-th and l-th vertices of
an n-simplex Φ are equal, for some 0 ⩽ k < l ⩽ n, then Φ is degenerate. This follows
from the two lemmas below.

Lemma 2.3. Suppose that X is non-singular and Φ is an n-simplex in X∆[1] such
that Φεk = Φεl, for some 0 ⩽ k < l ⩽ n. Then

Φεk = Φεj = Φεl

for all k ⩽ j ⩽ l.
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Lemma 2.4. Suppose that X is non-singular and Φ is an n-simplex in X∆[1] such
that Φεk = Φεk+1, for some 0 ⩽ k < n. Then there is an (n− 1)-simplex Ψ in X∆[1]

for which Φ = Ψσk, exhibiting Φ as a degenerate simplex.

We introduce some more notation before proving these lemmas. By definition, an
n-simplex in X∆[1] is a simplicial map

Φ: ∆[n]×∆[1] −→ X .

Here, the prism ∆[n]×∆[1] is generated by the non-degenerate (n+ 1)-simplices

γn+1
j : ∆[n+ 1] −→ ∆[n]×∆[1] ,

for 0 ⩽ j ⩽ n, given by

γn+1
j (i) =

{
(i, 0) for 0 ⩽ i ⩽ j,

(i− 1, 1) for j + 1 ⩽ i ⩽ n+ 1.

Viewing ∆[n]×∆[1] as the nerve of the partially ordered set [n]× [1], these generators
can be seen as maximal length paths in the diagram below.

(0, 1) // . . . // (j, 1) // (j + 1, 1) // . . . // (n, 1)

(0, 0) //

OO

. . . // (j, 0) //

OO ::

(j + 1, 0) //

OO

. . . // (n, 0).

OO

In particular, they satisfy the relations

γn+1
j δj+1 = γn+1

j+1 δj+1 (2.1)

for 0 ⩽ j < n. Conversely, to specify Φ it suffices to give its values Φγn+1
j on these

n+ 1 generators, subject to the n relations

(Φγn+1
j )δj+1 = (Φγn+1

j+1 )δj+1.

Proof of Lemma 2.3. Let X be non-singular and let Φ be an n-simplex in X∆[1]

with Φεk = Φεl, where 0 ⩽ k < l ⩽ n. The vertex operators εi : ∆[0] → ∆[1] for i ∈
{0, 1} induce maps ε∗i : X

∆[1] → X∆[0] ∼= X. Let xi = ε∗iΦ in Xn be represented by
the composite

x̄i : ∆[n] ∼= ∆[n]×∆[0]
1×εi−→ ∆[n]×∆[1]

Φ−→ X ,

restricting Φ to the bottom (for i = 0) or the top (for i = 1) of the prism. The
hypothesis on Φ implies that xiεk = xiεl in X0, so by Lemma 2.2 we can factor
the degenerate part x♭i of xi through σk · · ·σl−1, so that xi = yiσk · · ·σl−1 for some
(n+ k − l)-simplices yi of X.

Consider any j with k ⩽ j < l, let µ : [1] → [n] be the face operator given by µ(0) =
j and µ(1) = j + 1, and view the 1-simplex Φµ in X∆[1] as the map ∆[1]×∆[1] → X
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indicated by the following square.

x1εj
x1µ //

z0

x1εj+1

x0εj x0µ
//

Φεj

OO ::

x0εj+1.

Φεj+1

OO

z1

The factorization of xi through σj shows that xiεj = xiεj+1, for each i. Hence each 2-
simplex zi does not have pairwise distinct vertices, and must therefore be degenerate,
since X is non-singular. By Lemma 2.2 we must have z0 = w0σ1 and z1 = w1σ0 for
some 1-simplices wi. More precisely, we must have w0 = z0δ2 = Φεj and w1 = z1δ0 =
Φεj+1.

It follows that the diagonal 1-simplex in the figure is simultaneously equal to z0δ1 =
(Φεj)σ1δ1 = Φεj and to z1δ1 = (Φεj+1)σ0δ1 = Φεj+1. This proves that Φεj = Φεj+1

are equal as vertices in X∆[1].

Proof of Lemma 2.4. Let X be non-singular and let Φ be an n-simplex in X∆[1] with
Φεk = Φεk+1, where 0 ⩽ k < n. We will construct an (n− 1)-simplex Ψ in X∆[1] with
Φ = Ψσk. Equivalently, we must define Ψ: ∆[n− 1]×∆[1] → X so as to make the
right hand triangle commute in the diagram below.

