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LOCAL CODERIVATIVES AND APPROXIMATION OF HODGE

LAPLACE PROBLEMS

JEONGHUN J. LEE AND RAGNAR WINTHER

Abstract. The standard mixed finite element approximations of Hodge Laplace
problems associated with the de Rham complex are based on proper discrete
subcomplexes. As a consequence, the exterior derivatives, which are local op-
erators, are computed exactly. However, the approximations of the associated
coderivatives are nonlocal. In fact, this nonlocal property is an inherent con-
sequence of the mixed formulation of these methods, and can be argued to
be an undesired effect of these schemes. As a consequence, it has been ar-
gued, at least in special settings, that more local methods may have improved
properties. In the present paper, we construct such methods by relying on a
careful balance between the choice of finite element spaces, degrees of freedom,
and numerical integration rules. Furthermore, we establish key convergence
estimates based on a standard approach of variational crimes.

1. Introduction

The purpose of this paper is to discuss finite element methods for the Hodge
Laplace problems of the de Rham complex where both the approximation of the
exterior derivative and the associated coderivative are local operators. This is in
contrast to the more standard mixed methods for these problems, as described
in [7, 8], where the coderivative is approximated by a nonlocal operator d∗h. To
discuss this phenomenon in a more familiar setting, consider the mixed method for
the Dirichlet problem associated to a second order elliptic equation of the form

(1.1) − div(K gradu) = f in Ω, u|∂Ω= 0,

where the unknown function u is a scalar field defined on a bounded domain Ω in
R

n, and ∂Ω is its boundary. The coefficient K is matrix valued, spatially varying,
and uniformly positive definite. When K is the identity, this problem corresponds
to the Hodge Laplace problem studied below in the case when the unknown is an
n–form. The standard mixed finite element method for this problem, cf. [12], takes
the form:

Find (σh, uh) ∈ Σh × Vh such that
〈
K

−1σh, τ
〉
− 〈uh, div τ〉 = 0, τ ∈ Σh,

〈div σh, v〉 = 〈f, v〉 , v ∈ Vh,
(1.2)

where Σh and Vh are finite element spaces which are subspaces of H(div,Ω) and
L2(Ω), respectively, and where σh is an approximation of −K gradu. Here the
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2 JEONGHUN J. LEE AND RAGNAR WINTHER

notation 〈·, ·〉 is used to denote the L2 inner product for both scalar fields and
vector fields defined on Ω.

For the typical examples we have in mind the finite element space Vh will consist
of discontinuous piecewise polynomials with respect to a nonoverlapping partition
Th of the domain Ω. In this case the finite element method (1.2) is referred to as a
locally conservative or volume preserving method, since

(1.3)

∫

Ω0

f dx =

∫

∂Ω0

σh · ν ds

for any subdomain Ω0 of Ω which is a union of elements of Th. Here ν is the outward
unit normal to the boundary of Ω0. In particular, (1.3) holds if Ω0 consists of a
single element of Th, and reflects a locally conservation property of the continuous
problem. In contrast to this, standard finite element methods for problems of the
form (1.1), based on the Dirichlet principle and subspaces of the Sobolev space
H1(Ω), will not admit a corresponding local conservative property. In fact, for
certain problems it can be argued that locally conservative methods are more com-
patible with the continuous problem than the more standard H1–method with H1

conforming elements. For example, for porous medium flow in a strongly hetero-
geneous and anisotropic setting it has often been argued that locally conservative
numerical methods give a better local representation of the physics of the problem,
and therefore a qualitatively better approximation, cf. [1, 2]. As a consequence,
there has been a substantial interest in developing conservative schemes. In addi-
tion to the mixed method (1.2) this includes various schemes referred to as finite
volume schemes [22, 24], in particular the multi–point flux approximation schemes
[3], and mimetic finite differences [16, 17].

The mixed method (1.2) is a volume preserving discretization in the sense of
(1.3), and it is based on a sound variational principle, the principle of complemen-
tary energy. On the other hand, the mixed method (1.2) fails to have another local
property of the continuous problem since the operator, uh 7→ σh, defined by the
first equation of (1.2), and which approximates the operator −K grad, is nonlocal.
This is basically due to the continuity requirements of the finite element spaces Σh.
Since Σh is required to be a subset of H(div,Ω), the inverse of the so–called “mass
matrix”, derived from the L2 inner product 〈σh, τ〉 of the first equation of (1.2),
will be nonlocal. In other words, a local perturbation of uh will in general lead to a
global perturbation of σh, and this purely numerical effect is sometimes considered
to be undesirable. In fact, in many physical applications, the map uh 7→ σh approx-
imates a constitutive law which is represented as a local operator. For example,
in porous medium flow, this corresponds to Darcy’s law. Therefore, a central issue
in the construction of many of the alternative finite volume schemes is to obtain
volume preserving methods which are also based on local approximations of the
fluxes σh · ν, cf. (1.3). We should also mention that there is a relation between
the desired local properties described above and so-called mass lumping. This is a
procedure which is often performed in the setting of time dependent problems, to
remove the effect of mass matrices, to obtain explicit or simplified time stepping
schemes. For examples of such studies we refer to [20] and references given there.
However, we will not study time dependent problems in this paper, even if our
results can potentially be used in this context.

An early attempt to overcome the locality problem of the mixed method (1.2)
in the two dimensional case, and using the lowest order Raviart-Thomas space,
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was done in [9]. In this case the unknown uh is a piecewise constant, while the
fluxes σh · ν are constant on each edge of the triangulation. The discussion in [9]
was restricted to the case K equal to the identity. The first equation of (1.2) is
approximated by a numerical integration rule based on the fluxes at the edges. This
approach leads to a so-called two-point flux method, i.e., the flux across an edge
is proportional to the difference of uh at the two neighbouring triangles. However,
this method has serious defects. In particular, in the general setting, where K is
matrix valued and spatially varying, the two-point flux method will not always be
consistent, cf. [3, 4].

The multi-point flux approximation schemes were derived to overcome this prob-
lem, and with Darcy flow and reservoir simulation as the main area of application.
We refer to the survey paper [3] by Aavatsmark for more details. The multi-point
flux schemes are usually described in the setting of finite difference methods. How-
ever, for the analysis of these finite volume schemes it seems that the most useful
approach is to be able to relate the schemes properly to a perturbed mixed finite
element method, cf. [10, 23, 30, 31, 34]. An alternative approach to overcome the
defects of the two-point flux method was proposed by Brezzi et al. [13]. They pro-
posed to use the lowest order Brezzi-Douglas-Marini space instead of the Raviart-
Thomas space, and to perturb that mixed method by introducing a quadrature
rule based on vertex values instead of edge values. They also showed satisfactory
results in the three dimensional case. A similar method was proposed by Wheeler
and Yotov [34], where also quadrilateral grids are studied, and further extensions
to hexahedral grids are studied in [29, 33].

The results of the present paper can be seen as further generalizations of the
results of [13, 34]. In fact, the mixed method (1.2) corresponds to a special case
of the finite element methods studied in [7, 8] for the more general Hodge Laplace
problems. Furthermore, the lack of locality described above is a common feature
of almost all of these finite element methods. Therefore, the purpose of the present
paper is to construct corresponding perturbations of the mixed methods for the
Hodge Laplace problems which will overcome the problem of lack of locality in this
more general setting. As a consequence, the potential applications of the results
of this paper are not restricted to Darcy flow and similar problems, but may for
example also be used to localize various methods for Maxwell’s equations. We refer
to [7, 8] for more details on the various realizations of the Hodge Laplace problems.

The present paper is organized as follows. In the next section we will present
a brief review of exterior calculus, the de Rham complex and its discretizations.
In Section 3 we will discuss an abstract error analysis, in the setting of Hilbert
complexes, which we will find useful in more concrete applications below. Such
applications, in the setting of finite element discretizations with respect to simplicial
meshes, will be discussed in Section 4, while corresponding results for cubical meshes
are discussed in Section 5.

2. Preliminaries

Throughout this paper we will adopt the language of finite element exterior
calculus as in [7, 8]. We assume that Ω ⊂ R

n is bounded polyhedral domain, and
we will study finite element approximations of differential forms defined on Ω. More
precisely, we consider maps defined on Ω with values in the space Altk(Rn), the
space of alternating k–linear maps on R

n. For 0 ≤ k ≤ n this is a real vector space
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with dimension

dimAltk(Rn) =

(
n
k

)
.

When k = 0, Alt0(Rn) = R. For 1 ≤ k ≤ n let Σ(k) be the set of increasing
injective maps from {1, ..., k} to {1, ..., n}. Then we can define an inner product on

Altk(Rn) by the formula

〈a, b〉Alt =
∑

σ∈Σ(k)

a(eσ1
, . . . , eσk

)b(eσ1
, . . . , eσk

), a, b ∈ Altk(Rn),

where σi denotes σ(i) for 1 ≤ i ≤ k and {e1, . . . , en} is any orthonormal basis of
R

n.
Differential forms are maps defined on a spatial domain Ω with values in Altk(Rn).

If u is a differential k-form and t1, . . . , tk are vectors in R
n, then ux(t1, . . . , tk) de-

notes the value of u applied to the vectors t1, . . . , tk at the point x ∈ Ω. The
differential form u is an element of the space L2Λk(Ω) if and only if the map

x 7→ ux(t1, . . . , tk)

is in L2(Ω) for all tuples t1, . . . , tk. In fact, L2Λk(Ω) is a Hilbert space with inner
product given by

〈u, v〉 =

∫

Ω

〈ux, vx〉Alt dx.

The exterior derivative of a k-form u is a (k + 1)-form du given by

dux(t1, . . . tk+1) =

k+1∑

j=1

(−1)j+1∂tjux(t1, . . . , t̂j , . . . , tk+1),

where t̂j implies that tj is not included, and ∂tj denote the directional derivative.

The Hilbert space HΛk(Ω) is the corresponding space of k-forms u on Ω, which is
in L2Λk(Ω), and where its exterior derivative, du = dku, is also in L2Λk+1(Ω). The
L2 version of the de Rham complex then takes the form

HΛ0(Ω)
d0

−→ HΛ1(Ω)
d1

−→ · · ·
dn−1

−−−→ HΛn(Ω).

