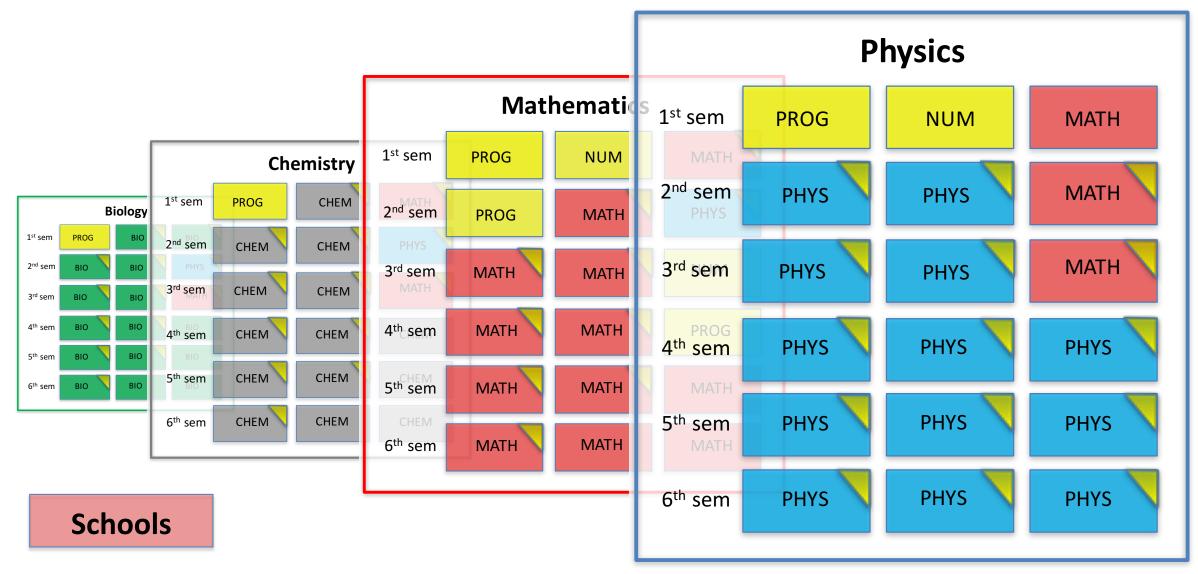

Center for Computing in Science Education

Overview of CCSE

Build educational research group

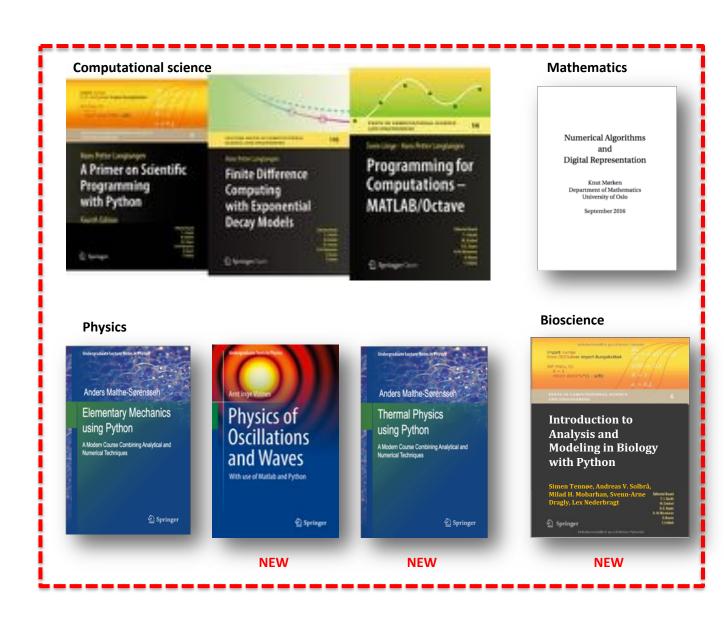

Build culture for teaching and learning

Build educational research group

Build culture for teaching and learning

Programming is integrated in all science study programs and adapted to the disciplinary context