∆[n+ 1]
γn+1
j

// ∆[n]×∆[1]
Φ //

σk×1

��

X

∆[n− 1]×∆[1].

Ψ

88

The triangle will commute if Φγn+1
j = Ψ(σk × 1)γn+1

j for each 0 ⩽ j ⩽ n, since the

simplices γn+1
0 , . . . , γn+1

n generate the prism ∆[n]×∆[1]. Here

(σk × 1)γn+1
j =

{
γnj σk+1 for 0 ⩽ j ⩽ k,

γnj−1σk for k < j ⩽ n.
(2.2)

Should Ψ exist, it must therefore satisfy

Φ(γn+1
j ) =

{
Ψ(γnj )σk+1 for 0 ⩽ j ⩽ k,

Ψ(γnj−1)σk for k < j ⩽ n.

Observing that δk+1 is a section to both σk and σk+1, we are led to define a function

ψ : {γn0 , . . . , γnn−1} −→ Xn

by

ψ(γnj ) =

{
Φ(γn+1

j )δk+1 for 0 ⩽ j ⩽ k,

Φ(γn+1
j+1 )δk+1 for k ⩽ j ⩽ n− 1,

which specifies where Ψ must send the generators γn0 , . . . , γ
n
n−1 of ∆[n− 1]×∆[1],
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should it exist. Note that for j = k the relation

Φ(γn+1
k )δk+1 = Φ(γn+1

k δk+1) = Φ(γn+1
k+1 δk+1) = Φ(γn+1

k+1 )δk+1

holds, by (2.1), so ψ(γnk ) is unambiguously defined. To verify that Ψ(γnj ) = ψ(γnj ) for
0 ⩽ j ⩽ n− 1 defines a map Ψ: ∆[n− 1]×∆[1] → X, it is (necessary and) sufficient
to confirm the relations

ψ(γnj )δj+1 = ψ(γnj+1)δj+1 (2.3)

for 0 ⩽ j < n− 1. We separate the proof of (2.3) into two cases.
First, for 0 ⩽ j < k we use the general rule δk+1δj+1 = δj+1δk for j < k, together

with (2.1), to see that

ψ(γnj )δj+1 = Φγn+1
j δk+1δj+1 = Φγn+1

j δj+1δk

is equal to

ψ(γnj+1)δj+1 = Φγn+1
j+1 δk+1δj+1 = Φγn+1

j+1 δj+1δk .

Second, for k ⩽ j < n− 1 we use the general rule δk+1δj+1 = δj+2δk+1 for k ⩽ j,
together with (2.1), to see that

ψ(γnj )δj+1 = Φγn+1
j+1 δk+1δj+1 = Φγn+1

j+1 δj+2δk+1

is equal to

ψ(γnj+1)δj+1 = Φγn+1
j+2 δk+1δj+1 = Φγn+1

j+2 δj+2δk+1 .

This concludes the verification of (2.3), giving us a well-defined map Ψ.
It still remains to argue that Φ = Ψ(σk × 1), and this is where we use the hypothe-

ses on X and Φ. It suffices to check that the equation

Φγn+1
j = Ψ(σk × 1)γn+1

j (2.4)

holds for 0 ⩽ j ⩽ n. Again, we separate the proof into two cases.
First, for 0 ⩽ j ⩽ k we must show that the (n+ 1)-simplex zj = Φ(γn+1

j ) in X is
equal to

Ψ(σk × 1)γn+1
j = Ψγnj σk+1 = Φ(γn+1

j )δk+1σk+1 = zjδk+1σk+1 ,

where we have used the calculation (2.2). The vertices zjεk+1 and zjεk+2 in X
are equal to ε∗1(Φεk) and ε∗1(Φεk+1), respectively, hence are equal by the assump-
tion that Φεk = Φεk+1. It follows by Lemma 2.2 that zj = wjσk+1 for some n-
simplex wj inX, sinceX is non-singular. This immediately implies that zjδk+1σk+1 =
wjσk+1δk+1σk+1 = wjσk+1 = zj , since δk+1 is a section to σk+1.

Second, for k < j ⩽ n we must show that the (n+ 1)-simplex zj = Φ(γn+1
j ) in X

is equal to

Ψ(σk × 1)γn+1
j = Ψγnj−1σk = Φ(γn+1

j )δk+1σk = zjδk+1σk .