In the setting of k–forms, the Hodge Laplace problem takes the form

(2.1) Lu = (d∗d+ dd∗)u = f,

where d = dk is the exterior derivative mapping k–forms to (k + 1)–forms, and the
coderivative d∗ = d∗k can be seen as the formal adjoint of dk−1. Hence, the Hodge
Laplace operator L above is more precisely expressed as L = d∗k+1d

k + dk−1d∗k. A
typical model problem studied in [7, 8] is of the form (2.1) and with appropriate
boundary conditions. The mixed finite element methods are derived from a weak
formulation, where σ = d∗u is introduced as an auxiliary variable. It is of the form:

Find (σ, u) ∈ HΛk−1(Ω)×HΛk(Ω) such that

〈σ, τ〉 −
〈
u, dk−1τ

〉
= 0, τ ∈ HΛk−1(Ω),

〈
dk−1σ, v

〉
+
〈
dku, dkv

〉
= 〈f, v〉 , v ∈ HΛk(Ω).

(2.2)

Here 〈·, ·〉 denotes the inner products of all the spaces of the form L2Λj(Ω) which
appears in the formulation, i.e., j = k − 1, k, k + 1. We refer to Sections 2 and 7
of [7] for more details. We note that only the exterior derivate d is used explicitly
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in the weak formulation above, while the relation σ = d∗ku is formulated weakly
in the first equation. The formulation also contains the two boundary conditions
that the traces of ⋆u and ⋆du vanish on the boundary, where ⋆ is the Hodge star
operator mapping k–forms to (n − k)–forms. The problem (2.2) with k = n − 1
corresponds to a weak formulation of the elliptic equation (1.1) in the case when the
coefficient K is the identity matrix. In fact, variable coefficients can also easily be
included in the weak formulations (2.2) by changing the L2 inner products, see [7,
Section 7.3]. However, throughout the rest of the discussion below we will restrict
the discussion to the constant coefficient case. But we emphasize that the extension
of the discussion to problems with variable coefficients of the form studied in [7],
and which are piecewise constants with respect to the mesh we consider, is indeed
straightforward.

In general, the solution of the system (2.2) may not be unique. Depending
on the topology of the domain Ω there may exist nontrivial harmonic forms, i.e.,
nontrivial elements of the space

Hk(Ω) = {v ∈ HΛk(Ω) : dv = 0 and 〈v, dτ〉 = 0 for all τ ∈ HΛk−1(Ω)}.

Hence, to obtain a system with a unique solution, an extra condition requiring
orthogonality with respect to the harmonic forms, is usually included.

The basic construction in finite element exterior calculus is of a corresponding
subcomplex

V 0
h

d
−→ V 1

h
d
−→ · · ·

d
−→ V n

h ,

where the spaces V k
h are finite dimensional subspaces of HΛk(Ω). In particular, the

discrete spaces should have the property that d(V k−1
h ) ⊂ V k

h . The finite element
methods studied in [7, 8] are based on the weak formulation (2.2). These methods
are obtained by simply replacing the Sobolev spaces HΛk−1(Ω) and HΛk(Ω) by the

finite element spaces V k−1
h and V k

h . More precisely, we are searching for a triple

(σh, uh, ph) ∈ V k−1
h × V k

h × Hk
h such that

〈σh, τ〉 − 〈dτ, uh〉 = 0, τ ∈ V k−1
h ,

〈dσh, v〉+ 〈duh, dv〉+ 〈ph, v〉 = 〈f, v〉 , v ∈ V k
h ,(2.3)

〈uh, q〉 = 0, q ∈ Hk
h,

where the space Hk
h, approximating the harmonic forms, is given by

Hk
h = {v ∈ V k

h : dv = 0 and 〈v, dτ〉 = 0 for all τ ∈ V k−1
h }.

In particular, the exterior derivative appearing in the method is the exact operator
d, restricted to the spaces V k−1

h and V k
h , while no d∗ operator appears. Instead, an

approximation of d∗ is implicitly defined by the system (2.3). More precisely, the

operator d∗h : V k
h → V k−1

h is defined by the first equation of the system (2.3), i.e.,

(2.4) 〈d∗hu, τ〉 = 〈u, dτ〉 , u ∈ V k
h , τ ∈ V k−1

h .

In fact, just as we have explained for the special discrete problem (1.2) above,

the continuity requirements of the spaces V k−1
h will in general have the effect the

operator d∗h is nonlocal, in contrast to the continuous case where d∗ is a local
operator. Motivated by this our purpose in this paper is to construct perturbations
of the standard mixed methods which are converging, but also have the property
that the corresponding operator d∗h is local. We will achieve this by replacing the
L2 inner product 〈d∗hu, τ〉 in (2.4) by a proper approximation, and by choosing
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the spaces V k−1
h and V k

h carefully. In all the examples presented below the finite

element spaces V k−1
h and V k

h will be of “low-order”. We also recall that in the
continuous setting the coderivative d∗ can, up to a sign, be represented on the form
⋆d⋆, where ⋆ denotes Hodge operators. Therefore, the theory below can also be
related to the discussion by Hiptmair in [26] on discrete Hodge operators and local
approximation of constitutive laws.

In the theoretical analysis of the stability of numerical methods constructed
from the discrete complex, bounded projections πk

h : HΛk(Ω) → V k
h are utilized,

such that the diagram

(2.5)

HΛ0(Ω)
d

−−−−→ HΛ1(Ω)
d

−−−−→ · · ·
d

−−−−→ HΛn(Ω)
yπ0

h

yπ1

h

yπn
h

V 0
h

d
−−−−→ V 1

h
d

−−−−→ · · ·
d

−−−−→ V n
h

commutes. Such commuting projections are referred to as cochain projections.
The importance of bounded cochain projections is related to the stability of the
discretizations of the Hodge Laplace problems. It follows from the results of [8,
Section 3.3] that the existence of bounded cochain projections is equivalent to sta-
bility of the associated finite element method. As a consequence, the most common
stability criteria are obtained by showing the existence of such projections.

If {Th} is a family of simplicial meshes, as described for example in [7, Section
5], then the spaces V k

h are taken from two main families. Either V k
h is of the form

PrΛ
k(Th), consisting of all elements ofHΛk(Ω) which restrict to polynomial k-forms

of degree at most r on each simplex T in the partition Th, or V
k
h = P−

r Λk(Th), which
is a space which sits between PrΛ

k(Th) and Pr−1Λ
k(Th). In addition, both spaces

have the property that the elements have continuous traces on each simplex in
∆n−1(Th), and as a consequence they are subspaces of HΛk(Ω). Here we adopt the
notation that ∆k(Th) denotes the set of all the k–dimensional subsimplexes of the
triangulation Th. The spaces P−

r Λk(Th) and PrΛ
k(Th) are generalizations of the

Raviart-Thomas and Brezzi-Douglas-Marini spaces, used to discretize H(div) and
H(rot) in two space dimensions, and the Nédélec edge and face spaces of the first
and second kind, used to discretize H(curl) and H(div) in three space dimensions.

The simplest stable discretization of the Hodge Laplace problem is obtained by
choosing both spaces V k−1

h and V k
h to be the classical Whitney forms, i.e., we take

V k−1
h = P−

1 Λk−1(Th) and V k
h = P−

1 Λk(Th). For the space P−
1 Λk(Th) the degrees

of freedom are simply the integrals of the traces over each element of ∆k(Th). The
corresponding degrees of freedom for the corresponding linear space, P1Λ

k(Th), is
the corresponding integrals over each element of ∆k(Th) against all scalar linear
test functions, cf. [7, Theorem 4.10]. As we will see below, this extra local freedom,
represented by linear test functions on the k-dimensional subsimplexes, will be
crucial for our construction of local methods below.

We recall that another family of numerical methods that have been proposed
for Hodge Laplace problems are based on “discrete exterior calculus” as presented
in [21, 27]. By construction these methods utilize local approximation of both
the exterior derivative d and the coderivative d∗. However, for these methods a
satisfactory convergence theory seems still to be lacking. In contrast to this, for
the methods constructed here we derive convergence results based on a standard
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approach of finite elements and variational crimes. The study of such variational
crimes in the general setting of Hilbert complexes will be given in the next section.

3. Abstract error analysis and variational crimes

We will find it useful to base our analysis below on some abstract error esti-
mates in the general setting of Hilbert complexes and variational crimes. In this
respect our discussion in this section resembles parts of the theory presented in [28].
However, compared to the results of [28], covering discrete Hilbert complex with
nonconforming finite elements, we only consider conforming approximations, but
we provide more explicit conditions for consistency and convergence. Our notation
and set–up are basically taken from [8, Chapter 3].

A closed Hilbert complex (W,d) consists of a sequence of Hilbert spacesW k with
index k and a sequence of closed, densely-defined linear operators dk : W k → W k+1

such that dk+1 ◦ dk = 0. The sequence of operators d is called a differential. A
Hilbert subcomplex of (W,d) is a Hilbert complex (W̄ , d̄) such that W̄ k is a subspace
ofW k and d̄k = dk|W̄k for each k. The domain complex of a closed Hilbert complex
(W,d) is the Hilbert subcomplex (V, d) such that V k ⊂W k is the domain of dk for
all k. We use 〈·, ·〉 and ‖·‖ to denote the inner product and the corresponding norm
on W k, respectively, but we omit index k since it is usually clear from the context.
Similarly, we use 〈·, ·〉V to denote the inner product

〈ω, ω′〉V := 〈ω, ω′〉+
〈
dkω, dkω′

〉
, ω, ω′ ∈ V k(3.1)

and ‖·‖V is the associated norm.
The dual complex (W,d∗), associated to (W,d), is the Hilbert complex with same

W k as Hilbert spaces and d∗k+1 :W k+1 →W k, the adjoint of dk, as differential. The

d∗ is also called the coderivative of d. We say that dk is closed and densely-defined
if the range of dk is closed in W k+1 and the domain of dk is dense in W k.

Let us define subspaces of V k as

Zk = {ω ∈ V k : dω = 0},

Bk = d(V k−1) = {ω ∈ V k : ω = dη for some η ∈ V k−1},

Hk = {ω ∈ V k : dω = 0 and 〈ω, dη〉 = 0 for all η ∈ V k−1}.

We can consider a Hodge decomposition of W k,

W k = Bk ⊕ Hk ⊕ Zk⊥W ,

where ⊕ stands for orthogonal decomposition of subspaces with the W -inner prod-
uct and Zk⊥W is the orthogonal complement of Zk inW k with theW -inner product.
Similarly, there is a Hodge decomposition

V k = Bk ⊕ Hk ⊕ Zk⊥V

with Zk⊥V , the orthogonal complement of Zk in V k with the V -inner product
in (3.1). Since (W,d) is a closed Hilbert complex, Bk, Hk, Zk, Zk⊥V are closed
subspaces of V k. For a closed subspace W ′ of W k, PW ′ denotes the W -orthogonal
projections of W k into W ′.