Research-based materials and methods


Teaching teams: Course development strategies

Computing and data science: Professional competence for PhD

LA program: Learning assistants as agents of change

ProFag: Programming in context Courses for teachers and faculty

Computational essays: Creative programming

Developing the underlying tools for change

Research-based student evaluations: **SDT-eval**

Distributing learning materials: gopicup.org

Learning materials

Tools for constructing learning materials:

docOnce

Effective learning

Learning analytics: student **pathways**

Adapted assements and assessment methods: s-Assess

Distributing student software:

JupyterHub / Colab

Student environment

Assessment and evaluations

Build educational research group

Vision "an international hub for researchbased integration of computational methods in education"

Build culture for teaching and learning

Research forms the base for curricular change

We study the effect of computing on disciplinary understanding, motivation and creativity

Top international education researcher are partners – and come to study our education

We have unique competence in studying effects of computing – across disciplines and levels (from school through university)

Danny Caballero

Elise Lockwood

Tor Ole Odden

Developing a discipline-based education research activity

UiO resources:

- **Education research**
- Didactic research

International partners

Soul

- Discipline based education research
- Connection to international projects

External funding

Foundation project:

- Computing and its effect on student understanding, transfer and problem solving abilities

Computational literacy:

- Computing and its effect on student problem solving abilities, creativity and disciplinary expression

Assessment project:

- Developing assessment methods, analyzing student results, intervention studies

External funding

Pathways project:

- Data science and machine learning to address student assessments, learning and pathways

School project:

- How to teach programming in schools, and how to organize teacher professional development programs

funding

Build educational research group

Build culture for teaching and learning

Summer institutes

Events > FDW2019

2019 PICUP Summer Faculty Development Workshop at UW River Falls

Energize Your Undergraduate Physics Courses with Computation!

In this week-long workshop, participants, with the guidance of the workshop coordinators, will develop a viable, personalized plan for integrating computation into their undergraduate physics course(s) to be implemented in the upcoming academic term(s), and interact with other enthusiastic faculty committed to improving the physics curriculum across the fruited plain, all in a stimulating and engaging, but not too geeky, environment. And the food and snacks are fantastic!

Kompetanseheving universitet

- INTPART
- LA-programmet ved MN
- · REAL undervisning
- * Summer Institute

MN's Summer Institute

In close collaboration with Michigan State University, we are happy to give faculty from UiO, NMBU, UiA, USN and UiB the opportunity to attend a four days intensive workshop in stateof-the-art scientific teaching in context. In 2019 we focus on integrating computation in undergraduate physics.

Facts about this course

When

17th - 20th of June 2019

Where

The Physics building, University of Oslo

Contact Us

realfagsundervisning@mn uid no

In collaboration with

Comment by a previous attendee

"The basic philosophies promoted and explored in the SI are nothing short of

Michigan State University (since 2015)

University of Oslo (since 2018)

UiO Bet matematisk-naturvitenskapelige fakultet

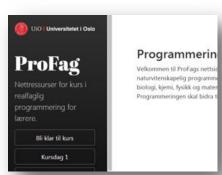
ProFag – Realfaglig Programmering

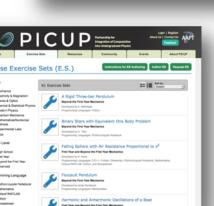
ProFag er etterutdanning for lærere i PROgrammering for FAGenes skyld. Tittelen signaliserer at vi setter faget i sentrum. Programmeringen skal bidra til styrking og utvikling av realfagene.

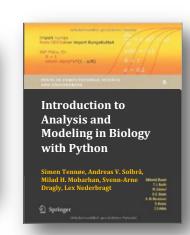
- Programmering i Python basisopplæring
- Algoritmisk tenkning
- Didaktiske utfordringer
- Programmering for fagets skyld
- Programmering endrer fagene

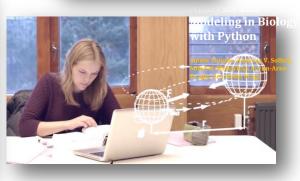
Foto: Simen Kjellin

Build educational research group




Build culture for teaching and learning


Research-based dissemination strategy


Research shows: Dissemination must be based on the same principles as student-active teaching

- Flexible material
- Workshops and instruction
- Partner with teachers
- Adapt to situation
- Monitor and improve!
- Students play active role!