The vertices zjεk and zjεk+1 in X are equal to ε∗0(Φεk) and ε
∗
0(Φεk+1), respectively,

hence are themselves equal. It follows by Lemma 2.2 that zj = wjσk for some n-
simplex wj inX. This implies that zjδk+1σk = wjσkδk+1σk = wjσk = zj , since δk+1 is
a section to σk. This concludes our verification of (2.4), proving that Φ is a degenerate
simplex of X∆[1].
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Remark 2.5. As mentioned in Remark 1.6, our Lemma 2.4 is easily deduced from
Lemma 4 in [Zis09]. A simplicial set X is regular in Zisman’s sense if and only if for
each non-degenerate simplex x ∈ Xn and each elementary edge operator µ : [1] → [n]
of the form µ(0) = k and µ(1) = k + 1, with 0 ⩽ k < n, the 1-simplex xµ ∈ X1 is
non-degenerate. (This notion of regularity differs from that defined in [FP90, §4.6],
which in turn is related to regularity and triangulability for CW complexes.)

Each non-singular simplicial set X is Zisman regular, since the vertices xεk and
xεk+1 of any non-degenerate simplex x in X will be distinct, so that xµ is non-
degenerate, for µ and 0 ⩽ k < n as above. If X is non-singular and Φεk = Φεk+1

for some n-simplex Φ: ∆[n]×∆[1] → X in X∆[1], then x0µ and x1µ in the square
diagram in the proof of Lemma 2.3 (with j replaced by k) must both be degenerate
as 1-simplices in X. This shows that Φ is k-almost degenerate (k-presque dégénéré)
in the sense of [Zis09, §2.2]. Hence [Zis09, Lem. 4] proves that Φ = Ψσk for some
(n− 1)-simplex Ψ in X∆[1], which gives the conclusion of our Lemma 2.4.

We choose to retain our proof of this lemma, for the convenience of the reader.

3. Outstanding proofs

Proof of Theorem 1.1. Let X be any non-singular simplicial set. By Proposition 1.3
and induction, X∆[1]n is non-singular, for each n ⩾ 0. The inclusion i : ∆[n] → ∆[1]n

sending j ∈ [n] to (1, . . . , 1, 0, . . . , 0) ∈ [1]n (with j copies of 1) admits a retraction
r : ∆[1]n → ∆[n] sending (k1, . . . , kn) to the largest index j such that kj = 1. Hence
r∗ : X∆[n] → X∆[1]n is split injective, and shows that X∆[n] is non-singular.

For any simplicial set K, we can find a simplicial set L =
∐

α ∆[nα] and a degree-
wise surjection s : L→ K. The induced map

s∗ : XK −→ XL ∼=
∏
α

X∆[nα]

is then degreewise injective, and exhibits XK as a simplicial subset of a product of
non-singular simplicial sets. It follows that XK is non-singular.

Proof of Proposition 1.2. When X, K and Y are non-singular, so that X ×K and
Y K are non-singular by Theorem 1.1, the natural bijection

sSet(X ×K,Y ) ∼= sSet(X,Y K)

restricts to a natural bijection nsSet(X ×K,Y ) ∼= nsSet(X,Y K). Hence the endo-
functor X 7→ X ×K of nsSet is a left adjoint, and preserves all colimits.

Proof of Proposition 1.4. Let X and Y be any simplicial sets. Recall that each ad-
junction unit ηZ : Z → DZ is degreewise surjective. Let a : D(X × Y ) → DX ×DY
be induced by the two projections from X × Y . The composite

X × Y
ηX×Y−→ D(X × Y )

a−→ DX ×DY

is then equal to ηX × ηY , so a is degreewise surjective. The right adjoint of ηX×Y

X → D(X × Y )Y factors through ηX : X → DX, since D(X × Y )Y is non-singular
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by Theorem 1.1. Hence there is a unique factorization

X × Y
ηX×1−→ DX × Y

b−→ D(X × Y )

of ηX×Y . Similarly, there is a unique factorization

DX × Y
1×ηY−→ DX ×DY

c−→ D(X × Y )

of b, again by Theorem 1.1. It follows that caηX×Y = c(ηX × ηY ) = ηX×Y , so that
ca = 1, which proves that a is an isomorphism.
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