In an abstract Hilbert complex, for a given f ∈ W k with f ⊥ Hk, a variational
mixed form of the Hodge Laplace problem (2.1) is to find (σ, u, p) ∈ V k−1×V k×Hk
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such that

〈σ, τ〉 − 〈dτ, u〉 = 0, τ ∈ V k−1,

〈dσ, v〉 + 〈du, dv〉+ 〈p, v〉 = 〈f, v〉 , v ∈ V k,(3.2)

〈u, q〉 = 0, q ∈ Hk.

To discretize (3.2), we assume that (Vh, d) is a family of finite dimensional
subcomplexes parametrized by a discretization parameter h ∈ (0, 1]. So V k

h ⊂ V k

and d(V k−1
h ) ⊂ V k

h . Furthermore, we assume that the discretization is stable in the
sense that there exists uniformly bounded cochain projections, cf. [8, Section 3.3].
If we define function spaces

Zk
h = {ω ∈ V k

h : dω = 0}, Bk
h = dV k−1

h ,

Hk
h = {ω ∈ V k

h : dω = 0, 〈ω, dτ〉 = 0 τ ∈ V k−1
h },

then there is a discrete Hodge decomposition of V k
h for each k

V k
h = Zk

h ⊕ Zk⊥
h = Bk

h ⊕ Hk
h ⊕ Zk⊥

h(3.3)

with Zk⊥
h , the orthogonal complement of Zk

h in V k
h [8]. Furthermore, a discrete

Poincaré inequality holds, i.e., there exists cP > 0, independent of h, such that

‖v‖≤ cP ‖dv‖, v ∈ Zk⊥
h .(3.4)

The discrete problem corresponding to (3.2) is to find (σ̃h, ũh, p̃h) ∈ V k−1
h ×V k

h ×Hk
h

such that

〈σ̃h, τ〉 − 〈dτ, ũh〉 = 0, τ ∈ V k−1
h ,

〈dσ̃h, v〉+ 〈dũh, dv〉+ 〈p̃h, v〉 = 〈f, v〉 , v ∈ V k
h ,(3.5)

〈ũh, q〉 = 0, q ∈ Hk
h.

For simplicity we will use X k and X k
h to denote V k−1×V k×Hk and V k−1

h ×V k
h ×Hk

h,
respectively, and define ‖(τ, v, q)‖X by

‖(τ, v, q)‖X := ‖τ‖V +‖v‖V +‖q‖, (τ, v, q) ∈ X k.(3.6)

For future reference we rewrite the system (3.2) as

B(σ, u, p; τ, v, q) = 〈f, v〉 , (τ, v, q) ∈ X k,(3.7)

with the bilinear form

B(τ, v, q; τ ′, v′, q′) = 〈τ, τ ′〉 − 〈dτ ′, v〉+ 〈dτ, v′〉+ 〈dv, dv′〉+ 〈q, v′〉 − 〈q′, v〉 .(3.8)

Stability and error estimates for the discrete approximations (3.5) are given in [8,
Theorem 3.9]. An estimate of the form

‖(σ, u, p)− (σ̃h, ũh, p̃h)‖X . inf
(τ,v,q)∈X k

h

‖(σ, u, p)− (τ, v, q)‖X+Eh(u)(3.9)

holds with an extra error term Eh(u) explained below. Here, and below, the notation
X . Y is used to state that X ≤ CY , with a constant C > 0 independent of the
discretization parameter h. Furthermore, the extra error term Eh(u) appears as
a consequence of the fact that the space of discrete harmonic forms, Hk

h is not a
subspace of Hk. In fact, if there are no nontrivial harmonic forms, i.e., if Hk only
consists of the zero element, then Eh(u) = 0. Otherwise, Eh(u) will usually be of
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higher order than the other terms on the right-hand side of (3.9). We refer to [7,
Section 7.6] and [8, Section 3.4] for more details.

As is already mentioned in the previous section, our purpose is developing a
convergent numerical method for (3.7) such that the d∗h operator defined by d∗huh :=
σh, is a local operator. To achieve a numerical method which results in a local d∗h
operator, we consider discrete mixed Hodge Laplace problems with a bilinear form
Bh, a variant of B. In Bh the first equation in (3.5) is modified to make the numerical
solutions σh and uh have a local relation. To define Bh, we suppose that there is a
bilinear form 〈·, ·〉h satisfying the following assumption:

(A) 〈·, ·〉h is a symmetric bounded coercive bilinear form on V k−1
h × V k−1

h such

that the norm ‖τ‖h:= 〈τ, τ〉
1/2
h is equivalent to ‖τ‖ for τ ∈ V k−1

h with
constants independent of h.

In this section we remain 〈·, ·〉h undefined, and proceed discussions on the numerical
method in abstract setting. Explicit examples of 〈·, ·〉h on simplicial and cubical
meshes will be given in the next two sections. We now define Bh(τ, v, q; τ

′, v′, q′) :
X k

h ×X k
h → R by

(3.10) Bh(τ, v, q; τ
′, v′, q′)

= 〈τ, τ ′〉h − 〈dτ ′, v〉+ 〈dτ, v′〉+ 〈dv, dv′〉+ 〈q, v′〉 − 〈q′, vh〉 ,

and consider the problem to find (σh, uh, ph) ∈ X k
h such that

Bh(σh, uh, ph; τ, v, q) = 〈f, v〉 , (τ, v, q) ∈ X k
h .(3.11)

Let us define the norm ‖(τ, v, q)‖Xh
for (τ, v, q) ∈ X k

h by

‖(τ, v, q)‖Xh
:=

(
‖τ‖2h+‖dτ‖2+‖v‖2V +‖q‖2

) 1

2 .

From the assumption (A) it is easy to see that ‖·‖Xh
is equivalent to ‖·‖X in

X k
h . Due to (A) and the discrete Poincaré inequality (3.4), there exists a positive

constant, again denoted by cP , that

‖ρ‖h≤ cP ‖dρ‖, ρ ∈ Zk−1⊥
h .(3.12)

Theorem 3.1. Suppose that Bh is defined as in (3.10) with 〈·, ·〉h satisfying (A).
Then Bh satisfies

inf
06=(τ,v,q)∈X k

h

sup
06=(τ ′,v′,q′)∈X k

h

Bh(τ, v, q; τ
′, v′, q′)

‖(τ, v, q)‖Xh
‖(τ ′, v′, q′)‖Xh

& 1.(3.13)

The proof of this theorem is completely analogous to the proof of Theorem 3.2
in [8] with the discrete Poincaré inequality (3.12), so we do not prove it here.

By Theorem 3.1, (3.11) has a unique solution (σh, uh, ph) ∈ X k
h . To show the

convergence of ‖(σ−σh, u−uh, p−ph)‖X , we use a standard method with the triangle
inequality and an interpolation of (σ, u, p) in Xh. Since we already know the good
approximation result (3.9), we only need to estimate ‖(σh− σ̃h, uh− ũh, ph− p̃h)‖X .

We first observe that

Bh(σ̃h, ũh, p̃h; τ, v, q) = B(σ̃h, ũh, p̃h; τ, v, q) + 〈σ̃h, τ〉 − 〈σ̃h, τ〉h(3.14)

= 〈f, v〉+ 〈σ̃h, τ〉 − 〈σ̃h, τ〉h ,

by the definitions of Bh, B, and (3.5). To estimate ‖(σh − σ̃h, uh − ũh, ph − p̃h)‖X ,
we use the equivalence of ‖·‖Xh

and ‖·‖X on X k
h and the Strang lemma in the



10 JEONGHUN J. LEE AND RAGNAR WINTHER

variational crimes [11, Chap. 10]. More specifically, the equivalence of ‖·‖Xh
and

‖·‖X , (3.13), and (3.11) lead us to

‖(σh − σ̃h, uh − ũh, ph − p̃h)‖X

. sup
(τ,v,q)∈X k

h

Bh(σh − σ̃h, uh − ũh, ph − p̃h; τ, v, q)

‖(τ, v, q)‖Xh

= sup
(τ,v,q)∈X k

h

〈f, v〉 − Bh(σ̃h, ũh, p̃h; τ, v, q)

‖(τ, v, q)‖Xh

(3.15)

= sup
τ∈V k−1

h

〈σ̃h, τ〉h − 〈σ̃h, τ〉

‖τ‖V
.

This shows that convergence of ‖(σh − σ̃h, uh − ũh, ph − p̃h)‖X is related to the
consistency error from the discrete bilinear form 〈·, ·〉h. To have a consistency error
estimate, we need another assumption for 〈·, ·〉h:

(B) There exist discrete subspaces W k−1
h ⊂W k−1 and Ṽ k−1

h ⊂ V k−1
h that

〈τ, τ0〉 = 〈τ, τ0〉h , τ ∈ Ṽ k−1
h , τ0 ∈ W k−1

h ,(3.16)

and a linear map Πh : V k−1
h → Ṽ k−1

h such that dΠhτ = dτ , ‖Πhτ‖. ‖τ‖,
and

〈Πhτ, τ0〉h = 〈τ, τ0〉h , τ0 ∈W k−1
h .(3.17)

Note that if (3.16) holds with Ṽ k−1
h = V k−1

h , then all other conditions are satisfied
with Πh as the identity map.

The error bound of ‖(σ − σh, u − uh, p − ph)‖X follows from the estimate of
‖(σh − σ̃h, uh − ũh, ph − p̃h)‖X obtained in the theorem below.

Theorem 3.2. Suppose that Bh is given as in (3.10) with 〈·, ·〉h satisfying (A) and

(B). Then, for (σh, uh, ph), the solution of (3.11),

‖(σh − σ̃h, uh − ũh, ph − p̃h)‖X. ‖σ − PWh
σ‖+‖σ − σ̃h‖(3.18)

holds in which PWh
is the W -orthogonal projection onto W k−1

h .