Adaptive strategies for dissemination

Target groups

Science educations

Humanities, social sciences, etc

Schools and teacher education

Government and industry

Local, national, and international

Methods

Professional development

Summer institutes

Student transformation teams

Learning material

Coupling to research

Partnerships

Strategic partnerships

National:

- Teacher education
- Universities
- Engineering/colleges

International

- European networks
- US (Intpart x 4)
- China

Dissemination: Playbook

Initialization

Early adaptation

Adaptation

Integration

- Presentations and site visits
- Demonstrate material
- Map research alignment

- Finance student taskforces
- Identify key personnel
- Examples and exercises
- Develop faculty competence

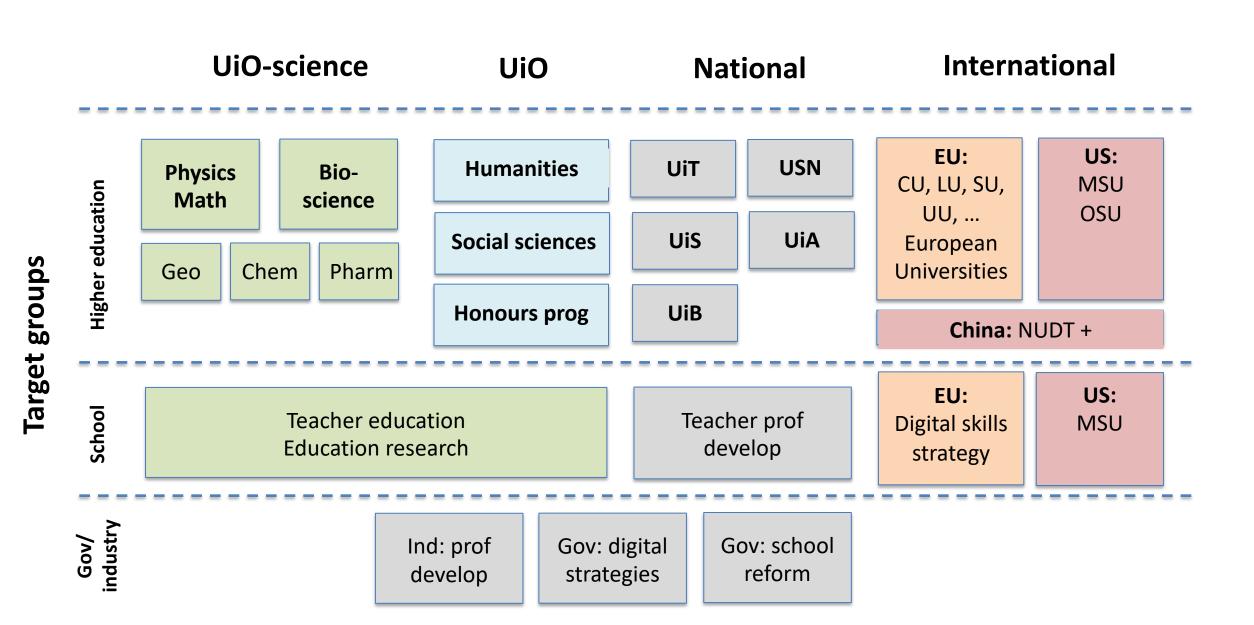
- Cross-curriculum
- Faculty initiatives
- Integration of research activity
- Part of learning outcomes
- Admin & leader support

- Develop own material
- Educate own faculty
- Partner in dissemination

Bioscience@UiO

Physics@UiT

Humanities@UiO


Science@NUDT

Engineering@USN

Integration across the educational timeline

Bachelor PhD 1-13 Master **Post-grad** Contextual Programming in Computational Contextual computing Contextual computing computing math skills ladder Contextual data Contextual data science Contextual data science science context Integrated in other subjects Programming in Integrated in disciplinary Teacher education education and prof devel CS MSc program

Dissemination: Partners and collaborators

Center for Computing in Science Education

Center for Computing in Science Education