Proof. By (3.15), it suffices to show

|〈σ̃h, τ〉 − 〈σ̃h, τ〉h | . (‖σ − PWh
σ‖+‖σ − σ̃h‖) ‖τ‖V .(3.19)

We first observe that 〈σ̃h, τ
′〉 = 〈σ̃h,Πhτ

′〉 for τ ′ ∈ V k−1
h holds by taking τ =

τ ′ −Πhτ
′ in the first equation of (3.5). Using this equality, we have

〈σ̃h, τ〉 − 〈σ̃h, τ〉h = 〈σ̃h,Πhτ〉 − 〈σ̃h, τ〉h

= 〈σ̃h,Πhτ〉 − 〈σ̃h,Πhτ〉h + 〈σ̃h,Πhτ − τ〉h(3.20)

= 〈σ̃h − PWh
σ,Πhτ〉 − 〈σ̃h − PWh

σ,Πhτ〉h

+ 〈σ̃h − PWh
σ,Πhτ − τ〉h ,

where, to get the last equality, we used (3.16) for the first two terms and (3.17) for
the last term, respectively. By the Cauchy–Schwarz inequality and the boundedness
of 〈·, ·〉h in (A), we have

|〈σ̃h − PWh
σ,Πhτ〉 − 〈σ̃h − PWh

σ,Πhτ〉h | . (‖σ̃h − σ‖+‖σ − PWh
σ‖)‖τ‖.(3.21)
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A similar argument with ‖Πτ − τ‖. ‖τ‖ from the boundedness of Πh, gives

|〈σ̃h − PWh
σ,Πhτ − τ〉h | . ‖σ̃h − PWh

σ‖‖Πhτ − τ‖(3.22)

. (‖σ̃h − σ‖+‖σ − PWh
σ‖)‖τ‖.

Then, (3.19) follows from (3.20), the triangle inequality, and the estimates (3.21)
and (3.22). This completes the proof. �

In summary, we have presented perturbation results for mixed approximations
of abstract Hodge Laplace problems with sufficient conditions for well-posedness
and error estimates. If the method is based on a standard mixed method of the
form (3.5), which is stable, then the extra error introduced by the modification of
the bilinear form B into Bh, cf. (3.8) and (3.10), is controlled by Theorem 3.2 above.
Hence, the extra conditions to check are conditions (A) and (B). This result will be
utilized in the next two sections to establish error estimates for proper perturbations
constructed such that the associated discrete coderivatives are local.

4. The simplicial case

In this section we apply the abstract framework in the previous section to mixed
Hodge Laplace problems of the de Rham complex on simplicial meshes. We let Ω be
a bounded polyhedral domain in R

n. Recall that the de Rham complex on Ω is the
Hilbert complex (W,d) withW k = L2Λk(Ω), 0 ≤ k ≤ n, and with corresponding do-
main complex (V, d), where V k = HΛk(Ω). Here, d = dk : HΛk(Ω) → L2Λk+1(Ω)
is the exterior derivative. Let {Th} be a family of shape-regular simplicial meshes
of Ω, indexed by the parameter h = max{diamT : T ∈ Th }. Associated to the
mesh Th there are basically two families of finite element spaces of differential forms,
PrΛ

k(Th) and P−
r Λk(Th) for 0 ≤ k ≤ n, where r is the local polynomial degree.

In our discussion below we will study concrete realizations of discretizations of
the form (3.11), where the discrete spaces V k−1

h and V k
h are chosen as P1Λ

k−1(Th)

and P−
1 Λk(Th), respectively. In other words, we are combining the lowest order

finite element spaces of the two basic families. The exterior derivative d maps
P1Λ

k−1(Th) into P−
1 Λk(Th). In fact, this pair leads to a stable discretization of the

corresponding Hodge Laplace problem in the form of (3.5), where the inner product
〈·, ·〉 corresponds to L2 inner products. Furthermore, the right-hand side of (3.9)
is of order O(h) under the assumption that the solution is sufficiently regular,
cf. [7, Section 7.6] or [8, Chapter 5]. The corresponding discrete coderivative d∗h,
defined by (2.4), is a map from P−

1 Λk(Th) to P1Λ
k−1(Th). However, as discussed

in Sections 1 and 2 above, this operator will be nonlocal as a consequence of the
continuity properties of the space P1Λ

k−1(Th). Therefore, to achieve a local d∗h
operator we will follow the approach of Section 3 above, and modify the inner
product on P1Λ

k−1(Th), cf. (3.10). More precisely, we will replace the L2 inner
product 〈·, ·〉 on P1Λ

k−1(Th) by a modified inner product 〈·, ·〉h. The main purpose

of this modification is to obtain a local coderivative d∗h, mapping P−
1 Λk(Th) to

P1Λ
k−1(Th), defined by

(4.1) 〈d∗hu, τ〉h = 〈u, dτ〉 , u ∈ P−
1 Λk(Th), τ ∈ P1Λ

k−1(Th).

To apply the convergence theory of Section 3 we need to verify that the stability
condition (A) and the consistency condition (B) hold. In the present case we

will verify condition (B) with the space Ṽ k−1
h taken to be V k−1

h . Hence, to verify
this condition we only need to show that condition (3.16) holds for a proper space
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W k−1
h ⊂ L2Λk−1(Ω). Furthermore, to preserve the linear convergence of the method

the space W k−1
h should have the property that the L2 error of the orthogonal

projection onto W k−1
h is of order O(h), cf. Theorem 3.2. In fact, throughout the

discussion of this section we will take W k−1
h to be the space of piecewise constant

forms, i.e.,

(4.2) W k−1
h := {τ ∈ L2Λk−1(Ω) | τ |T∈ P0Λ

k−1(T ) for all T ∈ Th},

and as a consequence the desired accuracy of the projection is achieved.
Instead of discussing how to construct the modified inner product 〈d∗hu, τ〉h on

one specific space, P1Λ
k−1(Th), we will consider the construction of such modified

inner products on all the spaces of the form P1Λ
k(Th), where 0 ≤ k ≤ n. We recall

that the space PrΛ
k(Rn), i.e., the space of polynomial k-forms of degree r, consists

of all polynomials of degree r with values in Altk(Rn), and its dimension is given
by

dimPrΛ
k(Rn) =

(
n+ r
r

)(
n
k

)
.

Furthermore, an element u of P1Λ
k(Rn) is of the form

u(x) = a0 +

n∑

j=1

ajxj , aj ∈ Altk(Rn).

Hence, to determine u on a simplex T ∈ Th we need (n+1)

(
n
k

)
degrees of freedom.

The standard degrees of freedom for the space P1Λ
k(Th) is given by

(4.3)

∫

f

trf u ∧ v, v ∈ P1Λ
0(f), f ∈ ∆k(Th),

cf. [7, Theorem 4.10]. In fact, for any f ∈ ∆k(Th) an element in P1Λ
k(f) can be

uniquely identified with an element in P1Λ
0(f) through the Hodge star operator

on f . Therefore, the degrees of freedom given by (4.3), on a fixed f ∈ ∆k(Th),
determines the trf u uniquely. This means that

dimP1Λ
k(Th) = (k + 1)|∆k(Th)|,

where |∆k(Th)| is the cardinality of the set ∆k(Th). Furthermore, the degrees of
freedom given by (4.3) can be replaced by any other set of degrees of freedom which
determines trf u uniquely on each f ∈ ∆k(Th).

If u ∈ P1Λ
k(Th) and f ∈ ∆k(Th) then trf u is uniquely determined by trf u

evaluated at each vertex of f . In particular, if f has vertices x0, x1, . . . , xk, i.e.,
f = [x0, x1, . . . xk], then trf u at vertex xi is determined by the functional φf,xi

(u)
given by

φf,xi
(u) = uxi

(x0 − xi, . . . , xi−1 − xi, xi+1 − xi, . . . , xk − xi).

In other words, at the point xi we apply the k-form u to the k vectors xj − xi,
j 6= i, which all are tangential to f . By letting the index i run from 0 to k we
obtain k+1 functionals which determines trf u uniquely. Furthermore, an element
u ∈ P1Λ

k(Th) is uniquely determined by the degrees of freedom {φf,x(u)}, where
(f, x) runs over all pairs such that f ∈ ∆k(Th) and x ∈ ∆0(f). Of course, this is
again (k + 1)|∆k(Th)| linearly independent degrees of freedom.
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If u ∈ P1Λ
k(Th) and xi is a vertex, i.e., xi ∈ ∆0(Th), then u is not continuous

at xi. In general, u will have a separate value for each T ∈ Th which touches xi.
However, the value of u at xi, taken in the simplex T , is uniquely determined by the(
n
k

)
degrees of freedom given by φf,xi

(u) for all f ∈ ∆k(T ) such that xi ∈ ∆0(f).

As a consequence, it follows that all the values of u at xi are determined by φf,xi
(u)

for f ∈ ∆k(Th) with xi ∈ ∆0(f). In particular, if φf,x(u) = 0 for a fixed x ∈ ∆0(Th)
and all f ∈ ∆k(Th) such that x ∈ ∆0(f), then u = 0 at x.

Given a set of degrees of freedom we can also define the corresponding dual basis
{ψf,x} for the space P1Λ

k(Th) defined by

(4.4) φg,y(ψf,x) = δ(f,x),(g,y), f, g ∈ ∆k(Th), x ∈ ∆0(f), y ∈ ∆0(g),

with the obvious interpretation that δ(f,x),(g,y) = 1 if (f, x) = (g, y) and zero
otherwise. It is clear from the above observation that ψf,x = 0 at all y ∈ ∆0(Th)
such that y 6= x. In fact, the piecewise linear form ψf,x has a simple explicit
representation in terms of barycentric coordinates. To see this, for xj ∈ ∆0(Th) we
let λj be the piecewise linear function determined by λj(xj) = 1, while λj vanish
on all other vertices. In other words, λj corresponds to the barycentric coordinate
associate the vertex xj for all T ∈ Th such that xj ∈ ∆0(T ), and it is extended
by zero elsewhere. Note that the corresponding 1-form, dλj , is piecewise constant
and vanish outside the macroelement Ωxj

. Here we use the notation that for any
f ∈ ∆(Th), the associated macroelement Ωf is given by

Ωf =
⋃

{T |T ∈ Th, f ∈ ∆(T ) }.

In particular, we note that if [xj , xi] ∈ ∆1(Th) then dλj(xj −xi) = 1. On the other
hand, dλj(xl − xi) = 0 if [xi, xl] ∈ ∆1(Th) with both endpoints different from xj .

Assume now that f = [x0, x1, . . . xk] ∈ ∆k(Th). The corresponding functions
ψf,xi

, i = 0, 1, . . . , k are given by

ψf,xi
= λidλ0 ∧ · · · ∧ dλi−1 ∧ dλi+1 ∧ · · · ∧ dλk,

where ∧ denotes the wedge product. The functions ψf,xi
given above are obviously

in P1Λ
k(Th) and it is straightforward to check that they satisfy the conditions

(4.4). Observe also that the basis functions ψf,xi
have local support. In fact,

supp(ψf,xi
) ⊂ Ωxi

. The basis {ψf,x} for the space P1Λ
k(Th), just introduced,

is related to point values of traces via the dual relation (4.4). Furthermore, the
modified inner product 〈·, ·〉h will also be defined by point values. In fact, the

modified inner product will be constructed such that the matrix
〈
ψf,xi

, ψg,xj

〉
h
is

block diagonal, and this is the key property we will use below to show that the
constructed coderivative d∗h is local.

To define the modified inner product 〈·, ·〉h on P1Λ
k(Th) we first recall that if

T = [x0, x1, . . . , xn] ∈ Th, then the identity
∫

T

u(x) dx =

n∑

i=0

|T |

n+ 1
u(xi)

holds for all linear and scalar valued functions u. Here |T | denotes the volume of
T . Therefore, the bilinear form 〈·, ·〉h,T , given by

〈u, v〉h,T =

n∑

i=0

|T |

n+ 1
〈uxi

, vxi
〉Alt ,
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defines an inner product on P1Λ
k(T ) which is exactly equal to the inner product

on L2Λk(T ) for u ∈ P1Λ
k(T ) and v ∈ P0Λ

k(T ). As a consequence, if we define
〈·, ·〉h by

(4.5) 〈u, v〉h =
∑

T∈Th

〈u, v〉h,T , u, v ∈ P1Λ
k(Th),

then this is an inner product on P1Λ
k(Th) which is identical to the standard L2

inner product if u ∈ P1Λ
k(Th) and v ∈ W k

h , cf. (4.2). Furthermore, it follows from
standard scaling arguments and shape regularity that the inner product 〈·, ·〉h is

equivalent to the standard L2 inner product on P1Λ
k(Th), with constants indepen-

dent of h.
We can summarize the discussion so far as follows.

Theorem 4.1. For 1 ≤ k ≤ n let V k−1
h = P1Λ

k−1(Th) and V k
h = P−

1 Λk(Th).
Furthermore, let the bilinear form Bh be defined as in (3.10) with 〈·, ·〉 being the

appropriate L2 inner products and the modified inner product 〈·, ·〉h on V k−1
h defined

as in (4.5). Then the stability condition (A) and the consistency condition (B)

holds, where W k−1
h is given as in (4.2).

As we have already observed above the solution (σh, uh, ph) of the problem
(3.11), with the set up given in the theorem above, will in general converge to
the corresponding exact solution of the Hodge Laplace problem. This is just a
consequence of the estimate (3.9) combined with Theorem 3.2. Furthermore, under
the appropriate regularity assumptions on the exact solution the convergence will
be linear with respect to the mesh size h, i.e., the error will be O(h).

Next, we will consider the operator d∗h defined by (4.1), and show that this
operator is indeed a local operator. This will basically follow from the fact that the
matrix

〈
ψf,xi

, ψg,xj

〉
h
is block diagonal.

Theorem 4.2. For 1 ≤ k ≤ n let d∗h : P−
1 Λk(Th) → P1Λ

k−1(Th) be the operator

defined by (4.1). This operator is local. More precisely, for any vertex xi ∈ ∆0(Th)
the values (d∗hu)xi

only depends on u restricted to the macroelement Ωxi
.

Proof. For any u ∈ P−
1 Λk(Th) we can express d∗hu in terms of the basis functions

ψf,xi
in P1Λ

k−1(Th), i.e.,

d∗hu =
∑

(f,xi)

cf,xi
ψf,xi

, cf,xi
∈ R,

where the sum runs over all pairs (f, xi) such that f ∈ ∆k−1(Th) and xi ∈ ∆0(f).
Furthermore, the matrix

〈
ψf,xi

, ψg,xj

〉
h
is block diagonal, where the blocks are of

the form 〈ψf,xi
, ψg,xi

〉h, i.e., they correspond to the vertices xi in ∆0(Th). There-
fore, if we fix a vertex xi, then all the coefficients of the form cf,xi

is determined
by the subsystem of (4.1) of the form

(4.6)
∑

f

cf,xi
〈ψf,xi

, ψg,xi
〉h = 〈u, dψg,xi

〉 ,

where f and g runs over all elements of ∆k−1(Th) which contains the vertex xi.
However, this represents a square positive definite system which determines the co-
efficients cf,xi

uniquely, and hence all the values (d∗hu)xi
. Finally, since the support

of the basis functions ψg,xi
is contained in Ωxi

it follows that the right hand side
of (4.6) only depends on u restricted to Ωxi

. �
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It follows from the proof above that the coefficients cf,xi
can be computed from

the local systems (4.6). When xi runs over all the vertices of the mesh, these
matrices represent the diagonal blocks of the full matrix

〈
ψf,xi

, ψg,xj

〉
h
. In fact,

the elements of the block associated the vertex xi can be explicitly expressed in
terms of the volumes of the n simplexes T touching xi, the volumes of f and g, and
the principal angles between f and g.

To see this, and to have the simplest notation, we perform this discussion of the
matrix

〈
ψf,xi

, ψg,xj

〉
h
in the setting of k-forms instead of (k − 1)-forms. We fix a

vertex in ∆0(Th), and call it x0. To compute the elements of the diagonal block of
the matrix

〈
ψf,xi

, ψg,xj

〉
h
, associated the vertex x0, we let f = [x0, x1, · · · , xk] ∈

∆k(Th). If we assume that the vertices are ordered, such that the vectors x1 −
x0, · · · , xk − x0 are positively oriented, then

(4.7) dλ1 ∧ · · · ∧ dλk =
1

k! |f |
volf ,

when the forms are restricted to vectors which are tangential to f , cf. [7, Section
4.1]. Here volf denotes the standard volume form on f . If f and g are two k–
dimensional simplexes containing x0 we then obtain that

〈ψf,x0
, ψg,x0

〉h =
∑

T

|T |

n+ 1
〈(ψf,x0

)x0
, (ψg,x0

)x0
〉Alt

=
1

(n+ 1)(k! )2

∑

T

|T |

|f | |g|
〈volf , volg〉Alt ,

where the sum is over all T ∈ Th such that both f and g are in ∆k(T ). Furthermore,
we assume that volf has been properly extended to a k-form on R

n such that (4.7)
holds for all vectors and for x ∈ T . However, the inner product 〈volf , volg〉Alt is
related to the principal angles of the two k–dimensional subspaces of Rn containing
f and g, cf. for example [32, Theorem 5]. Therefore, we have indeed obtained the
desired representation of the elements of the matrix

〈
ψf,xj

, ψg,xj

〉
h
.

5. The cubical case

In this section we present concrete realizations of the abstract framework studied
in Section 3 above for approximations of the mixed Hodge Laplace problems on
cubical meshes. Here a cubical mesh Th on the domain Ω is a mesh where each
element is a Cartesian product of intervals.

Mixed finite element methods with local coderivatives on cubical meshes have
been studied by Wheeler and collaborators for the Darcy flow problems in two and
three dimensions (i.e., k = n and n = 2, 3), see [29, 33]. In the two dimensional case

the arguments are rather similar to the simplicial case. By choosing V k−1
h = V 1

h

as the lowest order Brezzi–Douglas–Marini space (BDM1), cf. [15], and piecewise
constant functions for V k

h = V 2
h , combined with an integration rule based on vertex

values, a local coderivative d∗h is obtained. However, the natural analog of this
approach for n = 3, where the lowest order Brezzi–Douglas–Duran–Fortin space
(BDDF1, [14]) is chosen for V k−1

h = V 2
h and V k

h = V 3
h consist of piecewise constants,

will not lead to a corresponding local method. To overcome this problem Wheeler
et al. replaced the standard BDDF1 space by an enriched space. The discussion
in this section can be seen as a generalization of the discussion given in [29, 33] to
general k-forms in any dimension n. The most natural analogs of the BDM1 and



16 JEONGHUN J. LEE AND RAGNAR WINTHER

BDDF1 spaces for the case of differential forms and higher space dimensions are the
S1Λ

k(Th) spaces introduced by Arnold and Awanou in [5], cf. the discussion given
in the introduction of that paper. We will give a brief review of these spaces below.
However, to obtain the finite element spaces we need to obtain local approximations
of the coderivatives, we will enrich the finite element spaces S1Λ

k(Th) to obtain a
larger spaces, which we will denote S+

1 Λk(Th).
For our discussion below we introduce some additional notation. Recall the

definition of the set Σ(k) given in Section 2 above, i.e., σ ∈ Σ(k) is an increasing
sequence with values σi, 1 ≤ i ≤ k, such that

1 ≤ σ1 < σ2 < . . . < σk ≤ n.

The set Σ(k) has

(
n
k

)
elements. We will use JσK to denote the range of σ, i.e.,

JσK = {σ1, σ2, . . . , σk} ⊂ {1, 2, . . . , n},

and σ∗ is the complementary sequence in Σ(n− k) such that

JσK ∪ Jσ∗K = {1, 2, . . . , n}.

For each σ ∈ Σ(k) we define dxσ = dxσ1
∧ · · · ∧ dxσk

and the set {dxσ : σ ∈ Σ(k) }

is a basis of Altk(Rn). A differential k-form u then admits the representation

u =
∑

σ∈Σ(k)

uσdxσ,

where the coefficients uσ are scalar functions on Ω. Furthermore, the exterior
derivative du can be expressed as

du =
∑

σ∈Σ(k)

n∑

i=1

∂iuσdxi ∧ dxσ ,

if ∂iuσ is well-defined as a function on Ω. The Koszul operator κ : Altk(Rn) →

Altk−1(Rn) is defined by contraction with the vector x, i.e., (κu)x = uxyx. As a
consequence of the alternating property of u it therefore follows that κ ◦ κ = 0. It
also follows that

κ(dxσ) = κ(dxσ1
∧ · · · ∧ dxσk

) =
k∑

i=1

(−1)i+1xσi
dxσ1

∧ · · · ∧ d̂xσi
∧ · · · ∧ dxσk

,

where d̂xσi
means that the term dxσi

is omitted. This definition is extended to the
space of differential k-form on Ω by linearity, i.e.,

κu = κ
∑

σ∈Σ(k)

uσdxσ =
∑

σ∈Σ(k)

uσκ(dxσ).

If f is an (n− 1)-dimensional hyperplane of Rn, obtained by fixing one coordinate,
for example

f = { x ∈ R
n : x1 = c },

then we can define the Koszul operator κf for forms defined on f by (κfv)x =
vxy(x − xf ), where xf = (c, 0, . . . , 0). We note that the vector x − xf is in the
tangent space of f for x ∈ f . Since trf (uy(x− xf )) = trf uy(x− xf ) for x ∈ f and
(κu)x = uxy(x− xf ) + uxyx

f , we can conclude that

(5.1) trf κu = κf trf u+ trf (uyx
f ).
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For a multi-index α of n nonnegative integers, xα = xα1

1 · · ·xαn
n . Hence, if u is in

PrΛ
k, the space of polynomial k-forms of order r, then u can be expressed as

u =
∑

σ∈Σ(k)

uσdxσ , uσ =
∑

|α|≤r

cαx
α ∈ Pr,

where |α|=
∑

i αi. In other words, the coefficients uσ are ordinary real valued
polynomials of degree less than or equal to r. The corresponding tensor product
space, QrΛ

k, consists of k-forms u where the coefficients uσ is a tensor product of
polynomials of degree less than or equal to r, i.e.,

uσ =
∑

αi≤r,1≤i≤n

cαx
α ∈ Qr.

Denoting HrΛ
k the space of differential k-forms with homogeneous polynomial

coefficients of degree r, we also have the identity

(κd+ dκ)u = (r + k)u, u ∈ HrΛ
k,(5.2)

cf. [7, Section 3].

5.1. The families Q−
r Λ

k and SrΛ
k. Our discussion below relates two of the pre-

viously constructed families of finite element spaces with respect to cubical meshes,
the Q−

r Λ
k-family of [6] and the SrΛ

k-family of [5]. Here the parameter r ≥ 1 is
related to the local polynomial degree, and for each k, 0 ≤ k ≤ n, the spaces
Q−

r Λ
k(Th) and SrΛ

k(Th) are subspaces of HΛk(Ω). Furthermore, each family is
nested, i.e., Q−

r−1Λ
k(Th) ⊂ Q−

r Λ
k(Th) and Sr−1Λ

k(Th) ⊂ SrΛ
k(Th). There are also

other families of cubical finite element differential forms proposed in the literature,
cf. for example [18, 19, 25], but these spaces will not be used here.

The families Q−
r Λ

k and SrΛ
k lead to subcomplexes of the de Rham complex of

the form

R −→ Q−
r Λ

0(Th)
d0

−→ Q−
r Λ

1(Th)
d1

−→ · · ·
dn−1

−→ Q−
r Λ

n(Th) −→ 0,

R −→ SrΛ
0(Th)

d0

−→ Sr−1Λ
1(Th)

d1

−→ · · ·
dn−1

−→ Sr−nΛ
n(Th) −→ 0.

(5.3)

For a given k, 0 ≤ k ≤ n, and a given cubical mesh Th the space Q−
1 Λ

k(Th) is the
simplest space in the two families above. In fact, we will see below that for any
r ≥ 1 we also have

Q−
1 Λ

k(Th) ⊂ Q−
r Λ

k(Th),SrΛ
k(Th).

Furthermore, in complete analogy with the Whitney forms, P−
1 Λk(Th) in the case of

simplicial meshes, the spaces Q−
1 Λ

k(Th) has a single degree of freedom associated
each subsimplex of dimension k. More precisely, the degrees of freedom for an
element u ∈ Q−

1 Λ
k(Th) are given by

(5.4)

∫

f

trf u, f ∈ ∆k(Th).

If T = I1 × I2 × . . .× In ∈ Th and u ∈ Q−
1 Λ

k(Th), then u|T is of the form

(5.5) u|T=
∑

σ∈Σ(k)

(
∑

αj≤1−δj,σ

cαx
α)dxσ ,

where δj,σ = 1 if j ∈ JσK and zero otherwise. The local spaces Q−
1 Λ

k(T ) has dimen-

sion 2n−k

(
n
k

)
, and together with degrees of freedom (5.4) this defines the space
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Q−
1 Λ

k(Th). In particular, the space Q−
1 Λ

0(Th) = Q1Λ
0(Th), while Q−

1 Λ
n(Th) =

P0Λ
n(Th), i.e., the space of piecewise constant n-forms. Furthermore, for each k

with 0 < k < n, the space Q−
1 Λ

k(Th) is strictly contained in Q1Λ
k(Th).

In [5] the definition of the spaces SrΛ
k(Th) was based on the concept of linear

degree. However, a simple and more explicit charaterization of these spaces can be
given when r = 1 . By utilizing the definition given in [5] in this special case we
can derive that a function u in the space S1Λ

k(Th) is locally of the form

(5.6) u|T= u− + dκ
∑

σ∈Σ(k)

∑

i∈JσK

(
∑

αj≤1−δj,σ

cαx
α)xi dxσ , T ∈ Th,

where u− ∈ Q−
1 Λ

k(T ). The local space S1Λ
k(T ) has dimension 2n−k

(
n
k

)
(k + 1),

which should be compared with the fact that dimQ1Λ
k(T ) = 2n

(
n
k

)
. Further-

more, the degrees of freedom of the space S1Λ
k(Th) is given by

(5.7)

∫

f

trf u ∧ v, v ∈ P1Λ
0(f), f ∈ ∆k(Th).

In the special cases k = 0 and k = n we have

S1Λ
0(Th) = Q1Λ

0(Th) and S1Λ
n(Th) = P1Λ

n(Th).

Furthermore, when n = 2 or 3 the degrees of freedom of the space S1Λ
n−1(Th)

corresponds to the degrees of freedom of the BDM1 and the BDDF1 spaces.
It follows from (5.6) that dS1Λ

k(Th) = dQ−
1 Λ

k(Th). Since it is well known
that the pair (Q−

1 Λ
k−1(Th),Q

−
1 Λ

k(Th)) is a stable pair for the standard mixed for-
mulation (2.3), cf. [6], it is an easy consequence of this property that the pair
(S1Λ

k−1(Th),Q
−
1 Λ

k(Th)) also leads to a stable method. However, as we have al-
ready indicated above, the spaces S1Λ

k−1(Th) has to be enriched in order to be
useful in the present setting, i.e., to give rise to a method with a local coderivative
d∗h. This larger space is introduced below and denoted S+

1 Λk(Th).

5.2. The spaces S+
1 Λk(Th). For S+

1 Λk(Th) we first define the space of shape func-
tions S+

1 Λk. We prove that this space is invariant under dilation and translation,
then the space of local shape functions on T is well-defined as the restriction of
S+
1 Λk on T .
To define S+

1 Λk, let BΛk be the span of forms {pσ∗pσdxσ |σ ∈ Σ(k) }, where
pσ ∈ Q1(R

k) and pσ∗ ∈ Q1(R
n−k) are polynomials in the variables {xj}j∈JσK and

{xj}j∈Jσ∗K, respectively, and where pσ(0) = 0. From this definition of BΛk it is
obvious that

Q1Λ
k = Q−

1 Λ
k ⊕ BΛk.(5.8)

Furthermore, it follows directly from the definition of BΛk that dBΛk ⊂ BΛk+1. In
fact, if u ∈ HrΛ

k ∩ BΛk then, by (5.2), du = (r + k)dκdu ∈ dκBΛk+1. Therefore,
we can conclude that

dBΛk ⊂ BΛk+1 ∩ dκBΛk+1.(5.9)

We define S+
1 Λk by

S+
1 Λk = Q−

1 Λ
k + dκBΛk,(5.10)

and we now prove that this is invariant under dilation and translation.
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Lemma 5.1. If φ : Rn → R
n is a composition of dilation and translation, then

φ∗S+
1 Λk ⊂ S+

1 Λk, where φ∗ is the corresponding pullback.

Proof. Let φ(x) = Dx + b for a given invertible n × n diagonal matrix D and a
vector b ∈ R

n. To show φ∗S+
1 Λk ⊂ S+

1 Λk, assume that u ∈ S+
1 Λk is written as

u = u− + dκu+ with u− ∈ Q−
1 Λ

k and u+ ∈ BΛk. Then we have

φ∗u = φ∗u− + φ∗dκu+ = φ∗u− + dφ∗κu+ = φ∗u− + dκφ∗u+ + d((φ∗u+)yb)

where we used φ∗κu+ = κφ∗u++(φ∗u+)yb in the last equality (cf. [7, Section 3.2]).
We easily check that φ∗u− ∈ Q−

1 Λ
k and from (5.8) we have

dκφ∗u+ ∈ dκQ1Λ
k = dκ(Q−

1 Λ
k ⊕ BΛk) ⊂ Q−

1 Λ
k + dκBΛk = S+

1 Λk.

It remains to show that

d((φ∗u+)yb) ∈ S+
1 Λk.(5.11)

To see this, note that (φ∗u+)yb ∈ Q1Λ
k−1, so (φ∗u+)yb ∈ Q−

1 Λ
k−1 ⊕ BΛk−1 by

(5.8). By (5.9) we therefore have

d((φ∗u+)yb) ∈ Q−
1 Λ

k + dκBΛk = S+
1 Λk,

so (5.11) is established. �

We define the space of shape functions of S+
1 Λk(T ) on an element T ∈ Th as the

restriction of the functions in the class S+
1 Λk such that

S+
1 Λk(T ) = Q−

1 Λ
k(T ) + dκBΛk(T ).(5.12)

By comparing the definition above with the characterizations of the spacesQ−
1 Λ

k(T )
and S1Λ

k(T ) we can conclude that S+
1 Λk(T ) contains these spaces. It also follows

directly from the definition that dimBΛk(T ) =

(
n
k

)
2n−k(2k − 1), and therefore

we must have

(5.13) dimS+
1 Λk(T ) ≤ dimQ−

1 Λ
k(T ) + dimBΛk(T ) = 2n

(
n
k

)
.

In fact, we will show below that this inequality is an equality, and that the degrees
of freedom for this space is

(5.14)

∫

f

trf u ∧ v, v ∈ Q1Λ
0(f), f ∈ ∆k(T ).

Furthermore, it will follow from the discussion below that for any u ∈ S+
1 Λk(Th) the

degrees of freedom associated an interface f ∈ ∆n−1(Th) determines trf u uniquely.
As a consequence, S+

1 Λk(Th) ⊂ HΛk(Ω), and

Q−
1 Λ

k(Th) ⊂ S1Λ
k(Th) ⊂ S+

1 Λk(Th).

From the definition above we can easily derive that S+
1 Λ0(Th) = Q1Λ

0(Th) =
Q−

1 Λ
0(Th), and for k = n it is a consequence of (5.2) that dκBΛn(T ) = BΛn(T ).

Therefore, S+
1 Λn(Th) = Q1Λ

n(Th). Moreover, from (5.12) we have that dS+
1 Λk(Th) =

dQ−
1 Λ

k(Th). As above, we can therefore conclude that the pair (S+
1 Λk−1(Th),Q

−
1 Λ

k(Th))
is a stable pair for the mixed formulation (2.3). Moreover, in the present case we
will be able to construct a suitable integration rule such that conditions (A) and
(B) of Section 3 are fulfilled, and which leads to a local coderivative d∗h. However,

first we need to analyze the spaces S+
1 Λk(Th) just introduced.
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If m is a k-form given by m = pdxσ, where σ ∈ Σ(k) and the coefficient poly-
nomial p(x) is a monomial, then we will refer to m as a form monomial.

Lemma 5.2. The following hold:

(a) For a form monomial m 6= 0 in BΛk(T ), κm generates at least one form

monomial such that its coefficient contains a quadratic factor.

(b) For u ∈ BΛk(T ), the coefficient of each form monomial of dκu has at most

one quadratic factor.

(c) For u ∈ BΛk(T ) and f ∈ ∆k(T ), trf (dκu) ∈ Q1Λ
k(f).

(d) The operator dκ is injective on BΛk(T ).

Proof. Let us define B as

B = {pσ∗pσdxσ ∈ BΛk(T ) | σ ∈ Σ(k)},(5.15)

where pσ(x) = xα and pσ∗(x) = xβ are monomials in Q1 of the variables {xj}j∈JσK

and {xj}j∈Jσ∗K, respectively, and where |α|≥ 1. The set B is a basis for BΛk(T ).
For pσ∗pσdxσ ∈ B, κ(pσ∗pσdxσ) is a linear combination of

mi = (−1)i+1pσ∗pσxσi
dxσ1

∧ · · · ∧ d̂xσi
∧ · · · ∧ dxσk

, 1 ≤ i ≤ k.(5.16)

Since pσ has a factor xσj
for some σj ∈ [[σ]], the coefficient of mj has x2σj

as factor,

so claim (a) is proved. Furthermore, a direct computation gives

dmi = ∂σi
(pσ∗pσxσi

)dxσ

+ (−1)i+1
∑

j∈[[σ∗ ]]

(∂jpσ∗)pσxσi
dxj ∧ dxσ1

∧ · · · ∧ d̂xσi
∧ · · · ∧ dxσk

.

and each of these coefficients has at most one quadratic factor. Therefore, claim
(b) is proved.

To prove (c), it is enough to show that trf dmi ∈ Q1Λ
k(f) for any f ∈ ∆k(T )

and 1 ≤ i ≤ k. Recall that f ∈ ∆k(T ) is determined by fixing values of n − k
variables. Let I(f) ⊂ {1, . . . , n} be the set of indices such that f is determined by
fixing xl for all l ∈ I(f). By letting volf be the volume form on f , we have, up to
a sign, that

trf (dmi) =





(∂σi
(pσ∗pσxσi

))|fvolf , if I(f) = [[σ∗]] ,

(xσi
(∂jpσ∗)pσ)|fvolf , if I(f) = {σi} ∪ [[σ∗]] \ {j},

0, otherwise.

Since all variables in pσ∗pσ have degree at most 1, the same is the case for ∂σi
(pσ∗pσxσi

),
while all variables in xσi

(∂jpσ∗)pσ have degree at most 1, with a possible exception
for xσi

which is constant on f . So claim (c) follows.
To prove the injectivity of dκ on BΛk(T ), we first prove that κ is injective. To

see this consider two distinct elements m = pσ∗pσdxσ and m̃ = pσ̃∗pσ̃dxσ̃ of B.
We claim that all the monomials generated by κm and κm̃ which have a quadratic
factor, are also distinct. To see this we assume the contrary, i.e., that there are
i ∈ [[σ]] and ĩ ∈ [[σ̃]] such that [[σ]] \ {i} = [[σ̃]] \ {ĩ} and

(5.17) xipσ∗pσ = ±xĩpσ̃∗pσ̃,

where the left-hand side is quadratic in xi and the right-hand side is quadratic in
xĩ. Since pσ∗pσ, pσ̃∗pσ̃ ∈ Q1, this can be true only when i = ĩ, i.e., σ = σ̃. However,
(5.17) implies that m = m̃, which is a contradiction. This implies that the elements
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of κ(B) are linearly independent, and therefore κ is injective on BΛk(T ). Finally,
since d is injective on the image of κ by (5.2), dκ is injective on BΛk(T ). �

The following key result is a consequence of the lemma just established.

Theorem 5.3. For T ∈ Th and 0 ≤ k ≤ n we have

dimS+
1 Λk(T ) = 2n

(
n
k

)
.

Proof. By Lemma 5.2 (d), the spaces dκBΛk(T ) and BΛk(T ) have the same dimen-
sion, therefore the conclusion will follow if we show that the sum (5.12) is a direct
sum, cf. (5.13). To show that the sum (5.12) is direct, it is enough to show

D ∩ dκBΛk(T ) = {0}, D := kerd ∩ Q−
1 Λ

k(T ).(5.18)

Note thatD∩BΛk(T ) = {0} due to (5.8). Furthermore, by (5.2), D = (dκ+κd)D =
dκD. Therefore, (5.18) will follow if we can show that dκ is injective onD⊕BΛk(T ).
However, by (5.2) this will follow if we can show that κ is injective on D⊕BΛk(T ).
To see why this is the case we observe that κ(Q−

1 Λ
k(T )) ⊂ Q−

1 Λ
k−1(T ). Combined

with Lemma 5.2 (a) this implies that κD ∩ κBΛk(T ) = {0}. As a consequence, κ
is injective on D ⊕ BΛk(T ) if it is injective on each of the spaces D and BΛk(T )
separately. The latter statement follows from Lemma 5.2 (d), while the injectivity
on D follows from the fact that ker d ∩ kerκ = {0} by (5.2). �

We are now ready to prove unisolvency of S+
1 Λk(T ) with the degrees of freedom

(5.14).

Theorem 5.4. An element u ∈ S+
1 Λk(T ) is uniquely determined by the degrees of

freedom (5.14).

Proof. Since dimQ1(f) = 2k for f ∈ ∆k(T ), the number of degrees of freedom in
(5.14) is

|∆k(T )|×2k =

(
n
k

)
2n−k × 2k = 2n

(
n
k

)
,

which is same as dimS+
1 Λk(T ). Therefore, it is enough to show that if u ∈ S+

1 Λk(T ),
and all the degrees of freedom (5.14) vanish, then u = 0.

By dilation and translation, we may assume that T is the unit hypercube
[0, 1]n ⊂ R

n, cf. Lemma 5.1. Suppose that u =
∑

σ∈Σ(k) uσdxσ ∈ S+
1 Λk(T )

and all the degrees of freedom (5.14) of u are zero. From Lemma 5.2 (c) we can
conclude that trf u = 0 for all f ∈ ∆k(T ). In particular, the coefficient uσ vanish
for all faces f where xi is fixed in {0, 1} for i ∈ [[σ∗]], and as a consequence uσ has∏

i∈[[σ∗]] xi(1 − xi) as a factor. Therefore, if k < n − 1, it follows from Lemma 5.2

(b) that u = 0. Furthermore, if k = n, then S+
1 Λn(T ) = Q1Λ

n(T ), so u = 0 is a
direct consequence of the degrees of freedom in this case.

It remains to cover the case k = n− 1. In this case u can be written as

u =

n∑

i=1

uidxσ(i), where dxσ(i) := dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn.

From the discussion above we already know that the coefficients ui have xi(1− xi)
as factors. In other words,

(5.19) ui = cixi(1− xi), i = 1, 2, . . . , n,
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where the coefficients ci may depend on x, but they are independent of xi. Fur-
thermore, since tru = 0 on the boundary of T and du is a constant n-form, we can
conclude from Stokes theorem that du ≡ 0. Furthermore, u is of the form

u =

n∑

i=1

(ai + bixi)dxσ(i) + dκu+,

with constant coefficients ai, bi, and u+ ∈ BΛn−1(T ). From the definition of the
space BΛn−1(T ) we have that

u+ =
n∑

i=1

u+i dxσ(i), with u+i = pi + xiqi,

where the polynomials pi and qi are in Q1, independent of the variable xi, and
satisfies pi(0) = qi(0) = 0.

Note that

κu+i dxσ(i) =

i−1∑

j=1

(−1)j+1xju
+
i dxσ(j,i) −

n∑

j=i+1

(−1)j+1xju
+
i dxσ(i,j),

where dxσ(i,j), for i < j, is the n − 2 form obtained from dx1 ∧ dx2 ∧ · · · ∧ dxn
by omitting dxi and dxj . If we let v = dκu+ then a further calculation using the
definition of the exterior derivative gives

v =
n∑

i=1

vidxσ(i), where vi =
n∑

j=1

∂j(xju
+
i + (−1)i+j+1xiu

+
j ).

From this it follows that the coefficients ui of u can be represented as ui = u1i + u2i
where

u1i = ai+

n∑

j=1

∂j(xjpi+(−1)i+j+1xipj) and u2i = xi[bi+

n∑

j=1

∂j(xjqi+(−1)i+j+1xjqj)].

We observe that all terms in this expression for ui, except for ai +
∑

j 6=i ∂j(xjpi),
has xi as a factor. In fact, this term is independent of the variable xi, and therefore
we must have

ai +
∑

j 6=i

∂j(xjpi) = ai + (n− 1)pi +

n∑

j=1

xj∂jpi ≡ 0.

However, by using (5.2) in the special case of zero forms, we easily see that the
only possible solution is pi = −ai/(n − 1). In particular, since pi(0) = 0, we can
conclude that both pi and ai are zero. Therefore, ui = u2i = xiũi, where

(5.20) ũi = bi +

n∑

j=1

∂j(xjqi + (−1)i+j+1xjqj), i = 1, 2, . . . , n.

As a consequence, we obtain

∂iũi =

n∑

j=1

∂i∂j(xjqi + (−1)i+j+1xjqj) =

n∑

j=1

(−1)i+j+1∂iqj .
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However, by (5.19) we also have ũi = ci(1 − xi) and ∂iũi = −ci, and therefore we
obtain

ci = (−1)i∂iQ, where Q =

n∑

j=1

(−1)jqj .

The equation we obtain from the two representations of ũi can be written

(−1)i[bi + nqi +

n∑

j=1

xj∂jqi]−Q = (1− xi)∂iQ.

Note that du =
∑

i(−1)i+1bi = 0 and therefore, by summing the equation above
over i, we obtain

n∑

i=1

(xi −
1

2
)∂iQ = 0.

However Q ∈ Q1, and by expanding Q in monomials with respect to the variables
xi−

1
2 we can conclude that Q is a constant. Furthermore, it vanishes at the origin,

so Q ≡ 0. From (5.20) we then obtain that

ui
xi

= ũi = bi +

n∑

j=1

∂j(xjqi),

which is independent of the variable xi. By (5.19) this implies that each ui is zero.
This completes the proof. �

Next we consider the traces of elements in S+
1 Λk(T ) on f ∈ ∆n−1(T ). Since f

is defined by fixing one coordinate, the other n − 1 variables define a coordinate
system on f . In particular, we can define the corresponding Koszul operator κf
for differential forms on f , cf. (5.1), and as a consequence the space S+

1 Λk(f) is
defined by the embedding of f into R

n−1.

Theorem 5.5. If f ∈ ∆n−1(T ) and k ≤ n− 1, then

trf S
+
1 Λk(T ) ⊂ S+

1 Λk(f).(5.21)

Proof. Since the trace operator maps Q−
1 Λ

k(T ) into Q−
1 Λ

k(f), we only have to
show that trf (dκBΛ

k(T )) ⊂ S+
1 Λk(f).

Without loss of generality, we may assume that f = {x ∈ R
n : x1 = c} for a

constant c. Note that the definition of BΛk(T ) then implies that

(5.22) trf BΛ
k(T ) ⊂ BΛk(f).

Furthermore, any nonzero form monomial u = uσdxσ ∈ BΛk(T ) satisfies one of the
following conditions:

i) 1 6∈ [[σ]],
ii) 1 ∈ [[σ]] and there exists i ∈ [[σ]] , i 6= 1, such that uσ has xi as a factor,
iii) 1 ∈ [[σ]] and there exists no i ∈ [[σ]] , i 6= 1, such that uσ has xi as a factor.

We will prove that trf dκu ∈ S+
1 Λk(f) in each of these cases. In case i) it follows

from (5.1) that trf κu = κf trf u, since uyx
f = 0. Therefore, trf dκu = dκf trf u,

and this is in dκfBΛ
k(f) ⊂ S+

1 Λk(f) by (5.22). In case ii) and iii) we write u as
uσdx1 ∧ dxη, where [[η]] ⊂ {2, . . . , n}. A direct computation shows that trf κu =
cuσdxη. In case ii) there is i ∈ [[η]] such that uσ has xi as a factor. Therefore,
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trf κu ∈ BΛk−1(f), and (5.9) implies that trf dκu = d trf κu is in dκfBΛ
k(f) ⊂

S+
1 Λk(f). Finally, in case iii) trf κu ∈ Q−

1 Λ
k−1(f), and therefore

trf dκu = d trf κu ∈ Q−
1 Λ

k(f) ⊂ S+
1 Λk(f).

This completes the proof. �

The inclusion (5.21) is indeed an equality. In fact, this follows since an element
of S+

1 Λk(f) is uniquely determined by degrees of freedom associated the elements
of ∆k(f). Furthermore, the trace result can be used repeatedly to conclude that

trf S
+
1 Λk(T ) = S+

1 Λk(f), f ∈ ∆(T ), n ≥ dim f ≥ k.

In particular, if dim f = k we have

(5.23) trf S
+
1 Λk(T ) = Q1Λ

k(T ), f ∈ ∆k(T ).

An important consequence of the combination of the Theorems 5.4 and 5.5 is also
that the space S+

1 Λk(Th) is a subspace of HΛk(Ω), since the traces are continuous
over elements of ∆n−1(Th). Furthermore, as we have already indicated above, it is
a consequence of the fact that dQ−

1 Λ
k(Th) = dS+

1 Λk(Th) and the stability of the
method derived from the Q−

1 Λ
k spaces, that the pair (S+

1 Λk−1(Th),Q
−
1 Λ

k(Th)) is
a stable pair for the mixed formulation (2.3). Therefore, according to the abstract
theory in Section 3, to obtain a convergent method with a local coderivative d∗h, we
need to define a proper integration rule such that conditions (A) and (B) holds.

5.3. The local method. It is a consequence of the standard error estimate (3.9)

that the choices V k−1
h = S+

1 Λk−1(Th) and V
k
h = Q−

1 Λ
k(Th) for the standard mixed

method (2.3) will, under the assumption of a sufficiently regular solution, lead to
an estimate for the error in the energy norm of order O(h). Therefore, the goal is
to perturb the method such that we preserve this convergence order, and also local
coderivatives d∗h. As in the simplicial case the discussion is based on the abstract
theory of Section 3. Furthermore, W k = L2Λk(Ω), V k = HΛk(Ω), and 〈·, ·〉 is used
to denote appropriate L2 inner products.

In the present case condition (B) will appear slightly more complicated than

in the simplicial case, since the space Ṽ k−1
h is strictly contained in V k−1

h . In fact,

we will take Ṽ k−1
h = Q−

1 Λ
k−1(Th) and as in the simplicial case the space W k−1

h is
given by (4.2), i.e., it consists of piecewise constant (k−1)-forms. As a consquence,
it follows from Theorem 3.2 that if we are able to define a modified inner product
on S+

1 Λk−1(Th) such that conditions (A) and (B) hold with these choices, then
the linear convergence is obtained.

As in the simplical case our choice of modified inner product can be motivated
from an alternative set of degrees of freedom for the spaces S+

1 Λk(Th). The degrees
of freedom for this space given by (5.14) shows that the global dimension of this
space is given by

dimS+
1 Λk(Th) = 2k|∆k(Th)|.

In particular, trf u for f ∈ ∆k(Th) and u ∈ S+
1 Λk(Th) is uniquely determined by

the 2k degrees of freedom associated f . However, elements of Q1Λ
k(f) can be

identified by an element in Q1Λ
0(f), and therefore trf u is also determined by the

values of trf u at the 2k vertices of f . More precisely, for each f ∈ ∆k(Th) and each
x0 ∈ ∆0(f) we define the functional φf,x by

φf,x0
(u) = ux(x1 − x0, x2 − x0, . . . , xk − x0),
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where {xj}
k
j=1 are the k vertices of f such that [x0, xj ] ∈ ∆1(f). The functionals

φf,x for x ∈ ∆0(f) will determine trf u uniquely, and the set {φf,x |f ∈ ∆k(Th), x ∈
∆0(f) } will be a set of global degrees of freedom of S+

1 Λk(Th). Furthermore, if
T ∈ Th, then restriction of u ∈ S+

1 Λk(Th) to T at the vertex x0 ∈ ∆0(T ) is

determined by the

(
n
k

)
possible choices of φf,x0

(u) for f ∈ ∆k(T ) such that x0 ∈ f .

We will let {ψf,x} be the corresponding dual basis for the space S+
1 Λk(Th),

defined by

φg,y(ψf,x) = δ(f,x),(g,y), f, g ∈ ∆k(Th), x ∈ ∆0(f), y ∈ ∆0(g).

The modified inner product 〈·, ·〉h on S+
1 Λk(Th) is now defined by

〈u, v〉h =
∑

T∈Th

〈u, v〉h,T , where 〈u, v〉h,T = 2−n|T |
∑

x∈∆0(T )

〈ux, vx〉Alt .

It follows from the discussion of degrees of freedom above that the quadratic form
〈·, ·〉h is an inner product S+

1 Λk(Th), and a standard scaling argument shows that
it is equivalent to the standard L2 inner product. So condition (A) holds.

Next, we will verify condition (B), but with k− 1 replaced by k to simplify the
notation. We observe that the inner product 〈·, ·〉h satisfies

〈u, v〉h = 〈u, v〉 , u ∈ Q1Λ
k(Th), v ∈ W k

h .

As a consequence, (3.16) holds for Ṽ k
h = Q−

1 Λ
k(Th) ⊂ Q1Λ

k(Th). To complete the
verification of condition (B) we have to define a projection Πh : S+

1 Λk(Th) →
Q−

1 Λ
k(Th) which satisfies dΠhu = du. We define this projection by the degrees of

freedom (5.4), i.e.,
∫

f

trf Πhu =

∫

f

trf u, f ∈ ∆k(Th).

Note that it follows from the definition of the spaces S+
1 Λk(Th) and Q−

1 Λ
k(Th) that

both dΠhu and du are piecewise constant forms, and by Stokes’ theorem they are
equal. Furthermore, since the degrees of freedom of Q−

1 Λ
k(Th) is a subset of the

degrees of freedom of S+
1 Λk(Th), the uniform L2 boundedness of Πh is a consequence

of equivalence of the L2 norm and a discrete norm defined by the degrees of freedom
on each of these spaces. Finally, it remains to verify (3.17), i.e., we need verify that

(5.24) 〈Πhu, v〉h = 〈u, v〉h , u ∈ S+
1 Λk(Th), v ∈ W k

h .

To see this we observe that

〈u, v〉h,T = 2−n|T |
∑

x∈∆0(T )

〈ux, vx〉Alt

= 2−n|T |
∑

f∈∆k(T )

∑

x∈∆0(f)

〈(trf u)x, (trf v)x〉Alt(f) ,



26 JEONGHUN J. LEE AND RAGNAR WINTHER

where the subscript Alt(f) indicates the inner product of alternating k-forms on f .
Furthermore, since trf u ∈ Q1Λ

k(f) and trf v ∈ P0Λ
k(f), we have

2−k
∑

x∈∆0(f)

〈(trf u)x, (trf v)x〉Alt(f) = |f |−1

∫

f

〈trf u, trf v〉Alt(f) volf

= |f |−1

∫

f

〈trf Πhu, trf v〉Alt(f) volf

= 2−k
∑

x∈∆0(f)

〈(trf Πhu)x, (trf v)x〉Alt(f) ,

and hence the desired identity (5.24) holds. We have therefore verified condition
(B) .

Finally, we need to convince ourselves that the corresponding operator d∗h, de-
fined by

〈d∗hu, τ〉h = 〈u, dτ〉 , u ∈ Q−
1 Λ

k(Th), τ ∈ S+
1 Λk(Th),

is local. However, since the mass matrix 〈ψf,x, ψg,y〉h is block diagonal, where the
blocks correspond to the vertices of Th, we can argue exactly as we did in the proof
of Theorem 4.2 above to establish this property.

6. Conclusion

We have carried out the construction of finite element methods for the Hodge
Laplace problems that admit local approximations of the coderivatives. Construc-
tions are performed both with respect to simplicial and cubical meshes. These
methods will therefore correspond to methods where the approximation of local
constitutive laws are local, in contrast to the properties of more standard mixed
finite element methods. The methods are of low order, and can also be seen as
finite difference methods. However, an advantage of our approach is that there is
a natural path to convergence estimates, based on standard finite element theory
and variational crimes.
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